
Neuroevolution of Actively Controlled Virtual
Characters - An Experiment for

an Eight-legged Character

Svein Inge Albrigtsen, Alexander Imenes, Morten Goodwin, and Lei Jiao

Centre for Artificial Intelligence Research, University of Agder,
4879, Grimstad, Norway

{thhethssmuz, alexander.imenes}@gmail.com
{morten.goodwin, lei.jiao}@uia.no

Abstract. Physics-based character animation offers an attractive alter-
native for traditional animations. However, it is often strenuous for a
physics-based approach to incorporate active user control of different
characters. In this paper, a neuroevolutionary approach is proposed us-
ing HyperNEAT to combine individually trained neural controllers to
form a control strategy for a simulated eight-legged character, which is a
previously untested character morphology for this algorithm. It is aimed
to evaluate the robustness and responsiveness of the control strategy that
changes the controllers based on simulated user inputs. The experiment
result shows that HyperNEAT is able to evolve long walking controllers
for this character. In addition, it also suggests a requirement for further
refinement when operated in tandem.

Keywords: Artificial intelligence · Neuroevolution· Actively Controlled
Virtual Characters· Eight-legged Character.

1 Introduction

Character animation has become an important part of modern game develop-
ment. The responsiveness and perceived realism of these animations play a key
role for providing an immersive experience to the players. While an experienced
animator is often able to create lifelike and realistic looking animations, the lim-
itation of these animations is also obvious as they are only applicable for the
purpose that the animation portrays. When the animations are utilized outside
of their intended domain, however slightly, they start to fall short.

Physics-based simulation offers an attractive alternative to traditional anima-
tion techniques, wherein each motion is the direct result of a physics simulation
and is therefore physically realistic by definition [5]. Physics-based animations
are commonly used to simulate passive phenomena like objects, cloths, fluids
and ragdolls. However, for more active animations most games still resort to
kinematics-based approaches [5, 11, 7]. One of the commonly cited reasons is
that physics-based simulated characters are notoriously difficult to control, as

all movement has to be controlled by the application of torques and/or other
forces [5]. One way to tackle this issue is to train controllers using machine learn-
ing, a technique that has shown promising results [13, 6, 12, 14, 1, 2, 10, 15, 8, 9].
However, such controllers are usually trained for one singular purpose, or an
action, and has little application outside of that purpose. While one approach
could be to train multiple controllers and then switch between them, the actual
implementations of this logic is sparse. It is therefore not known whether these
controllers could handle the incessant switching that would be required inside
a highly interactive environment like a game. In this paper, we investigate the
feasibility of combining individually trained neural controllers to form a control
strategy for actively controlled virtual characters. The proposed approach taken
to this end utilizes neuroevolution to train a small set of neural controllers. These
controllers will be utilized to generate joint torques for a physics-based simulated
multi-legged character to produce motion for a corresponding set of targeted be-
haviors. In addition, the efficiency of these controllers can be evaluated based
on how robust they perform when switching among them. The main goal of this
study is twofold. Firstly, we evaluate whether HyperNEAT is able to evolve gaits
for an eight-legged character, which, to the best of our knowledge, has not been
studied before. Secondly, we study whether neural controllers trained for differ-
ent behaviors can operate in tandem to produce robust interactive controllers.

The contributions of this study mainly reside in the approach taken to train
these networks, by using HyperNEAT to generate gaits for a previously untested,
highly complex, eight-legged character. We also provide insight into the effi-
ciency of constructing high-level controllers using such evolved networks. The
unabridged version1 of this work, the source code2 of this study and the videos3

are all available online.
The remainder of this paper is organized as follows. In Sec. 2, the approach

of the experiment is detailed. The numerical results are given in Sec. 3 before
we conclude the work in the last section.

2 The HyperNEAT based Approach

This section details the approach and methods applied in this study. More specif-
ically, the design of the character model and substrate, and most notably the
setup of the physics simulation are presented.

2.1 Multi-legged Character

Before we explain the multi-legged character, the environment for our study is
introduced presently. In this study, we use a custom OpenGL-based game engine
that has been adapted to incorporate a physics engine and neuroevolution library
in order to simulate and train the controllers. The engine itself is mainly used

1 http://hdl.handle.net/11250/2454827.
2 https://github.com/reewr/master.
3 https://reewr.github.io/master.

for visualization and to control the flow of the physics-based simulation. The
Bullet3 physics engine4 is adopted to perform all rigid body simulation and
collision detection required to simulate the character. To evolve the controllers,
the neuroevolution library MultiNEAT5 is utilized. The choice of MultiNEAT in
particular is made due to language compatibility with the rest of the code.

Fig. 1. The arachnoid used in this study.

In the aforementioned game engine, an arachnoid with a robotic theme, fea-
turing eight legs each of which is equipped with five different joints, is utilized
in our study, as shown in Fig. 1. This model is chosen as it has a sufficient com-
plexity to provide a realistic example of a fully featured game character. All the
joints of the character are defined as hinge joints, meaning that they can only
rotate in one specific axis. Furthermore, all these joints have limitations in how
much they can move in their respective axises. This is to enforce realistic mo-
tions as the joints should not have a full 360-degree freedom of movement. Fig.
2 shows each joint and their limits. As seen in Fig. 2, the Trochanter is the only
joint that is able to rotate forwards or backwards in relation to the sternum,
whereas every other joint can only rotate up and down. The actual values of
these limits can be seen in Tab. 1. The character has four additional parts that

Trochanter
Femur Patelle Tibia Tarsus

Fig. 2. Leg with joint limits.

are not mentioned in Table 1, the head, neck, hip and abdomen, which may also
be rotated. However, these parts are not considered to contribute much in terms

4 www.bulletphysics.org.
5 www.multineat.com.

of the movement of the character and therefore have been disabled and set to a
constant angle that should not interfere with the movement of the character.

The dimensions of the character are roughly 4 units from its head to the
back of the abdomen and has approximately 9 units in total leg span when fully
stretched out. Each part of the character has a weight of 1 mass unit, except for
the sternum, abdomen and head which weighs 10 mass units, 8 mass units and 5
mass units respectively. These units are configured to make sure that the center
of mass is not exactly at the center of the character, but rather slightly tilted
towards the back, in order to increase the perceived realism of the character.

Table 1. Limits of the joints of the character’s legs in degrees.

Joint Upper limit Lower limit

Trochanter -60 60
Femur -20 60
Patella -100 5
Tibia -100 5
Tarsus -35 35

2.2 Substrate Applied in HyperNEAT

As mentioned above, HyperNEAT uses a substrate to define the coordinates for
input, hidden and output nodes. Designing the substrate is an important aspect
of using HyperNEAT as it contributes to how it will determine symmetries and
patterns [4].

The substrate is designed to match the geometry of the character as closely
as possible to make it easier for HyperNEAT to detect the symmetries of the
legs. The substrate takes inspiration from previous research that has evolved
gaits for Quadruped [2, 15, 8, 3], but is extended to support the additional two
legs on each side and the increased number of joints. The substrate with all its
layers can be seen in Fig. 3, which is defined with three two-dimensional 7×8
Cartesian grids. All unmarked inputs/outputs are un-utilized.

Each column in the substrate represents a leg, starting from the front left
and going clockwise around the character. Each row, except for the two top-most
rows, represents the current angle of a joint normalized from a value within [-π,
π] to a value within [-1, 1]. The second row represents whether the tip of the leg
is touching the floor whereas the first row includes the pitch, roll and yaw of the
sternum. The first row also includes a sine and cosine wave to encourage periodic
behavior. All the inputs, hidden and output coordinates of the substrate are
spread uniformly in the range of [-1, 1], while trying to keep symmetry between
opposite legs. To differentiate the layers, the inputs, hidden and output layers

e Inputs e Hidden

Misc

Touch

Tarsus

Tibia

Patella

Femur

Trochanter

1

Fig. 3. The three-dimensional substrate of the character.

are placed on different z-coordinates, where the input z-coordinate is 1, hidden
z-coordinate is 0 and output z-coordinate is 1.

The outputs are expected to be within the range [1, 1]. The current angle of
the joint is subtracted from the output and the result of this is set as the new
velocity of the joint. This simulates setting a target angle of the joint, allowing
the networks to choose their desired angles of each joint.

2.3 Controllers

In order to create the control strategy, the neural controllers for each action has
to be trained first.

The first controller is trained to make the character stand completely still
in a standing position. While training, it will be awarded for not moving away
from the initial starting position and for remaining still in a balanced pose. If
the character falls at any point during the simulation, i.e. touches the ground
with any vital parts, the simulation will be terminated, and the character will be
rewarded for the length of time it stayed alive. This is mainly to discourage such
behavior by limiting the fitness of individuals that are unable to remain upright
throughout the entirety of the simulation, promoting more stable postures.

The second controller is trained to make the character walk with a stable
gait. Working under the assumption that the further the character walks the
more stable the gait must be. Therefore, the fitness of the character will be the
furthest distance traveled in one specific axis. In this case, it is the positive z-
axis, which is the axis that the character is facing at the start of the simulation.
As with the first controller, if the character falls, the simulation will stop and
the final fitness value will be the furthest distance traveled before it falls.

The reason for choosing these two actions is that together they form a min-
imum of actions required to test the control strategy. Walking gaits have been
evolved for various legged creatures before and thus evolving this behavior for
the character used in this project should hopefully not be much of a stretch, con-

sidering the characters heightened complexity. While it would easily be possible
not to have a separate standing controller, e.g., by just locking all the joints of
the character instead, this could possibly cause the character to fall over if it
happens to stop in some unbalanced positions. Thus, it is required for a sepa-
rate standing controller that could account for such imbalance and other residual
forces from the walking controller after a transition.

Both controllers are trained via HyperNEAT using the substrate described
in the previous section, and use the same input and output scheme as described
above.

The simulation process will be the same for both controllers and they will
only differ in the fitness functions that they use. All simulations will be run
with 150 individuals with randomized weights based on a random seed for 300
generations. Each character will be allowed to run for up to 10 seconds in real
time, in addition to an un-simulated process of one second where the character
is positioned into a standing pose that is equal across all simulations.

Due to the complexity of HyperNEAT and its underlying NEAT algorithm, it
has a variety of different parameters to set, most of which have been heavily based
on previous research for similar multi-legged characters [4, 15, 3, 8]. However,
these may be subject to a certain degree of trial-and-error depending on the
results. A full list of the NEAT/HyperNEAT parameters may be found in the
unabridged version of this work.

2.4 Control Strategy

Once these two controllers are in place, a control strategy can be evaluated by
using the above controllers together. The control strategy is designed to measure
the responsiveness of the controllers, which is done by using the controllers in
sequence and measuring the time that it takes to transition from standing to
walking and vice versa.

3 Performance Evaluations

In this section, we will evaluate our proposed approach by two examples, i.e.,
standing controller and walking controller independently, and then will test the
controlling strategy, i.e., by testing them alternating in a tandem manner.

3.1 Standing Controller

The standing controller is evaluated based on its ability to stand still and not
falling to the ground.

In early generations of the simulation the dominating factor by far is the
killing of individuals who fell. In the first generations rarely does even a single
individual live long enough as to complete the full simulation duration. This
leads to a dramatic increase in simulation speed in the early stages as it allows
the simulation to be cut short and the next generation could be started.

Seeing as the controller is directly rewarded for how long it remains alive, it is
not surprising that most of the controllers managed to learn that staying upright
is a good strategy. However, many controllers go beyond that and therefore often
flail about frantically in order to remain upright. An example of this behavior
can be seen in Fig. 4.

Fig. 4. Image series of the first standing controller.

This controller tries to remain upright by pulling all its legs towards its
body, however, it appears to do so with an equal force across all legs. Seeing
as the characters center of mass is slightly towards the back, this symmetrical
application of force leads the character to tilt, eventually falling backwards.

Other controllers manage to learn that certain poses are easier to balance
than others. As such, many controllers evolved various static poses that they
are able to hold near indefinitely. However, some of these poses look more like a
spider mannequin that has been randomly assembled by a tornado. One example
of this can be seen in Fig. 5. This controller does take some time to gather itself,
but eventually converges to a stable pose. While certainly amusing, it does not
meet the requirements of the control strategy, as it is considered unlikely that a
walking controller could naturally transition into this particular pose.

Fig. 5. Image series of another standing controller.

Among many controllers for standing, a controller is selected as the champion,
and an image series of the champion controller is shown in Fig. 6. The final

controller does not achieve a perfectly balanced pose as it slowly descended
towards the ground. However, it never does any drastic motions to position
itself and are therefore judged to be the most compatible with other controllers
in the control strategy.

Fig. 6. Image series of the champion standing controller.

Fig. 7. The generated neural network for the champion standing controller.

Fig. 7 illustrates the generated neural network for the champion standing
controller. As can be observed, the number of connections is low and they are
mostly grouped around the top of the substrate. Since it was rewarded for not
moving and only to keep itself from falling, it only had to use some of the joints
to do exactly that. Seeing as the number of connections in a network will increase
its sensitivity, this sensitivity would usually cause it to move around more. In
this case, HyperNEAT discovers that reducing the number of connections in the
network would make it better at standing still. An additional note is that most
of the outputs are also not used. The downside of this type of network is that
it is very hard for it to react to changes, unless those changes happen to hit the
very few input nodes that its connected to.

3.2 Walking Controller

The walking controller was evaluated purely based on how far it traveled in one
specific axis while remaining upright. While all the evolved controllers are able to
move forward to some degree, classifying all of them as gaits would be a stretch.

Fig. 8. Image series highlighting the gait of the first walker.

The controllers often quickly learned that standing as far up as it could and
then falling forward would give it a fairly decent fitness score. In some training
runs it learned that by throwing itself forward from the standing position where
it started in, it could easily cover a distance of 4-5 units. If evolution discovered
any of these behaviors early in the simulation, it would often outcompete other
individuals and eventually dominate the population. Further evolution of these
controllers would usually only get incrementally better at falling over or throwing
themselves forward. An example from such a controller can be seen in Fig. 8.

After many trial of different controllers, the champion controller is presented
below. This controller, which is not punished for touching the ground, displays
the most purposeful and straight movement of all the controllers. The gait ex-
hibits a strong asymmetric tendency in two distinct groups, consisting of the
four front and four back legs, resembling a form of gallop. This controller is also
capable of sustained walking far beyond the training period, in addition to being
stable. The image series of the champion walker is shown in Fig. 9 and the final
generated neural network for the champion is illustrated in Fig. 10.

Fig. 9. Image series of the gait of the champion walker.

Fig. 10. The generated neural network for the champion walker.

3.3 Controller Strategy

The proposed control strategy is evaluated based on its responsiveness and ro-
bustness when switching between the two controllers. For this experiment, the
walking and standing controllers are sequenced in a loop with 5 second time
intervals, and the velocity of the character is recorded at each update. Fig. 11
shows the result of this experiment.

Fig. 11. Velocity of the character over time in seconds. The transitions between walking
and standing are indicated by the red vertical lines.

Measuring the actual responsiveness of this experiment was more difficult
than anticipated, as the standing controller never stopped completely. That is
to say, its velocity never reached exactly 0 as can be seen in Fig. 11. Since the

controller never reaches the threshold value of 0, by using a larger threshold
value, it becomes possible to measure the responsiveness when switching from
walking to standing. Depending on how strict this threshold value is configured,
the average response time is measured to 0.41s for a lenient threshold velocity
of 1 and 1.54s when the threshold is set to a strict 0.1.

The same measurement is applied for the switching from the standing to
the walking controller. The walking controller does not have a constant speed,
but rather displays a periodically varying phase of movement and rest. However,
measuring the responsiveness with a threshold value is similarly effective, even
when the threshold is set higher than the low-points of the resting period of its
gait. The average response time for this switch is measured at 0.09s for a lenient
threshold velocity of 0.5 and 0.65s for a stricter threshold value of 1.5.

As can be seen in Fig. 11, the speed of the walking controller reduces notice-
ably after the second switch from the standing controller. The reason for this is
that it locks one of its forelegs under two of its hind legs.

4 Conclusions

We investigate the feasibility of combining individually trained neural controllers
to form a control strategy that could be used to actively control virtual physics-
based characters. The HyperNEAT is adopted to evolve neural controllers for a
previously untested domain of eight-legged locomotion. To create and evaluate
the control strategy, two target neural controllers are trained for standing and
walking. The newly trained neural controllers are combined to form the control
strategy and is evaluated for its robustness and responsiveness when switching
between them. The results show that HyperNEAT is able to evolve gaits for
a highly complex eight-legged character. The resulting gaits showed that they
are quite capable of walking long distances, even beyond the training period.
However, when combined within the control strategy, the results suggest a need
for further refinement as the controllers are still not robust enough to operate
in tandem.

References

1. Allen, B.F., Faloutsos, P.: Evolved controllers for simulated locomotion. In: Pro-
ceedings of the 2nd International Workshop on Motion in Games. pp. 219–230.
MIG ’09, Springer-Verlag, Berlin, Heidelberg (2009)

2. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordi-
nated quadruped gaits with the hyperneat generative encoding. In: 2009
IEEE Congress on Evolutionary Computation. pp. 2764–2771 (May 2009).
https://doi.org/10.1109/CEC.2009.4983289

3. Clune, J., Stanley, K.O., Pennock, R.T., Ofria, C.: On the perfor-
mance of indirect encoding across the continuum of regularity. IEEE
Transactions on Evolutionary Computation 15(3), 346–367 (June 2011).
https://doi.org/10.1109/TEVC.2010.2104157

4. Clune, J., Ofria, C., Pennock, R.T.: The sensitivity of HyperNEAT to different geo-
metric representations of a problem. In: Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation. pp. 675–682. GECCO ’09, ACM, New
York, NY, USA (2009), http://doi.acm.org/10.1145/1569901.1569995

5. Geijtenbeek, T., Pronost, N.: Interactive character animation using simulated
physics: A state-of-the-art review. Comput. Graph. Forum 31(8), 2492–2515 (Dec
2012), http://dx.doi.org/10.1111/j.1467-8659.2012.03189.x

6. Grzeszczuk, R., Terzopoulos, D.: Automated learning of muscle-actuated locomo-
tion through control abstraction. In: Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques. pp. 63–70. SIGGRAPH ’95,
ACM, New York, NY, USA (1995), http://doi.acm.org/10.1145/218380.218411

7. Hagenaars, M.: Hierarchical development of physics-based animation controllers.
Master’s thesis, Utrecht University (2014)

8. Lee, S., Yosinski, J., Glette, K., Lipson, H., Clune, J.: Evolving Gaits for Physical
Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation,
pp. 540–549. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

9. Morse, G., Risi, S., Snyder, C.R., Stanley, K.O.: Single-unit pattern generators for
quadruped locomotion. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation. pp. 719–726. GECCO ’13, ACM, New York, NY,
USA (2013), http://doi.acm.org/10.1145/2463372.2463461

10. Olson, R.S.: A step toward evolving biped walking behavior through indirect en-
coding. Honors in the major thesis, University of Central Florida (2010)

11. Pejsa, T., Pandzic, I.: State of the art in example-based motion synthesis for virtual
characters in interactive applications. Computer Graphics Forum 29(1), 202–226
(2010), http://dx.doi.org/10.1111/j.1467-8659.2009.01591.x

12. Reil, T., Husbands, P.: Evolution of central pattern generators for bipedal walking
in a real-time physics environment. IEEE Transactions on Evolutionary Compu-
tation 6(2), 159–168 (Apr 2002). https://doi.org/10.1109/4235.996015

13. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques. pp. 15–22. SIGGRAPH ’94,
ACM, New York, NY, USA (1994), http://doi.acm.org/10.1145/192161.192167

14. Valsalam, V.K., Miikkulainen, R.: Modular neuroevolution for multilegged lo-
comotion. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference GECCO 2008. pp. 265–272. ACM, New York, NY, USA (2008),
http://nn.cs.utexas.edu/?valsalam:gecco08

15. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J.C., Lipson, H.: Evolving
robot gaits in hardware: the HyperNEAT generative encoding vs. parameter opti-
mization. In: In Proceedings of the 20th European Conference on Artificial Life.
pp. 890–897 (2011)

