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ABSTRACT: The sensitivity of the wage curve to sample-selection and model uncer-

tainty was evaluated with Bayesian methods. More than 8000 Heckit wage curves were

estimated using data from the 2017 household survey of Bolivia. After averaging the es-

timates with the posterior probability of each model being true, the wage curve elasticity

in Bolivia is close to −0.01. This result suggests that in this country the wage curve is

inelastic and does not follow the international statistical regularity of wage curves.

JEL classification: C11, D00, J30
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Introduction

Blanchflower and Oswald (1990) proposed the existence of a micro-econometric association

between wage level and local unemployment, portrayed as a downward-sloping “wage curve”.

Since evidence of a wage curve elasticity of −0.1 has been found in more than 40 countries,

Blanchflower and Oswald (1995) and Blanchflower and Oswald (2005) conclude that the wage

curve elasticity is an international empirical law of economics.

This paper estimates the wage curve for Bolivia and evaluates whether the elasticity

of the wage curve in this country is sensitive to sample-selection and model specification:

does the statistical regularity of θ̂ ≈ −0.1 changes if different control terms are included as
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explanatory variables in wage curve models that adjust for the bias of considering only the

working population? Bayesian model averaging was used to account for model uncertainty.

Heckit models were used to account for the selection bias of estimating the wage curve with

only the subpopulation of individuals that are working.

The contribution of this study to the literature is twofold. First, the estimations of wage

curve elasticities have been mainly focused on developed or middle-income countries; less

evidence seems to exist about the elasticity in lower and lower-middle income countries such

as Bolivia. Thus, an estimation of the elasticity for Bolivia contributes to the accumulation

of evidence about the value of the wage curve elasticity in developing economies with lower

levels of income. Also, to the best of the author’s knowledge, no study has yet considered

simultaneously the effects of both sample selection and model uncertainty in estimating the

wage curve elasticity with Bayesian methods.1 Consequently, this study explores a potential

methodological improvement in the econometric estimation of wage curve models.

The next section describes the methods used in the study. Section 2 presents the results

and Section 3 concludes the study.

1 Bayesian Model Averaging of Heckit Models

Wage curve

The relationship between individual wages (w) and local unemployment (u), which Blanch-

flower and Oswald named the wage curve, is

logw = θ log u+ controls. (1)

The elasticity coefficient θ has been found to be relatively constant across countries; its

estimated value tends to be centered on −0.1. While the Blanchflower-Oswald finding is

empirical, it is in line with the theoretical model of Campbell and Orszag (1998), who derived

a dynamic efficiency wage model in which the wage elasticity with respect to employment is

invariant to changes in productivity, payroll taxes, training subsidies and parameters in the

training cost and quitting functions.

The empirical estimation of wage curve elasticity can be sensitive to the inclusion/ exclu-

sion of explanatory terms, i.e., to model uncertainty. This model uncertainty implies that,

for example, the elasticity estimated with a regression that takes into account formality of

employment may be different from that estimated with a regression that does not take into

account this variable. Moreover, some variables may affect the probability of working, but

1Hoddinott (1996) used a two-step approach to correct for sample selection bias in the wage equation,
with data of Côte d’Ivoire, but does not treat the problem of model uncertainty.
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not the wage level – for example, being the household head in the family unit – whereas other

variables affect both the probability of working and the wage level – for example, education

or professional experience. If different combinations of variables lead to different estimations

of the wage curve models, then model uncertainty may be a problem that can affect the

proper estimation of the wage dynamics.

Bayesian model averaging (BMA)

The uncertainty about which variables should be included as control terms in the calculation

of the wage curve is equivalent to the uncertainty about which model specification is correct

(in the sense of being suitable for explaining the wage-unemployment relationship) between

theMj (j = 1, 2, . . . , k) potential models. Bayesian model averaging (BMA) is an economet-

ric technique that reveals the correct probability of a model specification, given the evidence

provided by the data: in this case the probability of a wage curve model being correct given

the data of the variables included as control terms in the sample-selection model. BMA was

used inter alia to select the variables that affect firm default (Traczynski, 2017) or to explain

the mixed evidence about the effects of oil rents on growth, which can be explained with

model uncertainty according to Arin and Braunfels (2018). See Fragoso et al. (2018) for a

survey of the applications of BMA.

The Bayesian posterior probability of a wage curve modelMj being true, conditional on

a information set D, is,

P (Mj|D) =
L (D|Mj)P(Mj)∑K
i=1 L (D|Mj)P(Mj)

(2)

where L (D|Mj) is the marginal likelihood for each model. Because the denominator of the

previous equation is hard to calculate directly, it is common to compare two models, i and

j, using the ratio of their posterior model probabilities,

Pij =
P (Mi|D)

P (Mj|D)
=

L (D|Mi)P (Mi)

L (D|Mj)P (Mj)
. (3)

When equal prior weight is attached to each model, P (Mi) = P (Mj), the posterior odds

ratio Pij becomes a ratio of marginal likelihoods, that is, the Bayes factor Bij,

Bij =
L (D|Mi)

L (D|Mj)
. (4)

See, among others, Hoeting et al. (1999) or Koop (2003).
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Asymptotic approximation to Bayes factors

Raftery (1995) proposed an asymptotic approximation to a Bayes factor Bij through the

Bayesian information criterion (BIC, see Schwarz (1978)),

Bij =
L (D|Mi)

L (D|Mj)
, (5)

=

[
L (D|MS)

L (D|Mi)

]
/

[
L (D|MS)

L (D|Mj)

]
, (6)

= BSi/BSj, (7)

2 logBij = 2 logBSi − 2 logBSj (8)

≈ BICi −BICj. (9)

Thus, two models can be compared by taking the difference of their BIC values (MS is

a saturated model in which each data point is fit exactly). When the baseline model is the

null model M0, with no independent variables, then 2 logBij = 2 logB0j, for B0j the Bayes

factor for the null model M0 against the model of interest Mj.

Bayes factor approximation to posterior model probabilities

If M0,M1, . . . ,Mk models are being considered and each of M1, . . . ,Mk is compared in

turn with M0, yielding Bayes factors B10, . . . ,Bk0, then the posterior probability of Mj,

j = 1, 2, . . . , k, is,

P (Mj|D) =
αjBj0∑k
r=0 αrBr0

, (10)

where αj = P (Mj) /P (M0) is the prior odds forMj againstM0. A natural choice is taking

all the prior odds αj equal to 1. See Kass and Raftery (1995).

BMA estimator of the wage curve elasticity

The BMA estimator of the wage curve elasticity θ̂BMA is obtained by adding the estimates

of θj in each j-model, weighted by the posterior probability P (Mj|D) of each model being

correct,

θ̂BMA := E (θ|D, θ 6= 0) ,

∝
∑∑

Aθ

E (θ|D,Mj)P (Mj|D) .
(11)
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Heckman correction

Arango et al. (2010) used the Heckman (1979) correction to account for the selection bias

due to estimating the wage determinants from the subpopulation of individuals who work,

who are selected non-randomly and may differ from the subpopulation who do not work. The

Heckman correction implies estimating a bi-equational sample selection model (henceforth,

Heckit model) {
z∗i := P (working = 1|xj) = Φ(x′jβj),

logwi|z∗i = θ log u+ x′jβj + βλλ̂i(x
′
jβj|σ2) + νi,

(12)

where the first equation is a selection equation (a probit model) to estimate the probability of

working and the second equation is the traditional wage curve, plus a correction term from the

first equation, i.e., the inverse Mills ratio λi(x
′
jβj|σ2) = φ(−(x′jβj|σ2))/(1− Φ(−(x′jβj|σ2))).

See, inter alia, Puhani (2000) or Cameron and Trivedi (2005). In the term x′jβj, x′j is a

vector containing the 1, 2, ..., j-control covariates and βj are the parameters that measured

the effect of each covariate on the probability of working and/or the wage level.

Model space of Heckit wage curves

The possible combinations of k-explanatory variables in a model is defined by the power set

℘ (k),

℘ (k) = {{∅} , {x1} , {x2} , . . . , {xk} , {x1, x2} , . . . , {x1, . . . , xk}} . (13)

The cardinality of ℘ (k) gives the total combinations of models that have to be estimated,

|℘ (k)| =
k∑
p=0

(
k

p

)
= 2k, (14)

with
(
k
p

)
the Binominal coefficient

(
k
p

)
= k!

p!(k−p)! . In the case of Heckit models, the x1, . . . , xk
control variables can enter as explanatory terms in the selection equation, the outcome equa-

tion (the wage curve), or both. If the same variables are considered in the selection equation

and the outcome equation, a total of 2k
(
2k − 1

)
Heckit wage curves need to be estimated.

2 Results

The 2017 household survey of Bolivia was used to estimate the country’s wage curve elasticity.

Bolivia was used as a case study because estimates of the wage curve elasticity were needed for

the Computable General Equilibrium Model MAMS (Maquette for Millennium Development

Goals Simulation) of the United Nations Development Program and the United Nations
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Department of Economic and Social Affairs. See Lofgren and Diaz-Bonilla (2010) for details.2

Geographical clustering was performed at the municipal level, thus, local unemployment is

equal to municipal unemployment rates. The selection equation and the outcome equation

were jointly estimated with pseudo-maximum likelihood, using expansion factors, because

inconsistent estimates will result from two-stage least squares applied to the survey data.

Six control terms were considered as possible wage determinants in the outcome equation,

and seven covariates were considered as possible explanatory terms of the probability of

working in the selection equation of the Heckit models. In the case of the outcome equation,

the possible wage determinants considered were: (1) education (measured with years of

schooling), (2) experience (measured as the squared years of the individual’s years of tenure

in a business), (3) age, (4) gender, (5) a dummy variable equal to one if the person works

in a formal business and (6) a dummy variable equal to one if the person is indigenous. For

the selection equation (the probability of working), the following variables were considered as

potential control covariates: (1) education, (2) age, (3) gender, (4) a dummy variable equal

to one for formal businesses, (5) a dummy variable equal to one if the person is indigenous,

(6) the number of family members and (7) a dummy variable equal to one if the person is a

household head. These variables were selected based on data availability and also following

previous studies such as Baltagi et al. (2017), who estimated the wage curve for Brazil

and considered as control covariates the age of the individual, gender, race, education, the

individual’s years of tenure at a firm and formality of employment, among other variables

available for Brazil. In Bolivia, the level of education and experience have a direct effect on

the salary and on the probability of working; also, it is expected that differences in salary

may exist for different age categories and between males and females. Age and gender also

may affect the probability of working. Due to the high proportion of informal businesses in

Bolivia, a binary variable equal to one if the worker’s employment is a formal business was

included as a potential control covariate for the outcome and selection equation. Also, to

account for possible ethnic discrimination in salary and/or job allocation, a dummy variable

equal to one was included for indigenous individuals in both equations of the Heckit models.

Finally, the number of family members variable and an indicator variable for household-head

individuals were included in the selection equation because higher incentives for working may

exist if a person is a household-head and/or is responsible for a greater number of people

in a family unit.3 A total of 26(27 − 1) = 8128 Heckit models were estimated with the

2The estimates for the MAMS model were originally obtained with data from the 2006 household survey
of Bolivia, because the base year of the MAMS model was 2006. Based on the reviewer’s suggestion, we
updated the estimation with data from the more recent survey and, thus, this section presents results based
on data from the 2017 household survey of Bolivia. In the results for 2006, the estimate of the wage curve
elasticity for Bolivia was equal to 7%.

3A similar variable was included by Baltagi et al. (2017) as a control covariate, household type, where the
response categories were couples without children, couples with children, single mother with children, and
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combinations of these control terms.

Figures 1 and 2 show the results of the estimation. In Bolivia, when sample selection and

uncertainty in control covariates are considered, the estimation of the wage curve elasticity is

bi-modal in a range between −0.05 and 0.06. The posterior probability of the Heckit models

being true is higher for negative wage curve elasticities (Figure 1), and the concentration of

the Bayes factors (i.e., the model evidence) suggests that more support exists for estimations

of the wage curve elasticity between −0.02 and −0.04 (Figure 2). This result is theoretically

expected if higher unemployment leads to a fall in the level of wages.

Adding the estimates of θj in each j-model, weighted by the posterior probability of each

model being correct, allows us to obtain a point estimate of the wage curve elasticity (θ̂BMA)

equal to −0.0104. This value is closer to zero than the expected statistical regularity of −0.1

reported for developing countries and suggests that the wage curve in Bolivia is inelastic.

Finally, Table 1 shows the posterior inclusion probability of the control covariates in-

cluded in the Heckit models. The estimates suggest that education and gender are particu-

larly relevant for determining the wage level, whereas age, formal employment, and being a

household-head affect the probability of working.

3 Conclusion

Taking into account selection bias and model uncertainty, the estimated wage curve elasticity

for Bolivia in 2017 was equal to −0.0104. This estimate (without regard to its sign) is

below the absolute value of −0.1 reported as a statistical regularity of the wage curve for

developing countries, and is also below the unbiased estimation of Nijkamp and Poot (2005),

who performed a meta-analysis of 208 wage/unemployment elasticities from the literature to

correct for publication bias and found a value of −0.07 for the wage curve elasticity.4

The results of the wage curve estimation for Bolivia do not provide empirical support

for the burgeoning literature about non-competitive features of the job market and further

suggest that the wage curve in Bolivia is inelastic. An explanation for this finding may be

related to the exponential increases in the minimum wage of Bolivia since 2006, which are

coupled with low levels of formal unemployment (Figure 3). In 2006, the minimum monthly

wage of Bolivia was USD 62, while in 2017 the minimum wage reached USD 287, which

corresponds to an increase of 363%. The increase in the minimum wage in Bolivia could

have led to a reduction in the amount of labor that firms demand, increasing unemployment

other.
4The estimate for Bolivia in 2017 is also different from those obtained for other Latin American develop-

ment countries by Galiani (2000), Garcia and Granados (2005), Lugo (2006), Arango et al. (2010), Cruces
and Ham (2010), Ines Terra et al. (2010), Ramos et al. (2010), Carvalho Filho and Estevão (2012), Martinez
(2012) or Anaya and Rodŕıguez-Villamil (2012).
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as labor becomes more expensive. At the same time, the higher minimum wage may have

stimulated the supply of labor, thereby decreasing unemployment. This is in line with Gregg

et al. (2014), who suggest that in a case of wage inflexibility, real wages do not seem to

respond to the varying local labor market conditions. A similar result was also put forward

recently by Daouli et al. (2017), who found only a short-lived wage curve elasticity in Greece

during a time of reduction in the national minimum wage and a restructuring of the collective

bargaining regime in the labor market.

Future studies can employ dynamic wage curves to explore if the inflexibility of the labor

market of Bolivia was indeed caused by the changes in the minimum wage. Because in Bolivia

the changes in the national minimum wage were related to a change in the government,

a quasi-experimental design can be used to compare models before and after the change

of government in 2006. If model uncertainty is considered during the quasi-experimental

estimation, Bayesian methods can be employed to provide a comprehensive and coherent

framework for comparing non-nested models (Hepple, 2004).

References
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Figure 1: Histogram of the wage curve estimations and posterior probability P (Mj|D) of a
Heckit wage curve being true
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Figure 2: Bayes factors and wage curve elasticity
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Figure 3: Minimum wage and unemployment rate in Bolivia
Source: World Bank and UDAPE
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Table 1: Posterior inclusion probability of control covariates

Control Wage curve equation Selection equation

Education 0.649 0.506
Experience 0.511 –
Age 0.506 0.550
Gender 0.546 0.506
Fomal employment 0.523 0.537
Indigenous 0.511 0.506
Family members – 0.506
Household-head – 0.547


