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“The master-economist must possess a rare combination of gifts. He must reach 

a high standard in several different directions and must combine talents not 

often found together. He must be mathematician, historian, statesman, 

philosopher-in some degree. He must understand symbols and speak in words. 

He must contemplate the particular in terms of the general, and touch abstract 

and concrete in the same flight of thought. He must study the present in the light 

of the past for the purpose of the future.” (Keynes, 1924) 
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ABSTRACT 

This master thesis explores the concept of convergence in a macroeconomic perspective and 

applies econometric methods to economic growth theory.  

Tests and analysis are performed using a dataset of national accounts from the rich database of 

The Penn World Tables version 9.0 and the statistical software Stata 15.1. Two sample 

selections are performed, with observations for 101 and 53 countries from 1970 to 2014.  

The convergence classifications of β convergence, both absolute and conditional, as well as σ 

convergence are explained. The concepts of convergence are related to their respective research 

question. Do poorer economies tend to grow faster than richer economies? Do inequalities 

between poorer economies and richer economies tend to decrease? Do economies converge 

towards a common or unique steady state? Macroeconomic and economic growth theory is 

discussed and explained through neoclassical growth theory and new growth theory. The Solow 

model from neoclassical growth theory and the R&D model from new growth theory are 

mathematically derived and empirically tested to explore the dynamics of economic growth and 

to answer the question of the concept of absolute convergence. Other applied tests are growth-

initial level regressions, which tests for β convergence, and standard deviation time series, 

which tests for σ convergence.  

The research provides empirical evidence that poorer economies do tend to grow faster than 

richer economies, but with unreliable results due to issues of non-normality and 

heteroscedasticity. Empirical evidence also suggests that income dispersion of OECD countries 

is steadily increasing and that income dispersion of the full sample of 101 countries decreased 

from 1970 to 1988. The standard deviation time series test does not give a conclusive answer 

for the full sample after 1988. Due to issues of heteroscedasticity and autocorrelation, 

generalized least squares method is used to give the best linear unbiased estimator of the 

parameters of the Solow model. Empirical evidence show that capital’s share is 60% and not 

1/3 as the theory suggests. By adding human capital as in the theory of the augmented Solow 

model, empirical evidence shows a much lower capital’s share of 20%. Individual heterogeneity 

suggests that countries follow unique paths to their own equilibrium level of economic growth 

given the parameters of the Solow model.  

The resulting evidence from the conducted tests and analysis successfully provides satisfactory 

answers to the research questions of this master thesis.  
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1 INTRODUCTION 

Convergence is a concept of economic behavior in the theory of economic growth. The presence 

and empirical evidence of convergence has been greatly debated since the beginning of 

neoclassical growth theory. Many research papers found empirical evidence of absence of 

convergence and concluded that neoclassical growth theory was imperfect and should be 

rejected in favor of new growth theory. This motivated the start of theorizing and researching 

endogenous growth. However, neoclassical growth theory is still highly recognized and taught 

in academia of today, mainly due to its simplicity and the explanatory power of its parameters. 

This master thesis aims to apply econometric methods to the theory of macroeconomics and to 

gain insight in some of the shortcomings of economic growth theory. Studying economic 

growth is important to understand movements of the world income distribution and the welfare 

of individuals. The goal of economic growth research is to better understand the economic 

dynamics to enable pursuit of policies that increases standards of living and decreases world 

poverty. 

1.1 RESEARCH QUESTIONS 

The concept of convergence is associated with 3 research questions which again resembles 

different concepts of convergence. These are all interesting questions to analysts of 

convergence. The first question is a question of β convergence, the second question is a question 

of σ convergence and the third question is a question of absolute and conditional convergence.  

1. Do poorer economies tend to grow faster than richer economies? 

2. Do inequalities between poorer economies and richer economies tend to decrease? 

3. Do economies converge towards a common or unique steady state? 

1.2 RELEVANCE 

Convergence has been widely researched for recent decades with diverging results. Different 

results have occurred due to variation in purpose and methodology used. This is because the 

question of convergence is interesting to both macroeconomic theorists and policy makers. 

Because of the magnitude of studies on the topic of convergence, it is helpful to be introduced 

to the convergence debate by the survey paper by Nazrul Islam (Islam, 2003). The survey paper 

briefly describes the different approaches to the study of convergences. The convergence debate 

started as a response to the neoclassical growth theory which was developed by Robert Solow 
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(Solow, 1956). A fundamental research paper that empirically addresses strengths and 

weaknesses of neoclassical growth theory is the research paper of Mankiw, Romer and Weil 

(Mankiw, Romer, & Weil, 1992). These two papers are included in two important textbooks of 

macroeconomic and economic growth theory by David Romer (D. Romer, 2012) and Barro and 

Sala-i-Martin (Barro & Sala-i-Martin, 2004). 

1.3 STRUCTURE 

The master thesis is structured in such a way that it should be perceived as both exploratory and 

descriptive research. The thesis seeks to describe advanced macroeconomic theory and 

econometric methods and to explore which econometric methods that are applicable to the 

questions of convergence. Some of the explored aspects might not be directly applied in the 

tests and analysis, but it provides an idea of how it could potentially be applied. The complexity 

of the theory explained varies which means that some aspects like averages and standard 

deviations are self-explanatory while matrix mathematics and stochastic processes requires a 

more advanced understanding.  

Equations and mathematical derivations, called proofs, are generously used through most of the 

thesis. Graphs and regression outputs, including other test outputs in Stata, are provided in the 

chapter on tests and analysis. Equations, proofs, graphs and regression outputs are referenced 

where appropriate in the text. Equations and graphs are placed close to their reference while the 

proofs and regression outputs are placed in the appendix for convenience. The appendix also 

includes the Stata Do-file and the reflection notes.  

The theory chapter “Economic growth theory” explaining what convergence is and the different 

concepts of convergence. The theory chapter briefly explains the role of neoclassical growth 

theory and new growth theory in the history of macroeconomic theory before technically and 

mathematically explaining two central models in detail, one from each theory.  

The methodology chapter “Econometric methods” explains the mathematical statistics on 

which the econometric methods are created before explaining linear regressions, time series 

and panel data.  

The chapter “Research approach” explains how the data is modified in preparation for 

conducting the tests and analysis.  
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2 ECONOMIC GROWTH THEORY 

This chapter commences with the definition of the concept of convergence. Following that, the 

neoclassical growth theory, new growth theory and their relationship will be explained. Lastly, 

in separate subchapters, two specific models will be explained in detail and mathematically 

derived.  

In mathematics, convergence is defined as an infinite series, a sum of infinite quantities of real 

numbers, that approaches a limit that can be expressed by a real number. A sequence is a 

collection of values of a variable which can be interpreted as a function or process of any natural 

number. The sequence is converging towards a convergent if the convergent is some constant 

that is equal to the limit of the function or process as the natural number goes to infinity (1). A 

series is an infinite summation of the values of a sequence and is converging if the sum is equal 

to some constant (2). If the values in the sequence are the same as for the series that converges 

then the convergent of the sequence is equal to zero (3). (Lorentzen, Hole, & Lindstrøm, 2010, 

p. 306-307, 314, 341) 

lim
𝑛→∞

𝑥𝑛 = 𝑐 (1) 

∑ 𝑎𝑛

∞

𝑛=1

= 𝑆 
(2) 

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

(𝑆𝑛 − 𝑆𝑛−1) = 0 (3) 

A series converges either conditionally or absolute (also called unconditional). The difference 

between absolute and conditional convergence is that taking the absolute value for each value 

in a conditional converging series will cause the series to diverge. On the contrast, doing this 

for each value in an absolute converging will not cause the series to diverge, the series will still 

be converging. This is because for an alternating series the sum of the positive values and the 

negative values is positive and negative infinity. (Lorentzen et al., 2010, p. 361) 

In economics, the question of convergence explores the dynamics of growth of economies. 

Convergence is distinguished between multiple classifications. The classical classification is 

between β and σ convergence. β convergence is either absolute or conditional. Absolute 

convergence is a necessary, but not sufficient, condition for σ convergence which means that 

for an economy that is converging in σ is also converging absolute. (Sala-i-Martin, 1996, p. 

1019-1020) 
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There is presence of β convergence if economies with lower initial levels of economic output 

grow faster than economies with higher initial levels of economic output. β convergence is 

typically tested by a growth-initial level regression where a negative value of the coefficient of 

β in the growth-initial level regression implies the presence of β convergence. If poor economies 

tend to grow faster per worker than rich economies without being conditioned on some other 

characteristic, then there is absolute convergence. If the growth rate of an economy is positively 

related to its distance from its steady state, then there is conditional convergence. In absolute 

convergence, all economies approach the same level of equilibrium. While in conditional 

convergence, all economies approach their own unique level of equilibrium. Another type of 

conditional convergence is club convergence, which is when economies approach similar levels 

of equilibrium if they are similar in terms of characteristics. However, it is difficult to 

distinguish between club convergence and conditional convergence empirically. (Islam, 2003, 

p. 315; Sala-i-Martin, 1996, p. 315) 

There is presence of σ convergence if the dispersion of economies’ real GDP per worker tends 

to decrease over time. The dispersion of real GDP per worker measures the development of 

distribution of income across countries and is statistically measured by standard deviation 

which is denoted by σ. (Sala-i-Martin, 1996, p.1020)  

In modern macroeconomic theory, the neoclassical growth theory and new growth theory are 

the most recognized for explaining dynamics of economic growth. Neoclassical growth theory 

revolves around the contribution of Solow and Swan in 1956 (Solow, 1956). The Solow model 

(also called Solow-Swan model) specifies a production function that assumes constant returns 

to scale, diminishing returns to each input and some positive smooth elasticity of substitution 

between the inputs. The Solow model assume that savings rate, population growth and 

technological progress occurs outside of the model. The dependency on exogenous growth is a 

major weakness of the Solow model, despite causing a strongly admired simplicity in 

explaining economies and their dynamics. (Barro & Sala-i-Martin, 2004, p. 17)  

A fundamental equation of the Solow model explains that economies with lower capital per 

worker tend to grow faster. This equation suggests that there is absolute convergence which has 

been empirically tested and shown to not be the case. Convergence in the Solow model has 

been empirically shown to be conditional, meaning that economies have their own steady state 

and that the distance from the steady state depends on some unobserved economic 

characteristics. The Solow model predicts a capital share which implies a speed of convergence 

that is too high to be realistic. To decrease the capital share to get a more appropriate capital 
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share is to include the concept of human capital. This gives the augmented Solow model. (Barro 

& Sala-i-Martin, 2004, p. 17)  

New growth theory aims to explain long-term growth by endogenous growth models. 

Endogenous growth models assume non-diminishing constant returns to capital and labor and 

distinguish between physical and human capital. Paul M. Romer introduced such a model called 

the research and development (R&D) model (P. M. Romer, 1990).  

The R&D model was developed in early 1990s to divide resources allocated between two 

sectors, the sector of output production and the sector of research and development. The 

equation for the sector of output production assumes constant returns to capital and labor. The 

equation for the sector of research and development does not assume constant returns to capital 

and labor. There is no restriction on the effect of the stock of knowledge on production of 

innovative ideas. This allows the possibility of increasing, constant and diminishing returns in 

the research and development sector. In case of increasing returns, past knowledge makes future 

ideas easier to accomplish. In the other case of decreasing returns, the easiest discoveries are 

made first, and innovative ideas are increasingly difficult to produce. (D. Romer, 2012, p. 103-

104) 

It has been generally thought that convergence was an implication of the 

neoclassical growth theory, while the new growth theories did not have this 

complication. (Islam, 2003, p. 309) 

The economic growth in the R&D model is either semi-endogenous or fully endogenous. In the 

case of semi-endogenous growth, the technological progress and capital growth rate converge 

to their equilibrium level where their respective growth rates, the growth rate of growth rate, 

are equal to zero. The long-run growth is an increasing function of population growth and 

parameters of the knowledge production function. In the case of fully endogenous growth, there 

is zero population growth and the growth rates of capital and knowledge are constant. In this 

case, the equilibrium that the growth rates of the economy are converging towards is unknown. 

The equilibrium depends on parameters that are difficult to derive and even more difficult to 

interpret. The fraction of labor force and capital stock used in research and development are 

among these parameters that affect the long-run growth. (D. Romer, 2012, p. 10) 
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2.1 THE SOLOW MODEL 

In this subchapter, the Solow model is explained in greater detail and derived mathematically.  

The Solow model proposes a production function consisting of four variables, the total output 

of the economy Y explained by capital K, labor L and knowledge A. All variables are functions 

of time t (1.1). (D. Romer, 2012, p. 10) 

𝑌(𝑡) = 𝐹(𝐾(𝑡), 𝐴(𝑡)𝐿(𝑡)) (1.1) 

The production function holds two key features that imply that the ratio of capital to output will 

not show any positive or negative trend in the long run. First feature is that time is only affecting 

the output through the inputs of the function. Second feature is that the functions for knowledge 

and labor is multiplied, where the product of the two is referred to as effective labor. The 

knowledge in this composition of inputs is called labor-augmenting (also called Harrod-

neutral). Other compositions of knowledge in the production function are called capital-

augmenting (1.2) and Hicks-neutral (1.3). (D. Romer, 2012, p. 10) 

𝑌(𝑡) = 𝐹(𝐴(𝑡)𝐾(𝑡), 𝐿(𝑡)) (1.2) 

𝑌(𝑡) = 𝐴(𝑡)𝐹(𝐾(𝑡), 𝐿(𝑡)) (1.3) 

A comprehensive assumption of the production function is constant returns to scale. Constant 

returns to scale is when capital and effective labor are multiplied by a positive constant c, and 

the expression is then equal to the composition of output multiplied by c (1.4). (D. Romer, 2012, 

p. 11) 

𝐹(𝑐𝐾(𝑡), 𝑐𝐴(𝑡)𝐿(𝑡)) = 𝑐𝐹(𝐾(𝑡), 𝐴(𝑡)𝐿(𝑡)) (1.4) 

The assumption of constant returns to scale can be described as a combination of two lesser 

assumptions. The first assumption is that the multiplication by c does not change the 

composition of the function. This assumption state that that all advantages from divisions of 

labor have been exhausted which rules out Smiths’ famous prediction of an increasing 

productivity from specialization. This assumption does not hold in cases of smaller economies 

where an increase in capital and effective labor causes the composition of output to change and 

causes a higher increase in output than the increase of capital and effective labor. (D. Romer, 

2012, p. 11) 

The second assumption is that other factors such as land and other natural resources are 

unimportant and does not affect the growth of the economy. This assumption state that land or 
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other resources are not as important as effective labor which rules out Malthus’ famous 

prediction of that population growth is exponential and will eventually exceed the growth of 

the production of necessary resources which is arithmetic. (D. Romer, 2012, p. 11) 

If the assumption of constant returns to scale holds, then the production function can be 

transformed to its’ intensive form. The intensive form of the production function is derived by 

dividing the output and other factors by effective labor. From the assumption of constant returns 

to scale, the constant is set to be equal to 1 divided by effective labor. This gives output per 

effective worker as a function of capital per effective worker (1.5) (see Appendix: Proof 1). (D. 

Romer, 2012, p. 11) 

𝑦 = 𝑓(𝑘) (1.5) 

The intensive form of the production function (1.5) follows a set of assumptions. These include 

that the marginal product of capital is always positive but declines as capital per effective 

worker rises. Also, that if the capital per effective worker is equal to zero, the output per 

effective worker would also be zero. (D. Romer, 2012, p. 12) 

𝑓′(𝑘) > 0 

𝑓′′(𝑘) < 0 

𝑓(0) = 0 

(1.6) 

The Inada conditions are additional assumptions of the intensive form of the production 

function and assure that the path of the economy converges (Inada, 1963). The Inada conditions 

state that the marginal product of capital is infinitely large for an infinitely small capital per 

effective worker and that the marginal product is infinitely small for an infinitely large capital 

per effective worker. (D. Romer, 2012, p. 12) 

lim
𝑘→0

𝑓′(𝑘) = ∞ 

lim
𝑘→∞

𝑓′(𝑘) = 0 

(1.7) 

The Cobb-Douglas production function is a commonly used and simple to analyze production 

function (1.8). It was developed by Charles W. Cobb and Paul H. Douglas in 1928 (Cobb & 

Douglas, 1928). The Cobb-Douglas production function with labor augmenting technological 

progress is represented as the total output explained by the capital powered by the capital share 

multiplied with knowledge and labor powered by 1 minus capital share. Capital share α is a 
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positive percentage. The Cobb-Douglas production function holds for all assumptions (see 

Appendix: Proof 2). (D. Romer, 2012, p. 12-13) 

𝑌(𝑡) = 𝐾(𝑡)𝛼(𝐴(𝑡)𝐿(𝑡))1−𝛼 (1.8) 

Growth rates of a variable in the model refers to proportional rate of change, the derivat ive of 

the variable with regards to time, denoted with a dot above the variable, divided by the variable. 

The growth rate of labor and knowledge are given by the constant exogenous parameters 

population growth and technological progress, respectively. The assumption that labor and 

knowledge grow exponentially can be shown by solving the differential equations (1.9) (see 

Appendix: Proof 3). (D. Romer, 2012, p. 13-14) 

�̇�(𝑡) = 𝑛𝐿(𝑡) 

�̇�(𝑡) = 𝑔𝐴(𝑡) 

(1.9) 

𝐿(𝑡) = 𝐿(0)𝑒𝑛𝑡 

𝐴(𝑡) = 𝐴(0)𝑒𝑔𝑡 

(1.10) 

The law of motion for capital explains that net investment, is equal to gross investment minus 

depreciation. The change in capital is equal to investment minus depreciated capital (1.11) (see 

Appendix: Proof 4). In the Solow model total savings is equal to gross investment in the long-

run perspective and output is saved at an exogenous and constant rate s and capital depreciates 

at a rate δ. (D. Romer, 2012, 13-14) 

�̇�(𝑡) = 𝑠𝑌(𝑡) − 𝛿𝐾(𝑡) (1.11) 

In the Solow model, the behavior of the economy is explained by the exogenous variables labor 

and knowledge, and the endogenous variable capital. The dynamics of capital per effective 

worker is derived from the equation of law of motion using the chain rule (1.12) (see Appendix: 

Proof 5). (D. Romer, 2012, p. 15-16) 

�̇�(𝑡) = 𝑠𝑦(𝑡) − (𝛿 + 𝑛 + 𝑔)𝑘(𝑡) (1.12) 

The growth rate of capital per effective worker converges to zero which is when the actual 

investment is equal to break-even investment. The steady state in the Solow model is a long-

run equilibrium level that the economy converges towards. The equilibrium level is dependent 

on savings rate, population growth, technological growth, depreciation rate and capital share 

(1.13) (see Appendix: Proof 6). (D. Romer, 2012, p. 16-17) 
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𝑘∗ = (
𝑠

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼

 
(1.13) 

The Solow model implies that the parameter that is most important for economic growth is the 

savings rate. An increase in the savings rate will increase the actual investment and therefore 

increase the steady state level of output. The growth of capital per effective worker will then be 

positive until the new steady state is reached. The effect that an increase of the savings rate has 

on the long-run output of the Slow model can be derived by the elasticity of steady state output 

per effective worker to savings rate (1.14) (see Appendix: Proof 7). (D. Romer, 2012, p. 18) 

Ε𝑦∗/𝑠 =
𝛼

1 − 𝛼
 (1.14) 

The speed of which the economy reaches its steady state is called the speed of convergence. 

The speed of convergence λ is measured by how quickly capital per effective worker moves to 

its steady state value (1.15) (see Appendix: Proof 8). (D. Romer, 2012, p. 25-26) 

𝜆 = (1 − 𝛼)(𝑛 + 𝑔 + 𝛿) (1.15) 

Convergence in the Solow model is assumed to be absolute, that all economies converges to 

the same steady state. This suggests a catch-up phenomenon where poorer economies grow 

faster than richer economies and hence catch-up in the long run. (D. Romer, 2012, p. 32) 

The augmented Solow model includes another process of growth and distinguishes between 

physical capital K and human capital H (1.16). Human capital is measured by the total amount 

of productive services supplied by workers. The Cobb-Douglas production function suggested 

by the augmented Solow model can be transformed into intensive form in the same way as the 

previous production function because the assumption of constant returns to scale (1.17) (see 

Appendix: Proof 9 & Proof 10). (D. Romer, 2012, p. 16-17) 

𝑌(𝑡) = 𝐾(𝑡)𝛼𝐻(𝑡)𝛽(𝐴(𝑡)𝐿(𝑡))1−𝛼−𝛽  (1.16) 

𝑦(𝑡) = 𝑘(𝑡)𝛼ℎ(𝑡)𝛽 (1.17) 

The savings rates for physical and human capital per effective worker, sk and sh, are exogenous 

and constant. Further, the equations for the dynamics of physical and human capital per 

effective worker are explained by growth of physical and human capital per effective worker 

being equal to actual investment minus break-even investment (1.18) (see Appendix: Proof 11). 

(Barro & Sala-i-Martin, 2004, p. 59) 
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�̇�(𝑡) = 𝑠𝑘𝑦(𝑡) − (𝑛 + 𝑔 + 𝛿)𝑘(𝑡) 

ℎ̇(𝑡) = 𝑠ℎ𝑦(𝑡) − (𝑛 + 𝑔 + 𝛿)ℎ(𝑡) 

(1.18) 

The augmented Solow model assumes diminishing returns to all capital which means that in 

the steady state the growth of physical and human capital per effective worker is equal to zero. 

Also, for both physical and human capital per effective worker in the steady state, the actual 

investment is equal to break-even investment. Steady state levels of capital per effective worker 

are dependent on two parameters in addition to those utilized in the Solow model, savings rate 

for human capital per effective worker sh and human capital share β (1.19) (see Appendix: Proof 

12). (Barro & Sala-i-Martin, 2004, p. 60) 

𝑘∗ = (
𝑠𝑘

1−𝛽
𝑠ℎ

𝛽

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼−𝛽

 

ℎ∗ = (
𝑠𝑘

𝛼𝑠ℎ
1−𝛼

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼−𝛽

 

(1.19) 

Speed of convergence in the augmented Solow model can be derived from the growth rate of 

output per effective worker explained by the weighted average growth rate of physical and 

human capital per effective worker (1.20) (see Appendix: Proof 13). (Barro & Sala-i-Martin, 

2004, p. 60-61) 

𝜆 = (1 − 𝛼 − 𝛽)(𝑛 + 𝑔 + 𝛿) (1.20) 

The augmented Solow model solves some issues of the Solow model by suggesting that there 

is conditional convergence. Conditional convergence is present when each country converges 

to its own unique steady state depending on some other characteristic and if conditioned for this 

other characteristic then all countries would converge to the same steady state. In the case of 

the augmented Solow model, this other characteristic is human capital and if conditioned for 

human capital all countries would converge to the steady state of the Solow model’s parameters. 

(Sala-i-Martin, 1996, p. 1027) 
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2.2 THE RESEARCH AND DEVELOPMENT MODEL 

In this subchapter, the research and development (R&D) model of new growth theory will be 

explained in greater detail and mathematically derived.  

The R&D model is an endogenous growth model proposed by D. Romer as a simplified model 

involving developments of P. Romer, Grossman and Helpman, and Aghion and Howitt (Aghion 

& Howitt, 1992; Grossman & Helpman, 1991; P. M. Romer, 1990). The R&D allocates 

resources into two sectors, the goods producing sector (2.1) and the knowledge producing sector 

(2.2). The shares of labor force and capital stock in the knowledge producing sector are aL and 

aK. Hence the share of labor force and capital stock in the goods producing sector is given by 

the respective remaining shares. Both shares are exogenous and constant. (D. Romer, 2012, p. 

103) 

𝑌(𝑡) = ((1 − 𝑎𝐾)𝐾(𝑡))
𝛼

(𝐴(𝑡)(1 − 𝑎𝐿)𝐿(𝑡))
1−𝛼

 (2.1) 

�̇�(𝑡) = 𝐵(𝑎𝐾𝐾(𝑡))
𝛽

(𝑎𝐿𝐿(𝑡))
𝛾

𝐴(𝑡)𝜃 (2.2) 

The savings rate in the R&D model, as in the Solow model, is exogenous and constant. The 

capital growth rate and technological progress is explained by gK and gA. To explain the 

dynamics of the economy in this model the growth rates of growth rates are derived (2.3) (see 

Appendix: Proof 14). (D. Romer, 2012, p. 104) 

�̇�𝐾(𝑡)

𝑔𝐾(𝑡)
= (1 − 𝛼)(𝑔𝐴(𝑡) + 𝑛 − 𝑔𝐾(𝑡)) 

�̇�𝐴(𝑡)

𝑔𝐴(𝑡)
= 𝛽𝑔𝐾(𝑡) + 𝛾𝑛 + (𝜃 − 1)𝑔𝐴(𝑡) 

(2.3) 

In equilibrium of the R&D model the growth rates of growth rates are equal to zero which 

predicts a steady growth in the long-run (2.4) (see Appendix: Proof 15). (D. Romer, 2012, p. 

113-114) 

𝑔𝐾
∗ = 𝑔𝐴

∗ + 𝑛 

𝑔𝐴
∗ =

𝛽 + 𝛾

1 − 𝜃 − 𝛽
𝑛 

(2.4) 

The long-run growth rate of output in the R&D model is converging to the same constant as the 

long-run growth rate of capital (2.5) (see Appendix: Proof 16). If the sum of knowledge and 

capital share is restricted under 1 (a hundred percent) then the model shows semi-endogeneity. 
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Then the long-run growth rate depends on the population growth and for a population growth 

of zero, there will also be zero growth rate of output. In the alternative case, where the sum of 

knowledge and capital share is equal to 1 and there is zero population growth then the growth 

rate of capital growth rate is equal to the growth rate of technological progress and the long-run 

growth is difficult to analyze. (D. Romer, 2012, p. 113-114) 

𝑔𝑌
∗ (𝑡) = 𝑔𝐾

∗ (𝑡) = 𝑛 (
1 + 𝛾 − 𝜃

1 − 𝜃 − 𝛽
) 

(2.5) 

The equilibrium level of growth in the R&D model can explain persistent and increasing 

inequality between countries, thereby allowing economies to diverge.  

3 ECONOMETRIC METHODS 

This chapter explains econometric methods, from basic concepts of mathematical statistics to 

more complex concepts of linear regression, time series and panel data analysis.  

Econometric methods are defined as the use of econometric models to understand quantitative 

data in economics and to achieve empirical evidence to economic theory. Econometric models 

are created by the application of mathematical statistics. Quantitative data are large collections 

of observations of a sample of a population.  

3.1 MATHEMATICAL STATISTICS 

This subchapter derives elements of mathematical statistics that are considered most relevant 

to econometric methods. These elements are mainly visual techniques and numerical summary 

measures from descriptive statistics and estimators and hypothesis testing from inferential 

statistics. Other elements explained are sample selection, variables and probability density 

functions.  

The population is everyone that is relevant to what is researched and is often difficult to observe 

in its entirety. Therefore, a sample is used as convenience. Collecting the sample data using 

proper techniques is important for the sample to be representative of the population. Improper 

techniques might lead to the sample being different from the population which would give 

biased results. Selection bias occurs when the observed values differ in characteristics that 

influence the selection of the sample. If selection is random then there is no selection bias. 

Another method for avoiding selection bias is to use stratified sampling which entails separating 

the population into groups that are not overlapping in an observed characteristic. This method 
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avoids groups to be overestimated or underestimated in the full sample. However, it is still 

important to properly sample each group of the population. (Devore & Berk, 2012, p. 7) 

A characteristic that is observed in the data is called a variable and is measured for each object 

or individual in the sample. The data is either univariate, bivariate or multivariate depending on 

how many variables that are included in the data. The variables are measured in numerical, 

categorical or string values. The variables in the sample are random if they for every outcome 

in the sample can be associated with a number. If the variable is random, it can then be defined 

as either discrete or continuous. A discrete random variable can only take on possible values in 

a defined set of outcomes. A random variable however, can take on any real number in an 

infinitely precise measure and the possibility for one exact value is equal to zero. (Devore & 

Berk, 2012, p. 3, 99) 

Descriptive statistics aims to summarize and describe the data that is collected. Descriptive 

methods involve visual techniques and numerical summary measures. Numerical summary 

measures involve means, standard deviations and correlation coefficients which present 

locational properties of the data. The mean is the arithmetic average of a random variable and 

is called the sample mean when calculated for the sample (3.1). (Devore & Berk, 2012, p. 3-4, 

24-25) 

�̅� =
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑁

𝑁
=

1

𝑁
∑ 𝑥𝑛

𝑁

𝑛=1
 

(3.1) 

The mean is highly affected in case there are extreme values for some observations. An 

alternative locational measure that is not affected by extreme values is the median. The sample 

median is either the middle value of all sorted values when the number of values is odd or the 

average of the two middle values for the sorted values if the number of values is even. 

Difference between calculated values for the mean and median is caused by skewness in the 

distribution of observed values. If there is no skewness, the mean and median are equal. (Devore 

& Berk, 2012, p. 27-28) 

Standard deviation measures variability in the sample data and is measured by deviations from 

the mean. Deviations from the mean will be both negative and positive and will equal to zero 

after being summed. To avoid the effects of negative deviations, variance of the sample data is 

calculated first and then the standard deviation is calculated by the square root of the variance 

(3.2). (Devore & Berk, 2012, p. 32-35) 
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𝜎𝑥
2̂ =

1

𝑁 − 1
∑ (𝑥𝑛 − �̅�)2

𝑁

𝑛=1
 

(3.2) 

Both the mean and variance are important to explain the distribution of the observed values for 

a variable. Skewness is used to describe the lack of symmetry in the distribution of observations 

(3.3). The distribution shows the characteristic of a left-hand side tail for a negative skewness 

and a right-hand side for a positive value. (Devore & Berk, 2012, p. 121) 

𝑆�̂� =
1

(𝑁 − 1)𝜎𝑥
3̂

∑ (𝑥𝑛 − �̅�)3
𝑁

𝑛=1
 

(3.3) 

Kurtosis is a measure for the relative quantity that is found within the tail(s) of the distribution 

(3.4). Values of kurtosis higher than 3 would imply that most of the observed values are found 

within that tail(s). 

𝐾�̂� =
1

(𝑁 − 1)𝜎𝑥
4̂

∑ (𝑥𝑛 − �̅�)4
𝑁

𝑛=1
 

(3.4) 

The covariance is a measure of variability between two dependent random variables and is used 

to describe the strength of linear relationship between the two (3.5). A positive covariance 

signifies a positive linear relationship while a negative covariance signifies a negative linear 

relationship. A covariance close to zero signify that the two variables do not have a linear 

relationship while a covariance equal to positive or negative 1 signifies that there is positive or 

negative perfect linear relationship, respectively. (Devore & Berk, 2012, p. 247-249) 

𝐶𝑥,�̂� =
1

𝑁 − 1
∑ (𝑥𝑛 − �̅�)(𝑦𝑛 − �̅�)

𝑁

𝑛=1
 

(3.5) 

The concept of correlation coefficients was introduced by Francis Galton in 1888 and describes 

the strength of linear relationship between two variables (Galton, 1888) (3.6). If the variables 

are perfectly linearly related, then the coefficient takes a value of minus or positive 1. A 

coefficient between would signify that their relationship is not perfectly linear. (Devore & Berk, 

2012, p. 249-250) 

𝜌𝑥,�̂� =
1

(𝑁 − 1)𝜎�̂�𝜎�̂�
∑ (𝑥𝑛 − �̅�)(𝑦𝑛 − �̅�)

𝑁

𝑛=1
 

(3.6) 

Visual techniques involve graph-based diagrams such as histograms and scatter plots. 

Histograms counts the frequency and then the density which is also called the relative 

frequency. The frequency is the number of times the same value occurs for a variable while the 
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density is the number of times the value occurs divided by the total number of observations of 

the variable in the dataset. The histogram then visualizes either the frequency or the density by 

bars. (Devore & Berk, 2012, p. 12-13) 

Scatter plots uses coordinates of values for two variables and are useful for inference of the 

relationship between the two chosen variables. Scatter plots can show whether the relationship 

between the two variables is linear, exponential or polynomial. If the two variables follow a 

linear relationship, then the scatterplots show either decreasing or increasing one-to-one 

coordinates. If the two variables follow an exponential relationship, then there will be an 

increasing number of coordinates and variability for higher values. This could help determine 

the need for logarithmic transformation of variables. (Devore & Berk, 2012, p. 615-617) 

The process of generalizing and analyzing the sample to draw reasonable conclusions of the 

population is called inferential statistics. Inferential statistics involves creating estimates and 

interval estimates using procedures such as point estimations, hypothesis testing and confidence 

intervals. The point estimate is the point in the sample that is best at explaining the true 

parameter of the population. For the average of the population, the parameter is the mean μ and 

is estimated by the point estimate which is the sample mean. (Devore & Berk, 2012, p. 332) 

Estimators are the formulas and rules that are being used to calculate the estimate, usually 

shown by a denotation. Estimators are said to give the true parameter of the population plus 

some error of estimation (3.7). The quality of an estimator is measured by its unbiasedness, 

consistency and efficiency, which is measured by the error ε. (Devore & Berk, 2012, p. 334-

335) 

𝐸[𝑋] = �̅� + 𝜖 

𝑉𝑎𝑟[𝑋] = 𝜎𝑥
2̂ + 𝜖 

𝑆𝑘𝑒𝑤[𝑋] = 𝑆�̂� + 𝜖 

𝐾𝑢𝑟𝑡[𝑋] = 𝐾�̂� + 𝜖 

𝐶𝑜𝑣[𝑋, 𝑌] = 𝐶𝑥,�̂� + 𝜖 

𝐶𝑜𝑟𝑟[𝑋, 𝑌] = 𝜌𝑥,�̂� + 𝜖 

(3.7) 

 A hypothesis is an empirically testable research question and consists of a null hypothesis and 

one or more alternative hypotheses. The null hypothesis is a statement that something is true 

while the alternative hypothesis contradicts this statement. Through an empirical test there is 

only two possible outcomes, the null hypothesis is either rejected or failed to reject. The 

hypothesis testing procedure consists of specifying the test statistic and the rejection region. 

The null hypothesis is rejected if the estimated test statistic falls within the specified rejection 

region. A badly specified rejection region may result in type I error, rejecting the null hypothesis 
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when it is true, or type II error, failing to reject the null hypothesis when it is false. (Devore & 

Berk, 2012, p. 426-429) 

The level of significance is the probability of type I error that is allowed in the hypothesis 

testing and the P-value is the probability of getting the same or greater value calculated by the 

test statistic given that the null-hypothesis is true. If the P-value is lower than the significance 

level, then the null hypothesis is rejected. If the P-value is greater than the significance level, 

then the null hypothesis cannot be rejected. The P-value can also be referred to as the lowest 

acceptable significance level for the null hypothesis to be rejected. (Devore & Berk, 2012, p. 

456-459) 

The probability that a continuous random variable will take on a value within a specific interval 

can be explained by the integral of the continuous random variable’s probability density 

function (3.8). An important probability density function is the normal distribution (3.9). 

(Devore & Berk, 2012, p. 160, 179) 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 
(3.8) 

𝑓(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  
(3.9) 

The central limit theorem states that for any population that is normally distributed, the 

arithmetic average will also be normally distributed for any sample size. Also, if the population 

is not normally distributed, the distribution averages for different samples will be more 

normally distributed than the distribution for the population. Therefore, for a large sample size 

the arithmetic average of the population will be asymptotically normal. (Devore & Berk, 2012, 

p. 298) 

Commonly used test statistics are Z, T, χ2 and F. The rejection region defines values of the test 

statistic of which the null hypothesis is rejected. The rejection region is the area under the curve 

of the probability density function and is either upper tailed, lower tailed or two-tailed. The 

boundaries of the rejection region are determined by the significance level of the test. (Devore 

& Berk, 2012, p. 428)  

The Z-statistic follows a standard normal probability density function (3.10). By the central 

limit theorem, the Z-statistic require a sample size larger than 30. The probability of Z for the 

population being equal or less than the test statistic is given by the cumulative distribution 
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function (3.11). The Z-statistic can be calculated, and the p-value can be found using a program 

or by checking a table for the standard normal curve areas (3.12). (Devore & Berk, 2012, p. 

181) 

𝑓(𝑧; 0,1) =
1

√2𝜋
𝑒−

𝑧2

2  
(3.10) 

Φ(𝑧) = 𝑃(𝑍 ≥ 𝑧) = ∫ 𝑓(𝑥; 0,1)𝑑𝑥
𝑧

−∞

 
(3.11) 

𝑧 =
�̅� − 𝜇0

𝜎�̂�/√𝑁
 

(3.12) 

The T-statistic is used when there is less than or equal to 30 observations in the sample. The T-

statistic follows a Student’s T probability density function with ν degrees of freedom (3.13). 

The gamma function is an infinite integral of a positive value α with only positive values (3.14). 

The T-statistic has N minus 1 number of degrees of freedom. The Z-statistic and T-statistic are 

estimated in similar fashion (3.15). (Devore & Berk, 2012, p. 320-321) 

𝑓(𝑡) =
Γ (

𝜈 + 1
2 )

√𝜋𝑣Γ (
𝜈
2)

(1 +
𝑡2

𝜈
)

−
𝑣+1

2

 

(3.13) 

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥
∞

0

𝑑𝑥 
(3.14) 

𝑡 =
�̅� − 𝜇0

𝜎�̂�/√𝑁
 

(3.15) 

A random variable has a chi-squared distribution with parameter ν for number of degrees of 

freedom if the probability density function is a function of the gamma density and has only 

positive values (3.16). The chi-squared statistic is estimated by summing all cells of the table 

where the observed frequency minus the expected frequency squared is divided by the expected 

frequency (3.17). The null hypothesis is rejected if the estimated chi-squared is larger than χ2
α,ν. 

(Devore & Berk, 2012, p. 318) 

𝑓(𝑥; 𝜈) =
1

2
𝜈
2Γ (

𝜈
2)

𝑥
𝜈
2

−1𝑒−
𝑥
2 

(3.16) 
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𝜒𝜈
2 = 𝜈

𝜎2̂

𝜎2
 

(3.17) 

A random variable that follows a F-distribution has a probability density function with gamma 

functions, two numbers of degrees of freedom for two independent chi-squared distributed 

random variables and only positive values (3.18). The F-statistic is estimated from two 

independent chi-squared random samples with number of degrees of freedom equal two each 

samples number of observation minus one (3.19). For a value higher than Fα,ν1,ν2, the null 

hypothesis is rejected. (Devore & Berk, 2012, p. 323) 

𝑓(𝑥; 𝜈1, 𝜈2) =

Γ (
𝜈1 + 𝜈2

2 )

Γ (
𝜈1

2 ) Γ (
𝜈2

2 )
(

𝜈1

𝜈2
)

𝜈1
2

𝑥
𝜈1
2

−1

(1 +
𝜈1

𝜈2
𝑥)

𝜈1+𝜈2
2

 

(3.18) 

𝐹𝜈1,𝜈2
=

𝜈2𝜒𝜈1
2

𝜈1𝜒𝜈2
2

=
𝜎1

2̂𝜎2
2

𝜎2
2̂𝜎1

2
 

(3.19) 

The T-, χ2- and F-statistic can all be explained by a sequence of independent standard normal 

random variables (3.20). (Devore & Berk, 2012, p. 325) 

𝜒𝑣
2 = 𝑍1

2 + 𝑍2
2 + ⋯ + 𝑍𝜈

2 = ∑ 𝑍𝑛
2

𝑣

𝑛=1
 

𝑇𝜈 =
𝑍𝜈+1

√𝑍1
2 + 𝑍2

2 + ⋯ + 𝑍𝜈
2

𝜈

=
𝑍𝜈+1

√1
𝜈

∑ 𝑍𝑛
2𝑣

𝑛=1

 

𝐹𝜈1,𝜈2
=

𝜈2 ∑ 𝑍𝑛+𝜈2
2𝜈1

𝑛=1

𝜈1 ∑ 𝑍𝑛
2𝜈2

𝑛=1

 

(3.20) 

3.2 LINEAR REGRESSIONS 

In this subchapter, the linear regression model will be explained by ordinary least squares, the 

Gauss-Markov theorem and goodness-of-fit measures. 

The linear regression model aims to find evidence for a linear relationship between a dependent 

variable y, called the regressand, and independent variables xn, called regressors (4.1). By using 

data from the sample, the model estimates the parameters of the population βn, called regression 

coefficients. The error of estimation is given by the error term εn. The linear regression model 
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can also be written in matrix form where y and ε are N-dimensional vectors, the β is a M-

dimensional vector and X is a matrix of N×M dimension (4.2). (Verbeek, 2012, p. 12-15) 

𝑦𝑛 = 𝛽1 + 𝛽2𝑥𝑛,2 + 𝛽3𝑥𝑛,3 + ⋯ + 𝛽𝑀𝑥𝑛,𝑀 + 𝜖𝑛 (4.1) 

𝑦 = 𝑋𝛽 + 𝜖 (4.2) 

In the sampling process, by stating that every new sample will give the same X matrix, it is 

assumed that each independent variable is deterministic, which means that they are fixed and 

non-stochastic. However, this assumption is only perfectly true in laboratory experiments. 

(Verbeek, 2012, p. 13) 

Ordinary least squares (OLS) is an approach to minimize the sum of squared approximation 

errors which gives the best linear approximation of a random variable. The sum of squared 

approximation errors can be written as a function of the coefficients (4.3). The formulae for 

best linear approximation of the coefficients is found by minimizing the function (see 

Appendix: Proof 17) (4.4). (Verbeek, 2012, p. 7-9) 

𝑓(𝛽) = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) (4.3) 

�̂� = (𝑋′𝑋)−1𝑋′𝑦 (4.4) 

The Gauss-Markov theorem was developed by Carl Friedrich Gauss and Andrey Markov and 

state under which conditions the OLS estimator is a good estimator for the true unknown 

parameter of the population. The first assumption says that the expected value of the error term 

is zero, which is an assumption for unbiasedness. The second assumption is that the error terms 

and independent variables are independent. The third assumption is that all error terms have 

constant variance, which means that there is homoscedasticity. The fourth and last assumption 

says that there is zero correlation between the error terms, which means that there is no 

autocorrelation. The first, third and fourth assumption together state that the error terms are 

uncorrelated drawings from a normal distribution with zero mean and σ2 in constant variance. 

(Verbeek, 2012, p. 15) 

The Gauss-Markov theorem can be written in matrix form where I is an identity matrix of N×N 

dimension (4.5). The OLS estimator holds for these assumptions (see Appendix: Proof 18). If 

for a test result all Gauss-Markov assumptions hold then the estimator is said to be the best 

linear unbiased estimator (BLUE). (Verbeek, 2012, p. 15-17) 
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𝐸[𝜖|𝑋] = 𝐸[𝜖] = 0 

𝑉𝑎𝑟[𝜖|𝑋] = 𝑉𝑎𝑟[𝜖] = 𝜎2𝐼 

(4.5) 

The Gauss-Markov assumption for normality and homoscedasticity can be tested by residual 

diagnostics after a linear regression model is estimated. A standardized normal probability plot 

can be used to determine the distribution of residuals relative to a normal distribution 

(D'Agostino & Belanger, 1990) and a residual versus fitted values scatterplot can be used to 

determine the variance of residuals.  

For an estimated linear regression model, it is of interest to measure how well the model fit the 

observed values. A common measure for goodness-of-fit is called the R-squared, which 

measures how much of the variance of the observations that is explained by the model. The R-

squared takes a value equal to or between 1 and 0, where 1 means that the model fits perfectly 

to the observed values and 0 means that the model does not explain any of the variations in the 

observed values. There are several ways of measuring the R-squared. The straight-forward way 

is to estimate the average of sum of squared differences between the estimated values and the 

arithmetic average divided by the average of the sum of squared differences between observed 

values and the arithmetic average (4.6). Another way of measuring the R-squared can be 

derived as the remaining percentage of variance of the observed values that are unexplained in 

the residuals (4.7) (see Appendix: Proof 19). (Verbeek, 2012, p. 20-21) 

𝑅2 =
𝜎𝑦�̂�

2̂

𝜎𝑦𝑛
2̂

=

1
𝑁 − 1

∑ (𝑦�̂� − �̅�)2𝑁
𝑛=1

1
𝑁 − 1

∑ (𝑦𝑛 − �̅�)2𝑁
𝑛=1

 

(4.6) 

𝑅2 = 1 −
𝜎𝑒𝑛

2̂

𝜎𝑦𝑛
2̂

= 1 −  

1
𝑁 − 1

∑ 𝑒𝑛
2𝑁

𝑛=1

1
𝑁 − 1

∑ (𝑦𝑛 − �̅�)2𝑁
𝑛=1

 

(4.7) 

For models with intercept, these two formulas give identical results. On the other hand, in the 

absence of an intercept the two formulas will give different results. In this case it is useful to 

use another alternative formula, which measures the uncentered R-squared (4.8). The 

uncentered R-squared is in most cases higher than the standard measures. (Verbeek, 2012, p. 

21) 

𝑅𝑢𝑛𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
2 =

∑ 𝑦�̂�
2𝑁

𝑛=1

∑ 𝑦𝑛
2𝑁

𝑛=1

= 1 −  
∑ 𝑒𝑛

2𝑁
𝑛=1

∑ 𝑦𝑛
2𝑁

𝑛=1

 
(4.8) 
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For models with many regressors, the R-squared will be higher because of more regressors 

alone, even if the additional regressors have no real explanatory power. Adjusted R-squared is 

a measure that corrects the variance estimates in the standard R-squared for the degrees of 

freedom (4.9). The adjusted R-squared is always smaller than the standard R-squared unless 

the model consists of only an intercept, the number of degrees of freedom is equal to 1. The 

adjusted R-squared is not restricted to the same interval of the standard R-squared. Therefore, 

for a high number of degrees of freedom, the adjusted R-squared can give negative results. 

(Verbeek, 2012, p. 22) 

�̅�2 = 1 −  

1
𝑁 − 𝑀

∑ 𝑒𝑛
2𝑁

𝑛=1

1
𝑁 − 1

∑ (𝑦𝑛 − �̅�)2𝑁
𝑛=1

 

(4.9) 

A simplified method for measuring R-squared and adjusted R-squared is to use the error sum 

of squares, denoted SSE, and the total sum of squares, denoted SST (4.10). (Devore & Berk, 

2012, p. 632-634) 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (𝑦𝑛 − �̂�)2𝑁
𝑛=1

∑ (𝑦𝑛 − �̅�)2𝑁
𝑛=1

 

�̅�2 = 1 −
(𝑁 − 1)𝑆𝑆𝐸

(𝑁 − 𝑀 − 1)𝑆𝑆𝑇
= 1 −

(𝑁 − 1) ∑ (𝑦𝑛 − �̂�)2𝑁
𝑛=1

(𝑁 − 𝑀 − 1) ∑ (𝑦𝑛 − �̅�)2𝑁
𝑛=1

 

(4.10) 

3.3 TIME SERIES 

In this subchapter, time series analysis will be explained by decomposition, transformations, 

ARIMA processes and the Box-Jenkins method.  

Time series analysis is an econometric method that dedicates itself to explain, model and 

forecast one or few economic variables that are generated by a process over time. Time series 

analysis uses quantitative data with annual, quarterly or monthly frequency. For financial 

values, the frequency can be even higher.  

Time series’ composition can often be distinguished between a deterministic, a stationary and 

a seasonal component. The seasonal component will not be included in this master thesis. The 

deterministic component of a time series often involves a trend, referred to as a deterministic 

trend, which can be explained by some constant and a mathematical function of the time 

variable t (5.1). The function can for example be linear, quadratic, polynomial or any additive 
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or multiplicative combination of functions. The main idea behind the trend component is that 

it is the long-run equilibrium as time goes to infinity. However, this is only true if the time 

series show deterministic tendencies. If the time series show stochastic tendencies, then it will 

in the long-run divert from the long run trend. (Heij, De Boer, Franses, Kloek, & Van Dijk, 

2004, ch. 7) 

𝑇𝑡 = 𝑐 + 𝛽1𝑓1(𝑡) + 𝛽2𝑓2(𝑡) + ⋯ + 𝛽𝑁𝑓𝑁(𝑡) (5.1) 

Stationary processes, also called statistical processes, is the part of the time series that can only 

be described in terms of statistical properties which involves a probability distribution with a 

constant mean and a constant variance. A stationary component can often be identified by 

calculating autocorrelations which are short-run relations between successive values in the 

stationary component. A stationary process with all autocorrelations equal to zero is called 

white noise and has the same properties as the error term εt (also called disturbance term). These 

properties are zero mean, homoscedasticity and no autocorrelation. The error term is said to be 

independently and identically distributed with zero mean and σ2 in variance. (George E. P. Box, 

Jenkins, Reinsel, & Ljung, 2015, p. 22-24) 

It is often of interest or necessary to transform time series. Transformations can in many cases 

allow for a wider range of applications of models to the time series. A transformation is the 

process of applying a mathematical function to each value of the time series which often can 

help avoid difficulties in fitting a model to the observed values. These difficulties may include 

violations of statistical properties of the error term. The goal of the transformation is to avoid 

these violations by either linearizing or stationarizing the time series. (George E. P. Box et al., 

2015, p. 96) 

By distinguishing between the deterministic and stationary component, it is assumed that they 

are additive components. If the components are multiplicative then a logarithmic transformation 

is necessary (5.2). A logarithmic transformation is one of many power transformations that can 

help linearize the data. (Heij et al., 2004, ch. 7) 

log(𝑌𝑡) = lim
𝜆→0

 
𝑌𝑡

𝜆 − 1

𝜆
 

(5.2) 

Differentiation can be used to make a time series stationary by removing trends, both stochastic 

and deterministic. Absolute growth is called the first difference and shows the exact difference 

between each observation (5.3). Relative growth is the percentage change of each observation 

from the respected previous observation (5.4). Logarithmic transformation and differentiation 
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can be used together to approximate the relative growth (5.5) (see Appendix: Proof 20). (Heij 

et al., 2004, ch. 7) 

Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 (5.3) 

𝑌𝑡 − 𝑌𝑡−1

𝑌𝑡−1
 

(5.4) 

Δ log(𝑌𝑡) ≈
Δ𝑌𝑡

𝑌𝑡−1
 

(5.5) 

For a time series with deterministic trend, the time series will converge to a trend line in the 

long-run and shocks will have transitory effects. In contrast, for a time series with stochastic 

trend, the time series will not converge to the trend line in the long-run and shocks will have 

permanent effects. Unit root tests are important to determine if a time series exhibit a 

deterministic or stochastic trend. In presence of a unit root, the time series exhibit a stochastic 

trend. If there is no unit root, then the time series exhibit the property of mean reverting behavior 

to an attractor which is the expected trend of the series. (Heij et al., 2004, ch. 7) 

The Dickey-Fuller test unit root test developed by David Dickey and Wayne Fuller in 1979 

(Dickey & Fuller, 1979). The Dickey-Fuller test considers an autoregressive process of order 1 

and tests the null hypothesis that Φ is equal to one or the alternative hypothesis that Φ is less 

than one (5.6). The augmented Dickey-Fuller test is an extended test to consider autoregressive 

processes of order p (5.7). The null hypothesis in the augmented Dickey-Fuller test is that the 

sum of all Φ is equal to one and the alternative hypothesis is that the sum of all Φ is less than 

one. (Heij et al., 2004, ch. 7) 

𝑌𝑡 = 𝛼 + Φ𝑌𝑡−1 + 𝜖𝑡 (5.6) 

𝑌𝑡 = 𝛼 + Φ1𝑌𝑡−1 + Φ2𝑌𝑡−2 + ⋯ + Φ𝑝𝑌𝑡−𝑝 + 𝜖𝑡 (5.7) 

A stationary process Xt with significant autocorrelation can be explained as an autoregressive 

process of order p denoted AR(p) (5.8) or as a moving average process of order q denoted 

MA(q) (5.9). Moving average model is the inverse of the autoregressive model and is called 

the invertible when being expressed as an autoregressive model of infinite order. An 

autoregressive moving average process is a combination of the two processes denoted 

ARMA(p, q). An autoregressive moving average process provides a more accurate 

approximation of higher order of autoregressive and moving average processes. (George E. P. 

Box et al., 2015, p. 52-53) 
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𝑋𝑡 = Φ1𝑋𝑡−1 + Φ2𝑋𝑡−2 + ⋯ + Φ𝑝𝑋𝑡−𝑝 + 𝜖𝑡 (5.8) 

𝑋𝑡 = 𝜖𝑡 + Θ1𝜖𝑡−1 + Θ2𝜖𝑡−2 + ⋯ + Θ𝑞𝜖𝑡−𝑞  (5.9) 

A non-stationary process may be stationary when differentiated d times. The process is then 

said to be integrated at dth order. The process is then an autoregressive integrated moving 

average denoted ARIMA(p, d, q). (George E. P. Box et al., 2015, p. 90-91) 

The Box-Jenkins method is an iterative approach to the construction of ARIMA models. It was 

developed by George Box and Gwilym Jenkins in 1970 (George E. P. Box et al., 2015). The 

approach involves three comprehensive steps: identification, estimation and diagnostics 

checking.  

Identification methods aims to understand the data, how it was generated and to identify a model 

that should be further investigated. The first stage of identification is to determine stationarity 

of the time series. This is done by differencing the time series or extracting any deterministic 

trend from the time series. The autocorrelation function (ACF) and partial autocorrelation 

function (PACF) are analyzed to determine the behavior of the time series. (George E. P. Box 

et al., 2015, p. 177-182) 

Stationary processes are assumed to have constant covariance between values Yt and Yt-k where 

k is called the degree of lag. If this holds for all values of t then there is autocovariance (5.10). 

Autocorrelation at lag k is given by its proportion of autocovariance at lag k relative to 

autocovariance at lag 0 (5.11). The partial autocorrelation function at lag k is defined as the 

correlation between the residuals from the linear regression assuming zero mean and the 

regression adjusted for intermediate variables (5.12). (George E. P. Box et al., 2015, p. 24-25) 

𝛾𝑘 = 𝐶𝑜𝑣[𝑌𝑡, 𝑌𝑡−𝑘] (5.10) 

𝜌𝑘 =
𝛾𝑘

𝛾0
=

𝐶𝑜𝑣[𝑌𝑡, 𝑌𝑡−𝑘]

𝑉𝑎𝑟[𝑌𝑡]
 

(5.11) 

Φ𝑘,𝑘 = 𝐶𝑜𝑟𝑟[𝑌𝑡 − �̂�𝑡, 𝑌𝑡−𝑘 − �̂�𝑡−𝑘] (5.12) 

The graphs of the autocorrelation and partial autocorrelation function with confidence intervals 

are helpful for determining the order of the autoregressive and/or moving average process. The 

confidence intervals can be calculated by Bartlett’s formula (Bartlett, 1946).  

Diagnostic checking involves checking for ways to improve the model. Residual diagnostics 

are helpful for checking the model’s efficiency in explaining the data. The Ljung-Box test 
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(Ljung & Box, 1978) (5.13) is a modification of the Portmanteau lack-of-fit test and the simpler 

Box-Pierce test (G. E. P. Box & Pierce, 1970). The test measures the distribution of residual 

autocorrelations.  

�̃� = 𝑛(𝑛 + 2) ∑ (𝑛 − 𝑘)−1
𝐾

𝑘=1
𝑟𝑘

2(�̂�) 
(5.13) 

Further testing for model adequacy can be performed with the Breusch-Godfrey test (Breusch, 

1978; Godfrey, 1978), also called Lagrange multiplier (LM) test for serial correlation, the 

Durbin-Watson test for autocorrelation (Durbin & Watson, 1971), the autoregressive 

conditional heteroscedasticity test (ARCH) and White’s test for heteroscedasticity (White, 

1980). The ARCH and White’s test considers the squared residuals as the dependent variable. 

The ARCH test regresses the squared residuals on lagged squared residuals and a constant while 

White’s test regresses the squared residuals on the cross product of the original regressors and 

a constant. Jarque-Bera test is a goodness-of-fit test (Jarque & Bera, 1980). It tests if the 

skewness and kurtosis of the residuals resembles that of a normal distribution.  

3.4 PANEL DATA 

In this subchapter, panel data analysis will be explained, and different linear panel data 

regression models and diagnostics tests will be derived.  

Panel data (also called longitudinal data) is characterized by large datasets where the number 

of units is much larger than the number of observations per unit. When the number of 

observations per unit corresponds to observations over time then the panel data exhibits 

properties of time series. To prepare panel data, both number of units and number of 

observations per unit is specified. It is then checked for missing values. If there are missing 

values, the panel data is called unbalanced. In some tests, it is required that the panel data is 

strongly balanced, meaning that the number of observations per unit is consistent and that there 

are no missing values. (Stock & Watson, 2012, p. 390) 

Pooled regression models are ordinary least square regression models performed on panel data. 

This model for panel data assumes that all units have identical marginal effects of independent 

variables. This can only be true if there are no unobservable characteristics which is not true 

for most cases. In case of unexplained variations over units, individual heterogeneity, the 

recommended solution is to use robust and clustered standard errors. However, this solution 

gives better standard errors at the expense of reliability of the results. Other regression models 
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for panel data explains the individual heterogeneity across units by including unit-specific 

effects, denoted αi (6.1). (Verbeek, 2012, p. 373) 

𝑦𝑛,𝑡 = 𝛽1 + 𝛽2𝑥2,𝑛,𝑡 + ⋯ + 𝛽𝑀𝑥𝑀,𝑛,𝑡 + 𝛼𝑛 + 𝑢𝑛,𝑡 (6.1) 

Fixed effects regression model treats the unit-specific effects as intercepts that vary for each 

unit and can therefore be rewritten as the summed product of the unit-specific intercept times a 

dummy for each unit (6.2). This specific model is called the least squares dummy variable 

(LSDV) model. The fixed effects regression model assumes that variables are uncorrelated to 

the error term for all units and observations, which imply that the variables are strictly 

exogenous, independent of past, present and future values of the error term. The fixed effects 

regression model estimates parameters based on the differences within dimensions of the data, 

it does not explain differences across the observed units. Greene’s test is a modified Wald test 

for heteroscedasticity in a fixed effects regression model and is a postestimation residual 

diagnostic test (Greene, 2012). (Stock & Watson, 2012; Verbeek, 2012, p. 377-378) 

𝑦𝑛,𝑡 = 𝛽1 + 𝛽2𝑥2,𝑛,𝑡 + ⋯ + 𝛽𝑀𝑥𝑀,𝑛,𝑡 + 𝛼1𝑑1,𝑛 + 𝛼2𝑑2,𝑛 + ⋯ + 𝛼𝑁𝑑𝑁,𝑛 + 𝑢𝑛,𝑡 (6.2) 

Random effects regression model treats the unit-specific effects as random factors that are 

independently and identically distributed over individuals (6.3). The error term is consisting of 

two components, the unit-specific residual and the remainder. The unit-specific residuals are 

assumed not to vary over time and the remainder is assumed to be uncorrelated over time. 

(Verbeek, 2012, p. 381-383) 

𝑦𝑛,𝑡 = 𝛽1 + 𝛽2𝑥2,𝑛,𝑡 + ⋯ + 𝛽𝑀𝑥𝑀,𝑛,𝑡 + 𝜖𝑛,𝑡 

where 𝜖𝑛,𝑡 = 𝛼𝑛 + 𝑢𝑛,𝑡 

(6.3) 

The Hausman test was developed by J. A. Hausman in 1978 (Hausman, 1978) and tests whether 

the fixed effects or random effects should be used by testing if they are significantly different. 

The Hausman test statistic has an asymptotic chi-squared distribution with the number of 

degrees of freedom equal to the number of elements in β (6.8). (Verbeek, 2012, p. 384-386) 

𝜉𝐻 = (�̂�𝐹𝐸 − �̂�𝑅𝐸)
′

(�̂��̂�𝐹𝐸

2 − �̂��̂�𝑅𝐸

2 )
−1

(�̂�𝐹𝐸 − �̂�𝑅𝐸) 
(6.8) 

A good test to decide whether to use random effects regression or a pooled regression is the 

Breusch-Pagan Lagrange multiplier (LM) test (6.9) (Breusch & Pagan, 1980). It is a test for 

individual heterogeneity with null hypothesis of zero variance across units.  
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𝐿𝑀 = √
𝑁𝑇

2(𝑇 − 1)
(

∑ (∑ 𝑒𝑛,𝑡
𝑇
𝑡=1 )𝑁

𝑛=1

2

∑ ∑ 𝑒𝑛,𝑡
2𝑇

𝑡=1
𝑁
𝑛=1

− 1) 

(6.9) 

Wooldridge’s test is a test for serial correlation of non-systematic errors of a linear panel data 

model (Drukker, 2003; Wooldridge, 2010). The test involves regressing the first differenced 

variables of the model and performing a Wald’s test of the null hypothesis that the coefficient 

of lagged residuals, correlation between sequential differenced error terms, is equal to -0,5. A 

rejected null hypothesis implies the presence of autocorrelation.  

In cases of structure within the error term, there are problems with both heteroscedasticity and 

autocorrelation. The assumptions of Gauss-Markov (4.5) no longer hold and the OLS estimator 

is therefore no longer the best estimator. In these cases, a more efficient estimator is the 

generalized least squares (GLS) estimator. Generalized least squares assumes a different error 

covariance matrix (6.4). The Ψ is a positive definite matrix and when it is not equal to the 

identity matrix then there are non-spherical error terms. By taking the variance of the OLS 

estimator, it is shown that it is unbiased but not efficient (6.5) (see Appendix: Proof 22). 

(Verbeek, 2012, p. 381-383) 

𝑉𝑎𝑟[𝜖|𝑋] = 𝜎2Ψ (6.4) 

𝑉𝑎𝑟[�̂�|𝑋] = 𝜎2(𝑋′𝑋)−1𝑋′Ψ𝑋(𝑋′𝑋)−1 (6.5) 

Generalized least squares aims to transform the model such that it retains β as a linear parameter 

vector and creates a new error term which meets the Gauss-Markov assumptions of 

homoscedasticity and no autocorrelation. In the derivation of the generalized least squares 

estimator, the Ψ is assumed to be known. It can be shown that this assumption is sufficient to 

transform the regression (see Appendix: Proof 23). Then by applying the OLS method on the 

transformed regression model, the best linear unbiased estimator is then estimated by the 

generalized least squares estimator (6.6). (Verbeek, 2012, p. 96-97) 

�̂�𝐺𝐿𝑆 = (𝑋′Ψ−1𝑋)−1𝑋′Ψ−1𝑦 (6.6) 

In most cases, Ψ is not known and therefore must be estimated first. This can be done by feasible 

generalized least squares (FGLS) introduced by D. Cochrane and G. H. Orcutt in 1949 

(Cochrane & Orcutt, 1949). (Stock & Watson, 2012, p. 648; Verbeek, 2012, p. 97) 

Another estimator that can be used when there is presence of heteroscedasticity of the OLS 

estimator is the weighted least squares (WLS) estimator. The derivation of the weighted least 
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squares estimator is like the derivation of the GLS estimator, but in the WLS the error 

covariance matrix is explained by the form of heteroscedasticity (6.7). (Stock & Watson, 2012, 

p. 725-726; Verbeek, 2012, p. 99) 

Ψ = 𝐷𝑖𝑎𝑔[ℎ𝑛
2] (6.7) 

4 RESEARCH APPROACH 

The program used to conduct the research is the statistical software package Stata version 15.1 

and the data is from The Penn World Table version 9.0 (PWT9.0). PWT9.0 is a database with 

information on national accounts for 182 countries from 1950 to 2014. The database was 

developed and released by the Groningen Growth and Development Centre of the university of 

Groningen in 2015 (Feenstra, Inklaar, & Timmer, 2015). The database exhibits properties of 

both time series and panel data. Each country is specified as a unit and observations per country 

is sorted by a yearly frequency. Because of annual frequency, there will not be a seasonal 

component to analyze and all differentiation will be yearly only. Because of observations only 

until 2014, there are no reason to forecast. However, this is the most recent and comprehensive 

database that is available today.  

4.1 VARIABLES 

The variables that are included in the Stata work file are: 

Label Name 

Country name country 

Year year 

Population (in millions) pop 

Number of persons engaged (in millions) emp 

Human capital index, see note hc hc 

Real GDP at constant 2011 national prices (in mil. 2011US$) rgdpna 

Real consumption at constant 2011 national prices (in mil. 2011US$) rconna 

Capital stock at constant 2011 national prices (in mil. 2011US$) rkna 

Average depreciation rate of the capital stock delta 
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Real and constant 2011 national prices are good for comparison between countries. Nominal 

and current national prices show bigger differences in values due to effects of inflation of prices. 

In real and constant prices, the effects of inflation have been excluded. Prices in purchasing 

power parity is also effective, but highly fluctuating in a day to day basis and therefore is not 

as accurate for yearly observations. The human capital is measured by average years of 

education. From the variables from the database it is of interest to create these new variables:  

Label Name 

Real GDP per capita (in 2011US$) rgdppc 

Real GDP per worker (in 2011US$) y_t 

Real capital stock per worker (in 2011US$) k_t 

Consumption per worker (in 2011US$) c 

Savings rate (%) s 

Population growth (%) n 

Technological progress (%) g 

OECD country (dummy) OECD 

 

Real GDP per capita and Real GDP per worker have their own interesting interpretations. As 

the real GDP per capita is a measure of the average welfare in a country, the real GDP per 

worker is a measure of the average income levels in a country. Both are interesting, but from 

the theory of the Solow model it is more correct to use real GDP per worker as an estimator for 

output per effective worker.  

The variable real GDP per capita is derived by the real GDP divided by population. The variable 

real GDP per worker is derived by the real GDP divided by people employed. Savings rate is 

derived from real GDP per worker minus consumption per worker which is real consumption 

divided by people employed. Population growth is derived from the growth rate of population. 

Technological progress is derived from the growth rate of the employment rate which is derived 

from the people employed divided by the population.  

Some of the generated variables have their respective logarithmic transformations. This is to be 

able to use linear regression models as the output is explained by a multiplicative relationship 

of inputs. The logarithmic transformation of real GDP per capita and real GDP per worker, also 

allows for derivation of annual growth rates.  
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The OECD dummy is created to be able to compare the full sample to OECD countries 

exclusively. This is because the result can be dependent on certain unobserved characteristics 

of the countries, and OECD countries are assumed to be similar in terms of many of these 

characteristics. This gives a more reliable result, but also less relevant to answer the question 

of interest. OECD stands for The Organization for Economic Co-operation and Development 

and there are 35 countries that are members today.  

4.2 SAMPLE SELECTION 

The dataset includes 182 countries out of the 195 countries recognized by the United Nations 

today. To prepare the panel data, unit index is specified as country and observation for each 

unit, the time index, is specified by the year. Since country is a string variable, it must first be 

encoded to a numerical variable.  

For the 182 countries in the dataset, not all countries have observed values for the variables of 

interest. Also, some countries do not have observed values for all the years that are needed. The 

problem with missing values in the dataset can be solved by creating balanced panels by 

sampling out countries and years without missing values for an interval of years.  

The method is to maximize the number of observations by the number of years and countries 

included. Initial requirements are that the latest year included is always 2014, the minimum of 

observed values for each country are always 30, meaning from 1985. The last requirement is 

that for all panel data the number of countries included must exceed the number of years 

included. The goal of the sample selection is to maximize observations of the necessary variable 

given that the panel is balanced and that none of the requirements are broken.  

The process of the sample selection involves counting observed values for each country up until 

2014 and to then create a histogram which shows the frequency of countries by number of 

observations per country. It is then possible to choose countries with sufficient number of 

observations by how many years that are to be included. 
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 Graph 1 

The histogram shows the quantity of countries by observations per country (Graph 1), where 

each observation is a year of no missing values of all the original variables included in the work 

file. 38 countries are excluded from the sample due to 0 observations because they are not 

observed for one or more variables or/and missing value(s) for the year 2014. There are 48 

countries with no missing values for the full range of 65 observations. By setting a requirement 

of 35 observations per country, 4445 observations are included. While for a requirement of 45 

observations per country, 4545 observations are included. It is of interest to maximize the 

number of observations and therefore the requirement of 45 observations per country is 

exercised and 101 countries, including 29 OECD countries, are included in the sample.  

A second sample selection is constructed from the first sample and the reason will be explained 

later. This sample include 53 countries with 44 observations per country and 2332 observations 

in total.  

5 TESTS AND ANALYSIS 

As mentioned earlier, real GDP per capita and real GDP per worker have their own interesting 

interpretations. In the theory of the Solow model it is more correct to use real GDP per worker, 

but in many previous cases the real GDP per capita has been used. This is because the available 

data on population exceed the data on employment. The choice of whether to use per capita or 

per worker affects the results and it is therefore of interest to look at some of the empirical 
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differences of the two. The graph shows time series of average real GDP per capita and average 

real GDP per worker (Graph 2). The real GDP per worker has more variability.  

 Graph 2 

The scatterplot shows average population growth and average technological progress (Graph 

3). The average population growth seems to follow a downward somewhat cyclical trend. 

Technological progress is more fluctuating and does not follow a clear trend.  

 Graph 3 

The growth-initial level regression is a test for β convergence which regresses the annual 

economic growth explained by initial levels of economic output (7.1). If the test shows 

significant negative coefficient, then there is indication of β convergence and the coefficient 
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would imply that a percentage decrease in initial levels of economic output is estimated to cause 

a percentage increase in annual economic growth.  

ln (
𝑦𝑛,𝑇

𝑦𝑛,0
)

𝑇 − 1
= 𝛼 + 𝛽 ln 𝑦𝑛,0 + 𝜖 

(7.1) 

The growth-initial level regression (Graph 4) shows evidence of β convergence because the 

coefficient of the linear regression is negative, equal to –0,0056 (see Appendix: Regression 

output 1). The result says that poorer economies grow faster than richer economies and the 

result is highly significant, but the R-squared is at 20% which is low. Residual diagnostics show 

non-normality and heteroscedasticity. The standardized normal probability plot shows 

symmetric heavy tails (Graph 5). Plotting residuals against fitted values show an irregular 

variance of the residuals (Graph 6). Breusch-Pagan test for heteroscedasticity rejects the null 

hypothesis of homoscedasticity at a 1,07% significance level while White’s test rejects the null 

hypothesis at a 5,62% significance level. The problems with the residuals indicate an unreliable 

test result and a lot of unexplained variation of observations. This motivates the use of robust 

standard errors in the regression which relaxes the assumption of heteroscedasticity. Performing 

the regression with the option for robust standard errors the 95% confidence interval of 

coefficients are wider.  

 Graph 4 
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 Graph 5 

 Graph 6 

Performing the growth-initial level regression test exclusively for OECD countries (Graph 7) 

shows evidence of β convergence, a highly significant β-coefficient of –0,0103 (see Appendix: 

Regression output 2). In this test the R-squared is 38,78% which is higher than for the full 

sample. The residual diagnostics show non-normality and homoscedasticity. The standardized 

normal probability plot shows heavy tails (Graph 8). Plotting residuals against fitted values 

show a somewhat constant variance of the residuals (Graph 9). White’s test for 

heteroscedasticity fails to reject the null hypothesis of homoscedasticity at an 80,99% 

significance level while Breusch-Pagan test rejects the null hypothesis of constant variance of 
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residuals at a 2,52% significance level. Since the purpose of looking at OECD countries 

exclusively is to look at countries similar in unobserved characteristics, it is of interest to look 

at countries that may seem different in behavior by a leverage versus squared residuals plot is 

interesting (Graph 10). Two countries with high leverages to low squared residuals are Poland 

and Hungary, Also, Switzerland and Turkey show higher leverages to low squared residuals. 

The growth-initial level regression test performs better when done for OECD countries 

exclusively. From an analytical perspective, the test performs better for countries similar in 

some unobserved characteristics.  

 Graph 7 

 Graph 8 
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 Graph 9 

 Graph 10 

There is σ convergence if the measured standard deviation of real GDP per worker decreases 

over time. The test for σ convergence can be written as that subsequent values of standard 

deviation are lower (7.2). By examining the behavior of the standard deviation time series, the 

presence of σ convergence is inferred.  

�̂�𝑦𝑡
> �̂�𝑦𝑡+1

 (7.2) 

The graph shows time series of the standard deviation of real GDP per worker, for the full 

sample and the OECD countries exclusively (Graph 11). For the OECD countries the inequality 
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is much lower than for the full sample. The standard deviation of real GDP per worker for 

OECD countries shows that there is no σ convergence, but rather σ divergence. The inequality 

among OECD countries is increasing. For the full sample, there is a lot more variation. 

Inequality seems to be decreasing drastically between 1970 and 1988, increasing until 2004 and 

decreasing again until 2009. This could however, be showing convergence to a steady level of 

inequality, meaning that in the long-run there will always be a deterministic amount of 

inequality between countries. 

 Graph 11 

Absolute convergence is when all economies follows a similar path, while for conditional 

convergence there must be included some other characteristic for this to be true and therefore 

each countries path is unique if not conditional on this characteristic. So far, it has been shown 

that the growth-initial level regression is only a good test for countries with similar 

characteristics and countries with similar characteristics most likely diverge in the sense of 

dispersion. This would all imply that there are greater economic characteristics that must be 

included to determine the trend of economic growth.  

The data is first fitted to the Cobb-Douglas production function as a pooled linear regression 

(7.3).  

ln(𝑌𝑛,𝑡) = 𝛽0 + 𝛽1 ln(𝐾𝑛,𝑡) + 𝛽2 ln(𝐴𝑛,𝑡𝐿𝑛,𝑡) + 𝜖𝑛,𝑡 (7.3) 

The pooled linear regression is highly significant, and the result suggest a capital’s share of 

80,2% (see Appendix: Regression output 3). The graph shows a scatterplot of real GDP per 
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worker for each country (Graph 12). The red dots show mean values for each country and the 

connected line shows the across country variance. The graph implies that there is individual 

heterogeneity, which is a strong appeal to use a fixed effects linear regression model.  

 Graph 12 

Across countries variance are included by including unit-specific intercepts and a dummy for 

each country which gives the fixed effects regression model (7.4).  

ln(𝑌𝑛,𝑡) = 𝛼𝑛𝐷𝑛 + 𝛽1 ln(𝐾𝑛,𝑡) + 𝛽2 ln(𝐴𝑛,𝑡𝐿𝑛,𝑡) + 𝜖𝑛,𝑡 (7.4) 

The result of the fixed effects linear regression shows a highly significant β1-coefficient of 

0,6232 and β2-coefficient of 0,3542 (see Appendix: Regression output 4). There seems to be 

correlation between unit-specific intercepts and independent variables of 0,2276. This implies 

that the use of a random effects regression model is not reasonable in this case. Greene’s test 

for heteroscedasticity show strong presence of heteroscedasticity which implies that the 

estimator is not efficient and that robust standard errors or GLS should be considered. 

Wooldridge’s test for autocorrelation rejects the null hypothesis of no first order autocorrelation 

in the panel data. By running a GLS regression with heteroscedasticity and panel specific 

autocorrelation structure, the model is highly significant with highly significant β1-coefficient 

of 0,7338 and β2-coefficient of 0,2728 (see Appendix: Regression output 5). 

By testing that coefficient of the logarithm of capital and the coefficient of the logarithm of 

effective labor is equal to 1, the assumption of constant returns to scale is empirically tested. 
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The null hypothesis is that there are constant returns to scale and the test statistic fail to reject 

the null hypothesis at a 23,6% significance level.  

From the Solow model, the long run trend is explained by the steady state. If the real GDP per 

effective worker converges to the steady state, then the trend must be deterministic and 

explained by the steady state (7.5) (see Appendix: Proof 24). 

ln(𝑦𝑛,𝑡) = (1 − 𝑒−𝜆𝑡)
𝛼

1 − 𝛼
ln (

𝑠𝑛,𝑡

𝑛𝑛,𝑡 + 𝑔𝑛,𝑡 + 𝛿𝑛,𝑡
) + 𝑒−𝜆𝑡 ln(𝑦𝑛,𝑡−1) + 𝜖𝑛,𝑡 

(7.5) 

The model explains that in the long-run, when t goes to infinity, the component e-λt will be equal 

to zero and ln yn,t will be explained by the steady state alone. When observing a single country, 

the speed of convergence λ is measure of the economy’s distance from its own steady state. 

When observing multiple countries, the speed of convergence λ is a measure of the speed of 

which countries are closing the gap of differences between rich and poor countries.  

A large problem in the neoclassical growth theory is that the models fail to consider negative 

values of savings rate, population growth and technological progress. Negative savings rates 

occur when the annual average of private consumption exceeds the annual average of private 

income. Negative population growth and negative technological growth are not uncommon and 

depreciation rate is always positive. These problems occur because of logarithmic 

transformations which generate missing values in the sample when the sum of population 

growth, technological progress and depreciation rate are negative values. This creates the need 

for another sample data selection within the sample, where these negative rates do not occur. 

Therefore, the previously mentioned second data sample selection will be used.  

Performing the pooled regression model for the steady state, the result show highly significant 

coefficients of 0,0067 and 0,9944 which implies a capital’s share of 54,5% (see Appendix: 

Regression output 6). Individual heterogeneity suggests that the fixed effects regression model 

is appropriate (Graph 13).  



 

40 

 Graph 13 

The fixed effects regression model for the steady state shows highly significant coefficients 

0,0186 and 0,976 which implies a capital’s share of 43,7% (see Appendix: Regression output 

7). The correlation between unit-specific intercepts and independent variables is equal to 

0,7063. Residual diagnostics show non-normality and heteroscedasticity. Greene’s test for 

heteroscedasticity rejects the null hypothesis of homoscedasticity which implies that the 

estimator is not efficient and that robust standard errors or GLS should be considered. By 

running a GLS regression for the steady state with heteroscedasticity and panel specific 

autocorrelation structure, the result show highly significant coefficients of 0,0109 and 0,9927 

which implies a capital’s share of 60% (see Appendix: Regression output 8). 

It is stated in the neoclassical growth theory that a reasonable capital’s share is equal to 1/3 

which means that the results that have been presented so far is unsatisfactory, even despite the 

non-normality, heteroscedasticity and autocorrelation. Therefore, there is strong appeal to add 

human capital and to use the augmented Solow model. When human capital is added, the long-

run trend can be derived from the augmented Solow model (7.6) (see Appendix: Proof 25). 

Since there is no reasonable way to derive savings rate of human capital from the available data, 

human capital is used a measure of the steady state of human capital.  

ln 𝑦𝑛,𝑡 = (1 − 𝑒−𝜆𝑡)
𝛼

1 − 𝛼 − 𝛽
ln (

𝑠𝑘𝑛,𝑡

𝑛𝑛,𝑡 + 𝑔𝑛,𝑡 + 𝛿𝑛,𝑡
) + 𝑒−𝜆𝑡 ln 𝑦𝑛,𝑡−1

+ (1 − 𝑒−𝜆𝑡 )
𝛽

1 − 𝛼 − 𝛽
ln (

𝑠ℎ𝑛,𝑡

𝑛𝑛,𝑡 + 𝑔𝑛,𝑡 + 𝛿𝑛,𝑡
) + 𝜖𝑡 

(7.6) 
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The result of a fixed effects regression model shows significant coefficients of 0,0181, 0,9722 

and 0,0196 (the coefficient of the logarithmic transformation of average years of education is 

significant at a 0,3% level) which implies a α of 27,6% and a β of 29,9% (see Appendix: 

Regression output 9). Greene’s test for heteroscedasticity rejects the null hypothesis of 

homoscedasticity which implies that the estimator is not efficient and that robust standard errors 

or GLS should be considered. By running a GLS regression for the steady state with human 

capital and with heteroscedasticity and panel specific autocorrelation structure, the result show 

highly significant coefficients of 0,0096, 0,9875 and 0,0264 which implies a capital’s share of 

19,9% and a human capital’s share of 54,4%. (see Appendix: Regression output 10). 

The equilibrium level of growth of output in the R&D model depends solely on population 

growth. The Hausman test and the Breusch Pagan test show preference for the random effects 

regression model (see Appendix: Regression output 11). Greene’s test for heteroscedasticity 

rejects the null hypothesis and robust standard errors are included in the model. The results 

show highly significance, but a low R-squared.  

6 CONCLUSION 

To conclude, the research has tested for the presence of convergence. The presence of β 

convergence was tested by a growth-initial level regression. First for the full sample of 101 

countries and then exclusively for OECD countries. The test result showed evidence of β 

convergence which implies that poorer countries tend to grow faster than richer countries. In 

contradiction, the model was diagnosed with non-normality and heteroscedasticity showing 

signs of a non-reliable test result that is generalizing and affected by extreme values. The test 

performs better for the OECD where the intention is to compare countries that are similar in 

unobserved characteristics.  

The presence of σ convergence was tested by time series of the standard deviation of real GDP 

per worker for the full sample of 101 countries and exclusively for OECD countries. The result 

showed a steady increase in standard deviation for OECD countries, implying that inequalities 

between richer and poorer countries within the OECD are increasing. This means that countries 

within the OECD are diverging in the sense of income dispersion. For the full sample of 101 

countries, the result showed a significant decrease in standard deviation between 1970 and 1988 

with mixed interpretations for years until 2014. It is difficult to make a conclusion about income 
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dispersion and inequality for the 101 countries in recent years from the time series of standard 

deviation of real GDP per worker for the full sample.  

Absolute and conditional convergence was tested through the theory of the Solow model. The 

results show similar empirical weaknesses of the Solow model as previous research. However, 

by including a measure for human capital by the average of years of education, the results show 

a more satisfactory capital’s share. Because of difficulties of heteroscedasticity and 

autocorrelation, it is appropriate to use a generalized least squares method to estimate the best 

linear unbiased estimator. The strong presence of individual heterogeneity between countries 

implies that countries converge conditionally rather than absolute.  

The resulting evidence from the conducted tests and analysis has thus successfully provided 

satisfactory answers to the research questions of this master thesis. 

Results of the research in this thesis revisit some conclusions that motivated the start of new 

growth theory. The R&D model was tested, but not given a thorough analysis. From the random 

effects regression model of growth rate of GDP and population growth, the model did not seem 

to explain more than the Solow model.  

There are tools of time series analysis beyond those exploited in this thesis. Time series analysis 

is important for understanding underlying processes and it would be of interest to do 

convergence analysis of one or few economies.  

Convergence has proven to be an interesting topic to study by applying econometric methods. 

For further research it would be of interest to include other models and variables to explain 

economic growth.  
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7 APPENDIX 

7.1 PROOFS 

 

Proof 1: Intensive form transformation 

Left hand side: 
1

𝐴𝐿
𝑌 =

𝑌

𝐴𝐿
= 𝑦 

Right hand side: 
1

𝐴𝐿
𝐹(𝐾, 𝐴𝐿) = 𝐹 (

1

𝐴𝐿
𝐾,

1

𝐴𝐿
𝐴𝐿) = 𝐹 (

𝐾

𝐴𝐿
,

𝐴𝐿

𝐴𝐿
) = 𝐹 (

𝐾

𝐴𝐿
, 1) = 𝑓(𝑘) 

 

Proof 2: Cobb-Douglas assumptions 

   Constant returns to scale: 

𝐹(𝑐𝐾, 𝑐𝐴𝐿) = (𝑐𝐾)𝛼(𝑐𝐴𝐿)1−𝛼 = 𝑐𝛼𝑐1−𝛼𝐾𝛼(𝐴𝐿)1−𝛼 = 𝑐𝐹(𝐾, 𝐴𝐿) 

   Intensive form: 

𝑓(𝑘) = (
𝐾

𝐴𝐿
)

𝛼

(
𝐴𝐿

𝐴𝐿
)

1−𝛼

= 𝑘𝛼11−𝛼 = 𝑘𝛼 

   Diminishing returns to capital: 

𝑓′(𝑘) = 𝛼𝑘𝛼−1 > 0 

𝑓′′(𝑘) = 𝛼(𝛼 − 1)𝑘𝛼−2 < 0 

   Inada conditions: 

lim
𝑘→0

𝑓′(𝑘) = lim
𝑘→0

𝛼𝑘𝛼−1 = ∞ 

lim
𝑘→0

𝑓′(𝑘) = lim
𝑘→∞

𝛼𝑘𝛼−1 = 0 

 

Proof 3: Solving growth rates as differential equations 

𝑑𝐿(𝑡)

𝑑𝑡
= 𝑛𝐿(𝑡) 

𝑑𝐴(𝑡)

𝑑𝑡
= 𝑔𝐴(𝑡) 
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∫
1

𝐿(𝑡)
𝑑𝐿(𝑡) = ∫ 𝑛 𝑑𝑡 

log(𝐿(𝑡)) = 𝑛𝑡 + 𝑐 

𝐿(𝑡) = 𝑒(𝑛𝑡+𝑐) 

𝐿(0) = 𝑒𝑛∗0+𝑐 = 𝑒𝑐 

=> 𝐿(𝑡) = 𝐿(0)𝑒𝑛𝑡 

∫
1

𝐴(𝑡)
𝑑𝐴(𝑡) = ∫ 𝑔 𝑑𝑡 

log(𝐴(𝑡)) = 𝑔𝑡 + 𝑐 

𝐴(𝑡) = 𝑒(𝑔𝑡+𝑐) 

𝐴(0) = 𝑒𝑔∗0+𝑐 = 𝑒𝑐 

=> 𝐴(𝑡) = 𝐴(0)𝑒𝑔𝑡 

 

Proof 4: Law of motion for capital 

𝐾𝑡 = 𝐾𝑡−1 + 𝐼𝑡−1 − 𝛿𝐾𝑡−1 

𝑛𝑒𝑡 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 Δ𝐾𝑡 = 𝑔𝑟𝑜𝑠𝑠 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝐼𝑡−1 − 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝛿𝐾𝑡−1 

 

Proof 5: The dynamics of capital per effective worker 

�̇� = (
𝐾

𝐴𝐿
)

̇
=

�̇�𝐴𝐿 − 𝐾(𝐴𝐿)̇

(𝐴𝐿)2
=

�̇�

𝐴𝐿
−

𝐾

(𝐴𝐿)2
(�̇�𝐿 + 𝐴�̇�) =

𝑠𝑌 − 𝛿𝐾

𝐴𝐿
−

𝐾

𝐴𝐿
(

�̇�

𝐴
+

�̇�

𝐿
)

= 𝑠𝑦 − 𝛿𝑘 − 𝑘(𝑔 + 𝑛) = 𝑠𝑦 − (𝑛 + 𝑔 + 𝛿)𝑘 

 

Proof 6: Steady state level of capital per effective worker 

𝑠𝑦∗ = (𝑛 + 𝑔 + 𝛿)𝑘∗ 

𝑠𝑘∗𝛼 = (𝑛 + 𝑔 + 𝛿)𝑘∗ 

𝑘∗

𝑘∗𝛼 =
𝑠

𝑛 + 𝑔 + 𝛿
 

𝑘∗1−𝛼 =
𝑠

𝑛 + 𝑔 + 𝛿
 

𝑘∗ = (
𝑠

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼

 

𝑦∗ = 𝑘∗𝛼 = (
𝑠

𝑛 + 𝑔 + 𝛿
)

𝛼
1−𝛼
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Proof 7: Derivation of elasticity of output to savings rate 

Ε𝑦∗/𝑠 =
𝜕𝑦∗

𝜕𝑠
∗

𝑠

𝑦∗
=

𝜕𝑦∗

𝜕𝑘∗
∗

𝜕𝑘∗

𝜕𝑠
∗

𝑠

𝑘∗𝛼 = 𝛼𝑘∗𝛼−1 ∗
1

1 − 𝛼
(

𝑠

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼

−1 1

𝑛 + 𝑔 + 𝛿
∗

𝑠

𝑘∗𝛼

= 𝛼𝑘∗𝛼−1 1

1 − 𝛼
𝑘∗

𝑠

𝑛 + 𝑔 + 𝛿

−1 𝑠

𝑛 + 𝑔 + 𝛿
𝑘∗−𝛼

=
𝛼

1 − 𝛼
𝑘∗𝛼−1𝑘∗1−𝛼 𝑠

𝑛 + 𝑔 + 𝛿

1−1

=
𝛼

1 − 𝛼
 

 

Proof 8: Speed of convergence 

�̇� =
𝜕�̇�(𝑘)

𝜕𝑘
(𝑘 − 𝑘∗) 

𝜆 = −
𝜕�̇�(𝑘)

𝜕𝑘
 

�̇�(𝑡) = −𝜆(𝑘(𝑡) − 𝑘∗) 

𝜕𝑘(𝑡)

𝜕𝑡
= −𝜆(𝑘(𝑡) − 𝑘∗) 

∫
1

𝑘(𝑡) − 𝑘∗
𝜕𝑘(𝑡) = ∫ −𝜆 𝜕𝑡 

ln(𝑘(𝑡) − 𝑘∗) = −𝜆𝑡 + 𝑐 

𝑘(𝑡) − 𝑘∗ = 𝑒−𝜆𝑡+𝑐 

𝑘(0) − 𝑘∗ = 𝑒−𝜆∗0+𝑐 = 𝑒𝑐 

𝑘(𝑡) = 𝑘∗ + 𝑒−𝜆𝑡(𝑘(0) − 𝑘∗) 

𝜕�̇�(𝑘)

𝜕𝑘
= 𝑠𝑓′(𝑘∗) − (𝑛 + 𝑔 + 𝛿) =

(𝑛 + 𝑔 + 𝛿)𝑘∗

𝑓(𝑘∗)
𝑓′(𝑘∗) − (𝑛 + 𝑔 + 𝛿)

= (𝑛 + 𝑔 + 𝛿)(𝑘1−𝛼𝛼𝑘𝛼−1 − 1) = (𝑛 + 𝑔 + 𝛿)(𝛼 − 1) 

𝜆 = (1 − 𝛼)(𝑛 + 𝑔 + 𝛿) 
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Proof 9: Constant returns to scale 

𝑐𝑌(𝑡) = (𝑐𝐾(𝑡))𝛼(𝑐𝐻(𝑡))𝛽(𝑐𝐴(𝑡)𝐿(𝑡))
1−𝛼−𝛽

= 𝑐𝛼𝑐𝛽𝑐1−𝛼−𝛽𝐾(𝑡)𝛼𝐻(𝑡)𝛽(𝐴(𝑡)𝐿(𝑡))
1−𝛼−𝛽

= 𝑐𝐾(𝑡)𝛼𝐻(𝑡)𝛽(𝐴(𝑡)𝐿(𝑡))
1−𝛼−𝛽

 

 

Proof 10: Intensive form transformation 

Left hand side: 
1

𝐴(𝑡)𝐿(𝑡)
𝑌(𝑡) = 𝑦(𝑡) 

Right hand side: (
1

𝐴(𝑡)𝐿(𝑇)
𝐾(𝑡))𝛼(

1

𝐴(𝑡)𝐿(𝑇)
𝐻(𝑡))𝛽 (

1

𝐴(𝑡)𝐿(𝑇)
𝐴(𝑡)𝐿(𝑡))

1−𝛼−𝛽

=

𝑘𝛼ℎ𝛽11−𝛼−𝛽 = 𝑘𝛼ℎ𝛽 

 

Proof 11: Dynamics of physical and human capital 

�̇� = (
𝐾

𝐴𝐿
)

̇
=

�̇�𝐴𝐿 − 𝐾(𝐴𝐿)̇

(𝐴𝐿)2
=

�̇�

𝐴𝐿
−

𝐾

(𝐴𝐿)2
(�̇�𝐿 + 𝐴�̇�) =

𝑠𝑘𝑌 − 𝛿𝐾

𝐴𝐿
−

𝐾

𝐴𝐿
(

�̇�

𝐴
+

�̇�

𝐿
)

= 𝑠𝑘𝑦 − 𝛿𝑘 − 𝑘(𝑔 + 𝑛) = 𝑠𝑘𝑦 − (𝑛 + 𝑔 + 𝛿)𝑘 

ℎ̇ = (
𝐻

𝐴𝐿
)

̇
=

�̇�𝐴𝐿 − 𝐻(𝐴𝐿)̇

(𝐴𝐿)2
=

�̇�

𝐴𝐿
−

𝐻

(𝐴𝐿)2
(�̇�𝐿 + 𝐴�̇�) =

𝑠ℎ𝑌 − 𝛿𝐻

𝐴𝐿
−

𝐻

𝐴𝐿
(

�̇�

𝐴
+

�̇�

𝐿
)

= 𝑠ℎ𝑦 − 𝛿ℎ − ℎ(𝑔 + 𝑛) = 𝑠ℎ𝑦 − (𝑛 + 𝑔 + 𝛿)ℎ 

 

Proof 12: Steady state levels of physical and human capital per effective worker 

𝑠𝑘𝑦∗ = (𝑛 + 𝑔 + 𝛿)𝑘∗ 

𝑠𝑘𝑘∗𝛼ℎ∗𝛽 = (𝑛 + 𝑔 + 𝛿)𝑘∗ 

𝑘∗1−𝛼 =
𝑠𝑘

𝑛 + 𝑔 + 𝛿
ℎ∗𝛽

 

𝑘∗ = (
𝑠𝑘

𝑛 + 𝑔 + 𝛿
ℎ∗𝛽)

1
1−𝛼

 

𝑠ℎ𝑦∗ = (𝑛 + 𝑔 + 𝛿)ℎ∗ 

𝑠ℎ𝑘∗𝛼ℎ∗𝛽 = (𝑛 + 𝑔 + 𝛿)ℎ∗ 

ℎ∗1−𝛽 =
𝑠ℎ

𝑛 + 𝑔 + 𝛿
𝑘∗𝛼

 

ℎ∗ = (
𝑠ℎ

𝑛 + 𝑔 + 𝛿
𝑘∗𝛼)

1
1−𝛽
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𝑘∗ = (
𝑠𝑘

𝑛 + 𝑔 + 𝛿
(

𝑠ℎ

𝑛 + 𝑔 + 𝛿
𝑘∗𝛼)

𝛽
1−𝛽

)

1
1−𝛼

 

𝑘∗ =
𝑠

𝑘

1
1−𝛼

(𝑛 + 𝑔 + 𝛿)
1

1−𝛼

(
𝑠

ℎ

𝛽
1−𝛽

(𝑛 + 𝑔 + 𝛿)
𝛽

1−𝛽

𝑘∗
𝛼𝛽

1−𝛽)

1
1−𝛼

 

𝑘∗ =
𝑠

𝑘

1
1−𝛼

(𝑛 + 𝑔 + 𝛿)
1

1−𝛼

𝑠
ℎ

𝛽
(1−𝛼)(1−𝛽)

(𝑛 + 𝑔 + 𝛿)
𝛽

(1−𝛼)(1−𝛽)

𝑘∗
𝛼𝛽

(1−𝛼)(1−𝛽) 

𝑘∗1−
𝛼𝛽

(1−𝛼)(1−𝛽) =
𝑠

𝑘

1
1−𝛼𝑠

ℎ

𝛽
(1−𝛼)(1−𝛽)

(𝑛 + 𝑔 + 𝛿)
1

1−𝛼
+

𝛽
(1−𝛼)(1−𝛽)

 

𝑘∗
(1−𝛼)(1−𝛽)
(1−𝛼)(1−𝛽)

−
𝛼𝛽

(1−𝛼)(1−𝛽) =
𝑠

𝑘

1
1−𝛼𝑠

ℎ

𝛽
(1−𝛼)(1−𝛽)

(𝑛 + 𝑔 + 𝛿)
(1−𝛽)

(1−𝛼)(1−𝛽)
+

𝛽
(1−𝛼)(1−𝛽)

 

𝑘∗
1−𝛼−𝛽+𝛼𝛽−𝛼𝛽

(1−𝛼)(1−𝛽) =
𝑠

𝑘

1
1−𝛼𝑠

ℎ

𝛽
(1−𝛼)(1−𝛽)

(𝑛 + 𝑔 + 𝛿)
1−𝛽+𝛽

(1−𝛼)(1−𝛽)

 

𝑘∗
1−𝛼−𝛽

(1−𝛼)(1−𝛽) =
𝑠

𝑘

1
1−𝛼𝑠

ℎ

𝛽
(1−𝛼)(1−𝛽)

(𝑛 + 𝑔 + 𝛿)
1

(1−𝛼)(1−𝛽)

 

𝑘∗
1−𝛼−𝛽

(1−𝛼)(1−𝛽) = (
𝑠𝑘

1−𝛽
𝑠ℎ

𝛽

𝑛 + 𝑔 + 𝛿
)

1
(1−𝛼)(1−𝛽)

 

𝑘∗
1−𝛼−𝛽

(1−𝛼)(1−𝛽) = (
𝑠𝑘

1−𝛽
𝑠ℎ

𝛽

𝑛 + 𝑔 + 𝛿
)

1
(1−𝛼)(1−𝛽)

 

𝑘∗ = (
𝑠𝑘

1−𝛽
𝑠ℎ

𝛽

𝑛 + 𝑔 + 𝛿
)

(1−𝛼)(1−𝛽)
(1−𝛼)(1−𝛽)(1−𝛼−𝛽)
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𝑘∗ = (
𝑠𝑘

1−𝛽
𝑠ℎ

𝛽

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼−𝛽

 

 

Proof 13: Speed of convergence 

𝜕�̇�

𝜕𝑘
= 𝑠𝑘

𝜕𝑦

𝜕𝑘
− (𝑛 + 𝑔 + 𝛿) =

(𝑛 + 𝑔 + 𝛿)𝑘

𝑦

𝜕𝑦

𝜕𝑘
− (𝑛 + 𝑔 + 𝛿)

= (𝑛 + 𝑔 + 𝛿)
𝑘

𝑘𝛼ℎ𝛽
(𝛼𝑘𝛼−1ℎ𝛽 − 1) = (𝑛 + 𝑔 + 𝛿)(𝛼 − 1) 

𝜕ℎ̇

𝜕ℎ
= 𝑠ℎ

𝜕𝑦

𝜕ℎ
− (𝑛 + 𝑔 + 𝛿) =

(𝑛 + 𝑔 + 𝛿)ℎ

𝑦

𝜕𝑦

𝜕ℎ
− (𝑛 + 𝑔 + 𝛿)

= (𝑛 + 𝑔 + 𝛿)
ℎ

𝑘𝛼ℎ𝛽
(𝛽𝑘𝛼ℎ𝛽−1 − 1) = (𝑛 + 𝑔 + 𝛿)(𝛽 − 1) 

𝜆 = −
𝜕 (

�̇�
𝑦)

𝜕 log(𝑦)
= (𝑛 + 𝑔 + 𝛿) −

𝜕((𝑛 + 𝑔 + 𝛿)(𝛼 − 1))

𝜕𝛼
−

𝜕(𝑛 + 𝑔 + 𝛿)(𝛽 − 1)

𝜕𝛽

= (1 − 𝛼 − 𝛽)(𝑛 + 𝑔 + 𝛿) 

 

Proof 14: Growth rate of growth rate 

  For capital:  

�̇�(𝑡) = 𝑠𝑌(𝑡) 

�̇�(𝑡) = 𝑠((1 − 𝑎𝐾)𝐾(𝑡))
𝛼

(𝐴(𝑡)(1 − 𝑎𝐿)𝐿(𝑡))
1−𝛼

 

𝑔𝐾(𝑡) =
�̇�(𝑡)

𝐾(𝑡)
=  𝑠(1 − 𝑎𝐾)𝛼𝐾(𝑡)𝛼−1(𝐴(𝑡)(1 − 𝑎𝐿)𝐿(𝑡))

1−𝛼
 

ln(𝑔𝐾(𝑡)) = 𝛼 ln(𝑠(1 − 𝑎𝐾)) + (𝛼 − 1) ln(𝐾(𝑡)) + (1 − 𝛼) ln(𝐴(𝑡)(1 − 𝑎𝐿)𝐿(𝑡)) 

𝑑(ln(𝑔𝐾(𝑡)))

𝑑𝑡
=

�̇�𝐾(𝑡)

𝑔𝐾(𝑡)
= 0 + (𝛼 − 1)

�̇�(𝑡)

𝐾(𝑡)
+ (1 − 𝛼) (

�̇�(𝑡)

𝐴(𝑡)
+ 0 +

�̇�(𝑡)

𝐿(𝑡)
) 

�̇�𝐾(𝑡)

𝑔𝐾(𝑡)
= (𝛼 − 1)𝑔𝐾 + (1 − 𝛼)(𝑔𝐴 + 𝑛) = (1 − 𝛼)(𝑔𝐴(𝑡) + 𝑛 − 𝑔𝐾(𝑡)) 

  For knowledge: 
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�̇�(𝑡) = 𝐵(𝑎𝐾𝐾(𝑡))
𝛽

(𝑎𝐿𝐿(𝑡))
𝛾

𝐴(𝑡)𝜃 

�̇�(𝑡)

𝐴(𝑡)
= 𝑔𝐴(𝑡) = 𝐵(𝑎𝐾𝐾(𝑡))

𝛽
(𝑎𝐿𝐿(𝑡))

𝛾
𝐴(𝑡)𝜃−1 

ln(𝑔𝐴(𝑡)) = ln 𝐵 + 𝛽 ln(𝑎𝐾𝐾(𝑡)) + 𝛾 ln(𝑎𝐿𝐿(𝑡)) + (𝜃 − 1) ln(𝐴(𝑡)) 

𝑑(ln(𝑔𝐴(𝑡)))

𝑑𝑡
=

�̇�𝐴(𝑡)

𝑔𝐴(𝑡)
= 0 + 𝛽 (0 +

�̇�(𝑡)

𝐾(𝑡)
) + 𝛾 (0 +

�̇�(𝑡)

𝐿(𝑡)
) + (𝜃 − 1) (

�̇�(𝑡)

𝐴(𝑡)
)

= 𝛽𝑔𝐾(𝑡) + 𝛾𝑛 + (𝜃 − 1)𝑔𝐴(𝑡) 

 

Proof 15: Equilibrium growth rate of capital and knowledge 

(1 − 𝛼)(𝑔𝐴
∗ (𝑡) + 𝑛 − 𝑔𝐾

∗ (𝑡)) = 0 

𝑔𝐾
∗ = 𝑔𝐴

∗ + 𝑛 

𝛽𝑔𝐾
∗ (𝑡) + 𝛾𝑛 + (𝜃 − 1)𝑔𝐴

∗ (𝑡) = 0 

𝑔𝐴
∗ (𝑡) =

𝛽𝑔𝐾
∗ (𝑡) + 𝛾𝑛

1 − 𝜃
 

𝑔𝐴
∗ (𝑡) =

𝛽(𝑔𝐴
∗ (𝑡) + 𝑛) + 𝛾𝑛

1 − 𝜃
 

(1 − 𝜃 − 𝛽)𝑔𝐴
∗ (𝑡) = (𝛽 + 𝛾)𝑛 

𝑔𝐴
∗ (𝑡) =

𝛽 + 𝛾

1 − 𝜃 − 𝛽
𝑛 

 

Proof 16: Equilibrium growth rate of output 

𝑌(𝑡) = ((1 − 𝑎𝐾)𝐾(𝑡))
𝛼

(𝐴(𝑡)(1 − 𝑎𝐿)𝐿(𝑡))
1−𝛼

 

ln(𝑌(𝑡)) = 𝛼 ln((1 − 𝑎𝐾)𝐾(𝑡)) + (1 − 𝛼) ln(𝐴(𝑡)(1 − 𝑎𝐿)𝐿(𝑡)) 

𝑔𝑌(𝑡) =
�̇�(𝑡)

𝑌(𝑡)
= 𝛼

�̇�(𝑡)

𝐾(𝑡)
+ (1 − 𝛼)(

�̇�(𝑡)

𝐴(𝑡)
+

�̇�(𝑡)

𝐿(𝑡)
) 

𝑔𝑌
∗ (𝑡) = 𝛼𝑔𝐾

∗ (𝑡) + (1 − 𝛼)(𝑔𝐴
∗ (𝑡) + 𝑛) 
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𝑔𝑌
∗ (𝑡) = 𝛼 (

𝛽 + 𝛾

1 − 𝜃 − 𝛽
𝑛 + 𝑛) + (1 − 𝛼) (

𝛽 + 𝛾

1 − 𝜃 − 𝛽
𝑛 + 𝑛) =

𝛽 + 𝛾

1 − 𝜃 − 𝛽
𝑛 + 𝑛

= 𝑛 (
𝛽 + 𝛾

1 − 𝜃 − 𝛽
+

1 − 𝜃 − 𝛽

1 − 𝜃 − 𝛽
) = 𝑛 (

1 + 𝛾 − 𝜃

1 − 𝜃 − 𝛽
) = 𝑔𝐾

∗ (𝑡) 

Proof 17: The OLS estimator 

𝑓(𝛽) = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) = 𝑦′𝑦 − 2𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽 

𝜕𝑓(𝛽)

𝜕𝛽
= −2(𝑋′𝑦 − 𝑋′𝑋𝛽) = 0 

𝑋′𝑋𝛽 = 𝑋′𝑦 

𝛽 = (𝑋′𝑋)−1𝑋′𝑦 

 

Proof 18: Properties of the OLS estimator 

𝐸[�̂�] = 𝐸[(𝑋′𝑋)−1𝑋′𝑦] = 𝐸[𝛽 + (𝑋′𝑋)−1𝑋′𝜖] = 𝐸[𝛽] + 𝐸[(𝑋′𝑋)−1𝑋′]𝐸[𝜖] = 𝛽 

𝑉𝑎𝑟[�̂�] = 𝐸 [(�̂� − 𝛽)(�̂� − 𝛽)
′
] = 𝐸[(𝑋′𝑋)−1𝑋′𝜖𝜖′𝑋(𝑋′𝑋)−1] = (𝑋′𝑋)−1𝑋′(𝜎2𝐼)𝑋(𝑋′𝑋)−1

= 𝜎2(𝑋′𝑋)−1 

 

Proof 19: Alternative R-squared formulae 

𝑅2 =
𝜎𝑦�̂�

2̂

𝜎𝑦𝑛
2̂

=
𝜎𝑦𝑛−𝑒𝑛

2̂

𝜎𝑦𝑛
2̂

=
𝜎𝑦𝑛

2̂

𝜎𝑦𝑛
2̂

−
𝜎𝑒𝑛

2̂

𝜎𝑦𝑛
2̂

= 1 −
𝜎𝑒𝑛

2̂

𝜎𝑦𝑛
2̂

 

 

Proof 20: Relative growth rate 

Δ log(𝑌𝑡) = log (
𝑌𝑡

𝑌𝑡−1
) = log (

Yt−1 + Δ𝑌𝑡

𝑌𝑡−1
) = log (1 +

Δ𝑌𝑡

𝑌𝑡−1
) ≈

Δ𝑌𝑡

𝑌𝑡−1
 

 

Proof 21: Stochastic trend  

𝑌𝑡 = 𝑌0 + ∑ Δ𝑌𝑖

𝑡

𝑖=1
= 𝑌0 + ∑ (𝛽 + 𝜖𝑖)

𝑡

𝑖=1
= 𝑌0 + 𝛽𝑡 + ∑ ϵi

𝑡

𝑖=1
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Proof 22: Variance of heteroscedastic OLS estimator 

𝑉𝑎𝑟[�̂�|𝑋] = 𝑉𝑎𝑟[(𝑋′𝑋)−1𝑋′𝜖|𝑋] = (𝑋′𝑋)−1𝑋′𝑉𝑎𝑟[𝜖|𝑋]𝑋(𝑋′𝑋)−1

= 𝜎2(𝑋′𝑋)−1𝑋′Ψ𝑋(𝑋′𝑋)−1 

 

Proof 23: GLS transformation of regression model 

Ψ−1 = 𝑃′𝑃 

Ψ = (𝑃′𝑃)−1 = 𝑃−1(𝑃′)−1 

𝑃Ψ𝑃′ = 𝑃𝑃−1(𝑃′)−1𝑃′ = 𝐼 

𝑃𝑦 = �̃� 

𝑃𝑋𝛽 + 𝑃𝜖 = �̃�𝛽 + 𝜖̃ 

�̃� = �̃�𝛽 + 𝜖̃ 

𝐸[𝜖̃|𝑋] = 𝐸[𝑃𝜖|𝑋] = 𝑃𝐸[𝜖|𝑋] = 0 

𝑉𝑎𝑟[𝜖̃|𝑋] = 𝑉𝑎𝑟[𝑃𝜖|𝑋] = 𝑃𝑉𝑎𝑟[𝜖|𝑋]𝑃′ = 𝜎2𝑃ΨP′ = 𝜎2𝐼 

 

Proof 24: Extended growth-initial level regression 

𝑦∗ = (
𝑠

𝑛 + 𝑔 + 𝛿
)

𝛼
1−𝛼

 

𝑙𝑛 𝑦∗ =
𝛼

1 − 𝛼
𝑙𝑛 𝑠 −

𝛼

1 − 𝛼
𝑙𝑛(𝑛 + 𝑔 + 𝛿) 

𝑓(𝑦(𝑡)) = 𝑙𝑛 𝑦(𝑡) 

𝑓(𝑦∗) = 𝑙𝑛 𝑦∗ 

𝑓′(𝑦(𝑡)) = −𝜆 (𝑓(𝑦(𝑡)) − 𝑓(𝑦∗)) 

𝜕𝑓(𝑦(𝑡))

𝜕𝑡
= −𝜆 (𝑓(𝑦(𝑡)) − 𝑓(𝑦∗)) 

∫
1

𝑓(𝑦(𝑡)) − 𝑓(𝑦∗)
𝜕𝑓(𝑦(𝑡)) = ∫ −𝜆 𝜕𝑡 
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𝑙𝑛 (𝑓(𝑦(𝑡)) − 𝑓(𝑦∗)) = −𝜆𝑡 + 𝑐 

𝑓(𝑦(𝑡)) − 𝑓(𝑦∗) = 𝑒−𝜆𝑡+𝑐 

𝑓(𝑦(0)) − 𝑓(𝑦∗) = 𝑒−𝜆∗0+𝑐 = 𝑒𝑐 

𝑓(𝑦(𝑡)) = 𝑓(𝑦∗) + 𝑒−𝜆𝑡 (𝑓(𝑦(0)) − 𝑓(𝑦∗)) = (1 − 𝑒−𝜆𝑡)𝑓(𝑦∗) + 𝑒−𝜆𝑡𝑓(𝑦(0)) 

𝑓(𝑦(𝑡)) − 𝑓(𝑦(0))  = (1 − 𝑒−𝜆𝑡)𝑓(𝑦∗) + 𝑒−𝜆𝑡𝑓(𝑦(0)) − 𝑓(𝑦(0))

= (1 − 𝑒−𝜆𝑡) (𝑓(𝑦∗) − 𝑓(𝑦(0))) 

𝑙𝑛 𝑦(𝑡) − 𝑙𝑛 𝑦(0) = (1 − 𝑒−𝜆𝑡)(𝑙𝑛 𝑦∗ − 𝑙𝑛 𝑦(0)) 

𝑙𝑛 (
𝑦(𝑡)

𝑦(0)
) = (1 − 𝑒−𝜆𝑡) (

𝛼

1 − 𝛼
𝑙𝑛 𝑠 −

𝛼

1 − 𝛼
𝑙𝑛(𝑛 + 𝑔 + 𝛿) − 𝑙𝑛 𝑦(0)) 

𝑙𝑛 (
𝑦𝑡

𝑦𝑡−1
) = (1 − 𝑒−𝜆𝑡)

𝛼

1 − 𝛼
𝑙𝑛 𝑠𝑡 − (1 − 𝑒−𝜆𝑡)

𝛼

1 − 𝛼
𝑙𝑛(𝑛𝑡 + 𝑔𝑡 + 𝛿𝑡)

− (1 − 𝑒−𝜆𝑡) 𝑙𝑛 𝑦𝑡−1 + 𝜖𝑡 

ln 𝑦𝑡 = (1 − 𝑒−𝜆𝑡)
𝛼

1 − 𝛼
ln (

𝑠𝑡

𝑛𝑡 + 𝑔𝑡 + 𝛿𝑡
) + 𝑒−𝜆𝑡 ln 𝑦𝑡−1 + 𝜖𝑡 

 

Proof 25: Extended growth-initial level regression for the augmented Solow model 

𝑘∗ = (
𝑠𝑘

1−𝛽
𝑠ℎ

𝛽

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼−𝛽

 

ℎ∗ = (
𝑠𝑘

𝛼𝑠ℎ
1−𝛼

𝑛 + 𝑔 + 𝛿
)

1
1−𝛼−𝛽

 

𝑦∗ = 𝑘∗𝛼ℎ∗𝛽 = (
𝑠𝑘

1−𝛽
𝑠ℎ

𝛽

𝑛 + 𝑔 + 𝛿
)

𝛼
1−𝛼−𝛽

(
𝑠𝑘

𝛼𝑠ℎ
1−𝛼

𝑛 + 𝑔 + 𝛿
)

𝛽
1−𝛼−𝛽
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𝑙𝑛 𝑦∗ =
𝛼

1 − 𝛼 − 𝛽
𝑙𝑛 𝑠𝑘

1−𝛽
𝑠ℎ

𝛽
−

𝛼

1 − 𝛼 − 𝛽
𝑙𝑛(𝑛 + 𝑔 + 𝛿) +

𝛽

1 − 𝛼 − 𝛽
𝑙𝑛 𝑠𝑘

𝛼𝑠ℎ
1−𝛼

−
𝛽

1 − 𝛼 − 𝛽
𝑙𝑛(𝑛 + 𝑔 + 𝛿)

=
𝛼(1 − 𝛽) + 𝛼𝛽

1 − 𝛼 − 𝛽
ln 𝑠𝑘 +

𝛼𝛽 + (1 − 𝛼)𝛽

1 − 𝛼 − 𝛽
ln 𝑠ℎ −

𝛼 + 𝛽

1 − 𝛼 − 𝛽
ln(𝑛 + 𝑔 + 𝛿)

=
𝛼

1 − 𝛼 − 𝛽
ln 𝑠𝑘 +

𝛽

1 − 𝛼 − 𝛽
ln 𝑠ℎ −

𝛼 + 𝛽

1 − 𝛼 − 𝛽
ln(𝑛 + 𝑔 + 𝛿)

=
𝛼

1 − 𝛼 − 𝛽
ln (

𝑠𝑘

𝑛 + 𝑔 + 𝛿
) +

𝛽

1 − 𝛼 − 𝛽
ln (

𝑠ℎ

𝑛 + 𝑔 + 𝛿
) 

𝑙𝑛 (
𝑦(𝑡)

𝑦(0)
) = (1 − 𝑒−𝜆𝑡) (

𝛼

1 − 𝛼 − 𝛽
ln (

𝑠𝑘

𝑛 + 𝑔 + 𝛿
) +

𝛽

1 − 𝛼 − 𝛽
ln (

𝑠ℎ

𝑛 + 𝑔 + 𝛿
) − 𝑙𝑛 𝑦(0)) 

𝑙𝑛 (
𝑦𝑡

𝑦𝑡−1
) = (1 − 𝑒−𝜆𝑡) (

𝛼

1 − 𝛼 − 𝛽
ln (

𝑠𝑘𝑡

𝑛𝑡 + 𝑔𝑡 + 𝛿𝑡
) +

𝛽

1 − 𝛼 − 𝛽
ln (

𝑠ℎ𝑡

𝑛𝑡 + 𝑔𝑡 + 𝛿𝑡
))

− (1 − 𝑒−𝜆𝑡) 𝑙𝑛 𝑦𝑡−1 + 𝜖𝑡 

ln 𝑦𝑡 = (1 − 𝑒−𝜆𝑡)
𝛼

1 − 𝛼 − 𝛽
ln (

𝑠𝑘𝑡

𝑛𝑡 + 𝑔𝑡 + 𝛿𝑡
) + (1 − 𝑒−𝜆𝑡)

𝛽

1 − 𝛼 − 𝛽
ln (

𝑠ℎ𝑡

𝑛𝑡 + 𝑔𝑡 + 𝛿𝑡
)

+ 𝑒−𝜆𝑡 ln 𝑦𝑡−1 + 𝜖𝑡 
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7.2 STATA DO-FILE 
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7.3 REGRESSION OUTPUTS 

Regression output 1:

 

 

 

 

 

 

 

 

                                                                              

       _cons     .0677053   .0111282     6.08   0.000     .0456246     .089786

        ln_y    -.0056361   .0011328    -4.98   0.000    -.0078838   -.0033885

                                                                              

         g_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .024013488       100  .000240135   Root MSE        =    .01393

                                                   Adj R-squared   =    0.1920

    Residual     .01920985        99  .000194039   R-squared       =    0.2000

       Model    .004803638         1  .004803638   Prob > F        =    0.0000

                                                   F(1, 99)        =     24.76

      Source         SS           df       MS      Number of obs   =       101

         Prob > chi2  =   0.0107

         chi2(1)      =     6.51

         Variables: r

         Ho: Constant variance

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 

                                                   

               Total         8.30      4    0.0810

                                                   

            Kurtosis         0.00      1    0.9557

            Skewness         2.54      1    0.1107

  Heteroskedasticity         5.76      2    0.0562

                                                   

              Source         chi2     df      p

                                                   

Cameron & Trivedi's decomposition of IM-test

                                                                              

       _cons     .0677053     .01358     4.99   0.000     .0407596     .094651

        ln_y    -.0056361     .00137    -4.11   0.000    -.0083545   -.0029178

                                                                              

         g_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                                                Root MSE          =     .01393

                                                R-squared         =     0.2000

                                                Prob > F          =     0.0001

                                                F(1, 99)          =      16.93

Linear regression                               Number of obs     =        101
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Regression output 2: 

  

 

 

Regression output 3: 

 

 

 

 

 

                                                                              

       _cons     .1249485   .0263553     4.74   0.000      .070872     .179025

        ln_y    -.0103399   .0025001    -4.14   0.000    -.0154697   -.0052101

                                                                              

         g_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .001033635        28  .000036916   Root MSE        =    .00484

                                                   Adj R-squared   =    0.3651

    Residual     .00063277        27  .000023436   R-squared       =    0.3878

       Model    .000400865         1  .000400865   Prob > F        =    0.0003

                                                   F(1, 27)        =     17.10

      Source         SS           df       MS      Number of obs   =        29

         Prob > chi2  =   0.0252

         chi2(1)      =     5.01

         Variables: r

         Ho: Constant variance

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 

                                                   

               Total         3.40      4    0.4933

                                                   

            Kurtosis         2.64      1    0.1042

            Skewness         0.34      1    0.5605

  Heteroskedasticity         0.42      2    0.8099

                                                   

              Source         chi2     df      p

                                                   

Cameron & Trivedi's decomposition of IM-test

                                                                              

       _cons     1.121765   .0531488    21.11   0.000     1.017568    1.225963

       ln_AL     .1978789   .0052307    37.83   0.000     .1876242    .2081336

        ln_K     .8016796   .0045705   175.40   0.000     .7927192      .81064

                                                                              

        ln_Y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     13904.041     4,544  3.05986818   Root MSE        =    .41934

                                                   Adj R-squared   =    0.9425

    Residual    798.710009     4,542  .175849848   R-squared       =    0.9426

       Model     13105.331         2   6552.6655   Prob > F        =    0.0000

                                                   F(2, 4542)      =  37262.84

      Source         SS           df       MS      Number of obs   =     4,545
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Regression output 4:  

 

 

 

F test that all u_i=0: F(100, 4442) = 250.59                 Prob > F = 0.0000

                                                                              

         rho    .88645694   (fraction of variance due to u_i)

     sigma_e    .16454165

     sigma_u     .4597528

                                                                              

       _cons     3.137903   .0712101    44.07   0.000     2.998295     3.27751

       ln_AL     .3542276   .0109022    32.49   0.000     .3328539    .3756014

        ln_K     .6231527   .0066148    94.21   0.000     .6101844     .636121

                                                                              

        ln_Y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

corr(u_i, Xb)  = 0.2276                         Prob > F          =     0.0000

                                                F(2,4442)         =   18912.83

     overall = 0.9265                                         max =         45

     between = 0.9297                                         avg =       45.0

     within  = 0.8949                                         min =         45

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =        101

Fixed-effects (within) regression               Number of obs     =      4,545

Prob>chi2 =      0.0000

chi2 (101)  =   2.1e+05

H0: sigma(i)^2 = sigma^2 for all i

in fixed effect regression model

Modified Wald test for groupwise heteroskedasticity

                                                                              

         rho    .88645694   (fraction of variance due to u_i)

     sigma_e    .16454165

     sigma_u     .4597528

                                                                              

       _cons     3.137903   .3867716     8.11   0.000     2.370559    3.905247

       ln_AL     .3542276   .0616164     5.75   0.000     .2319824    .4764729

        ln_K     .6231527   .0363589    17.14   0.000     .5510177    .6952877

                                                                              

        ln_Y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                            (Std. Err. adjusted for 101 clusters in country_n)

corr(u_i, Xb)  = 0.2276                         Prob > F          =     0.0000

                                                F(2,100)          =     684.87

     overall = 0.9265                                         max =         45

     between = 0.9297                                         avg =       45.0

     within  = 0.8949                                         min =         45

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =        101

Fixed-effects (within) regression               Number of obs     =      4,545
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Regression output 5: 

 

Regression output 6: 

 

 

 

 

 

 

 

           Prob > F =      0.0000

    F(  1,     100) =    234.739

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

                                                                              

       _cons       1.9312   .0747066    25.85   0.000     1.784778    2.077622

       ln_AL     .2727956   .0078527    34.74   0.000     .2574046    .2881866

        ln_K     .7338368   .0062708   117.02   0.000     .7215462    .7461274

                                                                              

        ln_Y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                Prob > chi2       =     0.0000

                                                Wald chi2(2)      =   41338.98

Estimated coefficients     =         3          Time periods      =         45

Estimated autocorrelations =       101          Number of groups  =        101

Estimated covariances      =       101          Number of obs     =      4,545

Correlation:   panel-specific AR(1)

Panels:        heteroskedastic

Coefficients:  generalized least squares

Cross-sectional time-series FGLS regression

                                                                              

       _cons     .0610169   .0081397     7.50   0.000     .0450552    .0769787

              

         L1.     .9943759   .0008184  1215.07   0.000     .9927711    .9959807

        ln_y  

              

     ln_y_ss      .006727   .0013655     4.93   0.000     .0040492    .0094048

                                                                              

        ln_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    3155.53337     2,331  1.35372517   Root MSE        =    .04392

                                                   Adj R-squared   =    0.9986

    Residual    4.49204882     2,329  .001928746   R-squared       =    0.9986

       Model    3151.04132         2  1575.52066   Prob > F        =    0.0000

                                                   F(2, 2329)      >  99999.00

      Source         SS           df       MS      Number of obs   =     2,332
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Regression output 7:  

 

 

F test that all u_i=0: F(52, 2277) = 7.78                    Prob > F = 0.0000

                                                                              

         rho    .30200043   (fraction of variance due to u_i)

     sigma_e    .04092971

     sigma_u    .02692247

                                                                              

       _cons     .2357188   .0320148     7.36   0.000     .1729375       .2985

              

         L1.     .9759862   .0031362   311.20   0.000     .9698362    .9821362

        ln_y  

              

     ln_y_ss     .0186022    .001991     9.34   0.000     .0146979    .0225065

                                                                              

        ln_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

corr(u_i, Xb)  = 0.7063                         Prob > F          =     0.0000

                                                F(2,2277)         =   50854.64

     overall = 0.9985                                         max =         44

     between = 0.9997                                         avg =       44.0

     within  = 0.9781                                         min =         44

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =         53

Fixed-effects (within) regression               Number of obs     =      2,332

Prob>chi2 =      0.0000

chi2 (53)  =   47495.39

H0: sigma(i)^2 = sigma^2 for all i

in fixed effect regression model

Modified Wald test for groupwise heteroskedasticity
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Regression output 8: 

 

 

 

 

 

                                                                              

         rho    .28741235   (fraction of variance due to u_i)

     sigma_e    .04085974

     sigma_u    .02594951

                                                                              

       _cons     .2605209   .0742457     3.51   0.001     .1115361    .4095057

       ln_hc      .019578   .0110304     1.77   0.082    -.0025561    .0417122

              

         L1.     .9721523   .0072917   133.32   0.000     .9575205    .9867841

        ln_y  

              

     ln_y_ss     .0180847   .0040518     4.46   0.000     .0099542    .0262152

                                                                              

        ln_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                             (Std. Err. adjusted for 53 clusters in country_n)

corr(u_i, Xb)  = 0.7537                         Prob > F          =     0.0000

                                                F(3,52)           =    6605.64

     overall = 0.9986                                         max =         44

     between = 0.9998                                         avg =       44.0

     within  = 0.9782                                         min =         44

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =         53

Fixed-effects (within) regression               Number of obs     =      2,332

                                                                              

       _cons     .0752894   .0104402     7.21   0.000      .054827    .0957519

              

         L1.     .9927044   .0010213   971.98   0.000     .9907027    .9947062

        ln_y  

              

     ln_y_ss     .0109273    .001233     8.86   0.000     .0085106     .013344

                                                                              

        ln_y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                Prob > chi2       =     0.0000

                                                Wald chi2(2)      =    1130477

Estimated coefficients     =         3          Time periods      =         44

Estimated autocorrelations =        53          Number of groups  =         53

Estimated covariances      =        53          Number of obs     =      2,332

Correlation:   panel-specific AR(1)

Panels:        heteroskedastic

Coefficients:  generalized least squares

Cross-sectional time-series FGLS regression
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Regression output 9: 

 

 

F test that all u_i=0: F(52, 2276) = 5.62                    Prob > F = 0.0000

                                                                              

         rho    .28741235   (fraction of variance due to u_i)

     sigma_e    .04085974

     sigma_u    .02594951

                                                                              

       _cons     .2605209    .033035     7.89   0.000     .1957391    .3253027

       ln_hc      .019578   .0065978     2.97   0.003     .0066397    .0325164

              

         L1.     .9721523   .0033869   287.03   0.000     .9655105    .9787941

        ln_y  

              

     ln_y_ss     .0180847   .0019952     9.06   0.000     .0141721    .0219973

                                                                              

        ln_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

corr(u_i, Xb)  = 0.7537                         Prob > F          =     0.0000

                                                F(3,2276)         =   34022.24

     overall = 0.9986                                         max =         44

     between = 0.9998                                         avg =       44.0

     within  = 0.9782                                         min =         44

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =         53

Fixed-effects (within) regression               Number of obs     =      2,332

Prob>chi2 =      0.0000

chi2 (53)  =   47323.60

H0: sigma(i)^2 = sigma^2 for all i

in fixed effect regression model

Modified Wald test for groupwise heteroskedasticity
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Regression output 10: 

 

 

 

 

                                                                              

         rho    .28741235   (fraction of variance due to u_i)

     sigma_e    .04085974

     sigma_u    .02594951

                                                                              

       _cons     .2605209   .0742457     3.51   0.001     .1115361    .4095057

       ln_hc      .019578   .0110304     1.77   0.082    -.0025561    .0417122

              

         L1.     .9721523   .0072917   133.32   0.000     .9575205    .9867841

        ln_y  

              

     ln_y_ss     .0180847   .0040518     4.46   0.000     .0099542    .0262152

                                                                              

        ln_y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                             (Std. Err. adjusted for 53 clusters in country_n)

corr(u_i, Xb)  = 0.7537                         Prob > F          =     0.0000

                                                F(3,52)           =    6605.64

     overall = 0.9986                                         max =         44

     between = 0.9998                                         avg =       44.0

     within  = 0.9782                                         min =         44

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =         53

Fixed-effects (within) regression               Number of obs     =      2,332

                                                                              

       _cons     .1086098   .0119475     9.09   0.000     .0851931    .1320265

       ln_hc     .0264094   .0040883     6.46   0.000     .0183965    .0344223

              

         L1.     .9875006   .0013946   708.11   0.000     .9847673    .9902339

        ln_y  

              

     ln_y_ss     .0096391    .001194     8.07   0.000     .0072988    .0119794

                                                                              

        ln_y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                Prob > chi2       =     0.0000

                                                Wald chi2(3)      =    1297245

Estimated coefficients     =         4          Time periods      =         44

Estimated autocorrelations =        53          Number of groups  =         53

Estimated covariances      =        53          Number of obs     =      2,332

Correlation:   panel-specific AR(1)

Panels:        heteroskedastic

Coefficients:  generalized least squares

Cross-sectional time-series FGLS regression
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Regression output 11: 

 

 

 

F test that all u_i=0: F(100, 4342) = 2.97                   Prob > F = 0.0000

                                                                              

         rho    .06328828   (fraction of variance due to u_i)

     sigma_e    .05199174

     sigma_u    .01351428

                                                                              

       _cons     .0295828   .0016489    17.94   0.000     .0263501    .0328155

           n     .4587507   .0793738     5.78   0.000     .3031374    .6143639

                                                                              

        gr_Y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

corr(u_i, Xb)  = 0.0034                         Prob > F          =     0.0000

                                                F(1,4342)         =      33.40

     overall = 0.0197                                         max =         44

     between = 0.1675                                         avg =       44.0

     within  = 0.0076                                         min =         44

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =        101

Fixed-effects (within) regression               Number of obs     =      4,444

Prob>chi2 =      0.0000

chi2 (101)  =  13226.77

H0: sigma(i)^2 = sigma^2 for all i

in fixed effect regression model

Modified Wald test for groupwise heteroskedasticity

                                                                              

         rho    .04353654   (fraction of variance due to u_i)

     sigma_e    .05199174

     sigma_u    .01109244

                                                                              

       _cons     .0295528   .0017769    16.63   0.000     .0260701    .0330355

           n     .4603912    .063039     7.30   0.000      .336837    .5839454

                                                                              

        gr_Y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                                Wald chi2(1)      =      53.34

     overall = 0.0197                                         max =         44

     between = 0.1675                                         avg =       44.0

     within  = 0.0076                                         min =         44

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =        101

Random-effects GLS regression                   Number of obs     =      4,444
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                Prob>chi2 =      0.9729

                          =        0.00

                  chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B)

    Test:  Ho:  difference in coefficients not systematic

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg

                           b = consistent under Ho and Ha; obtained from xtreg

                                                                              

           n      .4587507     .4603912       -.0016405        .0482316

                                                                              

                   fixed        random       Difference          S.E.

                    (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))

                      Coefficients     

                          Prob > chibar2 =   0.0000

                             chibar2(01) =   171.06

        Test:   Var(u) = 0

                       u      .000123       .0110924

                       e     .0027031       .0519917

                    gr_Y     .0028793       .0536589

                                                       

                                 Var     sd = sqrt(Var)

        Estimated results:

        gr_Y[country_n,t] = Xb + u[country_n] + e[country_n,t]

Breusch and Pagan Lagrangian multiplier test for random effects

                                                                              

         rho    .04353654   (fraction of variance due to u_i)

     sigma_e    .05199174

     sigma_u    .01109244

                                                                              

       _cons     .0295528   .0035916     8.23   0.000     .0225133    .0365922

           n     .4603912   .1910892     2.41   0.016     .0858634    .8349191

                                                                              

        gr_Y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                             Robust

                                                                              

                            (Std. Err. adjusted for 101 clusters in country_n)

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0160

                                                Wald chi2(1)      =       5.80

     overall = 0.0197                                         max =         44

     between = 0.1675                                         avg =       44.0

     within  = 0.0076                                         min =         44

R-sq:                                           Obs per group:

Group variable: country_n                       Number of groups  =        101

Random-effects GLS regression                   Number of obs     =      4,444
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7.4 REFLECTION NOTE 

In my master thesis, I have applied empirical econometric methods to the study of 

macroeconomics and economic growth. Relevant equations, mostly from macroeconomic 

theory, have been derived and proven mathematically. Data has been collected from The Penn 

World tables which is a famous and well-maintained database. Tests and analysis have been 

performed on the sample data using methods of linear regression, time series and panel data 

analysis using the statistical software Stata.  

As a basis prior to starting the thesis, I benefited from knowledge of advanced macroeconomic 

theory that I gained during my exchange period at the University of Economics in Prague. This 

knowledge made it possible for me to efficiently conduct preliminary research and understand 

the motivation of the debate on convergence. I have gained personal interest in the topic of 

convergence and have found the process of writing the thesis to be both academically 

challenging and rewarding. My master thesis is a highly representative pinnacle of both my 

bachelor and master programs. During the bachelor program of Mathematical Finance, I was 

provided with a comprehensive set of tools to approach and understand mathematical and 

statistical aspects that are essential in econometrics as well as an in economic and financial 

theory.  

The results of my research reveal significant tendencies of convergence between countries. The 

convergence however, is not persistent and is greatly affected by unobserved characteristics 

that are unexplained by the neoclassical growth theory. The augmented Solow model includes 

the factor of human capital in the model which is proved to help with consistency between the 

neoclassical growth theory and the empirical results. The results motivate for further research 

that includes other characteristics.  

Studying economic growth is important for the understanding of movements in the world 

income distribution and the welfare of individuals. The goal of economic growth research is to 

better understand the economic dynamics so as to enable pursuit of policies that increases 

standards of living and decreases world poverty. These are among the goals of international 

organizations such as The Organization for Economic Co-operation and Development (OECD) 

and The United Nations (UN). With drastically increasing globalization, countries become 

more interdependent and increasingly similar to each other in many ways. Therefore, the 

question of convergence is tightly connected to globalization, international markets and trade 

as well as international policies and agreements.  
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Macroeconomic theory aims to explain as much as possible of the economic behavior of 

economies through common characteristics. One characteristic is technology and how 

technological progress takes place. Technology, in many cases, has spillover effects such as 

when countries succeed in acquiring new technology that is created or realized by other 

countries through international trade or through the exchange of knowledge. Technology and 

knowledge in this thesis are the same and is defined as the employment rate. This implies that 

the increase in employment rate is driven by technological progress, also called innovative 

ideas. Innovative ideas being defined as only those which contribute to creating new jobs and 

increasing the employment rate. In real life cases, this is not always true but innovative ideas 

and entrepreneurship are nevertheless important drivers of creating new jobs. 

Innovation in economic growth research is much needed. As my research shows, there are 

significant unobserved characteristics of economic growth that explain country specific 

differences. Innovation in economic growth can be achieved through identifying and measuring 

these characteristics. Observing and maintaining observations for as many countries done for 

The Penn World Tables requires significant effort. The Penn World Tables have included a 

measure for human capital only in recent versions. This shows the magnitude of work behind 

introducing an idea of a factor to measuring and collecting data for the quantity of countries in 

the world. Filling these data gaps increases the knowledge base for understanding aspects such 

as prosperity.  

Policies that increase standards of living and decrease world poverty are of interest to the 

general public and considered to be a globally shared responsibility. However, there are policies 

that have the opposite effect on global welfare such as anti-competition, tax wars and 

protectionism. These policies are often strongly connected to political beliefs such as 

nationalism without regards to actual knowledge about economic dynamics. Motivations 

behind different political ideologies and philosophies are important to understand when 

predicting the dynamics of international prosperity. Consequently, I believe that this should 

also be taught in business schools in a larger extent, specifically the background for 

international policy making and how seemingly unethical policies and trades affect world 

income distribution and the welfare of individuals.  

In conclusion, I am grateful for the opportunity of studying Mathematical Finance as my 

bachelor program before the program was unfortunately discontinued. I am also grateful for the 

exchange period which gave me new insights as well as a new perspective of international 

academia. I am genuinely convinced that the knowledge and understanding I have acquired 
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through the master program at the University of Agder will make a significant difference for 

me at the onset of my professional career, and to my ability to successfully contribute 

constructively in our quest to better our common globe.  
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