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Abstract

This paper introduces a new approach to develop stochastic non-stationary channel models, the

randomness of which originates from a random trajectory of the mobile station (MS), rather than

from the scattering area. The new approach is employed by utilizing a random trajectory model based

on the primitives of Brownian fields (BFs), while the position of scatterers can be generated from an

arbitrarily two-dimensional (2D) distribution function. The employed trajectory model generates random

paths, along which the MS travels from a given starting point to a fixed predefined destination point.

To capture the path loss, the gain of each multipath component is modelled by a negative power law

applied to the travelling distance of the corresponding plane wave, while the randomness of the path

travelled results in large-scale fading. It is shown that the local received power is well approximated by

a Gaussian process in logarithmic scale even for a very limited number of scatterers. It is also shown

that the envelope of the complex channel gain follows closely a Suzuki process, indicating that the

proposed channel model superimposes small-scale fading and large-scale fading. The local power delay

profile (PDP) and the local Doppler power spectral density (PSD) of the channel model are also derived

and analyzed.

Index Terms — Non-stationary channels, random trajectory models, small-scale fading, large-

scale fading, path loss, envelope of the complex channel gain, received power.
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I. INTRODUCTION

The demanding mobility features of communication technologies call for the need for advanced

channel models (among other needs), in which non-stationary aspects of the channel are carefully

taken into account. In this connection, many empirical and analytical investigations, e.g., [1]–[3]

show that the stationary assumption for the channel is only valid for extremely short travelling

distances [4]. Nevertheless, the number of non-stationary channel models [5]–[12] proposed in

the literature is still very limited. A geometry-based non-stationary channel model for high-speed

train communications has been developed very recently in [5]. A non-stationary channel model

with fixed scattering volumes with an application in the rural land-mobile satellite environments

has been developed in [6]. A non-stationary T-junction channel model with randomly distributed

scatterers for vehicular communications was also proposed in [7]. The utilized path models

in [5]–[7] do not support variations of the angle-of-motion (AOM) of the MS. This is in contrast

with real-world moving scenarios in which the AOM varies along the travelling path. The non-

stationary channel model proposed in [8] mitigates this contradiction by assuming that the AOM

of the MS changes in time. The geometry-based non-stationary channel models proposed in [9]

and [10] capture and analyze the effect moving scatterers, while this effect is automatically

captured in the measurement-based non-stationary channel models developed in [4] and [11].

In the WINNER II class of channel models [13], incremental movements of the MS are

connected by correlating large-scale channel parameters between these increments, resulting

explicitly in a non-stationary channel model. The approach used to develop WINNER II channel

models is a system-level approach, in which required channel characteristics, such as the angular

spread, are first defined, and then the corresponding clusters of random scatterers are generated.

A drawback of the channel models developed by this approach is the rigidity in capturing new

channel characteristics once the model is developed [14]. In the COST family of channel models,

e.g., COST 2100 [14], the movement of the MS in the propagation area causes the visibility of

different clusters to change, resulting implicitly in a non-stationary channel model. The cluster-

level approach employed to develop this family starts from generating a large quantity of clusters

with randomly distributed scatterers inside, and then the synthetic channel characteristics are

derived.

A similar approach to the development of non-stationary channel models is to update the
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channel characteristics along the travelling path of the MS, which is surrounded by randomly

distributed scatterers. For instance, the authors in [8], [15] provide a non-stationary one-ring

channel model under the assumption that the MS is moving along a fixed trajectory surrounded

by a ring of randomly distributed scatterers. In this paper, this approach is featured by allowing

the trajectory of the MS to be random, while the position of the scatterers is fixed. This expansion

adds considerably to the robustness of the channel model with respect to the number of scatterers,

such that the desired statistical properties can be obtained even if the propagation area is sparsely

seeded with scatterers. This is the major superiority of the channel models developed by this

new approach to those developed by the existing approaches in the literature.

This paper utilizes a recently proposed [16], [17] random trajectory based on the primitives

of BFs, along which the MS is assumed to move. The proposed trajectory model in [16] is

able to generate many different configurations of the path with different smoothness levels. In

this paper, the focus is on one important path configuration by which the arrival at a fixed

predefined destination point is assured. To cope with the scattering effect of the propagation

area, a 2D Gaussian probability density function (PDF) is employed to generate the positions

of the scatterers. It is then assumed that the position of the scatterers is fixed, while the MS

travels through the scattering area along a random path heading to a fixed destination point.

Accordingly, the randomness of the channel model originates from the randomness of the

trajectory, rather than that of the scattering area. We consider a fixed-to-mobile (F2M) frequency-

selective communication scenario, in which the waves emitted from the base station (BS) antenna

arrive at the MS antenna after a single bounce from every scatterer.

An additive complex channel gain model for the aforementioned propagation scenario is

provided, in which not only the Doppler frequencies, but also the propagation path delays

and the propagation path gains are stochastic processes that vary in position. In our model,

the path gains are determined by a negative power law applied to the total travelling distance

of the plane waves, which is in line with the basic idea of any path loss model. This paper

also presents the angle-of-arrival (AOA) process and the AOM process, from which the Doppler

frequency process is derived. The corresponding first-order densities are computed. Accordingly,

the complex channel gain of the proposed non-stationary channel model is fully characterized.

In addition, the first-order density of the channel gain envelope, the first-order density of the

mean received power, as well as the local PDP and the local Doppler PSD are derived.
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The simulation results confirm that the proposed channel model is non-stationary. Given a

sparse scattering area, we show that the power of each incoming wave, the so-called received

path power, follows closely the lognormal distribution. It is also proved that the sum of the

received path powers, i.e., the total received power, is well approximated by a Gaussian process

in logarithmic scale, indicating that the proposed channel model captures the effect of shadowing.

The normality of the mean received power complies with the result reported in [18], where

a ground-breaking additive model was considered as a physical basis for modelling shadow

fading. Furthermore, it is shown that the envelope of the channel gain is well approximated

by a Suzuki process, confirming that the proposed channel superimposes large-scale fading and

small-scale fading. Noteworthy is that many measurement campaigns confirm that multi-scale

fading channels under non-line-of-sight propagation conditions are best modelled by a Suzuki

process [19], [20]. Moreover, it is shown that the proposed channel model has two degrees of

freedom to control the spread of the shadowing. It is also demonstrated that the spread of the

shadowing is approximately independent of the position of the BS. This also agrees with the

empirical results reported, e.g., in [21]–[25]. In addition, our numerical results show that the

mean received power decreases by increasing the BS-to-MS distance, affirming that the model

captures the path loss effect as well. Finally, illustrative results reveal that the time-varying effect

of each scatterer on the local PDP and the local Doppler PSD can perfectly be tracked if the

channel is sufficiently sparse.

The novelty of the paper arises from the following features. The paper introduces a new

approach to channel modelling under non-stationary conditions. This approach is also useful

for the simulation/interpretation of measurement campaigns, in which a certain propagation area

(fixed scattering area) undergoes several measurement trials (random trajectories). The proposed

non-stationary channel model superimposes different levels of fading via a physically explainable

multipath fading model, rather than a multiplicative one. The proposed channel model provides

a physical (geometrical) insight to the theoretical studies in [18], [26]. The results provided in

this paper are very useful for the development of mobile communication systems, e.g., for the

design of Rake receivers [27], power control and handoff algorithms. It is also noteworthy that

the contributions of [16] and this paper are fundamentally different. The main contribution of [16]

is to develop a flexible trajectory model to capture mobility patterns with potential applications

in different avenues of science, including social studies, emergency management, evacuation
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modelling, and of course communications engineering. In this paper, we consider an application

in mobile communications engineering, where the trajectory model is employed to develop a

stochastic non-stationary channel model capturing different scales of fading.

The remainder of this paper is organized as follows. Section II introduces the concept of the

new approach, while Sections III and IV employ the new approach to model the propagation

area and the trajectory of the MS, respectively. The complex channel gain of the proposed non-

stationary channel model is developed and characterized in Section V. The statistical properties

of the channel model are analysed in Section VI, whereas the simulation results are provided in

Section VII. Finally, Section VIII draws the conclusions.

II. THE NEW APPROACH

The traditional approach in geometrical (statistical) channel modelling is to start from a

geometric pattern filled by randomly distributed scatterers. A list of such models can be found

in [28], [29]. The randomness of the position of scatterers is then injected to the characteristics

of the channel model, such as its envelope, PDP, Doppler PSD, and correlation properties.

One of the key factors influencing the characteristics of the channel models designed by this

approach is obviously the number of scatterers. To provide a so-called reference model, this

number is assumed to tend to infinity. In this paper, this is called the infinity assumption. The

infinity assumption then allows designers to apply some limit theorems, such as the central limit

theorem (CLT) of Lindeberg-Lévy, to conclude that the proposed channel model behaves like a

Rayleigh, Rice, or lognormal (CLT for products) fading channel. The obvious shortcoming of

these reference models is that the infinity assumption does not hold in real-world propagation

scenarios. Even if the infinity assumption holds, moving through the propagation area would

not be possible. Therefore, proposing any mobile radio channel model with an infinite number

of scatterers is mathematically convenient but physically meaningless. Another issue is the

restriction of computer-based simulation environments, where applying the infinity assumption is

not possible. Accordingly, designers provide a so-called simulation model, in which the infinity

assumption is relaxed by reducing the number of scatterers. However, this reduction degrades

the characteristics of the channel model somewhat from those of reference models.

This paper introduces a new approach in which the randomness of the channel model originates

from the randomness of the trajectory of the MS, while the scattering area remains fixed. The
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positions of the scatterers are determined either by realizing any desired 2D distribution function,

or by setting them manually. The new approach assumes a random trajectory, along which the

MS is in motion through a fixed scattering area. Surveys of random trajectory models can

be found in [30]–[32]. Very recently, a highly flexible random trajectory model based on the

primitives of BFs has been proposed in [16]. Let us assume that the MS is moving along a

random trajectory generated by a mobility model. For a fixed scattering area, each realization of

the trajectory results in different AOMs of the MS, different AOAs at the MS, as well as different

travelling distances of the plane wave emitted from the transmitter. Therefore, the randomness

of the trajectory model is injected to the characteristics of the corresponding channel model. The

motion of the MS along a given trajectory also allows us to capture the non-stationarity of the

propagation area.

This paper shows that the main statistical properties of the non-stationary channel model

developed by applying the new approach are very robust with respect to the number of scatterers.

For instance, it is shown that the envelope of the complex channel gain closely follows a Suzuki

process, even if the number of scatterers is only four. For the same number of scatterers, our

findings demonstrate that the local received power follows the lognormal distribution, indicating

that the channel model captures the shadow fading even for a very limited number of scatterers.

The merit of the new approach is not only its robustness with respect to the number of scatterers,

but also its capability to take the non-stationary aspects of the channel into account. Different

scales of fading can also be captured if the channel model is developed properly. In what

follows, we discuss how the new approach can be used to simulate a wide range of measurement

campaigns.

Let us first remark that the random mobility models in the literature can be divided into

two major categories [16]: 1) models that generate targeted trajectories, where each trajectory

realization is unique, but subject to a predefined drift (destination point) and 2) models that

generate non-targeted trajectories, where each trajectory realization results in a substantially

different trajectory. Now recall the principles of the new approach based on tracking the MS and

measuring the channel for different realizations of the trajectory surrounded by a fixed scattering

area. If the random trajectories are targeted, different travelling scenarios in a fixed propagation

area are somewhat simulated. A clear example is when the aim is to characterize an F2M channel

along a street. If this experiment is repeated, minor changes of the travelling path are unavoidable,
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whereas the scattering area is fixed for all trials. These minor changes are modelled by the

targeted random trajectory. If the random trajectories are non-targeted, measurement campaigns

carried out in distinct propagation areas are somewhat simulated. Notice that although, the new

approach assumes that the scattering area is fixed, choosing totally different travelling routes

(non-targeted trajectories) is almost similar to encountering different propagation areas.

It is noteworthy that with this approach, one may need a relatively large number of trials (ran-

dom trajectories) to find the average channel characteristics, such as those reported empirically.

Nonetheless, a large number of trials is in contrast neither with the potentials of any physical

channel, nor with the capabilities of computer-based simulation tools, such as MATLAB�.

III. THE PROPAGATION SCENARIO

Fig. 1 demonstrates a typical F2M propagation scenario, where the MS is travelling through

a scattering area, in which the BS is fixed and located at the distance D0 from the origin of

the Cartesian coordinate system. It is assumed that at a reference point in time t0, the MS starts

its motion from (x(0), y(0)) (or equivalently (xs, ys)) and moves along a random trajectory (see

Section IV) to reach the terminating point (x(L), y(L)) at time tL. Subsequently, the position

of the MS along a random trajectory at time tl ∈ [t0, tL] is represented by Cartesian coordinates

(x(l),y(l)), in which l denotes the corresponding position index. For a single realization of the

trajectory (see Fig. 1), the position of the MS at tl is shown by (x(l), y(l)). It is also assumed that

a plane wave emitted from the BS arrives at the MS with the AOA αR
n (l) after only one bounce

due to the nth scatterer Sn (n = 1, 2, ..., N) located at (xS
n , y

S
n). To reduce the mathematical

complexity of the model, the elevation angular spread of the propagation waves1 is ignored. This

assumption allows us to adapt the 2D Brownian trajectory model discussed in Section IV to the

proposed propagation model. It is also assumed that the MS is in motion with a constant speed2

of vR in the direction indicated by the AOM αv(l). It is also assumed that both the BS and the

MS are equipped with a single omnidirectional antenna.

To obtain the position (xS
n , y

S
n) of the scatterers, in principle, any 2D distribution function can

be used. Herein, a 2D zero-mean Gaussian distribution with the standard deviation σs of 500 m

1Such a model is applicable in cellular systems when low height base station antennas are employed [33], [34].

2With reference to [35], a variation of the speed and/or the direction of the MS results in a non-stationary channel model.
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Fig. 1. A typical F2M propagation scenario assuming single-bounce scattering.

is used to generate a sparse scattering area with only N = 4 scatterers3. Fig. 2 demonstrates

the results, where each scatterer has been marked by a different colour. The BS is placed at

(−500m, 0m), meaning that the distance D0 from the BS to the starting point of the MS is

500 m. Notice that owing to the sparsity of the channel, the position of the scatterers in Fig. 2

does not indicate a Gaussian distribution. Accordingly, these positions could be obtained by

any other 2D distribution function. Therefore, it can be concluded that the results provided in

this paper are not affected by changing the type of scatterer distribution function, provided that

the channel is sufficiently sparse. The interpretation of the plotted random trajectories in Fig. 2

follows in the next section.

IV. THE TRAJECTORY MODEL

To run the new approach, a recently proposed trajectory model [16] based on the primitives

of BFs is employed. According to this model, a path starting from (xs, ys) and terminating at or

in the proximity of a predefined destination point (xd, yd) is modelled by the random trajectory

3Notice that the number of scatterers can be set to higher values, as it may be expected in real-world propagation environments.

Nevertheless, to show the robustness of the proposed channel model with respect to the number of scatterers, as well as for

enabling visual inspections, the channel is studied under sparse scattering conditions.
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pT given by the following set of pairs

pT :

⎧⎨
⎩(px(l), py(l))

∣∣∣∣∣∣
px(l) = xs + kd lδx + σx pW x(l, kb)

py(l) = ys + kd lδy + σy pW y(l, kb)

⎫⎬
⎭ (1)

for l = 1, 2, ..., L, where L is a positive integer. The terms δx = (xd−xs)/L and δy = (yd−ys)/L

denote the deterministic increments along the x- and y-axis, respectively. The drift parameter kd

acts as a switch to control the presence of such a deterministic drift that forces the trajectory to

evolve towards the destination point (xd, yd). The parameter σx (σy) controls the randomness of

the trajectory process px(l) (py(l)) along the x-axis (y-axis).4 Furthermore, the objective of the

partial random bridge, defined as

pW x(l, kb) = pBx(l)−
kb l

L
pBx(L) (2)

models the randomness of the trajectory along each axis by means of the pth primitive pBx(l)

of the standard BF Bx(l) associated with the x-axis. The parameter kb is called the bridge

parameter, which determines the integration degree of the bridge to the destination point. In

addition, the primitive p determines the smoothness level of the trajectory, which increases as p

grows [16].

The trajectory pT in (1) has been designed in such a way that it allows: 1) arriving at a

predefined destination point (xd, yd) if the bridge is fully established, i.e., kb = 1; 2) arriving

at a target zone with a predefined radius and centre if the bridge is partially established, i.e.,

0 < kb < 1; 3) a totally random point in the 2D plane if the bridge is broken, i.e., kb = 0;

and finally 4) bridging back (closed loop) to the starting point (xs, ys) if the bridge is fully

established, i.e., kb = 1, but the drift component does not exist, i.e., kd = 0. The entire set

of configurations above plus several others have been shown and discussed in [16]. From the

configurations above, it can be concluded that pT in (1) allows for the generation of both targeted

and non-targeted random trajectories (see Section II). One of the novel features of pT in (1) is

its representation in position, rather than time. This allows us to test different speed scenarios

without influencing the trajectory configuration (see [16]).

In this paper, a special case of the random trajectory in (1) is considered, where the first

primitive of BFs is employed, i.e., p = 1, and the random bridge to the destination point (xd, yd)

4Note that owing to the symmetry of the trajectory model, the statistical properties of px(l) and py(l) are the same.
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Fig. 2. A simulated sparse scattering area (N = 4), illustrating several realizations of the random trajectory T in (1), where

L = 20.

is fully established, i.e., kb = kd = 1. This means that the model parameters are chosen such that

the trajectory model generates targeted random travelling paths. For such a special case, it has

been shown in [16] that if σx = σy, the random trajectory takes its maximum distance from the

shortest trajectory (straight line from the starting point to the destination point) at the position

index l = L/2. This maximum distance is denoted by σmax, which equals σx

√
L3/48. Since

investigating the effect of the primitive p is outside of the scope of this paper, we henceforth

drop the index p from the notations.

Fig. 2 displays several realizations of the random trajectory T in (1) for two different values

of σmax. It is assumed that the origin (0m, 0m) of the Cartesian coordinates is the starting point

of the travelling path, whereas the point located at (500m, 500m) is the destination point.

A different random trajectory model may be used to develop a stochastic non-stationary

channel model by means of the proposed approach in Section II. The flexibility and the usefulness

of the random trajectory model in [16] motivates us to choose it for generating the path of the

MS. In this context, it has been shown in both [16], [17] that the random trajectory in (1)
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captures many realistic mobility patterns, while the spatial properties of the path follow those

of real-world user tracings.

V. THE COMPLEX CHANNEL GAIN PROCESS

To model the complex channel gain of the propagation scenario (see Figs. 1 and 2), the

model in [36, pp. 45–48] is extended by considering the principles of non-stationary multiple-

component signals discussed in [37, pp. 19–21]. This expansion allows the Doppler frequencies5

fn(l), propagation path delays Dn(l), and the propagation path gains cn(l) to vary in the position

index l. Accordingly, this paper models the complex channel gain μ(tl) by means of the following

expression

μ(tl) =

N∑
n=1

μn(tl)

=

N∑
n=1

cn(tl)e
j(2π

∫ tl
−∞ fn(t

′
l)dt

′
l−k0Dn(tl)+φn) (3)

representing the sum of all scattered components μn(tl) in time6. In this equation, k0 = 2π/λ0

denotes the free-space wave number, where λ0 is the wavelength. The random variable φn

represents the phase shift of the nth propagation path caused by the physical interaction of

the transmitted signal with the nth scatterer Sn. It is often assumed that the phases φn are

independently and identically distributed random variables, each of which is uniformly distributed

between −π and π (see, e.g., [36, p. 47] and [39, p. 59]).

The corresponding time-variant impulse response of the multipath frequency-selective channel

can then be expressed by h(τ ′, tl) =
∑N

n=1μn(tl)δ(τ
′ − τ ′

n(tl)), in which δ(·) represents the

Dirac delta function and the propagation delay τ ′
n(tl) associated with the nth scatterer equals

c−1
0 Dn(l).

Recall the trajectory model provided in Section IV. It is assumed that the position of the MS

is given by the pair of stochastic processes (x(l),y(l)) in (1). Furthermore, suppose that one

5The frequency shift caused by the Doppler effect is given by f = fmax cos(α), where fmax = f0v/c0 is the maximum

Doppler frequency, f0 denotes the carrier frequency, c0 stands for the speed of light, and α equals the difference between the

AOA and the AOM [38].

6For the sake of brevity of notations, henceforth, the time tl is replaced/briefed by the position index l, unless the temporal

representation helps to the clarity of the subject.
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realization of the Gaussian scattering area is given (see Fig. 2), which allows us to determine

the position (xS
n , y

S
n) of all N scatterers. Thus, one can represent the model parameters f n(l),

Dn(l), and cn(l) as stochastic processes that vary in the position index l. As a special case, these

parameters become deterministic values if only one realization of the trajectory T is considered.

Nevertheless, one still may have a stochastic complex channel gain μ(tl) if the phase shifts φn

are random. Another option to obtain a stochastic complex channel gain μ(tl) is to focus on

a single trajectory realization, while the scattering area is assumed to be random [8]. In what

follows, the parameters of the complex channel gain μ(tl) in (3) are studied in detail.

A. Propagation Path Length Process Dn(l)

Referring to Fig. 1, the total travelling distance Dn(l) of the nth plane wave is the sum of

a constant distance DBS−S
n from the BS to the position (xS

n , y
S
n) of the nth scatterer Sn and a

random distance DS−MS
n (l) from Sn to the position (x(l),y(l)) of the MS, i.e.,

Dn(l) = DBS−S
n +DS−MS

n (l)

=
√

(yBS − ySn)
2 + (xBS − xS

n)
2 +

√
(ySn − y(l))2 + (xS

n − x(l))2. (4)

Theorem 1. Let mx(l) (my(l)) and σx(l) (σy(l)) denote the mean and the standard deviation

of the process x(l) (y(l)) in (1), respectively. The first-order density pDn(dn; l) of the total

travelling distance process Dn(l) in (4) is given by

pDn(dn; l) =
dn −DBS−S

n

σ2
x(l)

exp

{
−(xS

n −mx(l))
2 + (ySn −my(l))

2 + (dn −DBS−S
n )2

2σ2
x(l)

}

× I0

(√
(xS

n −mx(l))2 + (ySn −my(l))2

σ2
x(l)

(dn −DBS−S
n )

)
(5)

where σx(l) = σy(l) and I0(·) denotes the zeroth order modified Bessel function of the first

kind.

Proof: See Appendix A.

From Theorem 1, the first-order density pτ ′
n
(τ ′n; l) of the propagation delay process τ ′

n(l) can

be derived. It is straightforward to show that pτ ′
n
(τ ′n; l) is given by pτ ′

n
(τ ′n; l) = c0 pDn(c0τ

′
n; l).

B. Propagation Path Gain Process cn(l)

With the objective to model Rayleigh and Rice processes, one of the widely made assumptions

in the literature (see, e.g., [39, p. 85]) is that the path gains cn(l) are equal, deterministic, and
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independent of the propagation path length Dn(l). We relax these assumptions by allowing the

path gains to be determined by cn(l) = CD−γ/2
n (l), where Dn(l) is the total travelling distance

of the nth path given in (4). The idea of this formulation originates from the fundamental concept

of any path loss model, according to which the received power (herein, the received path power

c2n(l)) reduces by a negative power law (controlled by γ) if the travelling distance (herein, Dn(l))

of the corresponding plane wave increases. This formulation also captures the definition of the

path magnitude provided in [36, p. 47]. The power law γ is often called the path loss exponent,

which has been reported to be γ = 2 in the free space, while it ranges from 3 to 5 in rural

and urban areas. Moreover, the constant C accounts for the total transmission power, antenna(s)

gain, wave length, number of scatterers N , and a few more physical parameters (see [40], [41]).

The propagation path gain process cn(l) is a non-linear transformation of the path length

process Dn(l). Therefore, its first-order density pcn(yn; l) can be obtained by applying the

concept of transformation of random variables [42, p. 130]. It follows

pcn(yn; l) =
2

γ

(
C2y−(γ+2)

n

) 1
γ × pDn((C

2y−2
n )

1
γ ; l) (6)

where pDn(·; l) is the first-order density of Dn(l) given in Theorem 1. Note that path loss

coefficients cn(l) vary in both n (with the position of scatterers) and l (with the position of the

MS). These coefficients follow the first-order density in (6), the randomness of which originates

from the randomness of the trajectory in (1).

Of great interest is also the first-order density pc2n(yn; l) of c2n(l), namely the received path

power associated with the nth plane wave. It can be shown that pc2n(yn; l) can be presented in

the following form

pc2n(yn; l) =
1

γ

(
C2y−(γ+1)

n

) 1
γ × pDn((C

2y−1
n )

1
γ ; l). (7)

It can be shown (not provided here) that pc2n(yn; l) follows closely the first-order density of

a lognormal process, which tends to a delta function as l tends to 0 and/or L. This is due to

that fact that the starting and terminating points of T in (1) are fixed (realization-independent).

Notice that this does not limit the applicability of the proposed non-stationary channel model, as

by changing the parameters of the trajectory model in (1), one can generate random trajectories

that do not necessarily terminate at a fixed destination point. In this case, the received path

power c2n(L) becomes a random variable, rather than a fixed value.
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C. Doppler Frequency Process fn(l)

The local Doppler frequency fn(l) is defined by a non-linear transformation of the local AOA

αR
n (l) and the local AOM αv(l) of the MS. It follows

fn(l) = fmax cos
(
αR

n (l)−αv(l)
)

(8)

where αR
n (l) and αv(l) are given by (see Fig. 1)

αR
n (l) = arctan

(
ySn − y(l)

xS
n − x(l)

)
(9)

and

αv(l) = arctan

(
y(l + 1)− y(l)

x(l + 1)− x(l)

)
(10)

for l = 0, 1, ..., L− 1, respectively.

Theorem 2. The first-order density pαR
n
(αn; l) of the AOA process αR

n (l) in (9) is given by

pαR
n
(αn; l) =

1

2π
exp

{
−
(
(xS

n −mx(l))
2 + (ySn −my(l))

2

2σ2
x(l)

)}

×
(
1 +

√
2πg(αn; l) erfc

(
−
√
2g(αn; l)

)
exp

{
2g2(αn; l)

})
(11)

where

g(αn; l) =
1

2σx(l)

(
(xS

n −mx(l)) cos(αn) + (ySn −my(l)) sin(αn)
)

(12)

and erfc(·) stands for the complementary error function [43, p. 887].

Proof: Following the discussion in the proof of Theorem 1, the AOA process αR
n (l) in (9)

can be considered as the phase of a complex Gaussian process with (xS
n − x(l)) and (ySn −

y(l)) as the inphase and quadrature component, respectively. The phase of complex Gaussian

processes with correlated components and non-identical means (variances) has been studied

in [44] and [45]. Setting ρ = 0 in [45, Eq. (2)] and performing some mathematical manipulations

results in (11).

The first-order density pαv(αn; l) of the AOM process αv(l) in (10) has been derived in [17].

Accordingly, the elements αR
n (l) and αv(l) of the local Doppler frequency process fn(l) in (8)

are completely determined. Nonetheless, deriving an analytical expression for the first-order

density pfn
(fn; l) of the Doppler frequency fn(l) is cumbersome, particularly because αR

n (l)

and αv(l) are not statistically independent processes. Therefore, the behaviour of f n(l) is studied

by means of simulations (see Section VII).
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VI. CHANNEL CHARACTERISTICS

In this section, other important characteristics of the channel, such as the envelope (of the

complex channel gain) process, local received power process, local PDP process, as well as the

local Doppler PSD (of the Doppler frequencies) process are investigated.

A. Envelope Process

Let ζ(tl) denote the envelope of the complex channel gain μ(tl) in (3), i.e., ζ(tl) = |μ(tl)|.
By fixing the position index l and using the result in [46, Eq. (18)], it follows that the first-order

density pζ(z; l) of the envelope process ζ(tl) is given by

pζ(z; l) = (2π)2z

∫ ∞

0

[
N∏

n=1

∫ ∞

0

pcn(yn; l)J0(2π ynx) dyn

]
J0(2π zx)x dx (13)

where pcn(yn; l) is the first-order density of the propagation path gain cn(l) provided in (6), and

J0(·) stands for the zeroth-order Bessel function of the first kind [43, Eq. (8.411.1)]. In agreement

with [39, p. 131], the Doppler frequency fn(l) and the phase shift φn have no influence on

pζ(z; l). However, pζ(z; l) is a function of the path gains cn(l), which are here allowed to change

with the propagation path length Dn(l) (see Section V-B). Moreover, referring to (13), pζ(z; l)

varies in the position index l, indicating that the envelope process ζ(tl) is non-stationary in the

strict sense. In Section VII, it is shown that depending on l, pζ(z; l) can be approximated by the

first-order density of different standard processes, including the Rayleigh, lognormal, Weibull,

and the Suzuki process. However, the goodness-of-fit is not always acceptable. Among the

aforementioned candidates, it is shown that the Suzuki process always gives the best fit to pζ(z; l)

in (13). This agrees completely with many empirical studies, reporting that physical channels

with both small-scale and large-scale fading are best modelled by the Suzuki process [19], [20].

Notice that the Suzuki process is a product process of a Rayleigh process and a lognormal

process. Notice that the aim of this paper is not to decompose the envelope ζ(tl) into Rayleigh

and lognormal processes, but to show that ζ(tl) superimposes small-scale fading and large-scale

fading (see [20]).
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B. Local Received Power

For a given trajectory, the local received power Ω(l) averaged over the random phase is

obtained by the conservation-of-power law [50], according to which

Ω(l) =
N∑

n=1

c2n(l) (14)

where c2n(l) = C2D−γ
n (l) in Watts is the position-dependent received path power associated with

the nth incoming plane wave (Proof: See Appendix B).

The first-order density pΩ(ω; l) of the total received power Ω(l) can then be obtained by the

following expression

pΩ(ω; l) =

+∞∫
−∞

ΨΩ(ν; l)e
j2πνω dν (15)

in which ΨΩ(ν; l) represents the characteristic function of the total received power Ω(l). This

function is the result of the product

ΨΩ(ν; l) =
N∏

n=1

Ψc2n
(ν; l) (16)

where Ψc2n(ν; l) denotes the characteristic function of the received path power c2n(l). The function

Ψc2n
(ν; l) is attained by taking the complex conjugate of the Fourier transform of the first-order

density pc2n(yn; l) of c2n(l) in (7), i.e.,

Ψc2n(ν; l) =

+∞∫
−∞

pc2n(yn; l)e
j2πνyn dyn. (17)

Providing a closed-form expression for the integral above is not possible. Nevertheless, this does

not affect our understanding of the distribution of the total received power Ω(l). Recall that the

received path power c2n(l) can be well approximated by a lognormal process (see Sections V-B

and VII). It has been shown theoretically that not only a sum of a few lognormal processes,

but also that of a large number of lognormal processes can be approximated by a lognormal

process [18], [26], [47]. Therefore, it can be concluded that the total received power Ω(l) in

(14) follows approximately a lognormal process both in sparse and rich scattering areas. In

Section VII, the numerical results show that for the considered sparse scattering area (N = 4),

the local received power Ω(l) follows closely the normal distribution in logarithmic scale.
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It is remarkable that the additive model proposed in [18] provides a physical basis for shadow

fading, whereas the traditional multiplicative approach is hard to be explained physically. In [18],

different distributions of c2n(l), including the lognormal, gamma, chi-square, and the Weibull

distribution, have been employed to show that the sum in (14) follows the Gaussian distribution

in logarithmic scale. However, the reason for these choices was never discussed. This paper

provides a geometrical insight to the additive shadow fading model presented in [18], in which

the distribution of c2n(l) is determined by a physical measure, namely the travelling distance

Dn(l) of the nth plane wave (see Section V-B). Nonetheless, the objective of our paper is not

to give a physical explanation for the shadow fading.

C. Local Power Delay Profile

The PDP of stationary channel models is obtained by the product of the time-invariant received

power and the PDF of the propagation delays. In reality, however, both the received power and the

propagation delay process vary in time (position). The non-stationary channel model proposed in

this paper takes these variations into account. Accordingly, the definition of the PDP is expanded

to the following local PDP

Sτ ′(τ ′; l) =
N∑

n=1

mc2n(l)pτ ′
n
(τ ′n; l) (18)

where

mc2n
(l) =

∞∫
−∞

yn pc2n(yn; l) dyn (19)

is the mean received power of the nth path and pτ ′
n
(τ ′n; l) is the first-order density of the delay

τ ′n(l) (see Section V-A). Furthermore, pc2n(yn; l) is the first-order density of the received path

power associated with the nth incoming plane wave (see (7)).

D. Local Doppler Power Spectral Density

The Doppler PSD of stationary channel models is the product of the time-invariant received

power and the PDF of the Doppler frequencies. These quantities are, however, time-variant in

practice. The local Doppler PSD is then given by

Sμμ(f ; l) =

N∑
n=1

mc2n(l)pfn
(f ; l) (20)

17



in which pfn
(fn; l) denotes the first-order density of the Doppler frequency fn(l). As discussed

in Section V-C, presenting pfn
(fn; l) in a closed form is cumbersome. Nonetheless, numerical

techniques (see Section VII) assist us to illustrate and analyze the local Doppler PSD Sμμ(f ; l)

in (20).

VII. SIMULATION RESULTS

A. Parameter Settings and Procedures

Given is the propagation area shown in Fig. 2, in which the N = 4 scatterers are distinguished

in four different colours. We again emphasize that the number of scatterers can be set to a

higher value. Nonetheless, to demonstrate the robustness of the proposed channel model with

respect to the number of scatterers, as well as for enabling visual inspections, the simulations are

performed under sparse scattering conditions. Recall from Fig. 2 that the MS starts its motion

from the origin (0m, 0m) of the Cartesian coordinates and travels toward the destination point

located at (500m, 500m). In addition, it is assumed that the BS is located at (−500m, 0m). The

operating frequency f0 = 2.1GHz of the universal mobile telecommunications system (UMTS)

is considered in our numerical computations. The speed of the MS is supposed to be 30 km/h,

which allows for a maximum Doppler frequency fmax of about 60 Hz. Furthermore, we consider

the free space path loss exponent, i.e., γ = 2, as we believe that it suits more to our lossless

single-bounce scattering scenario. Nevertheless, the effect of increasing γ will also be illustrated

and discussed. The constant C is assumed to be 0.05 W1/2 m (see Section V-B). As stated

before, the parameters of the path model have been set such that arriving at the destination point

(500m, 500m) via a relatively smooth trajectory is assured (see Section IV). The trajectory

consists of 21 points indexed by l = 0 (starting point) until l = L = 20 (terminating/destination

point). We also assume that the time tl associated with each position index l does not vary in

the realization.

The simulation results have been produced by taking the following steps: 1) The positions

of N = 4 scatterers are generated by means of a 2D Gaussian distribution with zero mean

and variance σs = 500m. 2) The trajectory T in (1) has been realized for about 5000 times. 3)

Each time, the total travelling distance Dn(l) (see 4), the local AOA αR
n (l) (see 9), and the local

AOM αv(l) (see 10) have been measured. From the measured quantities, 4) the characteristics of

interest, including the channel envelope, local received power, local PDP, and the local Doppler
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PSD have been computed. As an example, for a given position index l, we have transformed the

measured Dn(l) via cn(l) = CD−γ/2
n (l) to obtain the received path power associated with the

nth scatterer. The entire N = 4 path powers have then been summed up to attain the total received

power Ω(l). This has been done for 5000 realizations of the trajectory. 5) The corresponding

normalized histograms containing a proper number of equally spaced bins have been generated

and the results have been shown in the form of a PDF.

In what follows, the simulation results are demonstrated and discussed extensively. For fluency

reasons, the results are not necessarily presented in the same order as they are derived.

B. Results

Fig. 3 illustrates the PDF pζ(z; l) of the envelope ζ(tl) in (13) for two different values of l.

The best standard curves to each pζ(z; l) have also been fitted. At l = 4 (almost the first quarter

of the travelling path), the envelope ζ(t4) can be well approximated by all of the standard

candidates, excluding the lognormal distribution. For l = 10 (almost in the middle of the

travelling path), ζ(t10) follows closely the Suzuki distribution, but neither the lognormal nor

the Rayleigh distribution. Notice that pζ(z; 10) is almost bounded by the PDFs of the lognormal

and the Rayleigh distribution, indicating that the proposed channel behaves as a lognormal-

Rayleigh fading channel, which is often called a Suzuki fading channel. The loglikelihood [48]

goodness-of-fit metric has been used to conclude that the Suzuki process always gives the best fit

to the envelope of the proposed multi-scale fading non-stationary channel model. Since assessing

the goodness-of-fit by visual inspections is straightforward for most of the position indices ls,

the results of the loglikelihood test are omitted herein. Notice that by increasing l, the mean of

the envelope ζ(tl) decreases. This can be attributed to the fact that, by increasing the distance

between the BS and the MS, the attenuation effect of the scattering area on the plane waves

increases.

Fig. 4 demonstrates the PDF pΩ(ω; 10) (see (15)) of the total received power Ω(10) in

logarithmic scale, where the position index l has been set to 10 (almost in the middle of

the travelling path). Notice that according to (15), pΩ(ω; l) varies in l (see Fig. 7). To boost

the visibility of the figure, only pΩ(ω; 10), but for different values of σmax, is displayed. The

excellent match between the simulation results and the analytical ones confirms the correctness

of (15). The best Gaussian fit to each plot has also been displayed. As can be observed, for
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Fig. 3. The PDF pζ(z; l) (see (13)) of the envelope ζ(tl) associated with the position index l.

different values of σmax, the total received power Ω(10) follows closely the normal distribution,

which allows us to conclude that the proposed channel model captures the so-called shadow

fading. It is also important to mention that by increasing σmax, the spread of the received power

increases. This is supported by Fig. 2, where increasing σmax results in increasing the variations

of the total travelling distance Dn(l) of each trajectory. Notice that Dn(l) is directly proportional

to the local received power Ω(l) (see Section V-B) and that the standard deviation σΩ(10) of

the local received power can be controlled by the variance of the random trajectory.

Fig. 5 shows the effect of the path loss exponent γ on the standard deviation σΩ(10) of the

local received power at the position index l = 10. The value of σΩ(l) is obtained by computing

the square root of the second central moment of Ω(l). Referring to this figure, for a given σmax,

the value of σΩ(10) increases by growing γ. This can also be supported by the path gain model

proposed in Section V-B, where increasing γ magnifies the variations of the total travelling

distance Dn(10). This figure allows us to conclude that the standard deviation σΩ(10) of the

local received power can be controlled not only by σmax, but also by γ. Therefore, the proposed

channel model provides two degrees of freedom for controlling the spread of the shadow fading.
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Fig. 4. The PDF pΩ(ω; 10) (see (15)) of the local received power Ω(10) in logarithmic scale for different values of σmax.

In addition, according to Fig. 5, the proposed channel model is able to generate large-scale

fading with a spread between 0.25 dB and 2.75 dB. This range covers the empirically reported

range from 0.85 dB to 2 dB measured in outdoor environments [49]. Furthermore, changing the

two degrees of freedom allows us to obtain even higher spreads such as those reported in [27].

The standard deviation σΩ(10) of the local received power versus the distance D0 of the

BS from the origin is depicted in Fig. 6. As can be observed, by increasing D0, the value of

σΩ(10) remains approximately constant. This is consistent with the results of many measurement

campaigns, such as those reported in [18], [21]–[25]. It is worth mentioning that by increasing

the value of σmax, σΩ(10) cannot be well approximated by a constant value.

Fig. 7 displays the mean mΩ(l) and the spread σΩ(l) of the local received power by the

decreasing dashed-line and the solid vertical bars (the length of the bars), respectively. The

minimum and the maximum of the local received power (see Fig. 4) obtained by simulation

results have also been merged into this figure. Notable is the fact that mΩ(l) shows the time-

21



2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Path loss exponent, γ

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
,
σ
Ω
(1
0
)
(d
B
)

σmax = 150 m

σmax = 50 m

σmax = 100 m

Fig. 5. The standard deviation σΩ(10) of the local received power in logarithmic scale for different values of σmax versus the

path loss exponent γ.

varying path loss, whereas σΩ(l) depicts the time-varying shadow fading. The variations of these

two in l confirm that the proposed channel model is non-stationary. From this figure, it can also

be concluded that the spread σΩ(l) of the local received power is a concave function7 of l with

a maximum at l = 10 and two zeros at l = 0 and l = 20.

Fig. 8 exhibits the local PDP Sτ ′(τ
′; l) (see (18)) in the position index l, where σmax = 50m.

The variations of Sτ ′(τ
′; l) in l once again verify that the proposed channel model is non-

7Although, the local received power Ω(l) is a stochastic process with the first-order density pΩ(ω; l) given by (15), its spread

σΩ(l) is a deterministic function obtained by averaging, i.e., σΩ(l) = [E{(Ω(l)−E{Ω(l)})2}]1/2. The mathematical complexity

of (15) does not allow us to provide a closed-form solution for the spread σΩ(l) (and the mean mΩ(l)). Therefore, we are not

able to show the concavity of the spread σΩ(l), analytically. However, the numerical results in Fig. 7 show that this function is

concave in l. In addition, since the starting and the terminating points of each trajectory are fixed (independent of the realization),

while the maximum variations of the trajectory T occur almost at the middle of the travelling path [16], it can heuristically be

understood that the spread σΩ(l) has a concave shape in l.
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stationary. In this figure, different colours have been used to distinguish the contribution of

each scatterer to the PDP Sτ ′(τ
′; l). These colours are the same as those chosen in Fig. 2. As an

example, the scatterer S4 (located at the north east of the MS) is shown in purple (see Fig. 2). At

l = 0, this scatterer has the greatest distance to the MS (the origin), thus the wave retransmitted

from S4 results in the largest delay τ ′
4(0) component as shown in Fig. 8. Referring to Fig. 2, the

total travelling distance of the 4th plane wave (τ ′
4(l)), however, decreases when the MS moves

toward the destination point, which is located in a close vicinity of S4. This can also be observed

in Fig. 8, where the purple part (associated with τ ′
4(l)) of the plot tends to smaller delays as l

increases. The contribution of the other scatterers can also be tracked in Fig. 8. This is, however,

difficult if the number of scatterers increases. It is also noteworthy that for a given l, the farthest

(nearest) scatterer to the MS results in the lowest (highest) PDP Sτ ′(τ
′; l) as shown in Fig. 8.

This can be confirmed by the fact that the power of each plane wave decreases by increasing
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its travelling distance, which has been modelled by cn(l) = CD−γ/2
n (l) in this paper. Another

important observation in Fig. 8 is the variation of the delay spread in l. As can be observed,

the delay spread first increases and then decreases (look at each colour and follow its spread

when l increases). Since the starting and the terminating point of the trajectory are always fixed,

the PDFs pτ ′
n
(τ ′; 0) and pτ ′

n
(τ ′;L) tend to the delta function located at τ ′

n(0) and τ ′
n(L),

respectively. For visual reasons, however, we omit these delta functions (associated with each

scatterer). The observed maximum delay spread at l = 10 can be attributed to the fact that the

maximum variations of T happen almost in the middle of the travelling path (see Section IV).

Fig. 9 represents the local Doppler PSD Sμμ(f ; l) (see (20)) in the position index l, where

σmax has been set to 50 m. The interpretation of this figure is very similar to that of the previous

one, but in the frequency domain. Referring to Fig. 2, for all values of l, the wave emitted

from S1 arrives at the MS with the AOA αR
n (l) almost equal to the AOM αv(l) of the MS.

24



0

2

4

6

8

10 0

5

10

15

20

0

0.02

0.04

0.06

Position index, lDelay, τ ′ (μs)

L
o
ca
l
P
D
P
,
S
τ
′
(τ

′ ;
l) σmax = 50m S3

S2

S4

S1

Fig. 8. The local PDP Sτ ′(τ ′; l) (see (18)) in the position index l, illustrating the contribution of each scatterer.

Therefore, this scatterer causes the maximum negative Doppler shift of about -60 Hz (see the

green part of the plot). On the contrary, the scatterer located almost always in the front of the

MS, i.e., S4 results in the maximum positive Doppler shift of about 60 Hz (see the purple part

of the plot). Nevertheless, the Doppler PSD Sμμ(f ; l) associated with S4 is much smaller than

that pertinent to S1. The reason is that the travelling distance of the 4th plane wave is much

longer than that of the first scatterer S1, thus the attenuation effect is much higher. Also worth

mentioning is that the red part (associated with S3) of the Doppler PSD Sμμ(f ; l). This part

starts with a positive mean Doppler shift and ends with a negative one. This variation can be

tracked in Fig. 2, where the wave retransmitted from S3, first arrives at the front of the MS and

then at its back. The hole in the figure is simply due to the absence of some particular Doppler

shifts, which cannot be generated according to the propagation model in Fig. 2. However, at the

corresponding position indices, other Doppler shifts exist due to the arrivals from all scatterers

(look along the frequency axis, e.g., at l = 10). The variations of the Doppler spread along l
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can be explained in the same way as for the delay spread. An important difference, however,

is that the Doppler PSD Sμμ(f ; l) does not tend to the delta function at l = 0 (l = 19), as the

AOM αv(0) (αv(19)) of the MS varies from realization to realization.

VIII. CONCLUSION

This paper has introduced a new approach for modelling non-stationary mobile fading chan-

nels. The new approach is based on random trajectories of the MS, rather than random distribu-

tions of scatterers. The new approach enables us to obtain required channel characteristics even

if the number of scatterers is very limited. A random trajectory model based on the primitives

of BFs has been utilized to develop a non-stationary channel model that captures multi-scale

fading. The new model is physically explainable, as it is based on the additive multipath fading

propagation mechanism. To model the path loss, the path gains have been determined by the

travelling distance of the corresponding plane waves, while the randomness of each distance
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generates large-scale fading. In this context, it has been shown that the local received power

follows closely a Gaussian process in logarithmic scale, while the envelope of the channel can

be well-approximated by a Suzuki process. The Suzuki process is reported to be the best for

the modelling of real-life channels showing different scales of fading. It has been demonstrated

that the proposed model enables two degrees of freedom to control the spread of shadow fading,

while this spread is weakly affected by the position of the BS. The local PDP process and

the local Doppler PSD process have also been studied. It has been shown that these quantities

vary in position, confirming that the proposed channel is non-stationary. Simulation results have

shown that the contribution of each scatterer to these quantities can be tracked individually if

the channel is sparse enough.

In future works, the new approach can be applied to develop new channel models with other

objectives than capturing multi-scale fading. In addition, the utilized random trajectory model

in this paper can be substituted by other random trajectory models to see whether the same

performance can be obtained or not.

APPENDIX A

PROOF OF THEOREM 1

It has been shown in [16] that the first-order density of x(l) in (1) is a normal distribution of

the form N(mx(l), σ
2
x(l)), where the mean mx(l) and the variance σ2

x(l) are given by xs + lδx

and

σ2
x(l) = σ2

x

l2L

3

(
1− l

L

)2

(21)

respectively. The same statement holds for the first-order density of y(l), provided that the

index x is replaced by y. This allows us to conclude that (xS
n − x(l)) and (ySn − y(l)) are also

normal processes of the form N(xS
n −mx(l), σ

2
x(l)) and N(ySn −my(l), σ

2
y(l)), respectively. The

process DS−MS
n (l) can then be considered as the envelope of a complex Gaussian distribution

with (xS
n −x(l)) and (ySn − y(l)) as its inphase and quadrature components. The phase and the

envelope of complex Gaussian processes with correlated quadratures and non-identical means

(variances) have been studied in [44] and [45]. Herein, the correlation ρ between the inphase and

quadrature components is zero, as x(l) and y(l) are independent processes (see [16]). Setting
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ρ = 0 in the envelope distribution in [45, Eq. (1)], and assuming σx = σy gives

pDS−MS
n

(d′n; l) =
d′n

σ2
x(l)

exp

{
−(xS

n −mx(l))
2 + (ySn −my(l))

2 + d′2n
2σ2

x(l)

}

× I0

(√
(xS

n −mx(l))2 + (ySn −my(l))2

σ2
x(l)

d′n

)
. (22)

With reference to (4), the total distance process Dn(l) = DBS−S
n + DS−MS

n (l) is a linear

function of DS−MS
n (l). Considering the first-order density pDS−MS

n
(d′n; l) of DS−MS

n (l) in (22)

and applying the concept of transformation of random variables gives the PDF in (5).

APPENDIX B

PROOF OF (14)

The local received power averaged over the phase is obtained as follows

Ω(l) = E
{
|μ(tl)|2

}
= E {μ∗(tl)μ(tl)}

=
N∑

n=1

M∑
m=1

cn(tl)cm(tl)e
j[2π

∫ tl
−∞(fm(t′l)−fn(t

′
l))dt

′
l−k0(Dm(tl)−Dn(tl))]E

{
ej(φm−φn)

}

=

N∑
n=1

c2n(tl) (23)

in which E
{
ej(φm−φn)

}
= 1 has been used for m = n and E

{
ej(φm−φn)

}
= 0 for any m �= n

(see SectionV). The result in (23) indicates that the mean power is equal to the sum of powers

carried out by the individual multipath waves, which is known as the conservation-of-power

law [50].
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