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ABSTRACT

The large number of nodes forming current sensor net-
works has made essential the use of distributed mechanisms in
many traditional applications. In the emerging field of graph
signal processing, the distributed mechanism of information
potentials constitutes a distributed graph filtering process that
can be used to solve many different problems. An important
limitation of this algorithm is that it is inherently iterative,
which implies that the nodes incur in a repeated communica-
tion cost along the exchange periods of the filtering process.
Since the sensor nodes are battery powered and radio commu-
nications are energy demanding operations, in this work, we
propose to redesign the network topology in order to reduce
the total energy consumption of the filtering process. An ac-
curate energy model is proposed and extensive numerical re-
sults are presented to show the efficiency of our methodology
according to this energy model.

Index Terms— Topology design, graph filter, distributed
algorithm, wireless sensor network

1. INTRODUCTION

Over the past years, distributed algorithms have been revealed
as crucial mechanisms to efficiently solve many different
problems appeared in increasingly complex wireless sensor
networks (WSNs). Among many other advantages over cen-
tralized solutions, distributed algorithms reduce congestion
around central entities and add robustness to the network in
case of failures. As relevant examples, consensus algorithms
[1–3] and information potentials [4] are two distributed algo-
rithms that map the signal sensed in close proximity to each
sensor device to a value more meaningful within the global
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network context. This mapping presents an enormous poten-
tial as seen in [3] for consensus algorithms and recently in
[4] for information potentials. In the emerging field of graph
signal processing [5, 6], the information potentials algorithm
is a distributed graph filter (i.e., potential kernel graph filter)
that can be used to solve many problems, such as smoothing,
greedy search and information discovery [4]. Recently, in
order to detect the boundary and the region of an event of
interest (e.g., oil or chemical spill), Loukas et al have pro-
posed in [7] to filter the signal event in the spectral domain by
subtracting two potential kernels or alternatively to apply the
Laplacian after the signal has been smoothed by the potential
kernel.

An important limitation of the proposed distributed filter-
ing approach is that it is inherently iterative, which means
that the nodes incur in a high energy consumption due to
the need of performing repeated communications over time.
Since radio communication is a very energy demanding oper-
ation in WSNs and nodes are usually battery powered, energy
becomes a scarce resource that needs to be preserved.

In the past few years, there have been some works dedi-
cated to design the network topology in order to reduce the en-
ergy consumption in WSNs when performing consensus algo-
rithms [1–3], but none has dealt with the equivalent problem
for the potential kernel graph filter. In this paper, we tackle
this new problem, which significantly differs from the consen-
sus case. In particular, the convergence time of the distributed
potentials graph filter includes extra information of the net-
work topology, which makes the optimal topology in terms
of energy consumption to be, in general, very sparse. Since
the problem is a complex combinatorial problem and can not
be solved efficiently in polynomial time, we propose an effi-
cient distributed heuristic algorithm to redesign the topology.
We propose an accurate energy consumption model and show
by extensive simulations that our methodology provides good
performance in terms of the total energy consumption per fil-
tering process. To the best of our knowledge, our work is
the first one that focuses on the topological design problem
in WSNs to reduce the energy consumption when applying a
graph filter.

The remainder of this paper is organized as follows, Sec-
tion 2 presents the main background on graph theory and
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graph filters. In Section 3, the energy optimization problem is
formulated. Section 4 and 5 present respectively the proposed
heuristic algorithm and its performance evaluation. Finally,
Section 6 states the conclusions of the work.

2. BACKGROUND

In this section, we review the main background related to the
concepts of graph theory and graph filters.

Let G(V, E) denote an undirected graph where V is a set
of N vertices or nodes and E is a set of M links or edges
such that if node i is connected to j, then (i, j) ∈ E . For
any given graph G, we define the N×N adjacency matrix A,
where [A]ij = 1 if an only if (i, j) ∈ E . Note that self-
loops (i, i) are allowed. The set of neighbors of node i is
defined by Ωi = {j ∈ V : (i, j) ∈ E}. The degree of node
i is di =

∑
j∈Ωi

[A]ij and D is the diagonal degree matrix
including these degrees. Finally, we denote by dmax, davg, dmin
the maximum, the average and minimum network degree.

A graph signal, defined on the set of nodes of the graph,
is a mapping x : V → R, and represented as a vector x =
[x1, ..., xN ]T ∈ RN . The i-th component xi represents the
signal value at the i-th vertex in V .

A graph filter (GF) is a system H that takes a graph signal
x as an input, processes it, and produces another graph sig-
nal y as an output. A graph filter H : RN → RN is a map
between graph signals, which is represented by anN×N ma-
trix. GFs can be classified into two types [6, 8]: Infinite Im-
pulse Reponse (IIR) GFs and Finite Impulse Response (FIR)
GFs. Contrarily to IIR GFs, FIR GFs are designed such that
their impulse responses are finite in the vertex domain. On
the other hand, IIR GFs have the advantage of being less sen-
sitive to graph and signal variation at the expense of higher
communication cost.

The potential kernel is an IIR GF computed in [4] as:

y
(t+1)
i = (1− ϕ)

∑
j∈Ωi

yj
(t)

di
+ ϕ xi (1)

where ϕ is an inhibiting factor such that 0 < ϕ ≤ 1.
By introducing the matrix P = D−1A, the output of the

potential kernel at iteration t can be rewritten as [4]:

y(t+1) = (1− ϕ) P y(t) + ϕ x (2)

In the steady state (i.e. convergence), the output of the poten-
tial kernel Hϕ is given by [7]:

y = Hϕ x = D−
1
2

n∑
k=1

(1− ϕ
ϕ

λk + 1
)−1

〈D 1
2x,ψk〉 ψk

(3)
where (λk, ψk) are the eigenpairs of the normalized Lapla-
cian L of the graph.

It has been shown in [4] that in time-invariant graphs and
signals, the potential kernel converges ε-close to the steady
state after nex exchange periods:

nex = ϕ−1 log
( c
ε

)
(4)

where c = (q2 + q)‖x‖ and q = N
2M dmax + (1− λ2)

√
dmax
dmin

.
The potential kernel disseminates the information con-

tained in the signal over multiple hops, which is crucial for
many information processing tasks in WSNs. However, the
communication cost of this distributed mechanism is gener-
ally high for very energy constrained sensor devices since it
needs to be computed iteratively. This rises the need to inves-
tigate efficient mechanisms to reduce the energy consump-
tion, which should be distributed as the potential kernel itself
to be useful in a WSN framework.

3. PROBLEM FORMULATION

Each of the N vertices included in the graph G models a sen-
sor node with an omni-directional antenna, which has been
deployed uniformly at random over certain area of interest.
Each sensor i broadcasts its data, which means that a single
transmission is sufficient to communicate with all the neigh-
bors within its transmission range Ri. We assume that there
is an underlying MAC protocol that resolves collisions and
maintains the topology. Our model considers the fact that
the graph filtering process is divided in nex exchange peri-
ods of communication. At each of these exchange periods,
every node receives (di − 1) packets of a certain size z from
its neighbors, makes some local computations and broadcasts
the new state to its neighbors.

The energy consumed by a node i in each exchange period
is determined as follows:

Ei = (di − 1) (αR + γ) + αT (5)

where αR and αT are the energy spent by a sensor node to
receive and transmit one message respectively and γ is the
energy spent by a sensor node to make the needed computa-
tions for this packet in a single exchange period.

The energy spent by a sensor node to receive a message
of size z in bits is given by [9]:

αR = ERXelec z (6)

where ERXelec is the energy spent by the electronic circuitry
at the receiver in J/bit.

The energy in joules required by a node i to transmit a
packet of z bits to a node j located at a distance rij , is given
by [9]:

αT = (ETXelec + Eampr
β
ij) z (7)

where ETXelec is the energy spent by the electronic circuitry
at the transceiver in J/bit, Eamp is the energy dissipated at the



amplifier in J/bit/m2 and β is the path loss exponent which is
about 2 for free-space and higher in-door.

Finally, the energy spent by a sensor node on the compu-
tation at a single exchange period, when processing a single
packet, is calculated as follows:

γ = Ecp z (8)

where Ecp is the energy dissipated when processing a single
packet and represented in J/bit/packet.

Therefore, the total energyEtotal consumed in the network
when applying the graph filter is given by:

Etotal = nex

N∑
i=1

Ei (9)

Since the sensor devices are often powered by batteries,
implying a limited energy capacity, it is very important to
reduce the energy consumption when applying the potential
kernel in WSNs by re-designing the network topology.

Our problem is to determine the optimal topology (i.e.
Adjacency matrix) that minimizes the energy consumption
when applying the potential kernel. The corresponding op-
timization problem can be formulated as follows:

minimize{A} nex(A)

N∑
i=1

Ei(A)

s. t. ξ ≤ λ2(L(A))
[A]ij = [A]ji ∀i, j ∈ V
[A]ij ∈ {0, 1} if rij ≤ Ri ∀i, j ∈ V
[A]ij = 0 if rij > Ri ∀i, j ∈ V

where ξ is an arbitrary small positive constant that ensures
that λ2(L(A)) is larger than zero and the graph is connected.
The second constraint guarantees that the resulting adjacency
matrix is symmetric. The third and fourth constraints imply
that the entries of the adjacency matrix are zeros or ones, de-
pending on the distance between the two nodes involved and
the transmission range at each node.

Our problem is a combinatorial non convex problem due
to the objective function and binary variables constraints.
This means that the problem cannot be solved efficiently
in polynomial time. Therefore in this paper, instead of at-
tempting to solve this problem in an optimal way, our goal
is to propose a distributed solution that is efficient in reduc-
ing the total energy consumption and has a polynomial time
complexity.

4. TOPOLOGY DESIGN FOR ENERGY EFFICIENT
FILTERING

Our initial topology is formed from a randomly and densely
deployed network of N nodes inside a 2D (sufficiently) large
square area of a side L, where a link between two nodes is

established if their internode distance is shorter than their
maximum transmission range Rmax, i.e., the maximally con-
nected topology.

Definition1: A strongly connected network is a network
where exists a multi-hop path between every pair of nodes.
A randomly deployed network is strongly connected with
high probability (i.e., 1 − 1

N2 ) if it is accomplished [10] that
Rmax ≥ L

√
2 logN/N .

Definition2: A k-regular network is a network where all the
nodes present the same degree k.

Lemma 1: The network topology with minimum filtering
time (4) is a k-regular network with the maximum connectiv-
ity allowed by the maximum transmission range of the nodes,
given by Rmax.

Proof. The proof is based on the fact that for a k-regular net-
work, it is accomplished that k = davg = M

N = dmax = dmin.
This implies that the parameter q can be simplified to q =
1
2 +(1−λ2(L)), which means that the convergence time only
depends λ2(L)). Finally, λ2(L)) is a non-decreasing function
of A [11], which implies that as larger the value of k is, the
smaller the value of nex.

A direct conclusion from Lemma 1 is that the fully con-
nected topology is the one that minimizes the filtering time
in (4). However, the maximum transmission range of the
nodes Rmax prevents in most situations to create such topol-
ogy. Moreover, an important observation is that the fully con-
nected topology is not generally optimal in terms of energy
consumption, since it implies long links that may require a
high energy consumption to be maintained. Finally, creating
a k-regular network is not always easy in broadcast networks
due to the different nodes densities in the deployment area,
leading to a Poisson degree distribution around the parameter
davg, as we explain next.

Suppose that the size of the square area is L2. Since the
deployment is generated uniformly random, the probability
that there is a link between any two nodes is simply given
by p = πR2

L2 and the average average degree davg that each
node has is (approximately) davg = Np = N πR2

L2 . According
to [12], the degree distribution for a random network can be
approximated by a binomial distribution, or in the limit for
large scale networks, by a Poisson distribution. Thus, assum-
ing a large-scale network, the probability of any node having
degree k is:

p(k) =
e−davgdkavg

k!
(10)

and the degree distribution is simply Np(k).
If a k-regular network can not be created due to one or

several nodes having a degree di different to k, the links es-
tablished by the nodes with di > k must imply an increase
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Fig. 1: Our distributed heuristic compared with the maximally connected topology and the meta-heuristic Simulated annealing
(SA) in terms of the four parameters presented in this work.

on λ2(L)) such that it compensates the irregularity1. In the
opposite case, it is better to remove them such that dmax = k.

In the most favourable irregular scenario and assuming an
odd number of nodes, N − 1 nodes will have a degree equal
to k + 1 and only one node will have a degree equal to k.
In that case, the effect of the 2(N − 1) links on λ2(L)) has

to be at least2
√

1
kλ2(L)). This can be easily obtained from

the expression of q, where we have noted that for large scale
networks the first term can be still approximated by 1

2 .
Given the degree distribution in (10), if we redesign the

topology such that all the high degree nodes (di > dmin)
reduce their transmission range, we can make the network
topology more regular, reducing both the value of dmax

dmin
and the

energy consumption per round (5) of the high degree nodes.
A distributed heuristic with this philosophy is the follow-

ing, starting from the maximally connected topology, nodes
successively reduce an arbitrarily small amount their trans-
mission range. Without altering the topology, during the first
steps, all transmission ranges of the nodes go from Ri =
Rmax ∀i ∈ V to Ri = max

(i,j)∈E
{rij}.

After this first phase, the high degree nodes di > dmin start
reducing their transmission range and removing the longest
link each step. During the process, some low degree nodes
may be forced to reduce their connectivity due to the high de-
gree nodes not being able to reach them. Note that symmetry
is forced in order to ensure convergence. Finally, each range
reduction implies a decrease on the energy consumption per
exchange period.

As an additional design procedure, note that links could
be disabled between nodes able to communicate with each
other, as proposed in [13]. This may reduce the quotient dmax

dmin

even more, reducing the convergence time in the majority of
the cases. However, for simplicity, we evaluate only the effect
of reducing the transmission range of the nodes.

1The irregularrity can be quantified by the quotient dmax
dmin

.
2For one level of irregularity (i.e., dmax−dmin = 1), the larger the number

of links added, the easiest to compensate the irregularity.

5. NUMERICAL RESULTS

Extensive simulations were conducted in MATLAB to evalu-
ate the performance of the proposed heuristic for optimizing
the network topology, where the potential kernel is applied.
A setup of N = 1000 sensor nodes randomly and uniformly
distributed over a square area of a side L = 200 is consid-
ered in our simulations. The sensor nodes are assumed to
inject in the network an input signal such that ‖x‖ = 1. We
also assume the following typical parameter values: z=200
Bytes, ε = 0.0001, ϕ = 0.1, β = 2, Ecp=5 nJ/bit/packet,
ERXelec=ETXelec=50 nJ/bit, Eamp=100 pJ/bit/m2 [9].

The performance of the proposed heuristic algorithm is
analyzed in term of the number of exchanges nex, the energy
consumption per exchange period and the total energy con-
sumption. We compare the different results to those obtained
in the initial topology and Simulated Annealing (SA). The
latter is a meta-heuristic algorithm that relies on randomness
to generate good approximate solutions to combinatorial or
NP-hard problems.

Fig. 1 (a) shows that when applying the proposed dis-
tributed heuristic, the number of exchanges can be signifi-
cantly reduced as compared to the maximally connected net-
work by reducing the network connectivity. This is some-
thing counter-intuitive and is explained by the behavior of the
term dmax

dmin
(see Fig1 (b)), which is a measure of the extent of

regularity in the network. In general, for a similar link den-
sity, as more regular the network is, the smaller number of
exchange periods is needed to converge. Finally, since reduc-
ing connectivity always improves the energy consumption per
exchange period (see Fig. 1 (c)), the total energy consumption
is dramatically reduced by applying our distributed heuristic
as shown in Fig. 1 (d). It can also be noticed from Fig. 1 that
our distributed and low-complex heuristic provides almost the
same results as the SA heuristic, which utilizes much more
computational power to search for the optimal topology.



6. CONCLUSION

In this paper, we have formulated the problem of optimizing
the network topology in order to minimize the total energy
consumption of the potential kernel graph filter in WSNs.
Since this problem is computationally too complex, we pro-
pose a distributed and low complex heuristic algorithm. The
numerical results show that our algorithm provides good per-
formance in terms of the total energy consumption required to
execute the filtering process when compared to the maximally
connected topology and the Simulated Annealing results.
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