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Abstract

Designing and implementing efficient firewall strategies in the age of the In-

ternet of Things (IoT) is far from trivial. This is because, as time proceeds, an

increasing number of devices will be connected, accessed and controlled on

the Internet. Additionally, an ever-increasingly amount of sensitive informa-

tion will be stored on various networks. A good and efficient firewall strategy

will attempt to secure this information, and to also manage the large amount

of inevitable network traffic that these devices create. The goal of this paper is

to propose a framework for designing optimized firewalls for the IoT.

This paper deals with two fundamental challenges/problems encountered

in such firewalls. The first problem is associated with the so-called “Rule

Matching” (RM) time problem. In this regard, we propose a simple condition

for performing the swapping of the firewall’s rules, and by satisfying this con-
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dition, we can guarantee that apart from preserving the firewall’s consistency

and integrity, we can also ensure a greedy reduction in the matching time. It

turns out that though our proposed novel solution is relatively simple, it can be

perceived to be a generalization of the algorithm proposed by Fulp [1]. How-

ever, as opposed to Fulp’s solution, our swapping condition considers rules

that are not necessarily consecutive. It rather invokes a novel concept that we

refer to as the “swapping window”.

The second contribution of our paper is a novel “batch”-based traffic es-

timator that provides network statistics to the firewall placement optimizer.

The traffic estimator is a subtle but modified batch-based embodiment of the

Stochastic Learning Weak Estimator (SLWE) proposed by Oommen and Rueda

[2].

The paper contains the formal properties of this estimator. Further, by per-

forming a rigorous suite of experiments, we demonstrate that both algorithms

are capable of optimizing the constraints imposed for obtaining an efficient

firewall.

Keywords: Firewall Optimization, Matching time, Weak Estimators, Learning

Automata, Non-Stationary Environments, Batch Update.

1. Introduction

The inter-connectivity, convenience and the all-prevalent digital services

offered by the Internet, come with a steep price. As our society becomes more

dependent on the Internet, the requirement to secure the information stored

on these devices and services is more stringent and demanding. To secure

the information, the users and systems’ administrators have to be even more

security-conscious.

The filed of computer security is extensive. It encompasses the security of

the physical machines as well as the information stored on them. However, in

the context of the Internet, one has to be additionally concerned with network-

related aspects of security. Such a “specialized” form of security is mandatory
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especially because an increasing number of devices are connected to various

networks, and primarily to the Internet [3]. Network security deals with the se-

curity aspects of data and communication within a/multiple network(s), and it

spans many different concepts such as authentication, access policies, intrusion

detection, intrusion prevention and honeypots/honeynets.

A first line of defence in network security is to use a firewall in order to

enforce access policies. A firewall, in essence, is a system architecture program

whose objective is to filter the incoming and outgoing packet traffic on a host

or in a network. The task of accepting or denying access to the network is

enforced by matching the header information of each data packet against a

predefined set of rules, referred to as the “firewall policy”. Each rule has an

action associated with it, for example, to either deny or accept access, and this

action is what decides whether a packet is dropped or not.

A study of many Internet and private traces shows that the major portion

of any network’s traffic matches only a small subset of firewall rules. This, in

turn, implies that the frequency distribution for some of the traffic properties

appears to be highly skewed [4]. Furthermore, when performing packet filter-

ing, each rule in a firewall policy will usually be checked in a sequential order.

Consequently, as the firewall policy increases in size, as any rule is often com-

bined with a matching rule of a higher order, the overhead associated with the

task of filtering the firewall, will become increasingly costly.

The reader will easily see that this rule matching phase can easily become a

bottleneck in a high speed network when it is under attack or when it encoun-

ters a heavy network load [1, 5]. Furthermore, it is well known that the com-

puting power of hosts, the transmission speeds of packets and the complexity

of networks, continue to increase. To keep abreast with these increasingly-

demanding environments, firewalls must be able to “proportionately” adapt

to changes by processing packets at increasingly higher speeds [6, 7]. Thus,

it is desirable that a firewall monitoring system processes a lesser number of

packet matches in order to reduce the potentially exorbitant filtering overhead

as well as the overall packet matching time [4].
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A natural inference of the above assertions is the following: In order reduce

the number of packet matches that have to be processed, and to ensure that

a firewall is able to process packets at an adequate speed, it is crucial for the

firewall’s architecture to have an optimized ordering for the appropriate rules.

This can be achieved by ensuring that the rule ordering is such that the rules

that are matched most often, appear at the top (front) of the list of rules. This

will reduce the amount of time used to process a packet by reducing the num-

ber of required packet matches, and consequently reducing the packet filtering

overhead. Additionally, it will also have the effect of improving the network’s

throughput because a packet will spend less time being processed.

Although the problem is easily stated, the task of finding the optimal rule

order is NP-hard because of inter-rule dependencies. Our goal is thus to find a

heuristic algorithm to find a near-optimal rule order.

The complexity of the problem is accentuated by the fact that traffic patterns

in networks are not static. This implies that since the patterns are dynamic

and possibly time varying, one cannot learn the statistics of the traffic patterns

using traditional estimation methods. Rather, one has to devise estimation (or

learning) strategies that are rather effective for non-stationary environments.

This is the task we undertake!

1.1. Problem Statement and Contributions

Put in a nutshell, this paper deals with dynamic networks, i.e., those that are

characterized by being “under constant change and activity”. Essentially, a

dynamic network is one in which the state of packet traffic is time-varying and

non-stationary. This implies that the packet traffic fluctuates in such a way that

no single type of traffic is dominant for an extended period of time. Our goal

is to find a solution to the problem of optimizing the performance of a firewall

in such dynamic networks. In order to achieve this, we attempt to answer the

following questions:

• How can we optimize the order of the firewall rules in order to minimize the Rule

Matching (RM) operations invoked?
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• How can we learn and use the dynamic network traffic statistics to further opti-

mize the firewall?

Of course, to achieve the above, we shall examine the traffic patterns statis-

tically, combine the inferences with the workings of a RM algorithm. Thus, the

major contributions of this paper are:

• We present an efficient and yet simple mechanism for optimizing the or-

der of the rules in the firewall by using a novel concept that is referred

to as the Swapping Window. The Swapping Window is a straightfor-

ward strategy by which one can infer whether it is beneficial to swap

the order of two rules in a RM algorithm by considering their matching

probabilities, and simultaneously guaranteeing that no inconsistencies

are introduced in the firewall. We submit that, without loss of general-

ity, our solution is a mapped efficient solution to the Single Machine Job

Scheduling (SMJS) Problem [8] – since our problem can be shown to be a

specific instantiation of the latter.

• We present a novel adaptive algorithm for estimating the statistics of

multinomial observations appearing in a batch mode4. The algorithm

is able to deal with non-stationary environments and is an extension of

the Stochastic Learning Weak Estimation (SLWE) work by Oommen and

Rueda [2], which is, in and of itself, suitably adapted for high speed net-

works. The observations that the estimation scheme receives are, in our

case, the different matched rules within a time interval when they are

examined as a “batched” data stream and not as sequential entities.

• We combine both the above-mentioned contributions (the rule ordering

algorithm augmented with the estimation scheme) into a single algo-

rithm so as to achieve a holistic approach for optimizing the firewall’s

performance.

4The batched-mode version of Oommen-Rueda’s SLWE is a contribution in its own right to the
field of estimation in non-stationary environments.

5



1.2. Organization of the Paper

After having introduced and motivated the problem in Section 1, we pro-

ceed to review the related state-of-the-art in Section 2. In this section, we in-

troduce the fundamental concepts and notations required for this paper to be

a self-contained document. As well, in this section, as we will review the rele-

vant related work. In Section 3, we present our solution composed of two main

components: Rule Re-ordering (RR) and traffic estimation.

In Section 4, we present some theoretical results that demonstrate the va-

lidity of the algorithms proposed in Section 3 for both rule ordering and esti-

mation. Section 5 contains simulation results demonstrating the power of the

scheme in stationary and dynamic environments. The experiments done for

dynamic environments were based on a realistic test-bed, while those done for

stationary environments were done using a simulated set-up (without requir-

ing a test-bed). The paper also includes a thorough discussion of the results.

Section 6 concludes the paper.

2. State-of-the-Art

This section outlines the current state-of-the-art when it concerns firewall

optimization. It also introduces and explains several key concepts, technolo-

gies and applications that we will use in this paper.

2.1. Firewalls

Based on the article Benchmarking Terminology for Firewall Performance (RFC

2647) in [9], a firewall is defined as “a device or group of devices that enforces

an access control policy between networks”. Firewalls are thus, devices or pro-

grams that control the flow of network traffic between networks or hosts [10].

2.1.1. Rules and Packets

To understand how a firewall operates, it is necessary to understand the

relationship between the access control rules and the packets that they govern.

We now present a formal explanation of the relevant terms.

6



A firewall rule, r, is defined as an n-tuple of ordered fields:

r = (r[1], . . . ,r[n]), for n > 1.

Although the upper bound of n is network specific, for an Internet firewall,

it is usually set to five and comprises of the following fields: Protocol, Source

Address, Source Port, Destination Address, and Destination Port [4, 11, 12].

Each rule has an action field associated with it, and the value of the field de-

cides the actions that the firewall will take when a match is found. Table 1

outlines the values of the action fields.

Action Effect

Accept Forward the packet
Deny Drop the packet
Log, Accept Log and forward the packet
Log, Deny Log and drop the packet

Table 1: The action field values of a firewall and its effects.

The Protocol field specifies a protocol as documented in the IP packet header’s

protocol field, as stated in Internet Protocol (RFC 791). For an Internet firewall,

this would be either TCP, UDP or ICMP. However, it could also contain a wild

card value (*), in which case it will match any protocol [10, 11, 13, 14]. The

Address and Port fields specify the source and destination IP addresses, and

the source and destination port numbers of incoming and outgoing packets.

Both of these fields can be configured to represent a range of values or a set of

values, rather than only a single value. Tables 2 and 3 outline these types of

configurations for the port and address fields respectively.

Notation Example Explanation

Wild Card * or any Port range 0 - 65535
Range 90-94 The given range of port numbers
Single 90 A single given port number

Table 2: Notation for the port field in a firewall rule.
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Notation Example Explanation

CIDR 192.0.2.0/24 Address range 192.0.2.0 - 192.0.2.255
Wild Card 192.0.* Address range 192.0.0.0 - 192.0.255.255
Range 192.0.2.2 - 192.0.2.150 The given range of addresses
Single 192.0.2.2 A single given IP address

Table 3: Notation for the address field in a firewall rule.

A data packet, p, is defined as an n-tuple of ordered parameters:

p = (p[1], . . . , p[n]), for n > 1.

The upper bound of n is limited by the fields defined in the Internet Protocol

(RFC 791) [13]. That being said, not all fields in the IP header are of importance

for a firewall. Thus, a data packet, as seen by a firewall, is comprised mainly of

the following fields [4, 11, 12]:

1. Protocol

2. Source Address IP

3. Source PORT

4. Destination Address IP

5. Destination PORT

These fields correspond to the fields that a firewall rule is comprised of and

that it processes.

2.1.2. Firewall Policies

A firewall security policy defines how an organization’s firewall handles

inbound and outbound network traffic based on its security policies. Prior to

establishing these security policies, generally speaking [10], an organization

should conduct a rigorous risk analysis in order to discover what types of traf-

fic passes through its networks at all times. Based on such an analysis, the

administrators should determine how they can secure it. Indeed, a firewall

security policy is the result of implementing such an analysis .
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Examples of policy requirements include accepting only necessary IP pro-

tocols to pass [13], authorized source and destination IP addresses, authorized

TCP and UDP ports to be used, and certain ICMP types and codes to be used

[10]. Generally speaking, all inbound and outbound traffic that is not expressly

permitted by the firewall policy should be blocked because such traffic is not

needed by the organization. This practice can also have the additional bene-

fit of reducing the risk of attacks and decreasing the volume of traffic carried

into/through the organization’s networks [10].

To specify a formal definition for a firewall policy, let:

R = {r1,r2,r3, . . . ,rN}, for N > 1

be the set of ordered firewall rules comprising a policy.

Such a firewall policy is considered to be comprehensive if any packet, p,

has a match in R. In practice, this is achieved by implementing a Default Rule

[4, 10] which serves the purpose of being a catch-all rule. It is usually added at

the end of a policy and is designed such that it will simply discard any packet

that has not matched any of the above rules. Table 4 shows an implementation

of one such comprehensive firewall security policy.

2.1.3. Packet Matching

In many implementations of firewalls, the rules are stored internally as

linked lists [12]. A firewall will, thus, generally speaking, sequentially compare

a packet with a rule. In order for a rule, ri, to match a packet, p, the parameters

of the packet header must be a subset of all the permitted corresponding fields

in the rule. Thus, if

ri[l], for l = 1. . .n, and

p[l], for l = 1. . .n

represent the ordered fields of the rule ri and the ordered parameters of the

packet header for packet p respectively, the match between rule ri and the
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Source Destination

No. Proto. IP PORT IP PORT Action Prob.

1 UDP 190.1.* * * 90 accept 0.05555555555
2 UDP 190.1.1.* * * 90-94 deny 0.05555555555
3 UDP 190.1.2.* * * * deny 0.05555555555
4 UDP 190.1.1.2 * * 94 accept 0.05555555555
5 TCP 190.1.* * * 90 accept 0.05555555555
6 TCP 190.1.1.* * * 88 deny 0.05555555555
7 TCP 190.1.1.2 * * 88-94 deny 0.05555555555
8 TCP 190.1.2.* * * * accept 0.05555555555
9 TCP * * 161.120.33.41 25 accept 0.05555555555
10 TCP 140.192.37.30 * * 21 deny 0.05555555555
11 TCP * * 161.120.33.* 21 deny 0.05555555555
12 TCP 140.192.37.* * * 21 accept 0.05555555555
13 TCP * * 161.120.33.* 22 accept 0.05555555555
14 TCP 140.192.37.* * * 80 deny 0.05555555555
15 TCP * * 161.120.33.40 80 accept 0.05555555555
16 TCP * * 161.120.33.43 53 accept 0.05555555555
17 UDP * * 161.120.33.43 53 accept 0.05555555555
18 * * * * * deny 0.05555555555

Table 4: An example of a firewall security policy configuration with equal initial probabilities.
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packet p can be denoted as:

p⇒ ri ⇐⇒ ∀ l, p[l]⊂ r[l], for l = 1. . .n.

Informally speaking, p matches ri if and only if all the parameters of p are in

a subset of the respective fields of ri. Because each parameter p[li] must match

the corresponding field ri[l j], the order of fields in a rule is important to the rule

matching process. Thus, a packet p can match multiple rules in a firewall, R.

The matching policy of the firewall decides which rule render the packet to be

considered to be “matching”.

There are, generally, three common matching policies used, namely, the Best

Match, Last Match and First Match policies [15] listed below:

• Best Match: A packet is compared against all ri ∈R. The rule that matches

the closest with the packet is selected and its action is consequently exe-

cuted.

• Last Match: A packet is sequentially compared to each rule ri ∈ R. The

last rule that matches, p⇒ ri ∈ R, is selected and its action is consequently

executed.

• First Match: A packet is sequentially compared to each rule ri ∈ R. The

First rule that matches, p ⇒ ri ∈ R, is selected and its action is conse-

quently executed.

The Best Match and potentially, the Last Match schemes increase the packet

matching time. Consequently, in this paper, we assume a First Match matching

policy.

2.2. Firewall Modelling and Policy Anomalies

This section outlines how a firewall is modeled and what policy anomalies

are.
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2.2.1. Rule Intersection

As stated in Section 2.1.1, any parameter of a rule can contain a range of

values. A consequence of this is that multiple rules can intersect. Two rules, ri

and r j, intersect if a comparison of their ordered parameters yields a nonempty

set. More formally, this is represented as below:

ri ∩ r j 6= /0 ⇐⇒ ∃l, ri[l]∩ r j[l] 6= /0, for l = 1. . .n.

Consider Table 5 which displays some examples of this.

Source Destination

No. Proto. IP PORT IP PORT Action

1 UDP 190.1.* * * 90 accept
2 UDP 190.1.1.* * * 90-94 deny
3 TCP 140.192.37.30 * 161.120.33.40 80 deny

Table 5: Intersecting and non-intersecting rules.

Rules 1 and 2 intersect because Rule 2 describes a subnet in Rule 1. Fur-

ther, the port in Rule 1 is a subset of the ports in Rule 2. In other words, the

intersection of Rules 1 and 2 yields the following non-empty set:

{190.1.1.0−190.1.1.255, 0−65535, 0.0.0.0−255.255.255.255, 90}.

On the other hand, Rule 3 is completely separate from the other two rules

and does not intersect with them. The existence of rule intersections in a fire-

wall policy can limit the size of the set of valid rule orderings and be the cause

of anomalies in the policy.

2.2.2. Precedence Relationships

As described in Section 2.1.2, a firewall policy is defined as an ordered set

of firewall rules, R, and each packet, p, will be sequentially compared to a rule,

r, in a list-like manner. Furthermore, a packet can match multiple rules, and
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this is evident by the different types of matching policies that a firewall has.

This means that the order in which the rules are maintained and processed is

important, and should be preserved. If the order is not preserved when the

rules are re-ordered (for example, if they are, instead, reversed), a packet might

match the wrong rule and violate the integrity of the policy.

The integrity of a policy is defined as the original intent of the policy. To

formalize this, let R be the original firewall security policy, and let R′ be a re-

ordering of all the rules in R. In that case, in order for the system to maintain

the integrity of the firewall policy R in R′, a packet, p, must match the same rule

and have the same action executed in R′ as it would have done in R.

It is important for the reader to understand that a firewall is not merely

comprised of disjoint rules. More often than not, there will be Precedence Re-

lationships between many of the rules. A precedence relationship is a connec-

tion between two or more rules where a rule must appear before another in

order for the integrity of the policy to be kept intact.

In order to accurately model a firewall policy with relationships, one uses a

Directed Acyclic Graph, DAG G = (R,E), rather than a list. In such a model, R

represents the set of firewall rules in a policy and E , the set of directed edges,

represents the set of precedence relationships between the rules. Representing

a firewall policy using a DAG has distinct advantages over a list representation.

They are:

• The foremost advantage of a DAG representation is that it renders the

task of modeling precedence relationships in a firewall much easier. This

is because each node in the graph will represent a rule and each directed

edge between two nodes will represent a precedence relationship. In-

deed, an edge between rules is determined by finding the intersection

between the rules in the firewall, R.

• Secondly, the problem of optimizing the rule order of a firewall has been

shown to be comparable to that of the single machine job scheduling problem

subject to certain precedence constraints. Further, since a DAG model can
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be used to represent the scheduling problem, it would be appropriate to

use a similar model in order to a model a firewall policy.

For clarification purposes, the precedence relationships specified in Table 4

are shown in Figure 1. As one can see, the figure displays the DAG, created (or

rather, implied) by the relationships. In the interest of completeness, we now

explain, in greater detail, two of the best-reported solutions for this problem.

Figure 1: A Direct Acyclic Graph (DAG) representation of a firewall security policy.

2.3. Firewall Matching Optimization: Legacy Approaches

In this section, we describe the relevant rule order optimization algorithms

that are based on matching optimization, and outline the general problem of

firewall Rule Re-ordering (RR).

The task of optimizing a firewall is comparable to that of solving the Travel-

ing Salesman Problem (TSP) [16] with precedence constraints [8]. The standard

TSP is defined as the task of finding the shortest route while traversing each

city exactly once, given N cities and their intermediate distances. However, as

observed by the author of [17], when constraints are included in the problem, it

becomes more complex. The authors of [8] examined a variant of the TSP with
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precedence constraints. This variant, known as the Time-Dependent Traveling

Salesman Problem (TDTSP), considers the case when transition costs between

two cities depends on the time of the visit5. This implies that certain cities can

only be visited at a given time, and thus, trying to find an optimal path with

such a constraint means that some cities must be visited before others due to

the dependency relationships between the cites. This is precisely, a mapping

of the problem of finding the optimal rule ordering in a firewall policy with

dependency relationships, because finding the optimal rule ordering in a fire-

wall entails creating a rule ordering such that some rules must be “visited” or

compared against before other rules, until a match is found.

2.3.1. A Bubble Sort-like Algorithm

Since the problem is NP-hard, the author of [1], designed a simple heuristic

algorithm, given in Algorithm 1, for optimizing firewalls rule ordering.

Algorithm 1: A simple Bubble Sort-like rule ordering algorithm.

Data: A list of firewall rules
Result: A new and improved ordering of firewall rules

1 done = False
2 while !done do
3 done = True
4 for (i = 1; i < n; i++) do
5 if (pi < pi+1 AND ri∩ ri+1 = /0) then
6 interchange rules and probabilities
7 done = False

By studying the algorithm, one observes that it is similar to the Bubble Sort

algorithm. It compares neighbours and, if possible, swaps them. Further [1],

in order to preserve the rule precedence relationships, the algorithm uses rule

probabilities and rule intersection as the swapping criteria. For example, con-

5The authors of [8] confirm that the TDTSP can be mapped onto single machine job scheduling
problem [8] which is known to be NP-hard [18]. Thus the optimization problem for firewall rules
is also NP-hard. The only option to find the optimal solution requires an exhaustive search of the
solution space — which is not a scalable solution. Rather, one must be content to find a sub-optimal
solution using a heuristic algorithm.
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sider the scenario when there are two rules, i.e., Rule1 and Rule2 where Rule1

has a lower probability than Rule 2, and where the rules don’t intersect. This

means that the rules are not dependant on each other and are thus “swap-

pable”. The algorithm will process the rules, in a pair-wise manner, until there

are no more “swappable” rules.

The problem with this algorithm, however, is that one rule can prevent an-

other from being re-ordered [1], rendering the algorithm to be unable to re-

order groups of rules. The following is an example of this problem; suppose

there are three rules, namely Rule1, Rule2, and Rule3. Rule 1 and Rule 3 have a

dependency relationship, and the rules have the associated probabilities given

in Table 6:

Rule Prob.

Rule1 0.1
Rule2 0.5
Rule3 0.4

Table 6: An example with a small number of rules with their probabilities.

Ideally, the rule with the highest matching probability would appear at the

beginning of the list of rules in order to reduce the number of packet matches.

Thus, in order to preserve the dependency relationships, the optimal rule order

is: Rule1, Rule3, Rule2. However, the algorithm by [1] is not able to achieve

this rule ordering, as explained below.

The algorithm will first swap Rule1 with Rule2. It will then check if Rule1

can be swapped with Rule3, but because they intersect, they will not be swaped.

In the second iteration of the While loop the problem encountered becomes

evident. Indeed, because Rule2 is better than Rule1 they will not be swapped,

and further, because Rule1 and Rule3 intersect they will not be swapped either.

Thus, when the algorithm terminates, the final order will be, clearly, subopti-

mal6.

6This is a very simplistic example. Indeed, the possibility of terminating on suboptimal solu-
tions is accentuated when the number of rules is larger.
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However, despite its problems, this algorithm will still create a rule order-

ing that is better than the original, if possible.

In the same vein (and inspired by the classical ascending-order sorting al-

gorithms), Groutl et al. proposed a method [19] to optimize the performance

of the firewall using rule re-ordering, and more particularly, swapping opera-

tions. The method aspires to push the most accessed rules to the front of the

firewall. However, the method suffers from a fundamental impediment when

the rules are dependent. Unfortunately, the swapping algorithm proposed in

[19] does not accommodate for the precedence relationships that might occur

between the filtering rules which renders the problem to be NP-hard. In this

paper, we, on the other hand, propose a simple condition that can be perceived

as a Swapping Window mechanism, and that ensures that no precedence con-

straint is violated.

2.3.2. A DAG-based Algorithm

The authors of [14] presented a heuristic algorithm for optimized policy RR

that is able to re-order a policy containing precedence relationships (or a sub-

graph in the DAG) in such a way that the policy integrity is maintained. A

short synopsis of the most important aspects of this algorithm is given below.

The algorithm functions by operating on certain data structures. It needs

a set, G(ri), of rules containing the sub-graph rules of ri, i.e. the dependency

relationships for ri. It also uses a FIFO Queue, S, to represent the optimal pol-

icy rule sorting, where S is initially empty. Additionally, it requires a list, Q,

containing the rules to be sorted, and this list is initially equal to the original

firewall policy, R.

For each pass, the algorithm selects the rule with the highest average sub-

graph probability from the graph of rules available during that particular pass.

The selected rule is then inserted into the list of sorted rules, S, if it has no

rules dependent on it. Otherwise, the algorithm iteratively sorts the subgraph

of its dependents until it finds a rule that has no dependent rules and inserts

that rule into the list of sorted rules. The algorithm then updates the respective
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data structures and repeats the process until all the rules have been placed in

S.

3. Proposed Solution

3.1. Overview of the Solution

The goal of this paper, as expressed in the problem statement, is not merely

to create a rule ordering algorithm. Rather, our aim is to explore the problem

of optimizing a firewall’s performance in a dynamic network. This means that

for the firewall to have an optimised performance at all times, there needs to

be an explicit understanding of when the rules have to be re-ordered as the

network traffic dynamically begins to favour other rules in the policy.

This implies the need for two algorithms: The first algorithm must be useful

to achieve the necessary RR, and the second one must be capable of updating

the rule probabilities as the network traffic fluctuates. From an overall perspec-

tive, we also need a single scheme that connects both these algorithms into a

single, optimized adaptive firewall. We first consider the requirements for both

these algorithms.

• The RR algorithm should to be able to sort a firewall’s rule order based

on each rule’s matching probability, dependency relationships, and fire-

wall position. This will ensure that the average packet matching time is

reduced. In order to satisfy these criteria, the algorithm will need to have

access to the current firewall security policy, a knowledge of the depen-

dency relationships, and the matching probabilities of every rule. The

details of this algorithm are presented in Section 3.2.

• The traffic aware algorithm should be able to update a rule’s match-

ing probability dynamically as the network’s traffic state changes. This

means that this algorithm will need to have access to the currently-applied

firewall security policy and the current number of packet matches for

each rule. In order to enable dynamic estimation of the rule matching
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probabilities, we present a novel weak estimator, which is a central com-

ponent of our approach, in Section 4.1.

• Finally, the above two algorithms must be combined in such a way that

they can communicate with each other. The traffic aware algorithm needs

to be able to update the probability associated with a rule, and this up-

date must be reflected in the rules used by the RR algorithm. If this is not

achieved, the RR will never be able to find the optimal rule ordering of

the firewall when the traffic state of the network changes. Thus, we will,

briefly, describe two mechanisms for triggering the RR, namely, periodi-

cally and “performance triggered”. These are described briefly in Section

4.2, and in more detail in the section that reports the experimental results

that we have obtained, Section 5.

The primary reason why the problem is complex is because the RR and

traffic-aware criteria themselves may be conflicting. Indeed, rule ri may have

to precede r j with regard to the network’s security policy requirements, and yet

the probability of r j being applied may be greater than that of ri being applied.

However, we will consider the RR issue first.

3.2. The Rule Re-Ordering Algorithm

The algorithm that we propose for RR, uses as its foundation the simple

RR algorithm described earlier and presented in [1], namely Algorithm 1. Our

new strategy is shown in Algorithm 2. However, before we formally present

the algorithm, we shall explain its rationale.

3.2.1. Rationale for the Algorithm

Quite naturally, the algorithm itself takes as its input, a list of rules. It also

has a list of rules that each given rule must precede, and which each rule must

succeed. If these lists collectively formed a DAG that represented a single string

of connected edges with a single source and a single sink, the problem of re-

ordering the rules would have been trivial. The problem is necessarily complex
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because the set of lists of preceding and succeeding nodes could be potentially

conflicting. Our solution represents a heuristic scheme by which these conflict-

ing requirements are resolved in the best possible manner.

To be more specific, the algorithm itself takes as its input, a list of rules. It

also maintains two data structures.

• The preceding list of a rule, ri, contains all the rules that are dependent

on ri. Essentially, this means that ri must appear before the rules in the

preceding list in order to maintain the integrity of the policy.

• The succeeding list of a rule, ri, contains all the rules that ri is dependent

on. Analogous to the above, this means that ri must appear after the rules

in the succeeding list in order to maintain the policy’s integrity.

Our algorithm contains two main loops that it iterates through. For every

iteration of the outer loop, the inner loop will traverse the whole list. The

reason for this is that the algorithm will compare the current element in the

outer loop, rx, with the current element in the inner loop, ry.

The algorithm will then try to find a swapping window between rx and ry.

A swapping window is defined as an interval of positions in a firewall in which

the two comparing rules can be swapped, without breaking the integrity of the

firewall policy. The window is found by analyzing the two comparing rule’s

succeeding and preceding lists.

By finding the rule with the highest position in the firewall in the preceding

list for rx and the rule with the lowest position in the firewall in the succeed-

ing list of ry, an interval of positions can be found. Once such an interval has

been determined, the algorithm will check if the window is a valid swapping

window for the current rules being compared.

In order to check the validity of the swapping window, the algorithm will

check if the current position of rx is less than the lowest position in the succeed-

ing list of ry and if the position of ry is grater than the highest position in the

preceding list of rx. If the latter expression is evaluated to be True, the swapping

window is deemed to be valid.
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However, the above is only valid if rx has a higher position in the firewall

than ry. In the case where ry has a higher position in the firewall than rx (as seen

in lines 12 and 13 in Algorithm 2) there is a slight difference in the swapping

criteria. In this case, the rx and ry values in the “If expression” switch places.

The swapping mechanism is illustrated in Figure 2.

Once the algorithm has found a valid swapping window and thus knows

that rx and ry can be swapped without violating the integrity of the policy, it

will do a simple comparison of the rules’ matching probabilities in order to de-

cide whether they should be swapped or not. Even if the algorithm determines

that they should be swapped, the algorithm will not properly swap them yet.

Rather, the algorithm will do this based on a criterion value, ∆new, explained

below.

The value ∆new is created using the matching probability and position num-

ber of the rules being compared against and simply yields the estimated av-

erage matching time before and after swapping rx and ry. This can be said to

represent the swapping rank of ry. The higher the swapping rank, the more

optimal the swap is considered to be. Consequently, the algorithm will then

perform a test to check whether this ∆new value is greater than the current max-

imum value of ∆, i.e., ∆max. If it is greater, then ∆max is re-set to assume this

rule’s ∆new value, and this rule is now the optimal swapping option.
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Figure 2: How Algorithm 2 re-orders rules.

When the inner loop has finished its traversal, a check is performed in order

to find if rx should be swapped with a rule or not. If it should be swapped, the

rule with highest delta value, ∆max, is chosen to be the optimal rule for it to be

swapped with. Finally, the outer loop will complete the iteration and move on

to the next rule at which point the process above is repeated for that rule.

In essence, what this heuristic algorithm tries to achieve, is to get as many

rules as possible, with a high matching probability, as close to the top of the

firewall as possible.

The formal algorithm follows.

4. Theoretical Results: Estimation and Rule Ordering

4.1. Designing a Weak Estimator for Batch Updates

Having described our RR algorithm, we now proceed to the issue of traf-

fic estimation, and design a Weak Estimator scheme that is relevant for batch

updates. The algorithm that we propose is a modified version of the weak esti-

mator algorithm initially proposed by Oommen et al [20]. It is modified in such

a way that it is able to use a batch of packet matches (as opposed to a single

packet match as the SLWE scheme from [20] would do) in order to calculate
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Algorithm 2: Our newly-proposed Rule Re-ordering algorithm.

Data: A list of firewall rules
Result: A new and improved ordering of firewall rules

1 for rx in rules do
2 ∆max = 0
3 for ry in rules do
4 ∆new = 0
5 if rx 6= ry then
6 if rx.pos < ry.pos then
7 if rx.pos < succeeding max(ry) AND

ry.pos > preceding min(rx) then
8 if rx.prob < ry.prob then
9 ∆new = (ry.prob− rx.prob)∗ (ry.pos− rx.pos)

10 if ∆max < ∆new then
11 ∆max = ∆new

12 else
13 if ry.pos < succeeding max(rx) AND

rx.pos > preceding min(ry) then
14 if ry.prob < rx.prob then
15 ∆new = (rx.prob− ry.prob)∗ (rx.pos− ry.pos)
16 if ∆max < ∆new then
17 ∆max = ∆new

18 if ∆max > 0 then
19 swap(rx, ry)

the packet matching probabilities for a given rule. This ensures that the algo-

rithm does not have to constantly perform estimate updates for each incoming

packet.

The algorithm takes as its input a list of rules and a value for its parameter,

λ . It then iterates through the list of rules and updates the probability associ-

ated with each rule by using the modified weak estimator algorithm given be-

low. Quite simply put, in order to update the probability associated with each

rule, the algorithm calculates it using the previous probability of the given rule,

p̂i, the total number of packet matches, M, and the number of packet matches

for any single rule, mi. The pseudocode is given in Algorithm 3.
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Algorithm 3: The Weak Estimator algorithm.

Data: A list of firewall rules, and a lambda value
Result: Updated probabilities for each rule in the list of rules

1 for rule i in rules do

2 p̂i =
mi

M
p̂i +λ (p̂i−

mi

M
)

4.1.1. Theoretical Results: The Batch-oriented Weak Estimator

In this section, we present some theoretical results related to our algorithms.

The first result concerned the optimality of the devised Batch-oriented Weak

Estimator (Algorithm 3) described above. The algorithm is a generalisation

of the Stochastic Learning Weak Estimator (SLWE) proposed by Oommen and

Rueda [20]. The main difference is that the Stochastic Learning Weak Esti-

mator operates in an incremental manner, i.e., updates the estimates of the

probabilities upon receiving every single observation. As opposed to this, the

Batch-oriented Weak Estimator proposed here is able to handle a batch of M

observations.

Specifically, let X be a multinomially distributed random variable, which

takes on the values from the set {‘1’, . . . , ‘r’}. We assume that X is governed by

the distribution S = [s1, . . . ,sr]
T as follows:

X = ‘i’ with the probability si, where
r

∑

i=1

si = 1.

We assume that between two discrete time instants n and n+1, we obtain

a batch of M concrete realisations of X . Let {x(n,1),x(n,2),x(n,3), ...,x(n,M)}

denote the batch of M observations obtained between the time instants n and

n+1. The intention of the exercise is to estimate S, i.e., si for i = 1, . . . ,r based on

the batch of observations. We achieve this by maintaining a running estimate

P(n) = [p1(n), . . . , pr(n)]T of S, where pi(n) is the estimate of si at time ‘n’, for i =

1, . . . ,r. We omit the reference to time ‘n’ in P(n) whenever there is no confusion.

Let mi(n) be the number of elements in the batch {x(n,1),x(n,2),x(n,3), ...,x(n,M)}

for which X = ‘i’. Formally, mi(n) =
M
∑

k=1

I(x(n,k) = 1) where I(.) is the indicator

function. Then, the values of pi(n),1≤ i≤ r, are updated in the following way:
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pi(n+1) ←
mi(n)

M
pi(n)+λ (pi(n)−

mi(n)
M

). (1)

The reader should note that the above algorithm is a generalization of Oom-

men and Rueda’s original SLWE algorithm [20]. In fact, when M = 1, the above

updated equation coincides with the original algorithm devised in [20].

The properties of the estimator are catalogued and proven below.

Theorem 1. Let the parameter S of the multinomial distribution be estimated by P(n)

at time ‘n’ as per equation (1). Then, E [P(∞)] = S.

Proof. The expected value of pi(n+1) given the estimated probabilities at time

‘n’, P, is:

E [pi(n+1)|P] = [
k
M

+λ (pi(n)−
k
M
)]

M
∑

k=0

Prob(mi(n) = k) (2)

= [
k
M
(1−λ )+λ pi(n)]

M
∑

k=0

Prob(mi(n) = k) (3)

= (1−λ )pi+(1−λ )
M
∑

k=0

k
M

(

M
k

)

sk
i (1− si)

M−k (4)

= (1−λ )pi+(1−λ )
M
∑

k=0

k
M

M!
k!(M− k)!

sk
i (1− si)

M−k (5)

= (1−λ )pi+(1−λ )
M
∑

k=1

(M−1)!
(k−1)!(M− k)!

sk
i (1− si)

M−k (6)

= (1−λ )pi+(1−λ )si

M
∑

k=1

(

M−1
k−1

)

sk−1
i (1− si)

M−k (7)

= (1−λ )pi+(1−λ )si

M
∑

l=0

(

M
l

)

sl
i(1− si)

M−l (8)

= (1−λ )pi+(1−λ )si. (9)

With regard to the algebraic manipulations, in Eq. (4) we have applied the
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mulinomial distribution theorem in order to obtain Prob(mi(n) = k). Further, in

Eq. (8), we have invoked a change of the variable k, where k−1= l. Finally, in

Eq. (9), we have applied the binomial theorem.

Taking expectations a second time, we have:

E[pi(n+1)] = (1−λ )si +(1−λ )E[pi(n)] . (10)

As n→∞, both equations E [pi(n+1)] and E [pi(n)] converge to E [pi(∞)], and

can be written:

E[pi(∞)](1−λ ) = (1−λ )si (11)

⇒ E[pi(∞)] = si . (12)

The result follows because (12) is valid for every component pi of P.

The next result deals with the rate of convergence of the mean of the esti-

mator.

Theorem 2. The rate of convergence of P is fully determined by λ .

Proof. The proof follows directly from the corresponding proof in [20]. It is

omitted to avoid repetition.

4.2. Theoretical Results: Triggering Rule Re-ordering

For triggering the decision to attempt RR in a dynamic environment, we

will use two types of approaches: Schedule-based rule ordering and Performance-

triggered rule ordering. In simple terms, the Schedule-based RR will re-order

the rule after a fixed number of packets have been received. On the other

hand, the Performance-triggered RR will re-order the rules whenever the per-

formance of the current policy degrades. Obviously, the problem with Schedule-

based approaches is that of determining the periodicity of change. While chang-

ing the rule ordering too frequently results in unnecessary computation, if it

is changed with too low a frequency, it results in a system that is unable to
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track the environments. As opposed to this, Performance-triggered ordering

can avoid both these trends if a degradation can be detected. However the

efficiency of such a scheme is dependent on how fast the degradation can be

detected, which is actually quite related to resolving the change detection prob-

lem.

These two forms of mechanisms for triggering the RR, i.e., either periodi-

cally or Performance-triggered, are described in detail in the experimental re-

sults, Section 5.

With regard to Algorithm 2 we now prove a central result related to the

condition that we use for swapping two rules, namely ∆new. We will show that

∆new is simply the difference between the average matching time before and

after swapping. Indeed, we will prove two important properties of the RR

algorithm which are the following:

• Whenever a swapping is performed, the average matching time of the

firewall is decreased;

• The swapping condition based on the concept of the swapping window

will preserve the integrity of the firewall.

In what follows, we shall use the notation that for any rule ri, located at

position ri.pos, the associated probability of it being invoked is ry.prob.

4.2.1. The Swapping Condition

Theorem 3. The difference of the average matching time before and after swapping

two rules rx and ry is given by: ∆new = (ry.prob− rx.prob).(ry.pos− rx.pos)

Let rk.pos be the position of rule k before swapping rx and ry, and let rk.pos′

be the position of rule k after swapping rx and ry. It is easy to note that:

• rk.pos = rk.pos′ if k 6= x and k 6= y, and that

• rx.pos′ = ry.pos

• ry.pos′ = rx.pos.
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∆new = The Average time before Swapping−The Average time after Swapping

=

N
∑

k=1

rk.prob · rk.pos−
N
∑

k=1

rk.prob′ · rk.pos

= (rx.pos rx.prob+ ry.pos · ry.prob)− (rx.pos′ · rx.prob+ ry.pos′ · ry.prob)

= (rx.pos rx.prob+ ry.pos · ry.prob)− (ry.pos · rx.prob+ rx.pos · ry.prob)

= rx.pos(rx.prob− ry.prob)+ ry.pos(ry.prob− rx.prob)

= (ry.prob− rx.prob) · (ry.pos− rx.pos).

Note that ∆new = (ry.prob− rx.prob) · (ry.pos− rx.pos) = (rx.prob− ry.prob) ·

(rx.pos− ry.pos).

The theorem is thus proven.

4.2.2. Preserving Policy Integrity: Consistent Rule Re-ordering

Theorem 4. A rule rk does not introduce inconsistency (i.e., it obeys all precedences

relationships) if:

preceding min(rk)< rk.pos < suceeding max(rk).

Proof. The reader will observe that obeying all the precedence relationships in

which rule rk is involved in, reduces to two conditions:

• rk.pos is less than any element in succeeding list of rk

• rk.pos is bigger than any element in preceding list of rk.

The above two conditions can be written as: preceding min(rk) < rk.pos <

suceeding max(rk), proving the result.

Theorem 5. If ry.pos< succeeding max(rx) AND rx.pos> preceding min(ry), then

swapping rx and ry will not introduce inconsistency.
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Proof. It is easy to prove that a rule rk does not introduce inconsistency if

preceding min(rk)< rk.pos< suceeding max(rk), implying that all the precedences

relationships are not violated.

Let rk.pos be the position of rule k before swapping rx and ry, and let rk.pos′

be the position of rule k after swapping rx and ry. Further, observe:

• rk.pos = rk.pos′ if k 6= x and k 6= y, and that

• rx.pos′ = ry.pos

• ry.pos′ = rx.pos.

An inconsistency occurs only due to either a violation due to the new posi-

tion of rx or due to the new position of ry. We will prove that the new position

of rx, i.e., rx.pos′, does not yield inconsistency. In other words:

preceding min(rx)< rx.pos′ < suceeding max(rx).

By our hypothesis, we have ensured that ry.pos < succeeding max(rx) which

is the same as rx.pos′ < succeeding max(rx). Since we have invoked the max

operator, rx.pos′, the new position is less than any element in succeeding list of

rx. Thus, rx.pos′ < suceeding max(rk).

We shall now prove that preceding min(rx)< rx.pos′. We know that:

• rx.pos < ry.pos is equivalent to ry.pos′ < rx.pos′ since rx.pos′ = ry.pos and

ry.pos′ = rx.pos;

• preceding min(rx)< rx.pos implies that preceding min(rx)< ry.pos′.

By combining the above two observations we obtain: preceding min(rx) <

ry.pos′ < rx.pos′. We have thus proved that preceding min(rx)< rx.pos′.

Similarly, we can prove that the new position of ry will not introduce incon-

sistency if ry.pos′ is less than any element in succeeding list of rx. Hence the

result.

Theorem 6. Suppose that: rx.pos< succeeding max(ry) AND ry.pos> preceding min(rx)

then swapping rx and ry will not introduce inconsistency.
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5. Experimental Results

In this section we will describe the experimental results obtained by testing

our algorithm on a rigorous suite of environments. The experiments were di-

vided into two categories, those involving Static and Dynamic environments

respectively. While the static experiments were designed in such a manner

that they were capable of only verifying the RR algorithm, the dynamic exper-

iments verified the overall firewall optimizer. All together, we conducted six

experiments, namely three static and three dynamic experiments.

5.1. Performance Metric: The Average Matching Time

The authors of [21] defined a metric describing the average matching time

of an Access Control List (ACL). This metric can be applied to a firewall pre-

cisely because a firewall policy is comprised of ACL rules with dependency

relationships. The following describes how the metric is calculated.

Let θi represent the matching probability of a rule ri in R. Then the average

matching time of the rule is:

ri ∗θi

In other words to find the average matching time, we have to simply multiply

the rule ri’s probability with its current position in the firewall. Extending the

above to the firewall, R, the average matching time of the firewall R can be

denoted as,
N
∑

i=1

ri ∗θi, for N > 1.

Thus, the average matching time is defined as the average number of rules that

a packet must be compared against before a match is found. For example, if

a policy R has an average matching time of 2.6, it means that on average, 2.6

packets will be compared against the rules, {ri}, in R before a match is found.

From this, it is apparent that to optimize a firewall, the average matching time

of the firewall must be low. By a simple analysis one sees that this can be
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achieved by ensuring that the rules with high probabilities are at the top of the

firewall.

5.2. Experimental Environment

The experiments were conducted on virtual machine instances created on

the Alto Cloud cloud service at the Oslo and Akershus University College of Applied

Sciences. All the instances were obtained using an ubuntu 14.14 server image

provided in the cloud.

In order to test the algorithms and the resulting firewalls, we needed two

machines. Machine1 (M1) would run the firewall and the optimization algo-

rithms. Machine2 (M2) would generate network traffic using a traffic gener-

ating script. However, because the firewalls being tested contained rules with

random source and destination IP addresses, the traffic generating script could

not send the traffic through the internet because it would have been lost and

never reached the firewall at M1. This was because there were no hosts in

the environment that possessed those IP addresses. Consequently, in order to

solve the problem, we needed a direct connection between M1 and M2. This

connection was created by changing M2’s default gateway to the IP of M1 so

that all traffic from M2 was routed through M1. This ensured that the spoofed

IPs in the network traffic generated by the traffic generating script running on

M2, would reach the firewall at M1. Figure 3 illustrates this.

5.3. Static Experiment 1: Intra-rule Re-ordering

The intention of this experiment was to provide proof that the algorithm

for optimizing the RR was able to re-order the rules in such a way that the

rules with the highest probability were at the top of the firewall while still

maintaining the integrity of the policy. This experiment specifically tested RR

within an intra-dependant group of firewall rules.

The experiment used a small policy of eight rules as described in Table 7.

The rules {A - D} and {E - H} are intra-dependent but not inter-dependent.
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Figure 3: Proposed firewall testing environment.

This means that there are only dependency relationships between the respec-

tive rule groups {A - D} and {E - H}, but no relationships between the groups

themselves. Figure 4 illustrates the relationships in Table 7 using a DAG.

Source Destination

No. Unique Name Proto. IP PORT IP PORT Action Prob.

1 A UDP 190.1.* * * 90 accept 0.1147
2 B UDP 190.1.1.* * * 90-94 deny 0.0812
3 C UDP 190.1.2.* * * * deny 0.4286
4 D UDP 190.1.1.2 * * 94 accept 0.1866
5 E TCP 190.1.* * * 90 accept 0.0621
6 F TCP 190.1.1.* * * 88 deny 0.0499
7 G TCP 190.1.1.2 * * 88-94 deny 0.0415
8 H TCP 190.1.2.* * * * accept 0.0353

Table 7: The small firewall policy used for experiments in “Static Experiment 1”.

From Table 7 one observes that this is no optimal rule ordering. Rules C

and D have a higher probability than the rules A and B, and thus, C and D

should be placed higher up in the firewall as long as the integrity is maintained.

Furthermore this configuration yields the firewall an average matching time of

3.4921units.
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Figure 4: The DAG of the small firewall policy used for experiments in “Static Experiment 1”. Here
DR represents the Default Rule.

5.3.1. Expected results: Static Experiment 1

The expected results from this experiment are the following:

1. Rule C should be placed higher up than rule B, but below rule A.

2. In spite of having a higher probability than rule B, Rule D should not be

placed higher up in the firewall because of the dependency relationship

between rule B and D.

3. The average matching time will decrease when the policy is re-ordered

for optimality. It should be 2.6535.

5.3.2. Results Obtained: Static Experiment 1

As mentioned earlier, the goal of this experiment was to show that the rule

ordering algorithm was able to re-order rules while maintaining the integrity

of the firewall policy. Figure 5 shows the initial conditions of the firewall.

Consider Figure 6. From this figure, it is apparent that rule C has been

moved above rule B but below rule A. This is expected as there is no depen-

dency relationship between rule B and C, but there is one between rules A

and C which is why rule C must be placed below it in order that the integrity

33



��������	
�	����������	����������������������
���������������������������������������������������������������������������������������
��������������������� �!����������""��#������#��������$�$�$�%��������������$�$�$�%�������������������	 &�! �� '!�(&)'* �
��������������������� �!����������""��#������#��������$�$�$�%�������������+,-$+./$+-/$-�.�������������0--�������1 

������+/������2�3���� �!����������""���������#�������+,�$�$�$�%/�����������$�$�$�%��������������������0,��������1 
�%#���#%
������+,������24-��	��������������""���������#�������+,�$+$+$�%-3����������$�$�$�%���������������������0,�0,3�������1 
�%#�(�#%
������/5�����-34.��	��������������""���������#�������+,�$+$-$�%-3����������$�$�$�%�������������������1 
�%#���#%
������-.������5-/���� �!����������""���������#�������+,�$+$+$-�������������$�$�$�%��������������������0,,�������1 
�%#���#%
�������.������-3����� �!����������""���������#�������+,�$�$�$�%/�����������$�$�$�%��������������������0,��������1 
�%#� �#%
������+�������3����	��������������""���������#�������+,�$+$+$�%-3����������$�$�$�%��������������������0//�������1 
�%#���#%
������+�������3������ �!����������""���������#�������+,�$+$+$�%-3����������$�$�$�%���������������������0//0,3�������1 
�%#�6�#%
�������2������-������ �!����������""���������#�������+,�$+$-$�%-3����������$�$�$�%�������������������1 
�%#�*�#%

Figure 5: The FORWARD chain of iptables containing the firewall rules for Experiment 1.

of the policy is maintained. The average matching time reduced to 2.6535, as

expected.
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Figure 6: The FORWARD chain for Experiment 1 after Rule Re-ordering was achieved.

5.4. Static Experiment 2: Inter-rule Re-ordering

The intention of this experiment was to show how the rule ordering algo-

rithm was able to re-order rules with no dependency while still maintaining

the integrity of the policy. The experiment used a modified version of Table 7

where the intra-dependent rules, {E - H} had a higher probability than those

of rules {A - D}. Table 8 illustrates the new table.

As can be observed from Table 8, the rules {E - H} should appear at the

top of the policy, while rules {A - D} should be at the bottom. Because the

groups of rules are independent from each other, the policy integrity should be

maintained. The average matching time before optimization for this firewall
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configuration is 5.1427.

Source Destination

No. Unique Name Proto. IP PORT IP PORT Action Prob.

1 A UDP 190.1.* * * 90 accept 0.0621

2 B UDP 190.1.1.* * * 90-94 deny 0.0499

3 C UDP 190.1.2.* * * * deny 0.0415

4 D UDP 190.1.1.2 * * 94 accept 0.0353

5 E TCP 190.1.* * * 90 accept 0.4286

6 F TCP 190.1.1.* * * 88 deny 0.1866

7 G TCP 190.1.1.2 * * 88-94 deny 0.1147

8 H TCP 190.1.2.* * * * accept 0.0812

Table 8: The small firewall policy used for experiments in “Static Experiment 2”.

5.4.1. Expected results: Static Experiment 2

The expected results from this experiment are the following:

1. The rules {E - H} should appear at the top of the policy in the same order,

while the rules {A - D} should be at the bottom, and in the same order.

2. The average matching time should decrease when the policy is re-ordered

for optimality. It should be 2.6535.

5.4.2. Results Obtained: Static Experiment 2

The results obtained confirmed that the RR algorithm was capable of re-

ordering non-dependent rules while maintaining the policy integrity of the

firewall. Figure 5 shows the initial conditions of the firewall.

The results shown in Figure 8 were essentially as expected. Rules {E - H}

were at the top, as expected, while the rules {A - D} were at the bottom. The

one difference from the expected results was that rule C was above rule B rather

than the expected order of A, B, C and D. However, this is still a very positive

result because our intent was to observe the re-ordering of non-dependent rules,
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Figure 7: The FORWARD chain of iptables containing the firewall rules for Experiment 2.

and thus, the intra-RR should have had no bearing on the outcome of the ex-

periment. The average matching time was 2.6619, which is slightly worse than

the expected value of 2.6535. The reason for this is that there were more packet

matches for rule C than there were for rule B, in spite of the fact that rule B was

characterized by a superior probability.
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Figure 8: The FORWARD chain for Experiment 2 after Rule Re-ordering was achieved.

5.5. Static Experiment 3: Comparing against Fulp’s Bubble Sort-like Algorithm

The next experiment was done to obtain a comparison between our RR al-

gorithm and Fulp’s Bubble Sort-like rule ordering algorithm [1] given in Sec-

tion 2.3.1 and to understand the differences in the criteria when it concerns the

resulting policy re-orderings. Here, the actual firewall IPtables scripts was not

so crucial, since we were only interested in testing the rule ordering algorithms.

The only information that both the algorithms needed were the dependency
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relationships between the rules and the matching probabilities of the various

rules.

The experiment used a program to generate DAGs in order to generate

generic dependency relationships and probabilities. The experiment used DAGs

consisting of a 100 nodes (rules). The optimality was measured by calculating

the average matching time of the resulting optimized firewall policies after

each algorithm had applied its rule ordering on the policy.

5.5.1. Expected results: Static Experiment 3

The algorithm presented in [1] (and given in Section 2.3.1) does not take into

account dependency relationships between multiple non-neighbouring rules,

or the position of each rule within the policy when deciding to perform a swap.

We can thus infer that it should generate policies with significantly worse av-

erage matching times than the algorithm designed by us.

5.5.2. Results Obtained: Static Experiment 3

With regard to the data generation strategy in the the program that created

the DAGs, there was a variable that decided on the probability (given in terms

of a percentage) that a pair of rules would have a dependency relationship

between them. In this experiment, we set the value of this percentage to 1% and

5%. The results of the experiments for these two values are shown in Tables 9

and 10 respectively. Also, the metric that was used to compare the algorithm

from [1] and our RR algorithm was the average matching time.

Table 9 shows the result of five tests done using a 1% chance of edges on a

graph with 100 nodes (or rules). First of all, we notice that the algorithm from

[1] is not able to noticeably improve the average matching time. As opposed to

this, our algorithm is able to significantly improve the average matching time.

By way of example, the algorithm from [1] reduced the average matching time

from 34.8254to 31.7256(by 8.9%). As opposed to this, our algorithm had an

average matching time of only 11.788 – a significant improvement of 66.2%.

Indeed, it was 62.8%better than the algorithm from [1].
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Percentage Initial Our Algorithm Fulp Number of Rules

1 % 26.42 12.42 24.157 100
1 % 41.18 12.16 38.81 100
1 % 31.657 12.12 24.45 100
1 % 37.31 10.87 36.2 100
1 % 37.56 11.37 35.011 100

Table 9: A comparison of our algorithm with the one presented in [1] with the DAG characterized
by a 1% chance of an edge between two nodes.

Regarding Table 10, the results obtained essentially state the same conclu-

sion. The algorithm from [1] reduced the average matching time to 41.477

(from 42.2902, i.e., by 1.9%). Our algorithm, on the other hand yielded an

average of 25.5324, which was an improvement of 39.6%. Comparatively, our

algorithm was 38.4%better than the one reported in [1].

Percentage Initial Our Algorithm Fulp Number Rules

5 % 41.98 22.87 41.33 100
5 % 30.28 21.321 29.06 100
5 % 46.371 27.701 45.52 100
5 % 33.7 21.71 33.115 100
5 % 59.12 28.06 58.36 100

Table 10: A comparison of our algorithm with the one presented in [1] with the DAG characterized
by a 5% chance of an edge between two nodes.

Overall, we can conclusively state that our algorithm was significantly bet-

ter than the one from [1]. However, understandably, we also noticed that

the complexity of finding the optimal ordering increased with the density of

the DAG. This is evident by observing that the average matching time in-

creased significantly when the probability of having a directed edge between

two nodes was increased (i.e., the graph was denser).

5.6. Dynamic Experiment 1: Schedule-based Rule Re-ordering with Dynamic Traffic

The intention of this experiment was to test both the RR algorithm and

the Batch-oriented Weak Estimator algorithm in a dynamic network using a
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Schedule-based re-ordering policy. The schedule policy was based on the quan-

tity of packet matches in the firewall.

The experiment used two Zipf distributions based on the firewall in Table 7.

The first distribution, Zipf dist X, gave a higher probability to the rules in the

group {E - H}, while the second distribution, Zipf dist Y, gave a higher prob-

ability to the rules in the group {A - D}. The firewall optimizer script ran the

RR algorithm for every 100 packet matches generated by the traffic generating

script using the Zipf dist X distribution. After 1,000 packets had been matched,

the traffic generator would switch the distribution to Zipf dist Y, while the op-

timizer script would continue to attempt RR every 100 packet matches.

With regard to the metric of comparison, for every iteration of the firewall

optimizer, we calculated the average matching time of the current firewall pol-

icy configuration, using both the current Zipf distribution probabilities and the

probability values estimated by using the Batch-oriented Weak Estimator algo-

rithm. Such a process was able to produce the true average matching time and

the estimated matching time per packet matched. A base line average match-

ing time was also calculated, which was simply the the average matching time

of the firewall without any RR. Storing these values as tuples, where each was

stored with the current number of packet matches at the time of calculation,

enabled us to create a graph displaying the improvement rate of the average

matching time for the performance of the firewall optimizer script.

The X-axis of the graph represents the total number of packet matches and

the Y -axis represents the average matching time. On this graph, we plotted the

progression of the three different matching time metrics.

5.6.1. Expected results: Dynamic Experiment 1

The expected results from this experiment were the following:

1. The average matching times should be very high at the beginning, before

steadily decreasing. Once the distribution switch occurs, the matching

times should once again sharply increase before decreasing.
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2. The exception should be the base line time, which should have a very

high matching time until the traffic changes, at which point the average

matching time should decrease sharply.

3. The true average matching time should increase and decrease at a sharper

rate than the estimated average matching time.

5.6.2. Results Obtained: Dynamic Experiment 1

As mentioned earlier, the intention of this experiment was to test both the

rule order and traffic aware algorithms using a schedule based re-ordering pol-

icy in a dynamic network. The resulting graphs for this experiment are given

in Figures 9 and 10 respectively.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

2.5

3

3.5

4

4.5

5 True Average Matching Time

Estimated Average Matching Time

Base Average Matching Time

Figure 9: The results obtained from the first data set comparing our algorithm with a traditional
schedule-based re-ordering policy.

The results of the first experiment demonstrate that the algorithms behaved

as expected. We observe that both the True and Estimated average matching

times start with high values, representative of a poorly-optimized rule order-

ing. They both, thereafter, start to gradually improve their times. However,

there are some fluctuations in the results that leads to a spiking behavior. These

spikes might be because of the nature of the traffic generator, because it does

not consistently guarantee that packets with high probabilities are always cho-

sen. Rather, the generator uses a “roulette wheel” function in order to decide
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which rule is to be tested. Thus, we might end up with rules with relatively low

associated probability being chosen at random and being sent to the firewall,

causing the observed fluctuations.

When comparing the True and Estimated average matching times, we ob-

serve that they both match, relatively closely, with the Estimated values being

consistently slightly below the true average matching times. Besides these ob-

servations, the base line time behaves as expected: it starts with a high aver-

age packet matching time until the switch, at which point it decreases rather

sharply, and attains a matching time that is relatively close to the optimal.

The results of the second experiment are given in Figure 10.
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Figure 10: The results obtained from the second data set comparing our algorithm with a tradi-
tional schedule-based re-ordering policy.

These graphs display more unexpected results as there seems to have been

more fluctuations. While the base line times are as expected, the True and

Estimated times seem to be too flat. Again this could simply be due to the

random phenomena due to the traffic generator. More importantly, we also

observe that the True and Estimated times are not relatively aligned anymore,

which might be because of the generally low updates to each rule as it matches

a packet given by the weak estimator function.
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5.7. Dynamic Experiment 2: Extended Schedule-based Re-ordering with Dynamic

Traffic

The intention of this experiment was to see the long term effects of the algo-

rithm in a dynamic network using a Schedule based re-ordering policy. Thus,

this experiment was similar, in spirit, to the previous Schedule-based experi-

ment. However, while the general setup was the same, the scale used here was

different. The experiment used a larger firewall policy, consisting of 17 rules

as defined in Table 4 (disregarding the default rule). Consequently, the Zipf

distributions were also larger in order to match the firewall policy. Further,

in this experiment, the traffic generator started to send data using an initially

optimized Zipf distribution, and after 10,000 packets, it switched to a different

less-optimised distribution.

The RR algorithm ran every 1,000 packet matches. The average matching

times were calculated in the same manner as before, and the values were also

stored in the same manner. The resulting graphs were also similar to those

recorded for the previous experiment, but with higher maximum values on

both axes.

5.7.1. Expected results: Dynamic Experiment 2

For this experiment:

1. We expected that the average matching times would first be as low as

they can be and would thereafter continue to be relatively low close to

their optimized values until the switch occurs. Thereafter, we expected

them to increase at a fast rate, until the RR caused a steady decrease again.

2. Further, we expected that the base line time would initially have a low

and generally optimized average matching time. It would then sharply

increase once the switch occurs.

3. Finally, we expected the true average matching time to increase and de-

crease at sharper rates than the estimated average matching time.
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5.7.2. Results Obtained: Dynamic Experiment 2

The results we obtained concurred with our expectations. They are given in

the graph in Figure 11. As can be seen, the base line is within the expectations.

It has a low average matching time in the beginning and once the switch occurs

at 10,000 packet its average matching time increases sharply and becomes very

poor.
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Figure 11: The results obtained for the second experiment, comparing our algorithm with an ex-
tended schedule-based re-ordering policy.

In this regard:

• We observe that the True average matching time behaved unexpectedly

as one would have expected to see a sharp increase in the average match-

ing time once the switch occured. However, comparing the True and

Estimated times before the distribution switch, we observe that they be-

haved very similarly. The only difference between the two was that the

True matching time had a much higher average matching time than the

Estimator. This can be explained by the fact that our version of the weak

estimator only increases each rule’s estimate by a small value.

• We further noticed that the Estimated time behaved as expected. In-

deed, this was with the exception that it had a consistently lower av-

erage matching time. This, in turn, can be explained in a similar manner,
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because our version of the weak estimator increased/decreased the rule

matching probabilities by only a small amount, each time.

5.8. Dynamic Experiment 3: Performance-Triggered Rule Re-ordering using a Sliding

Window

The intention of this experiment was to observe the behavior of the algo-

rithms when using a Performance-triggered criterion. Such a Performance-

triggered criterion was based on a sliding window comprising of the most re-

cent values of the estimated average matching time of the firewall. The ex-

periment consisted of two parts both of which used the same Zipf distribution

throughout the experiment. However, the first part shuffled the Zipf distri-

bution at the traffic generator after every 500 packets sent. The second part

shuffled the distribution after every 1,000 packets sent.

The firewall optimizer script ran the RR algorithm according to a Performance-

triggered condition. The condition consisted of a list of the latest average

matching times of the firewall. With each new calculation of the average match-

ing time, the value was added to the list and if the list was full, the oldest el-

ement would be removed in order to make space for the latest value. This is,

essentially, a sliding window. In order to decide whether to run RR or not,

the optimizer script determined the trend of the sliding window. If the trend

demonstrated that the average matching time was increasing, the RR proce-

dure would be invoked. Otherwise, the RR procedure would not be called.

The trend was calculated by computing the average of all but the latest value

in the sliding window, and the average was compared against the latest value.

If the average was greater, RR would run; otherwise, it would not.

The results enabled us to create a graph, in which the X-axis represented

the total number of packet matches, and the Y -axis represented the average

matching time.

5.8.1. Expected results: Dynamic Experiment 3

With regard to this experiment:
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1. We expected more RRs, but with the additional benefit that the average

matching time would stay relatively low throughout the experiment.

2. We also expected that the performance would increase with the size of the

sliding window. In other words, we anticipated that the average match-

ing time would vary inversely with the size of the sliding window.

5.8.2. Results Obtained: Dynamic Experiment 3

The results obtained by running this experiments are given in Figures 12

and 13.
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Figure 12: The graph obtained for the experiment with a dynamic environment where the distri-

bution switched every 500 packets sent.
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Figure 13: The graph obtained for the experiment with a dynamic environment where the distri-

bution switched every 1,000 packets sent.

From observing the results we see that, in general, the average matching

time decreased with the window size. The reason for this is because the scheme

is provided with more information to determine if the trend displays an overall

increase or decrease in the matching time. A small window size will, generally

speaking, yield a lot of false positives resulting in a RR that occurs too early.

For example, we notice that in Figure 12, when the window size is 10, the

average matching time is consistently higher than for a window size equaling

50 and 100. However, in the graph where the distribution was switched after

1,000 (rather than just 500) packets, we observe that even a window size of 10

is able get comparatively good results relative to window sizes of 50 and 100.

The reason for this is that the network traffic state will stay in a relatively stable

state for a longer time span until the switch occurs. Of course, there are some

fluctuations here, but they can be be caused by the random nature of the traffic

generator.

Overall, the results match the expected results.

5.9. Discussions

In this paper, we evaluated the field of firewall optimization from two per-

spectives, namely that of firewall RR and traffic awareness. We designed and
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implemented two algorithms, and combined these into a proof-of-concept fire-

wall optimizer that was capable of re-ordering rules based on the statistics

about the network concerning each firewall rule.

The RR algorithm was able to sort a firewall policy based on each rule’s

packet matching probability, its dependency relationships, and its current po-

sition in the firewall. In that sense, it was able to remedy the weaknesses of the

work of [1]. Our solution is a simple but a rather deep algorithm in the sense

that it considers many, different and potentially conflicting criteria for RR, by

reducing the average matching time of the firewall.

The traffic aware algorithm was able to update a rule’s matching probability

for the various rules by reading the statistics of the IPtables. It utilized a batch-

oriented novel version of the Weak Estimator algorithm due to Oommen and

Rueda [2]. Our scheme was able to use a batch of packet matches to update

a rules matching probability as opposed to the original SLWE which requires

a one-by-one updating policy, and which had to, consequently, monitor every

packet in the system. Our experience is that the single-rule-based SLWE lacks

efficiency in this application domain.

5.9.1. The Experiments

In order to verify and confirm the hypothesis that the paper proposed, we

conducted a total of six distinct experiments. The results of these were reported

here, in all brevity. The goal and results of the experiments are as follows:

• The first two were simple proof-of-concept experiments with the goal of

demonstrating that the RR algorithm was able to re-order rules in such

a way that the new rule order was superior to the original one, and that

the policy integrity was simultaneously kept intact.

• The third experiment was a comparative study, where the algorithm from

[1] was compared against our RR algorithm. The intention was to show

that our algorithm was able to, more efficiently, optimize a given firewall

policy. The results we submitted demonstrated that our RR algorithm
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performed significantly better than the one reported in [1] by as much as

a 68%reduction in the average matching time.

• The last three experiments were more dynamic in nature. They were de-

signed and implemented to improve the speed of our RR algorithm, the

slowness of which can be attributed to the search required by a sorting al-

gorithm which is not feasible, especially in a real-life scenario with large

firewall policies. The first two of these utilized Schedule-based RR poli-

cies which simply specified when an action, i.e., to call the rule update

function, had to be executed. The experiments set the execution policy

to be after 100 packets and a 1,000 packets respectively. The resulting

graphs showed that it could be a viable solution to the catalyze the RR

algorithm.

• The last experiment was a Performance-triggered RR experiment, which

similar to Schedule-based RR, used simple criteria to find when to run the

rule update function. It calculated the optimal time instances to call the

update function. In our experiment, we used a sliding window to contain

the latest average matching times of the policy and sought to determine

the trend within the window. If the trend was an overall increase in the

matching time, it meant that the current rule ordering was sub-optimal

and that it had to be re-ordered. The results from this experiment re-

vealed that this type of RR worked very well. The graphs showed that

the average matching time was consistently kept at a low level. How-

ever, reducing the computational intensity of Performance-triggering is

still unsolved.

We conclude these discussions by mentioning that we believe that primar-

ily, large organizations and institutes will benefit the most from the algorithms

and results presented here, inasmuch as they handle large amounts of data

from their workforce. Indeed, ensuring that the firewall is optimized is espe-

cially important because of the predictions made about the Internet of Things
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[3]. The predictions are that in the foreseeable future, every person will have,

on the average, 6.58 devices connected to the internet, resulting in, possibly,

50 billion devices being connected to the Internet worldwide. Having an op-

timized firewall will ensure that the firewall does not become a bottleneck in

current and future high-speed networks. Additionally, with so many devices

connected to the internet, there will inevitably be a lot of sensitive data stored

on various networks. Thus, having an optimized firewall will be able to mit-

igate malicious attacks to the networks that use static and un-optimized fire-

wall. Finally, our results can easily be integrated into existing firewalls such as

IPtables.

5.9.2. Limitations of the Weak Estimator Algorithm

This paper also included a weak estimator when the samples appeared as

a batch rather than individually. This Batch-oriented Weak Estimator algorithm

is independent of the batch size. Further, the weak estimator algorithm has

been generalized here to use the following formula to calculate an updated

probability for a given rule as:

p̂i =
mi

M
p̂i +λ (p̂i−

mi

M
),

where mi is the number of current packet matches for a given rule, and where

M is the total amount of current packet matches for the entire firewall policy.

It is apparent that the algorithm will not be able to tell the difference between

proportionate values of mi and M. Thus,

mi = 4
M = 5

⇔
mi = 40
M = 50

We are concerned that the ratio
40
50

invloves more packets than
4
5

, and so the

former should increase the associated probability more than the latter. The

current version of the Batch-oriented Weak Estimator is incapable of this.

Another limitation of the Batch-oriented Weak Estimator algorithm is that it

must be run often because each update of the estimates, changes the probabil-
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ity values by only a small amount. This could potentially cause unnecessary

overhead. Thus, it might be a advantageous to seek an improved estimation

scheme that does not need to be run as often.

5.9.3. Future Work

The potential avenues for future work are:

• Considering existing heuristic algorithms for the Asymmetric Traveling

Salesman Problem (TSP with precedence constraints) and their applica-

tion for firewall rule optimization. We believe that this would be a fruit-

ful avenue because a TSP with precedence constraints is equivalent to the

problem of optimizing a firewall with rules having dependency relation-

ships.

• Investigating new types of firewall optimization. One could attempt to

create a program that is able to read the fingerprint of a network (i.e the

current state of the traffic), and to generate an optimized firewall based

on this fingerprint, and to thereafter store these firewall rules/orderings

in a database. Then, on invocation, the traffic reading program should be

able to read the current traffic pattern and apply the appropriate firewall

based on the inferred fingerprint from the database.

6. Conclusion

The main goal of this paper was to investigate how we could optimize a

firewall’s rule ordering using the network’s traffic statistics.

The problem statement was addressed by developing two algorithms to

achieve the Rule Re-ordering (RR) in order to optimize the firewall’s rules in

a dynamic network. The first algorithm was a RR algorithm. It was distantly

based on the philosophy introduced in [1]. However, our algorithm used more

complex criteria for initiating RR, and we experimentally demonstrated that

it was able to reduce the average matching time by as much as 68% than the
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algorithm due to [1]. Our second main contribution was to devise a traffic-

aware algorithm. It was based on the weak estimator algorithm proposed in

[20]. However, it was modified to accommodate a batch updating of the rule

probabilities rather than having to rely on keeping track of every packet in the

system in order to update the rule probabilities.

Through various rigorous experiments, we have been able to show that the

firewall performance optimizer worked very well, and that it was able to re-

order the rules by using dynamic and time-varying information gleaned from

the network.
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