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Abstract. The problem of achieving competitive game play in a board ggam
against an intelligent opponent, is a well-known and stlidield of Artificial
Intelligence (Al). This area of research has seen majorktineaughs in recent
years, particularly in the game of Go. However, popular lyditiard games, and
particularly Trading Card Games, have unique qualitiesritteke them very chal-
lenging to existing game playing techniques, partly duenreous branching
factors. This remains a largely unexamined domain and isutéea we operate
in. To attempt to tackle some of these daunting requiremevegsintroduce the
novel concept of RepresentativeMoves (RMs). Rather than examine the com-
plete list of available moves at a given node, we rather Begbe strategy of
considering only asubset of movethat are determined to krepresentativeof
the player’s strategic options. We demonstrate that in tméext of a simplified
Trading Card Game, the use of RMs leads to a greatly improzadth speed and
an extremely limited branching factor. This permits the Adyer to play more
intelligently than the same algorithm that does not emptey.

1 Introduction

The problem of playing a competitive board game, intelliyeand effectively, against
a human player is canonical in Al. Over the years, a broadeafdjterature has been
published addressing the problem of game playing, intrivdpa wide range of highly
effective techniques, for many different types of game®]7Historically, the litera-
ture has emphasized classical, deterministic, two-plagard games, and in particular,
ChessandGo[7, 13]. Al systems for many such games are powerful enougivén-
whelm even the best human players.

In recent years, perhaps influenced by their growing pojtuler popular culture,
card-based games such as Bridge and Poker have seen arséaceraphasis in the
literature [4, 5]. However, there are still some categodepopular games (particu-
larly amongst “hobbyist” game players), which have beendihgject of proportion-
ally limited investigation within the field. One of these indes large-scale, complex,
multi-player strategy board games, such as the populae&ettf Catan and Carcas-
sone [6, 12]. Another is the category of Trading Card Game&33), which are an
interesting hybrid between classical board games and eaneg.

** The third author holds the positions 6hancellor’'s ProfessqrFellow: IEEE and Fellow:
IAPR The third author is also aidjunct Professowith the Dept. of ICT, University of Agder,
Grimstad, Norway. The e-mail addresses of the authorararendo. h. t aucer @mai | . com
andr ewpol k@nui | . carl et on. ca, oommen@cs. car | et on. ca respectively.

1TCGs compose a market of over $600 million [2].
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In TCGs, which include popular games suchvasGi-OhlandMagic: The Gather-
ing, players typically construct their own decks, selectingilasgt of potentially thou-
sands of published cards, each with differing effects, dadgathem onto a dynamically
constructed field of play, where they act as the pieces of éimeeg Despite their inter-
esting qualities, they have seen almost no attention fromegéarchers, and this can be
primarily attributed to the fact that resolving them is ferh trivial. Besides, they are
not easily modeled using the traditional Mini-Max or Mor@arlo sets of strategies.

Both large-scale, hobby board games and TCGs are chammctdny extremely
broad, complex game states, which are manipulated by @ayko are able to take
multipleactions on their turn (often as many as their available nes®allow), and con-
sist of both deterministic and stochastic elements. Thieseants cause these games to
have extremely complicated game trees. They, thus, postieupar challenge to estab-
lished game playing strategies applicable for determaigtochastic games. To address
these challenges, in this work, we introduce the concegeakralizingavailable ac-
tions into Representative Moved®Ms), and considethemin our search. While this
will necessarily lead to unrealistic look-ahead in the gdree, the impact in decision
making is far surpassed by the benefits in execution time eaithhle search depth.

The remainder of the paper is laid out as follows. Sectionszdiees the established
techniques upon which we base our work, and Section 3 desditie novel concept of
RMs. Section 4 describes the simplified TCG that we will useun model, and how
RMs can be applied to it. Section 5 describes our experirhdatign, and Sections 6
and 7 report our results and analysis. Lastly, Section 8lades the paper.

2 Background

The vast number of established search techniques for aiadisvo-player and multi-
player games can be broadly divided into two paradigms, hathese of stochastic
methods, such as the Monte-Carlo Tree Search (MCTS) ahgordtnd its many suc-
cessful variants [1, 10, 12], and the deterministic methgdeerally based on the well-
known Mini-Max algorithm [7, 11]. Both paradigms are bas@odm an intelligent, effi-
cient, and informed search of the game tree, which referstget of game states reach-
able by each player making legal moves to alter the boardi-Max based approaches
generally search to a selectelg depth, pruning sections of the tree using methods such
as the well-known alpha-beta strategy, which will not imptscend state, thus enabling
a deeper and more effective search with available computresources [7]. MCTS,
and its many successful variants, such as the UCT algordimacts its search through
random game playing, potentially weighted by learned oreeixprovided strategies,
and thus it determines the path to explore at each\dgep bandit problem [1].

Both of these paradigms must adapt when they encounter cbgeperfect infor-
mation. For example, if applied to the gameBzckgammoythe search must account
for the fact that the available moves to each player, an@tbes the efficacy of specific
strategies, are partly based upon a roll of the die. In batkdtparadigms, this can be
handled by the incorporation of “chance” nodes, which repné¢the possible, weighted
outcomes of a random event [7]. In the deterministic contekiance” nodes are incor-
porated into the Mini-Max strategy in the Expectiminimagaiithm, where each node
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is assigned a score equal to éspected valueassuming players perform intelligently
with the resources available to them [7]. MCTS schemes caniatorporate “chance”
nodes in the manner employed by the Expectiminimax [3].iliwely, the incorporation
of “chance” nodes can seriously impact the performancee$éarch, as they lead to a
much larger functional branching factor, and effective tpeuning, particularly in the
deterministic case, where it becomes a much greater clgallen

While relatively simple random elements, such as rollinggachn transform a sim-
ple search problem into a far more challenging one, thedelgats are exacerbated in
the context of “hobby” board games, suchSastlers of Catajand TCGs, which often
have very complex random events and player moves made frarwiafe range of indi-
vidual parts. Current applications of game playing striatetp hobby games generally
require a great deal of bias and expert knowledge to perfammpetitively [12]. This
requirement necessarily limits the development of a dosradependenapproach. In
the context of TCGs, while a number of attempts have been nwagdiay subsets, or
accomplish specific tasks, in popular TCGs, to the best okoowledge, no attempt
to create a competitive TCG player exists in the literatlifgs is possibly because the
number of available moves and random components involhetbardaunting for cur-
rent strategies, which do not rely heavily on expert knog&dn this work, we will
refer to these types of games as Complex Stochastic Gam&sjCS

As the extremely large number of “chance” nodes and bragctaictor of TCGs
are a major hurdle in achieving competitive play, we sugtiestan effective method
for tackling them could be to simplify the game tree in someg.Wahile this would
have the effect of considering an invalid or incomplete gatage, it may not be as
catastrophic to do so as one may intuitively believe. Thaniglogous to what happens
in the context of multi-player games. In recent years, thetBeply Search (BRS)
has been shown to achieve excellent, competitive play, #wengh it explores invalid
game trees [8]. The BRS is based on an observation that in taprayer board game,
the moves of the other players are not as important as the syafvihe perspective
player, and simplifies the turn order and search by consigexli opponents as if they
were a single “super-opponent”, and searching as if the dgedenly two players [8] —
even though it considers invalid turn orderings. An exanoplis grouping in a single
level of a BRS tree is shown in Figure 1. We propose an anabgmwategy for CGSs.

3 Representative Moves

While there are many difficult challenges to overcome in edgnig competitive game
play in the domains of TCGs and hobby board games, a critmatern that severely
hampers state-of-the-art techniques is the extremely largnching factors of these
games, due to the wide range of possible decisions avaitabilee player, and the
presence of a substantial number of “chance” nodes in the g&®8. While traditional

pruning methods can impact the branching factor, if theeetamdreds of possible
moves available to a player at each turn, their applicgbilitl be limited. Therefore,

it is worthwhile seeking out novel and radical methods farifing the search space,

2 As an example, in a TCG deck, there may be twenty or more fessirds, each with a
different functional purpose, which the player could drawemy turn.
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Fig. 1: The operation of a single level of the Best-Reply Blearhe scores that are reported have
the opponent’s player number listed next to them (in paesig) to assist in the clarification.

to improve performance in these games. To achieve this, wpoge the concept of
Representative MovéRMS).

The basic concept of RMs is as follows. In the scenario whegarae, possibly,
allows hundreds of moves, particularly when some are basedralom chance, rather
than considering all of these possible moves and their éhaodes, we, instead, con-
sider a game model with only a much smaller set of moves. Thadler set of moves is
“representative” of the total number available, standmfpi “classes” of moves. They
are either chosen representatives of their class, or sorhefsaverage of the moves of
that class. The classes of moves can be determined basegen kexowledge of the
game’s strategy, or potentially through unsupervisediegrmechanisms. As a simple
example, consider a game, similar to Backgammon, whereglis turn, a player rolls
two dice, and may advance two of his pieces by individualeslshown on the pair of
dice, towards a goal space. The player could move two diffgrieces, the same piece
twice, reach the goal with one or two of his pieces, or perhdps to occupied spaces
ahead, only move one, or even none of his pieces. These @5 tyjopmoves could be
the classes. Rather than consider all possibilities, wddwoansider these as RMs.

The main reason to do this is to limit the branching factorhaf game. Instead of
considering hundreds of available moves, we instead paréosearch based upon dis-
tinct strategiesavailable to the players at each level of the tree. IntuigiMey selecting
only RMs at each level of the tree, we will be considering atoimplete version of
the game tree, or, if averages are taken, potentially illegard states. However, this
is what the BRS does for multi-player games, and, despiteapparent weakness, it
performs extremely well in the environments to which it a@p[8]. When considering
an exorbitantly large space, such as those associated @Wi@s;Tthis can potentially
allow us to achieve a more substantial look-ahead, andrfesszch.

A disadvantage of using RMs is that a move, or random outcahieh is ignored,
could be critical to formulating a winning strategy. Besidie may not always be pos-
sible to properly select RMs. For example Ghessthis technique would be unlikely
to perform well, as it is difficult to strategically classi@yplayer’s available moves.
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4 Game Model

The RMs paradigm was developed specifically to tackle theadowof TCGs, and there-
fore, it would be best to test its performance within the eahodf an actual TCG. How-
ever, due to the extreme complexity of these games, it is difigult to implement an
engine capable of fully capturing all their aspects. Thanefin this exploratory work,
we have created a custom TCG, designed to follow the coromentf the genre, while
being a much simpler example than any on those available ikehd CG games gen-
erally represent a battle of some sorts, typically, in adaptor science fiction setting,
with the names of cards, game mechanics, and so forth cotitgxo this story. Players
draw cards from their own, customizable deck (with a unicgteo$rules for deck cus-
tomization), and typically place these cards onto the “fidldlay”, where they remain,
functioning thereafter in a manner similar to game piecebawe some effect and are
then removed. For example, in a game IKagic: the Gatheringbased on the concept
of dueling wizards, a card could represent a dragon thatdoeilsummoned to battle,
or a spell to destroy one of the opponents’ summoned mongarsach turn, a player
can typically take as many actions as his cards would alloyg, gome general-purpose
acts, such as drawing a card from his deck.

In our custom TCG, each player has at their disposal a deckeafty-five cards.
As is typical of TCGs, each player has his own deck. Howewethis case, the cards
in each deck are identical. Two of these cards, when playgdpve an opponent’s
card from the field immediately, and are then removed therasgthis is analogous to
“Removal” cards inMagic: the GatheringThe other twenty-three represent “soldiers”
of varying strength and quality, each having a value for lElg“Heal”. and “Attack”.
Thus, each individual card can have different strengthsregaknesses. When played,
these cards remain within the field of play, and afford the@ladditional actions on
this turn and future turns, as is typical of TCG cards. The#gjgersalues of the “soldier”
cards are chosen to provide an even spread of each valudyigfiter values being less
common than lower values. The specific soldier cards arededdn Table 1.

Table 1: Statistical values of cards in our custom TCG.

Fight Heal Attack Fight Heal Attack Fight Heal Attack
1 1 1 1 1 2 1 3
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Each player begins with fifty “Health Points” (HP), concegdty representing his
remaining vitality. To begin play, each player draws fivedsatUnlike a normal TCG,
for the sake of simplicity, each player’s hand is visible.ring each turn, the player
must first draw a card, unless this would cause him to have tharefive cards in his
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hand. The player may then place a card from his hand onto tdeofielay®. Then, for
each of the player’s cards on the field, he may take one of fl@ing actions:

1. Do nothing.

2. Increase his HP by the card’s “Heal” value.

3. Decrease his opponent’s HP by the card’s “Attack” value.

4. Have this card do battle with another on the field. The cati tlve lower “Fight”
value is removed. In the event of a tie, both are removed.

The first player whose HP is reduced to zero loses the gamdyisimgpponent wins.

5 Experimental Design

While the concept of defining and utilizing RMs has intuitv@ue, its performance
must be gauged in a quantitative manner so to ensure thaalthieds between its bene-
fits and drawbacks supports its use in real game playing eagie task of performing
a formal analysis of game playing algorithms [11] is wellblam to possess extreme dif-
ficulties. Consequently, as is the accepted practice initdr@aiure, we have chosen to
verify its performance via experimentation. In this expkory work, we will perform
such an experimental verification using the custom ¥@éscribed above.

Our goals in verifying the performance of RMs are twofoldrsBy, we seek to
confirm that the use of RMs does, indeed, save substantial@of search time.
Secondly, we seek to determine whether this benefit in pmdace is obtained at the
cost of effective game play, or whether this even improveihay. To do this, we first
measure the execution speed of both a basic Expectiminilgasithm, and also that of
an Expectiminimax algorithm that employs RMs. More spealifi; in this regard, we
measure both the execution time, and the total number ohleaés expanded, where
the latter serves as a “platform agnostic” metric. We theasuee their performance
against each other, over a number of games, to examine tleetrapRMs on the win
rate. We conduct this experiment both to an equivalent meypthd and thereafter to a
greater depth whenever RMs are employed, if the latter isdda work faster.

To apply RMs to our custom TCG, we must first have some condepow the
classes of moves, and their representatives, are selé€absgrve that in our custom
TCG, each card (except the “Removal”’ cards) has a total afetivalues (“Fight”,
“Heal”, and “Attack”), each of which represents a distinttategy. Thus, when de-
termining which card to play next, we consider three posditils, one for each of the
three values. Each of these three moves has a value equa awvehage of “Fight”,
“Heal”, or “Attack”, of all remaining cards in the player'sahd and deck, with the value
doubled for cards in the hand. This produces three “reptagess”, roughly corre-
sponding to the player’s current capacity in each of theetlaspects of the game.

31n a typical TCG, the ability to put a card onto the field of piaylimited by some form of
resource, often obtained from other cards. Thus, careftk denstruction is an important
consideration, as powerful cards are of no strategic useyf tannot be played. As our game
does not factor in deck construction, we have omitted resocards from the game.

4 We apologize for the detailed description of the game’s raphet it is necessary to clearly
describe our work.
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This leaves us with the task of considering the “Removal'lsarhich function
differently and which do not have three values. To factontlito our “representative”
set, we observe that a “Removal”’ card has a purpose similar¢ard with a high
“Fight” value, that is, that of removing the opponent’s caftbm their field of play.
We, therefore, consider each of the two “Removal” cards techévalent to a card with
the values 5 “Fight”, 0 “Heal”, and 0 “Attack”. Observe thaig can “remove” almost
anything from the field, but can do so only a single time. Taihus is not quite as good
as the few cards which have 6 “Fight” values. This allows usttasider the “Removal”
cards to be part of our three representatives.

For the sake of fairness, each of the players makes use odithe avaluation func-
tion. The evaluation function takes the player’s “Healthn®s, and adds to it the total
sum of all values, on all cards, on the player’s field, divibgdhree. We subtract from
this value a small factor which favours more “balanced” lgridus encouraging the
player to retain more strategic options. This factor is alaled by summing the three
values on each card, and subtracting the lowest total vtlua,the highest (i.e., a card
with “Fight” 3, “Heal” 1, and “Attack” 1 would have a sum of 5T.he final value of
the evaluation function is the difference between the paatige player’s result, and his
opponent’s.

Our results are presented in the following section.

6 Results

Table 2 shows our execution time results for Expectiminimésen RMs were em-
ployed. In all cases, to ensure equivalent execution, elglephad the starting hand
6/6/6, 2/1/1, 4/1/1, 2/3/2, and 1/3/3 (“Fight"/“Heal’/"fgck”). As expected from any
game tree search algorithm, the runtime, and the numbeabhtales examined, grow
explosively as thely depth is increased.

Table 2: Execution time when RMs are employed.

Depth| Runtime (ms) Leaf Nodes
3 108 3,100
4 246 62,400
5 2,200 238,100

Table 3 shows our execution time results for Expectiminimven RMs were not
employed. The same starting position was used, as with #anaqus experiments, to
ensure consistency. As is immediately obvious, the use o RAdtly cuts down the
search space, with an Expectiminimax search pdyadepth of 3, taking much longer
than one to a depth of 5 when RMs were not employed. At a grelefah, execution
of the search showed no signs of halting after well over 3Quteis of execution time.

Table 4 shows our results when RM-enabled and Non-RM pldgeesi each other,
with equal search depths of 3. We found that, even when they allowed only equiv-
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Table 3: Execution time when RMs are not employed.

Depth| Runtime (ms) Leaf Nodes
3 132,100 |263,836,90(
4 Inf. Inf.

alent search depths, RMs achieved an 80% win rate over a Mosdarch, winning
with an average of 22.9 HP, and taking an average of 29.6 tarfirsish the game.

Table 4. Games between RM and non-RM players at equivalentiselepth.

Winner | RM final HP | Non-RM final HP| Number of Moves
RM 25 -2 26
Non-RM -3 28 24
RM 37 0 22
RM 59 -2 45
RM 6 -1 24
RM 21 -3 16
RM 20 -1 21
RM 40 -2 20
Non-RM -5 11 42
RM 29 0 56

Table 5 shows our results when RM and Non-RM players facel ether, where
the RM player was allowed to search to a depth of 5, given ibsqm efficiency. We
found that, even allowed only equivalent search depth, Rilgesied an 72.7% win rate
over a hon-RM search, winning with an average of 19.9 HP, akithgy an average of
26.2 turns to finish the game. The power of using RMs in theesisais obvious!

7 Discussion

Our results very clearly demonstrate two things. First, use of RMs significantly
improves the speed and efficiency of the search. Secondipjtdeconsidering only a
small, representative portion of the complete game treleomly does the use of RMs
not hamper the strategic ability of the player in our custd®@GT but in fact, it achieves
a noticeably higher win rate, compared to a player not usiedkM technique.

Our first observation, about the speed of the search, is sbatqwedictable. In-
deed, the use of RMs converts a total of up to 25 possible ¢hedshe player could
place onto the field and which he must consider, into a totHirefe. However, it is still
striking to observe how extreme the change is. Even comgaraearch to ply depth of
five, using RMs, to a search to a depth of three, not using RiMsRM-enabled search
is two orders of magnitude faster. It also considers thrdersrof magnitude fewer leaf
nodes. This result clearly demonstrates that the use of RMStdeed, enable a search
to a much greater depth, in the same available processieg tim
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Table 5: Games between RM and non-RM players at differingchedepths.

Winner | RM final HP | Non-RM final HP| Number of Moves
RM 8 -1 16
Non-RM 0 16 32
RM 54 0 33
RM 18 -1 21
RM 29 -2 17
RM 24 0 24
RM 8 -5 25
Non-RM -2 42 26
Non-RM -5 15 26
RM 41 -1 36
RM 44 -1 32

The second observation is far more interesting. Our origstated goal was to
demonstrate that the use of RMs doesmdticethe strategic capabilities of the Expec-
timinimax algorithm. However, we observed that it, in faetgularly defeated a player
who does not use it. More importantly, this effect was obsdmven when the primary
predicted benefit of RMs, i.e., the faster search, was ntafad in, to allow it to search
deeper in the tree. This is a very interesting and unexpertsdlt. A possible expla-
nation for this is that considering only the primary strétdgctors of the game, rather
than individually considering every possible card, RMslded a more focused search
on the game’s components. The RM technique did not perfottaret a larger search
depth, although given the restricted number of games welqaay to completion (due
to how slow the non-RM player was), this may easily be duendoan chance.

We observed that in both experiments, the RM player wouldaverage, end the
game with a similar (20 - 23) HP score, and that the game waldgla similar (26 - 30)
number of turns to complete. Examining individual casesydwer, we observe some
scenarios where the game took much longer, up to 56 turnsiish fiand some scenar-
ios where the winning player would have a much higher, or fot® score. The highest
winning HP score was 59, and the lowest was 6. Given that ;toouTCG provides
the ability for cards to “Heal” the player, it is likely thateé cards drawn in games that
either took a long time, or ended with high HP scores, had arhigher “Heal” value
than other available cards. Conversely, whenever the wiwoe with a low HP score,
it is likely that both opponents entered into a scenario whiey had cards with high
“Attack” values, and attempted to race to defeat each ofies. balance of aggressive
and defensive play is typical of real TCGs, suclMagyic: the Gatheringand suggests
that our custom TCG does, indeed, capture some of theiegtcaqualities.

8 Conclusions and Future Work

Our results in this paper very clearly demonstrate thatpalgh it considers only a por-
tion of the game tree, the use of RMs is capable of achievimgpeditive game play,
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with equivalent techniques that do not employ it. RMs are aedgpable of vastly improv-
ing the execution time of the search. Although we have dorexamination of RMs in

the context of Expectiminimax, it is also applicable to MGBBd an examination of
its capabilities in such settings is a possible avenue aféuvork.

In this work, we calculated the RMs based upon domain-spdgaifiwledge of the
game tree. However, as we briefly touched upon in Section Bpitld be possible
to find classes of moves using an unsupervised learning itponand elect specific
representatives from the classes. Further, while our oudt€G replicates some of
the strategic concerns of a real TCG, itnmichsimpler than the ones accessible in
the market. It would be very interesting to examine the cipad RMs in a real-
world TCG, although significant work would need to be doneoimrfalizing the game
engine, before this would be possible. Finally, we belidwag bther non-TCG games,
like Settlers of Catajior Backgammoycould potentially benefit from the use of RMs.
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