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Abstract—In this paper, we experimentally validate the func-
tionality of a developed algorithm for spectrum cartography
using adaptive Gaussian radial basis functions (RBF). The
RBF are strategically centered around representative centroid
locations in a machine learning context. We assume no prior
knowledge about neither the power spectral densities (PSD) of
the transmitters nor their locations. Instead, the received signal
power at each location is estimated as a linear combination
of different RBFs. The weights of the RBFs, their Gaussian
decaying parameters and locations are jointly optimized using
expectation maximization with a least squares loss function and
a quadratic regularizer. The performance of adaptive RBFs
based spectrum cartography is shown through measurements
using a universal software radio peripheral, a customized node
and LabView framework. The obtained results verify the ability
of adaptive RBF to construct spectrum maps with an accept-
able performance measured by normalized mean square error
(NMSE).

Keywords— Spectrum cartography, power spectrum maps,
Adaptive radial basis functions, Experimental validation.

I. INTRODUCTION

Many wireless communications related applications includ-
ing network planning, frequency reuse, coverage prediction,
interference management, opportunistic spectrum access and
cognitive radios require spatial radio spectrum awareness
[1]–[4]. This spectrum awareness is achieved by building
spatial, frequency and time dependent radio environment maps
(REMs) under a framework called spectrum cartography.
Throughout the rest of this paper, REMs and spectrum cartog-
raphy will be used interchangeably to refer to received signal
power maps. Spectrum cartography is a regression problem
which is performed by collecting geo-localized measurements
followed by spatial regression [5].

There are several techniques proposed for spectrum car-
tography including Kriging interpolation [5], [6], dictionary
learning [7], sparsity aware regression [8], basis expansion [9],
matrix completion [10] and reproducing kernel Hilbert space
(RKHS) regression [11]–[13]. These techniques are briefly
surveyed in [14]. To the best of the authors’ knowledge, even
though there exist diverse schemes for spectrum cartography,
each of these schemes however has at least one of the
following three limitations [14].

1) Some information regarding the transmitters’ parameters
and locations are needed.

2) Spatially dense measurements are required which is
costly in terms of energy and communication bandwidth.

3) Basis functions are chosen statically with no adaptation
based on the measurements.

In [14], the aforementioned limitations are overcome by
developing a spectrum cartography algorithm that adapts the
parameters of the basis functions based on a relatively lower
density of measurements with no prior information about the
transmitters. This goal is achieved by using RBF that are
centered at strategic informative centroids locations instead
of using kernels directly centered on sensors locations.

In view of the theoretical foundations of adaptive RBF
based spectrum cartography provided in [14], this paper
presents an experimental validation of the algorithm in two
aspects. At first, the functionality of the algorithm is shown
in real radio propagation environment. Secondly, in contrast to
the simulations findings, measurements’ performance is evalu-
ated. Moreover, to the best of our knowledge, no experimental
studies have been conducted regarding spectrum cartography
prior to our campaign being reported in this paper. Therefore,
the measurements setup and methodology is a stand alone
contribution of this paper which can be used for implementing
other spectrum cartography algorithms for comparison and
bench marking purposes.

The remaining of this paper is structured as follows. Section
II shows the system model. Section III presents the main
contribution of [14] which is adaptive RBF with representative
centroids based cartography. Measurements setup, results and
findings are shown in Section IV. Finally, Section V concludes
the paper.

Notation - Upper case bold letters are used to denote
matrices such as C ∈ RM×N while the element corresponding
to the ith row, jth column of C is denoted as [C]ij . Column
vectors are denoted by lower case bold letters as c with ci
being the ith entry of vector c. For scalars, non-bold letters
are used. CT and C−1 are the transpose and inverse of matrix
C, respectively. The Identity matrix of size L is denoted by
IL. 1 denotes an all one vector.

II. SYSTEM MODEL

The task of spectrum cartography is to construct a complete
REM having a finite number of sensors. Consider an area
A ⊆ R2 that contains a set of N sensors that are aware
of their locations. We define X to be the set of the senors
locations where X ⊂ A = {x1,x2, ...,xn}, 1 ≤ n ≤ N . Each
sensor located at xi is providing a fusion center (FC) with a
measurement of the received signal power yi(t) on its location
at time t. Therefore, we define the measurements set at time
t as Y(t) ∈ R = {y1(t), y2(t), · · · , yn(t))}, 1 ≤ n ≤ N . The
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Fig. 1: Graphical illustration of adaptive RBF algorithm based spectrum cartography. The left sub-figure shows an arbitrary
three initial centroids locations and their Gaussian decaying parameters as shown by the red curves while the green dots
represent arbitrary sensors locations. The right sub-figure depicts the adapted RBF centroids and their Gaussian decaying
parameters after convergence. All the curves and data in the figure are for illustrative purposes.

learning set that contains both the measurements and the sen-
sors is denoted as Z(t) ∈ R3 = {z1(t), z2(t), · · · , zN (t)|zi =
(xi, yi(t))}. Throughout the rest of this paper we consider
instantaneous spectrum cartography with no learning along
the time dimension, accordingly we omit the time dependency
hereafter. The estimated cartography is denoted from here on
as ĥ(x) : R3 → R while the actual cartography is denoted
as h(x). Cartography estimation is performed by the FC that
receives all measurements.

The RBF based learning assumes that each point on the
learning set, (xn, yn), affects the target function on any
location x as a function of the Euclidean distance between
x and xn. Considering REM as a function to be learned with
the standard form of RBF, the learning REM is given by:

ĥ(x) = w0 +

N−1∑
i=1

wiexp(−γn ‖x− xi‖2) (1)

where w0 is a constant offset that represent the background
noise, w1, · · · , wN−1, are weighting parameters for the con-
tribution of the different RBF, γi is a Gaussian decaying
parameter for the ith RBF. Applying (1) to the learning set
would result in

Φw = y (2)

where Φ =
[

1N Φ̃
]
, Φ̃ ∈ RN×N with each

element being Φ̃nk = exp
(
−γk‖xn − xk‖2

)
,w =

[w0, w1, · · · , wN−1]T and y = [y1, y2, · · · , yN ]T

Accordingly, w is found by

w = Φ−1y (3)

The solution given by (3) implies finding N parameters from
N observations which can be computationally expensive for
large data sets. Moreover, Φ is not always invertible. To
overcome these two limitations, representative centroids to
locate the RBF is proposed as explained in the next section.

III. ADAPTIVE REPRESENTATIVE RBF
Now instead of centering the RBF around the sensor

locations, K representative centroids are chosen for the RBF.
The location of the centroids are denoted as µ1, · · · , µK .
Consequently, the cartography learning model represented by
(1) is modified as:

ĥ(x) = w0 +

K∑
k=1

wkexp(−γk ‖x− µk‖2) (4)

which is rewritable as

Θw = y (5)

where Θ =
[

1 Θ̃
]
, Θ̃ ∈ RN×K composed as Θ̃nk =

exp
(
−γk‖xn − µk‖2

)
, 1 ≤ n ≤ N, 1 ≤ k ≤ K.

To estimate the cartography on A, following model param-
eters need to be optimized jointly

1) The RBF centroids positions, µ1, · · · , µK .
2) The weights vector w.
3) The Gaussian decaying parameters γ1, · · · , γK .
The joint optimization of these parameters, a least square

solution is considered as

min
w,γ1···γk,µ1···µk

N∑
n=1

(
yn − ĥ(xn)

)2
+ λ ‖w‖2 (9)

where λ is a positive constant that trades off the estimator bias
and variance [15]. Moreover, λ > 0 guarantees a solution to
(9) even if ΘΘT is a singular matrix (see (6)).

To solve the optimization problem (9) for w, µ1, · · · , µK ,
and γ1, · · · , γK , we propose to use expectation maximization
based optimization as in Algorithm 1.

For initializing the centroids locations µ1, · · · , µK , either
K− means clustering considering the sensors’ locations or
Cartesian grid over A can be used. On the other hand, the
Gaussian decaying parameters γ1, · · · , γK can all be assigned
a same value for initialization. Fig. 1 illustrates graphically the
idea of RBF adaptation exploiting Algorithm.
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Fig. 2: (a) Measurement setup. (b) A picture of measurements location and setup

Data: Initialize the decaying parameters, γ1, · · · , γK and
the centroids µ1, · · · , µK ;

while no convergence do
Fix γ1, · · · , γK , µ1, · · · , µK and solve for w as

w =
(
ΘTΘ + λIK

)−1
ΘTy (6)

Fix w, µ1, · · · , µK and solve for γ1, · · · , γK , using
gradient desent as

γk γk − α
N∑
n=1

(
yn − ĥ(xn)

)
· ‖xn − µk‖2 ·(

wkexp(−γk ‖xn − µk‖2
))

(7)

1 Fix w, γ1, · · · , γK and solve for µ1, · · · , µK ,
using gradient descent as

µk µk + 2αγk

N∑
n=1

(
yn − ĥ(xn)

)
· (xn − µk) ·

(
wkexp(−γk ‖xn − µk‖2

))
(8)

end
Algorithm 1: Adaptive RBF cartography

IV. MEASUREMENTS

This section presents the measurements setup and obtained
results which is the contribution of this paper.

A. Measurements setup

The basic task of our measurements setup is to have the
components of the adaptive RBF based cartography. These
components are transmitters, sensors and a fusion center. For
simplicity we adopted a setup consists of one transmitter,
one sensor that moves and sense in different locations and a
computer that controls both the transmitter and the sensor(s)
and acts as a fusion center. Fig. 2(b) shows the adopted
measurements setup with the equipment and parameters as in
Table I. Fig. 2(b) shows a picture of the measurement location
and setup
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Fig. 3: Obtained spectrum map when using 50 measurements
for learning and K = 10 centroids. The white crosses
represent the measurements locations

Following are important remarks regarding the measure-
ments setup:

1) ZC706 /FCOMM5S SDR which used as a sensor is a
software defined radio (SDR) that is developed by the
authors of this paper and and its performance is evaluated
in [16].

2) The operating frequency of 5.41 GHz is chosen after
scanning several other frequencies and that particular
frequency is found vacant at the time and location of
the measurements.

3) Binary phase shift keying (BPSK) is chosen arbitrarily
as the main concern is to have a wireless transmission
regardless of the modulation type and transmitted infor-
mation.

4) A BPSK signal of a sample rate of 1.0 MS/S, would
result in a main lobe bandwidth of 2.0 MHz. Therefore,
a reception bandwidth of 3.0 MHz assures that the whole



TABLE I: Measurements Equipment and Parameters

Device/Parameter Type/Value
Transmitter NI-USRP 2953R
Sensor(s) ZC706 /FCOMM5S 2953R SDR
Center frequency 5.41 GHz
Modulation BPSK
Sample rate 1.0 MS/S
Reception bandwidth 3.0 MHz

TABLE II: Obtained NMSE for measurements and simula-
tions, N = 50

Number of centroids Measurements
5 −7.9 dB
10 −8.7 dB
20 −9.7 dB

energy contained in the main lobe will be received with
extra energy contained in the first side lobe.

5) The switch is used to control both the transmission and
sensing through the same PC.

The location of the measurements is a polyhedron room
where a Cartesian grid of 0.5m ×0.5m is made to determine
the measurements locations set Xmes ⊂ A as the crossings
of this grid. The largest dimensions of the area within the
room that is capable of hosting the measurements are 7.5m
and 3.0m. Consequently, the measurements points set, Xmes,
are expressible as Xmes = U × V,U = {0, 0.5, 1, · · · 3},V =
{0, 0.5, 1, · · · 7.5}. The resultant measurements set consists of
112 points. However, 12 points are not feasible because they
are either corners or there exist some unmovable furniture
on them. Therefore, 100 measurements points are considered
which is divided into a learning set, Xler, and a verification
set, Xver each of them contains 50 points, learning set points
are chosen uniformly randomly and the rest of measurements
points are left for verification. Hence, Xler ∩ Xver = ∅ and
Xler ∪ Xver = Xmes.

For the quantitative evaluation, the normalized mean square
error (NMSE) of the estimator using the measured values is
used which is calculated as

NMSE = E


∣∣∣h(x)− ĥ(x)

∣∣∣2
|h(x)|2


with E [·] denoting the expected value and x ∈ Xver
B. Measurements results

Hereafter, the obtained results from the measurements are
presented and analyzed.

Fig. 3 shows the reconstructed power spectrum map using
K = 10 centroids followed by a quantitative analysis by
means of obtained NMSE when changing the number of
centriods as in Table II. As expected, the larger the number
of centroids, the better the performance.

V. CONCLUSIONS

An experimental validation of adaptive radial basis func-
tions based spectrum cartography algorithm is carried out.

The theoretical essence of the algorithm is to perform spatial
interpolation for constructing power spectrum maps using
strategically centered adaptive Gaussian radial basis func-
tions. The centroids locations optimized jointly with the
Gaussian decaying parameters and the linear model weights.
The measurements findings validate the theory and show the
influence of the number of centroids on the performance of
the algorithm.
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