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Abstract

Reinforcement Learning (RL) is a research area that has blossomed tremen-
dously in recent years and has shown remarkable potential for artificial
intelligence based opponents in computer games. This success is primar-
ily due to vast capabilities of Convolutional Neural Networks (ConvNet),
enabling algorithms to extract useful information from noisy environments.
Capsule Network (CapsNet) is a recent introduction to the Deep Learning
algorithm group and has only barely begun to be explored. The network is
an architecture for image classification, with superior performance for clas-
sification of the MNIST dataset. CapsNets have not been explored beyond
image classification.

This thesis introduces the use of CapsNet for Q-Learning based game algo-
rithms. To successfully apply CapsNet in advanced game play, three main
contributions follow. First, the introduction of four new game environments
as frameworks for RL research with increasing complexity, namely Flash
RL, Deep Line Wars, Deep RTS, and Deep Maze. These environments fill
the gap between relatively simple and more complex game environments
available for RL research and are in the thesis used to test and explore the
CapsNet behavior.

Second, the thesis introduces a generative modeling approach to produce
artificial training data for use in Deep Learning models including CapsNets.
We empirically show that conditional generative modeling can successfully
generate game data of sufficient quality to train a Deep Q-Network well.

Third, we show that CapsNet is a reliable architecture for Deep Q-Learning
based algorithms for game AI. A capsule is a group of neurons that de-
termine the presence of objects in the data and is in the literature shown
to increase the robustness of training and predictions while lowering the
amount training data needed. It should, therefore, be ideally suited for
game plays. We conclusively show that capsules can be applied to Deep
Q-Learning, and present experimental results of this method in the envi-
ronments introduced. We further show that capsules do not scale as well
as convolutions, indicating that CapsNet-based algorithms alone will not be
able to play even more advanced games without improved scalability.
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Chapter 1

Introduction

1.1 Motivation

Despite many advances in Artificial Intelligence (AI) for games, no universal
Reinforcement Learning (RL) algorithm can be applied to advanced game
environments without extensive data manipulation or customization. This
includes traditional Real-Time Strategy (RTS) games such as Warcraft III,
Starcraft II, and Age of Empires. RL has been applied to simpler games
such as the Atari 2600 platform but is to the best of our knowledge not
successfully applied to more advanced games. Further, existing game envi-
ronments that target AI research are either overly simplistic such as Atari
2600 or complex such as Starcraft II.

RL has in recent years had tremendous progress in learning how to control
agents from high-dimensional sensory inputs like images. In simple envi-
ronments, this has been proven to work well [36], but are still an issue for
advanced environments with large state and action spaces [34]. In envi-
ronments where the objective is easily observable, there is a short distance
between the action and the reward which fuels the learning [21]. This is
because the consequence of any action is quickly observed, and then easily
learned. When the objective is complicated, the game objectives still need
to be mapped to a reward, but it becomes far less trivial [24]. For the Atari
2600 game Ms. Pac-Man this was solved through a hybrid reward architec-
ture that transforms the objective to a low-dimensional representation [59].
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1.1. Motivation Introduction

Similarly, the OpenAI’s bot is able to beat world’s top professionals at one
versus one in DotA 2. It uses an RL algorithm and trains this with self-play
methods, learning how to predict the opponents next move.

Applying RL to advanced environments is challenging because the algorithm
must be able to learn features from a high-dimensional input, in order act
correctly within the environment [15]. This is solved by doing trial and error
to gather knowledge about the mechanics of the environment. This process
is slow and unstable [37]. Tree-Search algorithms have been successfully
applied to board games such as Tic-Tac-Toe and Chess, but fall short for
environments with large state-spaces [8]. This is a problem because the
grand objective is to use these algorithms in real-world environments, that
are often complex by nature. Convolutional Neural Networks (ConvNet) [28]
solves complexity problems but faces several challenges when it comes to
interpreting the environment data correctly.

The primary motivation of this thesis is to create a foundation for RL re-
search in advanced environments, Using generative modeling to train arti-
ficial neural networks, and to use the Capsule Network architecture in RL
algorithms.

4



1.2. Thesis definition Introduction

1.2 Thesis definition

The primary objective of this thesis is to perform Deep Reinforcement
Learning using Capsules in Advanced Game Environments. The
research is split into six goals following the thesis hypotheses.

1.2.1 Thesis Goals

Goal 1: Investigate the state-of-the-art research in the field of Deep Learn-
ing, and learn how Capsule Networks function internally.

Goal 2: Design and develop game environments that can be used for
research into RL agents for the RTS game genre.

Goal 3: Research generative modeling and implement an experimental
architecture for generating artificial training data for games.

Goal 4: Research the novel CapsNet architecture for MNIST classification
and combine this with RL problems.

Goal 5: Combine Deep-Q Learning and CapsNet and perform experiments
on environments from Achievement 2.

Goal 6: Combine the elements of Goal 3 and Goal 5. The goal is to train
an RL agent with artificial training data successfully.

1.2.2 Hypotheses

Hypothesis 1: Generative modeling using deep learning is capable of
generating artificial training data for games with a sufficient quality.

Hypothesis 2: CapsNet can be used in Deep Q-Learning with comparable
performance to ConvNet based models.

5



1.2. Thesis definition Introduction

1.2.3 Summary

The first goal of this thesis is to create a learning platform for RTS game
research. Second, to use generative modeling to produce artificial training
data for RL algorithms. The third goal is to apply CapsNets to Deep
Reinforcement Learning algorithms. The hypothesis is that its possible to
produce artificial training data, and that CapsNets can be applied to Deep
Q-Learning algorithms.

6



1.3. Contributions Introduction

1.3 Contributions

This thesis introduces four new game environments, Flash RL1, Deep Line
Wars2, Deep RTS, and Deep Maze. These environments integrates well
with OpenAI GYM, creating a novel learning platform that targets Deep
Reinforcement Learning for Advanced Games.

CapsNet is applied to RL algorithms and provides new insight on how Cap-
sNet performs in problems beyond object recognition. This thesis presents
a novel method that use generative modeling to train RL agents using arti-
ficial training data.

There is to the best of our knowledge no documented research on using
CapsNet in RL problems, nor are there environments specifically targeted
RTS AI research.

1Proceedings of the 30th Norwegian Informatics Conference, Oslo, Norway 2017
2Proceedings of the 37th SGAI International Conference on Artificial Intelligence, Cam-

bridge, UK, 2017
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1.4. Thesis outline Introduction

1.4 Thesis outline

Chapter 2 provides preliminary background research for Artificial Neural
Networks (2.1, 2.2), Generative Models (2.3), Markov Decision Process
(2.4), and Reinforcement Learning (2.5).

Chapter 3 investigates the current state-of-the-art in Deep Neural Networks
(3.1), RL (3.2), GAN (3.3) and Game environments (3.5).

Chapter 4 outlines the technical specifications for the new game environ-
ments Flash RL (4.1), Deep Line Wars (4.2), Deep RTS (4.3), and Maze
(4.4). In addition, a well established game environment (Section 4.5) is
introduced to validate experiments conducted in this thesis.

Chapter 5 introduces the proposed solutions for the goals defined in Sec-
tion 1.2. Section 5.1 outlines how the environments are presented as a
learning platform. Section 5.2 introduces the proposal to use Capsules in
RL. Section 5.3 describes the Deep Q-Learning algorithm and the imple-
mentations used for the experiments in this thesis. Finally, the artificial
training data generator is outlined in Section 5.4.

Chapter 6 and 7 shows experimental results from the work presented in
Chapter 5.

Chapter 8 concludes the thesis hypotheses and provides a summary of the
work done in this thesis. Section 8.2 outlines the road-map for future re-
search related to the thesis.

8



Chapter 2

Background

Deep Learning (DL) is a branch of machine learning algorithms that recently
became popularized due to the exponential growth in available computing
power. DL is unique in that it is designed to learn data representations,
as opposed to task-specific algorithms. Methods from DL are frequently
used in RL algorithms, creating a new branch called Deep Reinforcement
Learning (DRL). Artificial Neural Networks (ANN) are used at its core,
utilizing the most novel DL techniques to gain state-of-the-art capabilities.

This chapter outlines background theory for topics related to the research
performed later in this thesis. Section 2.1 shows how Artificial Neural Net-
works work, moving onto computer vision with Convolutional Neural Net-
works in Section 2.2. Section 2.4 outlines the theory behind the Markov
Decision Process (MDP) and how it is used in RL.

9



2.1. Artificial Neural Networks Background

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a computing system that is inspired
by how the biological nervous systems, such as the brain, function [19].
ANNs are composed of an interconnected network of neurons that pass data
to its next layer when stimulated by an activation signal. When a network
consists of several hidden layers, it is considered a Deep Neural Network
(DNN). Figure 2.1 illustrates a Deep Multi-Layer Perceptron (MLP) with
two hidden layers.

Figure 2.1: Deep Neural network with two hidden layers

Figure 2.2: Single Perceptron

f(x) =

{
1 if

∑n
i=1(wi · xi) + b > 0

0 otherwise
(2.1)

MLPs are considered a network because they are composed of many different
functions. Each of these functions is represented as a perceptron. The
combination of these functions gives us the ability to represent complex and
high-dimensional functions [19]. Figure 2.2 illustrates a single perceptron
from an MLP where x1, x2 · · ·xn are inputs to the perceptron. Each of these
inputs has a weight w1, w2 · · ·wn. Input xn and weight wn are multiplied

10



2.1. Artificial Neural Networks Background

Name Equation

TanH tanh(z) = 2
1+e−2z − 1

Softmax σ(z)j = ezj∑K
k=1 e

zk
for j = 1 · · ·K

Sigmoid f(z) = 1
1+e−z

Rectified Linear Unit (ReLU) f(z) =

{
0 for z < 0

z otherwise

LeakyReLU f(z) =

{
z if z > 0

0.01z otherwise

Binary f(z) =

{
0 if z < 0

1 if z ≥ 0

Table 2.1: Equations of activation function

into zn = xn · wn and z =
∑n

i=1(zn) + b where b is the bias value and z is
the perceptron value. In Figure 2.2, the perceptron has a binary activation
function (Equation 2.1), the neuron produce the value 1 for all z above 1,
and 0 otherwise. There are several different activation functions that can
be used in a perceptron network, see Section 2.1.1.

2.1.1 Activation Functions

The purpose of an Activation function is often to introduce non-linearity
into the network. It is proven that an DNN using only linear activations
are equal to a single-layered network [42]. It is therefore natural to use
non-linear activation functions in the hidden layers of an ANN if the goal
is to predict non-linear functions. TanH and Rectified Linear Unit (ReLU)
has proven to work well in ANNs [22, 39, 65], but there exist several other
alternatives as illustrated in Table 2.1. Researchers do not understand to the
full extent why an activation function works better for a particular problem
and is why trial and error is used to find the best fit [33].

11



2.1. Artificial Neural Networks Background

2.1.2 Optimization

Optimization in ANNs is the process of updating the weights of neurons
in a network. In the optimization process, a loss function is defined. This
function calculates the error/cost value of the network at the output layer.
The error value describes the distance between the ground truth and the
predicted value. For the network to improve, this error is backpropagated
back through the network until each neuron has an error value that reflects
its positive or negative contribution to the ground truth. Each neuron also
calculates the gradient of its weights by multiplying output delta together
with the input activation value. Weights are updated using stochastic gra-
dient descent (SDG), which is a method of gradually descending the weight
loss until reaching the optimal value.

2.1.3 Loss Functions

To measure the inconsistency between the predicted value and the ground
truth, a loss function is used in ANNs. The loss function calculates a positive
number that is minimized throughout the optimization of the parameters1

(Section 2.1.2). A loss function can be any mathematical formula, but
there exist several well established functions. The performance varies on
the classification task.

Mean Squared Error (MSE) is a quadratic loss function widely used
in linear regression, and are also used in this thesis. Equation 2.2 is the
standard form of MSE, where the goal is to minimize the residual squares
(y(i) − ŷ(i)).

L =
1

n

n∑

i=1

(y(i) − ŷ(i))2 (2.2)

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,
δ(|a| − 1

2δ), otherwise
(2.3)

Huber Loss is a loss function that is widely used in DRL. It is similar
to MSE, but are less sensitive to data far apart from the ground truth.
Equation 2.3 defines the function where a refers to the residuals and δ

1Weights and Parameters are used interchangeably throughout the thesis
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2.1. Artificial Neural Networks Background
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Prediction
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Huber Loss, delta=5.0
Huber Loss, delta=10.0
Squared Error

Figure 2.3: Loss functions

refers to its sensitivity. Figure 2.3 illustrates the difference between MSE
and Huber Loss using different δ configurations.

2.1.4 Hyper-parameters

Hyper-parameters are tunable variables in ANNs. These parameters include
learning rate, learning rate decay, loss function, and optimization algorithm
like Adam, and SDG.
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2.2. Convolutional Neural Networks Background

2.2 Convolutional Neural Networks

A Convolutional Neural Network is a novel ANN architecture that primarily
reduces the compute power required to learn weights and biases for three-
dimensional inputs. ConvNets are split into three layers:

1. Convolution layer

2. Activation layer

3. Pooling (Optional)

A Convolution layer has two primary components, kernel (parameters) and
stride. The kernel consists of a weight matrix that is multiplied by the input
values in its receptive field. The receptive field is the area of the input that
the kernel is focused on. The kernel then slides over the input with a fixed
stride. The stride value determines how fast this sliding happens. With a
stride of 1, the receptive field move in the direction x+ 1, and when at the
end of the input x-axis, y + 1.

Figure 2.4: Convolutional Neural Network for classification

Consider a three-dimensional matrix representing an image of size 28×28×3.
In this example, the goal is to classify the image to be either a cat or dog.
By using hyperparameters kernel = 3× 3 and stride = 1× 1, there are 32
shared parameters to be optimized. In contrast, a Fully-Connected network

14



2.2. Convolutional Neural Networks Background

(FCN) with a single neuron layer, would have 2357 parameters to optimize.
The reason why convolutions work is that it exploits what is called feature
locality. ConvNets use filters that learn a specific feature of the input, for
example, horizontal and vertical lines. For every convolutional layer added
to the network, the information becomes more abstract, identifying objects
and shapes. Figures 2.4 and 2.5 illustrate how a simple ConvNet is modeled
compared to an FCN. The ConvNet use a stride of 1 × 1 and a kernel size
of 4× 4 yielding a 3× 3 output. This produces a total of 31 parameters to
optimize, compared to 41 parameters in the FCN.

2.2.1 Pooling

Pooling is the operation of reducing the data resolution, often subsequent
a convolution layer. This is beneficial because it reduces the number of
parameters to optimize, hence decreasing the computational requirement.
Pooling also controls overfitting by generalizing features. This makes the

Figure 2.5: Fully-Connected Neural Network for classification

15



2.2. Convolutional Neural Networks Background

network capable of better handling spatial invariance [48].

Figure 2.6: MAX and AVG Pooling operation

There are several ways to perform pooling. Max and Average pooling are
considered the most stable methods in whereas Max pooling is most used
in state-of-the-art research [29]. Figure 2.6 illustrates the pooling process
using Max and Average pooling on a 4× 4×X2 input volume. The hyper-
parameters for the pooling operation is kernel = 2 × 2 and stride = 2 × 2
applied to the input vector yields the resulting 2 × 2 × X output volume.
This operation performed independently for each depth slice of the input
volume.

2.2.2 Summary

Historically, ConvNets drastically improved the performance of image recog-
nition because it successfully reduced the number of parameters required,
and at the same time preserving important features in the image. There
are however several challenges, most notably that they are not rotation in-
variant. ConvNets are much more complicated then covered in this section,
but this beyond the scope of this thesis. For an in-depth survey of the
ConvNet architecture, refer to Recent Advances in Convolutional Neural
Networks [12].

2X =Depth of the input volume
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2.3. Generative Models Background

Figure 2.7: Overview: Generative Model

2.3 Generative Models

Generative Models are a series of algorithms trying to generate an artificial
output based on some input, often randomized. Generative Adversarial
Networks and Variational Autoencoder is two methods that have shown
excellent results in this task. These methods have primarily been used in
generating realistic images from various datasets like MNIST and CIFAR-
10. This section will outline the theory in understanding the underlying
architecture of generative models.

The objective of most Generative Models is to generate a distribution of
data, that is close to the ground-truth distribution (the dataset). The Gen-
erative Model takes a Gaussian distribution z, as input, and outputs p̂(x) as
illustrated in Figure 2.7. The goal is to find parameters θ that best matches
the ground truth distribution with the generated distribution. Convolu-
tional Neural Networks are often used in Generative Modeling, typically for
models using noise as input. The model has several hidden parameters θ
that is tuned via backpropagation methods like stochastic gradient descent.
If the model reaches optimal parameters, p̂(x) = p(x) is considered true.
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2.4 Markov Decision Process

MDP is a mathematical method of modeling decision-making within an
environment. An environment defines a real or virtual world, with a set of
rules. This thesis focuses on virtual environments, specifically, games with
the corresponding game mechanic limitations. The core problem of MDPs
is to find an optimal policy function for the decision maker (hereby referred
to as an agent).

a︸︷︷︸
Action

= π(s)︸︷︷︸
Policy π for state s

(2.4)

Equation 2.4 illustrates how a decision/action is made using observed knowl-
edge of the environmental state. The goal of the policy function is to find
the decision that yields the best cumulative reward from the environment.
MDP behaves like a Markov chain, hence gaining the Markov Property. The
Markov property describes a system where future states only depend on the
present and not the past. This enables MDP based algorithms to do itera-
tive learning [54]. MDP is the foundation of how RL algorithms operate to
learn the optimal behavior in an environment.
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2.5 Reinforcement Learning

Reinforcement learning is a process where an agent performs actions in
an environment, trying to maximize some cumulative reward [53] (see Sec-
tion 2.4). RL differs from supervised learning because the ground truth
is never presented directly. In RL there are model-free and model-based
algorithms. In model-free RL, the algorithm must learn the environmen-
tal properties (the model) without guidance. In contrast, model-based RL
is defined manually describing the features of an environment [10]. For
model-free algorithms, the learning only happens in present time and the
future must be explored before knowledge about the environment can be
learned [11,26].

This thesis focuses on Q-Learning algorithms, a model-free RL technique
that may potentially solve difficult game environments. This section inves-
tigates the background theory of Q-Learning and extends this method to
Deep Q-Learning (DQN), a novel algorithm that combines RL and ANN.

2.5.1 Q-Learning

Q-Learning is a model-free algorithm. This means that the MDP stays hid-
den throughout the learning process. The objective is to learn the optimal
policy by estimating the action-value function Q∗(s, a), yielding maximum
expected reward in state s performing action a in an environment. The
optimal policy can then be found by

π(s) = argmaxaQ
∗(s, a) (2.5)

Equation 2.5 is derived from finding the optimal utility of a state U(s) =
maxaQ(s, a). Since the utility is the maximum value, the argmax of that
same value qualifies as the optimal policy. The update rule for Q-Learning
is based on value iteration:

Q(s, a)← Q(s, a)+ α︸︷︷︸
LR

(
R(s)︸︷︷︸
Reward

+ γ︸︷︷︸
Discount

maxa′Q(s
′
, a
′
)︸ ︷︷ ︸

New Q

−Q(s, a)︸ ︷︷ ︸
Old Q

)
(2.6)
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Equation 2.6 shows the iterative process of propagating back the estimated
Q-value for each discrete time-step in the environment. α is the learning
rate of the algorithm, usually low number between 0.001 and 0.00001. The
reward function R(s) ∈ R, and is often between −1 < x < 1 to increase
learning stability. γ is the discount factor, discounting the importance of
future states. The ”old Q” is the estimated Q-Value of the starting state
while the ”new Q” estimates the future state. Equation 2.6 is guaranteed
to converge towards the optimal action-value function, Qi → Q∗ as i →∞
[36, 53].

2.5.2 Deep Q-Learning

At the most basic level, Q-Learning utilizes a table for storing (s, a, r, s
′
)

pairs. Instead, a non-linear function approximation can be used to approx-
imate Q(s, a; θ). This is called Deep-Q Learning. θ describes tunable
parameters (weights) for the approximation.ANNs are used as an approx-
imation method for retrieving values from the Q-Table but at the cost of
stability. Using ANN is much like compression found in JPEG images. The
compression is lossy, and information is lost at compression time. This
makes DQN unstable, since values may be wrongfully encoded under train-
ing. In addition to value iteration, a loss function must be defined for the
backpropagation process of updating the parameters.

L(θi) = E
[
(r + γmaxa′Q(s

′
, a
′
; θi)−Q(s, a; θi))

2
]

(2.7)

Equation 2.7 illustrates the loss function proposed by Minh et al [37]. It
uses Bellmans equation to calculate the loss in gradient descent. To increase
training stability, Experience Replay is used. This is a memory module that
store memories from already explored parts of the state space. Experiences
are often selected at random and then replayed to the neural network as
training data. [36].
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Chapter 3

State-of-the-art

This thesis focus on topics that are in active research, meaning that the
state-of-the-art methods quickly advances. There have been many achieve-
ments in Deep Learning, primarily related to Computer Vision topics. This
chapter investigates recent advancements in Deep Learning (3.1), Deep Re-
inforcement Learning (3.2), Generative Modeling (3.3), Capsule Networks
(3.4) and Game Learning Platforms (3.5). In the success of Deep Learn-
ing, there have been several breakthroughs in popular game environments.
Section 3.6 outlines the state-of-the-art of applying RL algorithms to game
environments.
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3.1 Deep Learning

Deep Learning has a long history, dating back to late 1980’s. One of the first
relevant papers on the area is Learning representations by backpropagating
errors from Rumelhart et al. [44] In this paper, they illustrated that a
deep neural network could be trained using backpropagation. The deep
architecture proved that a neural network could successfully learn non-linear
functions.

Yann LeCun started in the early 1990’s research into Convolutional Neu-
ral Networks (ConvNet), with handwritten zip code classification as the
primary goal [27]. He created the famous MNIST dataset, which is still
widely used in the literature [28]. After ten years of research, LeCun et
al. achieved state-of-the-art results on the MNIST dataset using ConvNets
similar to those found in literature today [28]. But due to scaling issues
with Deep ANNs, they were outperformed by classifiers like Support Vector
Machines. It was not until 2006 with the paper A fast learning algorithm
for deep belief nets by Hinton et al. that Deep Learning would appear
again [17]. This paper showed how ectively train a deep neural network,
by training one layer at a time. This was the beginning of Deep Neural
Networks as they are known today.

For this thesis, Computer Vision is the most interesting architecture. There
have been many advances in computer vision in the last couple of years.
AlexNet [25], VGGNet [40] and ResNet [63] are models achieving state-of-
the-art results in the ImageNet competition. These models are complex,
but does a good job in image recognition. For DRL, there is to best of our
knowledge no abstract model, that works for all environments. Therefore
the model must be adapted to fit the environment at hand best.
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3.2 Deep Reinforcement Learning

The earliest work found related to Deep Reinforcement Learning is Rein-
forcement Learning for Robots Using Neural Networks. This PhD thesis
illustrated how an ANN could be used in RL to perform actions in an envi-
ronment with delayed reward signals successfully. [31]

With several breakthroughs in computer vision in early 2010’s, researchers
started work on integrating ConvNets into RL algorithms. Q-Learning to-
gether with Deep Learning was a game-changing moment, and has had
tremendous success in many single agent environments on the Atari 2600
platform. Deep Q-Learning (DQN) as proposed by Mnih et al. used Con-
vNets to predict the Q function. This architecture outperformed human
expertise in over half of the games. [36]

Hasselt et al. proposed Double DQN (DDQN), which reduced the overesti-
mation of action values in the Deep Q-Network. This led to improvements
in some of the games on the Atari platform. [7]

Wang et al. then proposed a dueling architecture of DQN which intro-
duced estimation of the value function and advantage function. These two
functions were then combined to obtain the Q-Value. Dueling DQN were
implemented with the previous work of van Hasselt et al. [43].

Harm van Seijen et al. recently published an algorithm called Hybrid Reward
Architecture (HRA) which is a divide and conquer method where several
agents estimate a reward and a Q-value for each state. The algorithm per-
formed above human expertise in Ms. Pac-Man, which is considered one of
the hardest games in the Atari 2600 collection and is currently state-of-the-
art in the reinforcement learning domain. The drawback of this algorithm
is that generalization of Minh et al. approach is lost due to a huge number
of separate agents that have domain-specific sensory input. [59]

There have been few attempts at using Deep Q-Learning on advanced sim-
ulators made explicitly for machine-learning. It is probable that this is
because there are very few environments created for this purpose.
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3.3. Generative Modeling State-of-the-art

Figure 3.1: Illustration of Generative Adversarial Network Model

3.3 Generative Modeling

There are primarily three Generative models that are actively used in recent
literature, GAN, Variational Autoencoders and Autoregressive Modeling.
GAN show far better results than any other generative model and is the
primary field of research for this thesis.

GAN show great potential when it comes to generating artificial images
from real samples. The first occurrence of GAN was introduced in the paper
Generative Adversarial Networks from Ian J. Goodfellow et al. [23]. This
paper proposed a framework using a generator and discriminator neural
network. The general idea of the framework is a two-player game where
the generator generates synthetic images from noise and tries to fool the
discriminator by learning to create authentic images, see Figure 3.1.

In future work, it was specified that the proposed framework could be ex-
tended from p(x) → p(x | c). This was later proposed in the paper Con-
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3.3. Generative Modeling State-of-the-art

Figure 3.2: Illustration of Conditional Generative Adversarial Network
Model

ditional Generative Adversarial Nets (CGAN) by Mirza et al. [35]. GAN
is extended to a conditional model by demanding additional information y
as input for the generator and discriminator. This enabled to condition the
generated images on information like labels illustrated in Figure 3.2.

Radford et al. [33] proposed Deep Convolutional Generative Adversarial
Networks (DCGAN) in Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. This paper improved on
using ConvNets in unsupervised settings. Several architectural constraints
were set to make training of DCGAN stable in most scenarios. This pa-
per illustrated many great examples of images generated with DCGAN, for
instance, state-of-the-art bedroom images.

In summer 2016, Salimans et al. (Goodfellow) presented Improved Tech-
niques for Training GANs achieving state-of-the-art results in the classifi-
cation of MNIST, CIFAR-10, and SVHN [46]. This paper introduced mini-
batch discrimination, historical averaging, one-sided label smoothing and
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virtual batch normalization.

There have been many advances in GAN between and after these papers.
Throughout the research process of GANs, the most prominent architecture
for our problem is Conditional GANs which enables us to condition the input
variable x on variable y. The most recent paper on this topic is Towards
Diverse and Natural Image Descriptions via a Conditional GAN from Dai
et al. [9]. This paper focuses on captioning images using Conditional GANs.
It produced captions that were of similar quality to human-made captions.
In RL terms it is successfully able to learn a good policy for the dataset.
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3.4 Capsule Networks

Capsule Neural Networks (CapsNet) is a novel deep learning architecture
that attempts to improve the performance of image and object recognition.
CapsNet is theorized to be far better at detecting rotated objects and re-
quires less training data than traditional ConvNet. Instead of creating deep
networks like for example ResNet-50, a Capsule layer is created, containing
several sub-layers in depth. Each of these capsules has a group of neurons,
where the objective is to learn a specific object or part of an object. When
an image is inserted into the Capsule Layer, an iterative process of identi-
fying objects begins. The higher dimension layers receive a signal from the
lower dimensions. The higher dimension layer then determines which signal
is the strongest and a connection is made between the winning signal (bet-
ting). This method is called dynamic routing. This routing-by-agreement
ensures that features are mapped to the output, and preserves all input
information at the same time.

Pooling in ConvNet is also a primitive form of routing, but information
about the input is lost in the process. This makes pooling much more
vulnerable to attacks compared to dynamic routing. In current state-of-
the-art, CapsNet is explained as inverse graphics, where a capsule tries to
learn an activity vector describing the probability that an object exists.

Capsule Networks are still only in infancy, and there is not well-documented
research on this topic yet apart from state-of-the-art paper Dynamic Rout-
ing Between Capsules by Sabour et al. [45].
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3.5 Game Learning Platforms

There exists several exciting game learning platform used to research state-
of-the-art AI algorithms. The goal of these platforms is generally to provide
the necessary platform for studying Artificial General Intelligence (AGI).
AGI is a term used for AI algorithms that can perform well across several
environments without training. DRL is currently the most promising branch
of algorithms to solve AGI.

Bellemare et al. provided in 2012 a learning platform Arcade Learning
Environment (ALE) that enabled scientists to conduct edge research in
general deep learning [4]. The package provided hundreds of Atari 2600
environments that in 2013 allowed Minh et al. to do a breakthrough with
Deep Q-Learning and A3C. The platform has been a critical component in
several advances in RL research. [32,36,37]

The Malmo project is a platform built atop of the popular game Minecraft.
This game is set in a 3D environment where the object is to survive in
a world of dangers. The paper The Malmo Platform for Artificial Intelli-
gence Experimentation by Johnson et al. claims that the platform had all
characteristics qualifying it to be a platform for AGI research. [20]

ViZDoom is a platform for research in Visual Reinforcement Learning. With
the paper ViZDoom: A Doom-based AI Research Platform for Visual Re-
inforcement Learning Kempka et al. illustrated that an RL agent could
successfully learn to play the game Doom, a first-person shooter game, with
behavior similar to humans. [41]

With the paper DeepMind Lab, Beattie et al. released a platform for 3D
navigation and puzzle solving tasks. The primary purpose of Deepmind Lab
is to act as a platform for DRL research. [3]

In 2016, Brockman et al. from OpenAI released GYM which they referred
to as ”a toolkit for developing and comparing reinforcement learning al-
gorithms”. GYM provides various types of environments from following
technologies: Algorithmic tasks, Atari 2600, Board games, Box2d physics
engine, MuJoCo physics engine, and Text-based environments. OpenAI also
hosts a website where researchers can submit their performance for compar-
ison between algorithms. GYM is open-source and encourages researchers
to add support for their environments. [5]
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Platform Diversity AGI Advanced Environment(s)

ALE Yes Yes No
Malmo Platform No No Yes
ViZDoom No Yes Yes
DeepMind Lab No No Yes
OpenAI Gym Yes Yes No
OpenAI Universe Yes Yes Partially
ELF No No Yes
(GYM-CAIR) Yes Yes Yes

Table 3.1: Summary of researched platforms

OpenAI recently released a new learning platform called Universe. This
environment further adds support for environments running inside VNC.
It also supports running Flash games and browser applications. However,
despite OpenAI’s open-source policy, they do not allow researchers to add
new environments to the repository. This limits the possibilities of running
any environment. Universe is, however, a significant learning platform as it
also has support for desktop games like Grand Theft Auto IV, which allow
for research in autonomous driving [30].

Very recently Extensive Lightweight Flexible (ELF) research platform was
released with the NIPS paper ELF: An Extensive, Lightweight and Flexible
Research Platform for Real-time Strategy Games. This paper focuses on
RTS game research and is the first platform officially targeting these types
of games. [58]

3.5.1 Summary

Multiple interesting observations about current state-of-the-art in learning
platforms for RL algorithms were found during our research. Table 3.1
describes the capabilities of each of the learning platform in the interest
of fulfilling the requirements of this thesis. GYM-CAIR is included in this
comparison and is further described in Chapter 4 and 5.
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3.6 Reinforcement Learning in Games

Reinforcement Learning for games is a well-established field of research and
is frequently used to measure how well an algorithm can perform within an
environment. This section presents some of the most important achieve-
ments in Reinforcement Learning.

TD-Gammon is an algorithm capable of reaching an expert level of play
in the board game Backgammon [56, 57]. The algorithm was developed
by Gerald Tesauro in 1992 at IBM’s Thomas J. Watson Research Center.
TD-Gammon consists of a three-layer ANN and is trained using an RL
technique called TD-Lambda. TD-Lambda is a temporal difference learning
algorithm invented by Richard S. Sutton [52]. The ANN iterates over all
possible moves the player can perform and estimates the reward for that
particular move. The action that yields the highest reward is then selected.
TD-Gammon is one of the first algorithms to utilize self-play methods to
improve the ANN parameters.

In late 2015, AlphaGO became the first algorithm to win against a human
professional Go player. AlphaGO is an RL framework that uses Monte
Carlo Tree search and two Deep Neural Networks for value and policy esti-
mation [49]. Value refers to the expected future reward from a state assum-
ing that the agent plays perfectly. The policy network attempts to learn
which action is best in any given board configuration. The earliest versions
of AlphaGO used training data from games played by human professionals.
In the most recent version, AlphaGO Zero, only self-play is used to train
the AI [51] In a recent update, AlphaGO was generalized to work for Chess
and Shogi (Japanese Chess) only using 24 hours to reach superhuman level
of play [50]

DOTA 2 is an advanced player versus player game where the player is con-
trolling a hero unit. The game objective is to defeat the enemy heroes
and destroy their base. In August 2017, OpenAI invented an RL based AI
that defeated professional players in one versus one game. Training was
done only using self-play, and the algorithm learned how to exploit game
mechanics to perform well.

DeepStack is an algorithm that can perform an expert level play in Texas
Hold’em poker. This algorithm uses tree-search in conjunction with neu-
ral networks to perform sensible actions in the game [38]. DeepStack is
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a general-purpose algorithm that aims to solve problems with imperfect
information.

There have been several other significant achievements in AI, but these are
not directly related to the use of RL algorithms. These include Deep Blue1

and Watson from IBM.

1Deep Blue is not AI
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Chapter 4

Environments

Simulated environments are a popular research method to conduct exper-
iments on algorithms in computer science. These simulated environments
are often tailored to the problem, and quickly proves, or disproves the capa-
bility of an algorithm. This chapter proposes four new game environments
for deep learning research: FlashRL, Deep Line Wars, Deep RTS, and Deep
Maze. The game Flappy Bird is introduced as a validation environment
for experiments conducted in Chapter 7. Figure 4.1 illustrates that each of
these environments has different goals, and the agent placed in these envi-
ronments are challenged in several topics, for instance, multitasking, deep
and shallow state interpretation and planning. This chapter creates a foun-
dation for research into CapsNet based RL-algorithms in advanced game
environments.
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Figure 4.1: Environment field of focus

36



4.1. FlashRL Environments

4.1 FlashRL

Adobe Flash is a multimedia software platform used for the production of
applications and animations. The Flash run-time was recently declared
deprecated by Adobe, and by 2020, no longer supported. Flash is still fre-
quently used in web applications, and there are countless games created for
this platform. Several web browsers have removed the support for the Flash
runtime, making it difficult to access the mentioned game environments.
Flash games are an excellent resource for machine learning benchmarking,
due to size and diversity of its game repository. It is therefore essential to
preserve the Flash run-time as a platform for RL.

Flash Reinforcement Learning (FlashRL) is a novel platform that acts as an
input/output interface between Flash games and DRL algorithms. FlashRL
enables researchers to interface against almost any Flash-based game envi-
ronment efficiently.

Figure 4.2: FlashRL: Architecture

The learning platform is developed primarily for Linux based operating sys-
tems but is likely to run on Cygwin with few modifications. There are
several key components that FlashRL uses to operate adequate, see Figure
4.2. FlashRL uses XVFB to create a virtual frame-buffer. The frame-buffer
acts like a regular desktop environment, found in Linux desktop distribu-
tions [18]. Inside the frame-buffer, a Flash game chosen by the researcher
is executed by a third-party flash player, for example, Gnash. A VNC
server serves the frame-buffer and enable FlashRL to access display, mouse
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and keyboard via the VNC protocol. The VNC Client pyVLC was spe-
cially made for this FlashRL. The code base originates from python-vnc-
viewer [55]. The last component of FlashRL is the Reinforcement Learning
API that allows the developer to access the input/output of the pyVLC.
This makes it easy to develop sequenced algorithms by using API callbacks
or invoke commands manually with threading.

Figure 4.3: FlashRL: Frame-buffer Access Methods

Figure 4.3 illustrates two methods of accessing the frame-buffer from the
Flash environment. Both approaches are sufficient to perform RL, but each
has its strengths and weaknesses. Method 1 sends frames at a fixed rate,
for example at 60 frames per second. The second method does not set any
restrictions of how fast the frame-buffer can be captured. This is preferable
for developers that do not require images from fixed time-steps because it
demands less processing power per frame. The framework was developed
with deep learning in mind and is proven to work well with Keras and
Tensorflow [1].

There are close to a thousand game environments available for the first
version of FlashRL. These game environments were gathered from different
sources on the world wide web. FlashRL has a relatively small code-base
and to preserve this size, the Flash repository is hosted at a remote site.
Because of the large repository, not all games have been tested thoroughly.
The game quality may therefore vary. Figure 4.4 illustrates tested games
that yield a great value for DRL research.
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Figure 4.4: FlashRL: Available environments
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Figure 4.5: Deep Line Wars: Graphical User Interface

4.2 Deep Line Wars

The game objective of Deep Line Wars is to invade the opposing player
(hereby enemy) with mercenary units until all health points are depleted
(see Figure 4.5). For every friendly unit that enters the red area on the
map, the enemy health pool is reduced by one. When a player purchases a
mercenary unit, it spawns at a random location inside the red area of the
owners base. Mercenary units automatically move towards the enemy base.
To protect the base, players can construct towers that shoot projectiles at
the opponents mercenaries. When a mercenary dies, a fair percentage of
its gold value is awarded to the opponent. When a player sends a unit, the
income is increased by a percentage of the units gold value. As a part of
the income system, players gain gold at fixed intervals. [2]

To successfully master game mechanics of Deep Line Wars, the player
(agent) must learn

• offensive strategies of spawning units,

• defending against the opposing player’s invasions, and
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Figure 4.6: Deep Line Wars: Game-state representation

Figure 4.7: Deep Line Wars: Game-state representation using heatmaps

• maintain a healthy balance between offensive and defensive to maxi-
mize income

The game is designed so that if the player performs better than the opponent
in these mechanics, he is guaranteed to win over the opponent.

Because the game is specifically targeted towards RL research, the game-
state is defined as a multi-dimensional matrix. This way, it is trivial to
input the game-state directly into ANN models. Figure 4.6 illustrates how
the game state is constructed. This state is later translated into graphics,
seen in Figure 4.5. It is beneficial to directly access this information because
it requires less data preprocessing compared to using raw game images.
Deep Line Wars also features abstract state representation using heat-maps,

41



4.2. Deep Line Wars Environments

Representation Matrix Size Data Size

Image 800 · 600 · 3 1440000

Matrix 10 · 15 · 5 750

Heatmap RGB 10 · 15 · 3 450

Heatmap Grayscale 10 · 15 · 1 150

Table 4.1: Deep Line Wars: Representation modes

seen in Figure 4.7. By using heatmaps, the state-space is reduced by a
magnitude, compared to raw images. Heatmaps can better represent the
true objective of the game, enabling faster learning for RL algorithms [47].

In Deep Line Wars, there are primarily four representation modes avail-
able for RL.Table 4.1 shows that there is considerably lower data size for
grayscale heatmaps. Effectively, the state-space can be reduced by 9600%,
when no data preprocessing is done. Heatmaps seen in 4.7 define

• red pixels as friendly buildings,

• green pixels as enemy units, and

• teal pixels as the mouse cursor.

When using grayscale heatmaps, RGB values are squashed into a one-
dimensional matrix with values ranging between 0 and 1. Economy drasti-
cally increases the complexity of Deep Line Wars, and it is challenging to
present only using images correctly. Therefore a secondary data structure
is available featuring health, gold, lumber, and income. This data can then
be feed into a hybrid DL model as an auxiliary input [61].
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4.3 Deep RTS

RTS games are considered to be the most challenging games for AI algo-
rithms to master [60]. With colossal state and action-spaces, in a continuous
setting, it is nearly impossible to estimate the computational complexity of
games such as Starcraft II.

The game objective of Deep RTS is to build a base consisting of a Town-
Hall and then expand the base to gain the military power to defeat the
opponents. Each of the players starts with a worker. Workers can construct
buildings and gather resources to gain an economic advantage.

Figure 4.8: Deep RTS: Graphical User Interface

The game mechanics consist of two main terminologies, Micro and Macro
management. The player with the best ability to manage their resources,
military, and defensive is likely to win the game. There is a considerable
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Player Resources

Property: Lumber Gold Oil Food Units

Value Range: 0 - 106 0 - 106 0 - 106 0 - 200 0 - 200

Table 4.2: Deep RTS: Player Resources

Figure 4.9: Deep RTS: Architecture

leap from mastering Deep Line Wars to Deep RTS, much because Deep RTS
features more than two players.

The game interface displays relevant statistics meanwhile a game session
is running. These statistics show the action distribution, player resources,
player scoreboard and a live performance graph. The action distribution
keeps track of which actions a player has performed in the game session.
These statistics are stored to the hard-drive after a game has reached the
terminal state. Player Resources (Table 4.2), are shown at the top bar of the
game. Player Scoreboard indicates the overall performance of each of the
players, measured by kills, defensive points, offensive points and resource
count. Deep RTS features several hotkeys for moderating the game-settings
like game-speed and state representation. The hotkey menu is accessed by
pressing the G-hotkey.

Deep RTS is an environment developed as an intermediate step between
Atari 2600 and the famous game Starcraft II. It is designed to measure the
performance in RL algorithms, while also preserving the game goal. Deep
RTS is developed for high-performance simulation of RTS scenarios. The
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4.3. Deep RTS Environments

game engine is developed in C++ for performance but has an API wrapper
for Python, seen in Figure 4.9. It has a flexible configuration to enable
different AI approaches, for instance online and offline RL. Deep RTS can
represent the state as raw game images (C++) and as a matrix, which is
compatible with both C++ and Python.
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4.4. Deep Maze Environments

Figure 4.10: Deep Maze: Graphical User Interface

4.4 Deep Maze

Deep Maze is a game environment designed to challenge RL agents in the
shortest path problem. Deep Maze defines the problem as follows:

• How can the agent optimally navigate through any fully-observable
maze?

The environment is simple, but becomes drastically more complicated when
the objective is to find the optimal policy π?(s) where s = state for all the
maze configurations.

There are multiple difficulty levels for Deep Maze in two separate modes;
deterministic and stochastic. In the deterministic mode, the maze structure
is never changed from game to game. Stochastic mode randomizes the maze
structure for every game played. There are multiple size configurations,
ranging from 7× 7 to 55× 55 in width and height, seen in Figure 4.10.

Figure 4.11 illustrates how the theoretical maximum state-space set S of
Deep Maze increase with maze size. This is calculated by performing fol-
lowing binomial: S =

(
width×height
player+goal

)
=
(
w×h
2

)
. This is however reduced

depending on the maze composition, where dense maze structures are gen-
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4.4. Deep Maze Environments

Figure 4.11: Deep Maze: State-space complexity

erally less complex to solve theoretically.

The simulation is designed for performance so that each discrete time step
is calculated with fewest possible CPU cycles. The simulation is estimated
to run at 3 000 000 ticks per second with modern hardware. This allows for
fast training of RL algorithms.

From an RL point of view, Deep Maze challenges an agent in state-interpretation
and navigation, where the goal is to reach the terminal state in fewest pos-
sible time steps. It’s a flexible environment that enables research in a single
environment setting, as well as multiple scenarios played in sequence.
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Figure 4.12: Flappy Bird: Graphical User Interface

4.5 Flappy Bird

Flappy Bird is a popular mobile phone game developed by Dong Nguyen in
May 2013. The game objective is to control a bird by ”flapping” its wings
to pass pipes, see Figure 4.12. The player is awarded one point for each
pipe passed.

Flappy Bird is widely used in RL research and was first introduced in Deep
Reinforcement Learning for Flappy Bird [6]. This report shows superhuman
agent performance in the game using regular DQN methods1.

OpenAI’s gym platform implements Flappy Bird through PyGame Learning
Environment2 (PLE). It supports both visual and non-visual state represen-
tation. The visual representation is an RGB image while the non-visual in-
formation includes vectorized data of the birds position, velocity, upcoming
pipe distance, and position.

Figure 4.12 illustrates the visual state representation of Flappy Bird. It is
represented by an RGB Image with the dimension of 512 × 288. It is rec-
ommended that raw images are preprocessed to gray-scale and downscaled
to 80 × 80. Flappy Bird is an excellent environment for RL and provides
adequate validation of new game environments introduced in this thesis.

1Source code: https://github.com/yenchenlin/DeepLearningFlappyBird
2Available at: https://github.com/ntasfi/PyGame-Learning-Environment
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Chapter 5

Proposed Solutions

Three key solutions are presented in this thesis. First is an architecture that
provides a generic communication interface between the environments and
the DRL agents. Second is to apply Capsule Layers to DQN, enabling the
research into CapsNet based RL algorithms. The third is a novel technique
for generating artificial training data for DQN models. These components
propose a DRL ecosystem that is suited for research purposes, see Figure 5.1.

49



Proposed Solutions

Figure 5.1: Proposed Deep Reinforcement Learning ecosystem
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Figure 5.2: Architecture: gym-cair

5.1 Environments

OpenAI GYM is an open-source learning platform, exposing several game
environments to the AI research community. There are many existing games
available, but these are too simple because they have too easy game objec-
tives. A game environment is registered to the GYM platform by defining a
scenario. This scenario predefines the environment settings that determines
the complexity. This type of registration is beneficial because it enables to
construct multiple scenarios per game environment. An example of this
would be the Maze environment, which contains scenarios for deterministic
and stochastic gameplay for the different maze sizes.

Figure 5.2 illustrates how the environment ecosystem is designed using Ope-
nAI GYM. Environments are registered to the GYM(1) platform.
Deep Line Wars(2), Deep RTS(3) and Maze(4) are then added to a common
repository, called gym-cair (5). This repository links together all environ-
ments, which can be imported via Python(6).

The benefit of using GYM is that all environments are constrained to a
generic RL interface, seen in Algorithm 1. The environment is initially reset
by running gym.reset function (Line 1). It is assumed that the environment
does not start in a terminal state (Line 2). While the environment is not
in a terminal state, the agent can perform actions (Line 5 and 6). This
procedure is repeated until the environment reaches the terminal state.

By using this setup, it is far more trivial to perform experiments in the
proposed environments. It also enables better comparison, because GYM
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5.1. Environments Proposed Solutions

Algorithm 1 Generic GYM RL routine
1: statex = gym.reset
2: terminal = False
3: while not terminal do
4: env.render
5: a = env.action space.sample
6: statex+1, rx+1, terminal, info = env.step(a)
7: statex = statex+1

8: end while

ensures that the environment configuration is not altered while conducting
the experiments.
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5.2. Capsule Networks Proposed Solutions

Layer Name Output Params Output Params

Input 28× 28× 1 0 84× 84× 1 0
Conv Layer 20× 20× 256 20 992 76× 76× 256 20 992
Primary Caps 6× 6× 256 5 308 672 34× 34× 256 5 308 672
Capsule Layer 16× 16 2 359 296 16× 16 75 759 616
Output 16 0 16 0

Parameters 7 688 960 81 089 280

Table 5.1: Capsule Networks: Dimension Comparison

5.2 Capsule Networks

Capsule Networks recently illustrated that a shallow ANN could successfully
classify the MNIST dataset of digits, with state-of-the-art results, using
considerably fewer parameters then in regular ConvNets. The idea behind
CapsNet is to interpret the input by identifying parts of the whole, namely
the objects of the input. [45] The objects are identified using Capsules that
have the responsibility of finding specific objects in the whole. A capsule
becomes active when the object it searches for exist.

It becomes significantly harder to use CapsNet in RL. The objective of RL
is to identify actions that are sensible to do in any given state. This means
that actions become parts, and the whole becomes the state. Instead of
classifying objects, the capsules now estimate a vector of the likelihood that
an action is sensible to do in the current state.

Several issues need to be solved for CapsNet to work properly in the envi-
ronments outlined in Chapter 4. The first problem is the input size. The
MNIST dataset of digits contains images of 28× 28× 1 pixels, in contrast,
game environments usually range between 64 × 64 × 1 and 128 × 128 × 3
pixels.

Table 5.1 illustrates the consequence of increasing the input size beyond the
specified 28 × 28 × 1. By increasing the input size by a magnitude of 3
(84× 84), the model gains over 10× parameters. Figure 5.3 illustrates how
parameters increase exponentially with the input size. In attempts to solve
the scalability issue, several Convolutional Layers can be put in front of
the CapsNet. This enables the algorithm to extract feature maps from the
original input, but it is crucial to not utilize any form of pooling prior the
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Figure 5.3: Capsule Networks: Parameter count for different input sizes
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5.2. Capsule Networks Proposed Solutions

Figure 5.4: Capsule Networks: Architecture

Capsule Layer. The whole reason to use Capsules is that it solves several
problems with invariance that max-pooling possess.

Figure 5.4 illustrates how a standard CapsNet is structured, using a single
Convolutional Layer. When a neural network is used, a question is defined
to instruct the neural network to predict an answer. For a simple image
classification task, the question is: what do you see in the image. The
neural network then tries to answer, by using its current knowledge: I see a
bird. The answer is then revealed to the neural network, which allows it to
tune its response if it answered incorrectly. The same analogy can be used
in an RL problem.

The hope is that despite having several scalability issues, it is possible to
accurately encode states into the correct capsules for each possible action
in the environment. There are several methods to improve the training, but
for this thesis, only primitive Q-Learning strategies will be used.
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5.3. Deep Q-Learning Proposed Solutions

Model Paper Year

1 Vanilla DQN Mnih et al. [36, 37] 2013/2015

2 Deep Recurrent Q-Network Hausknecht et al. [16] 2015

3 Double DQN Hasselt et al. [7] 2015

4 Dueling DQN Wang et al. [43] 2015

5 Continuous DQN Gu et al. [14] 2016

6 Deep Capsule Q-Network

7 Recurrent Capsule Q-Network

Table 5.2: Deep Q-Learning architectures in testbed

5.3 Deep Q-Learning1

There are many different Deep Q-Learning algorithms available consisting
of different hyper-parameters, network depth, experience replay strategies
and learning rates. The primary problem of DQN is learning stability, and
this is shown with the countless configurations found in the literature [7,14,
16,36,37,43]. Refer to Section 2.5.2 for how the algorithm performs learning
of the Q function.

Models 1-4 (Figure 5.2) are the most commonly used DQN architectures
found in literature. Model 5 shows great potential in continuous environ-
ments, comparable to environments from Chapter 4. Models 6 and 7 are
two novel approaches using Capsule Layers in conjunction with Convolution
layers [45,64].

Models 1-7 are implemented in the Keras/Tensorflow framework according
to the definitions found in the illustrated papers. Table 5.3 shows the ar-
chitecture of the DQN models found in Table 5.2. Filter and stride count
is intentionally left out because these are considered as hyper-parameters.
Hyperparameters are manually tuned by trial and error. Table 5.4 outlines
the parameters that are tuned individually for each of the architectures.

1General knowledge of ANN, DQN, and CapsNet from Chapter 2 is required.
2Time Distributed / Recurrent
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Deep Q-Learning Models
(It is assumed that all models have a preceding input layer)

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

1 DQN
Conv
Relu

Conv
Relu

Conv
Relu

Dense
Relu

Output
Linear

2 DRQN
Conv
Relu

Conv
Relu

Conv
Relu

LSTM

3 DDQN
Conv
Relu

Conv
Relu

Conv
Relu

Dense
Relu

Dense
Relu

Output
Linear

Output
Linear

4 DuDQN Uses 2x DQN, Gradual updates from Target to Main

5 CDQN Identical to DDQN but with different update strategy

6 DCQN
Conv
Relu

Conv
Relu

Conv
Relu

Capsule OutCaps

7 RCQN 2 Conv
Relu

Conv
Relu

Conv
Relu

Capsule OutCaps

Table 5.3: Deep Q-Learning architectures

Deep Q-Learning Hyperparameters
Parameter Value Range Default

Learning Rate 0.0-1.0 1e−04

Discount Factor 0.0-1.0 0.99

Loss Function [Huber, MSE] Huber

Optimizer [SGD, Adam, RMSProp] Adam

Batch Size 1→∞ 32

Memory Size 1→∞ 1 000 000

εmin 0.0→ 1.0 0.10

εmax 0.0→ 1.0 and > εmin 1.0

εstart εstart ∈ {εmin, εmax} 1.0

Table 5.4: Deep Q-Learning hyper-parameters
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5.4 Artificial Data Generator

The Artificial Data Generator component from Figure 5.1 is an attempt
to shorten the exploration phase in RL. By generating artificial training
data, the hope is that DQN models can learn features that were never ex-
perienced within the environment. The proposed algorithm could be able
to predict these future states, si+1 given si conditioned on action a in the
generator function si+1 = G(si|a) [35]. The initial plan was to utilize adver-
sarial generative networks but was not able to generate conditioned states
successfully. Instead, an architecture called Conditional Convolution De-
convolution Network was developed that use SDG to update parameters
(Section 5.4).

Conditional Convolution Deconvolution Network (CCDN) is an ar-
chitecture that tries to predict the consequence of a condition applied to an
image. A state is conditioned on a action to predict future game states.

Figure 5.5 illustrates the general idea of the model. The model is designed
using two input streams, image and condition steam. The image stream is
a series of convolutional layers following a fully-connected layer. The con-
ditional stream contains fully-connected layers where the last layer matches
the number neurons in the last layer of the image steam. These streams
are then multiplied following a fully-connected layer that encodes the con-
ditioned states. The conditioned state is then reconstructed using deconvo-
lutions. The output layer is the final reconstructed image of the predicted
next state given condition.

The process of training this model is supervised as it consumes data from
the experience replay buffer gathered by RL agents. The model is trained
by fetching a memory from the experience replay memory (si, a, si+1)
where si is the current state, a is the action, and si+1 is the transition
T (si, a). CCDN generates an artificial state ŝi+1 by using the generator
model G(si|a, θ). The parameters θ is optimized using SDG, and the loss is
calculated using MSE.

MSE =
1

n

n∑

i=1

(Si+1 − Ŝi+1)
2 (5.1)
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Figure 5.5: Architecture: CCDN
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1 0 0 1 0 0
Real States

0 0
T (s0, Aright) 0 0

T (s1, Adown)
0 1

s0 s1 s2

0 1 0 0
Generated States N/A G(s0, Aright) 0 0

G(ŝ1, Adown)
0 1

ŝ1 ŝ2

Table 5.5: Proposed prediction cycle for CCDN

Equation 5.1 (Equation 2.2; the predicted value y is now denoted S ) is
simple in that the loss is decreased when the value of the predicted state
Ŝi+1 gets closer to Si+1.

Table 5.5 illustrates how states are generated using CCDN. It is assumed
that it is possible to transition between states given an action, to create
training data. When sufficient training data is collected, the recorded state
data is used to estimate future states. In this example, there is a 2 × 2
grid where the agent is a red square with the actions, up, down, left, and
right. This yields a theoretical maximum state-space of 4 states with 256
possible transitions (4 actions per cell = 44 possible state and action combi-
nations). When a portion of the state-space is explored trough random-play
the CCDN algorithm can train by comparing the predictions against real
data. The goal is for the model to converge towards learning the transition
function of the environment, to continue generating future states without
any interaction with the environment. It is likely that the model are able
to converge towards the optimal solution for more than a single time-step
in the future.
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Experiments and Results
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Chapter 6

Conditional Convolution
Deconvolution Network

This chapter presents Conditional Convolution Deconvolution Network (CCDN).
The purpose of the CCDN algorithm is to generate artificial training data
for Deep Reinforcement Learning algorithms. The data is generated from
the game environments introduced in Chapter 4. The goal is to generate
high-quality training data that can be used to train algorithms without
self-play. The algorithm is used on the following game environments:

• FlashRL: Multitask (Section 4.1),

• Deep Line Wars (Section 4.2),

• Deep Maze (Section 4.4), and

• Flappy Bird (Section 4.5).

Deep RTS (Section 4.3) is excluded from these tests because it does not
support image state-representation1

A dataset consisting of 100 000 unique state transitions is collected for
all environments using random-play strategies. A training set is created,
consisting of 60 000 transitions (60%), and the remaining 40% as a test. The

1Deep RTS image state-representation is planned for future work
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6.1. Introduction CCDN

training for CCDN took approximately 160 hours per game environment
when using hardware listed in Appendix A.

6.1 Introduction

CCDN predicts the future states by conditioning current state on a action.
Figure 5.5 illustrates the architecture used in these experiments. To calcu-
late the loss, MSE (Equation 5.1) was used during training. The model is
tested using 32, 64, 128, 256, and 512 neurons in the fully-connected layer.
Depending on the neuron count, the model has approximately 13 000 000
to 67 000 000 parameters in total.

It is beneficial to have a significant amount of parameters because it allows
the model to encode more data. The drawback of this is that the model
uses more memory, and takes longer to train. The aim is to train the model
for 10 000 epoch at a maximum of 168 hours. For this reason, the algorithm
used 32 neurons in the hidden layers which gave reasonably good results for
some environments.

Conditioned actions are not shown in the generated images from these ex-
periments. This is because the precision is still too coarse, and the generated
future states are yet too far from the ground truth. These results are im-
pressive for some environments, and there is a possibility that the generated
samples can be used in conjunction with real samples to train DQN models.
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6.2. Deep Line Wars CCDN

Figure 6.1: CCDN: Deep Line Wars: Training Performance

6.2 Deep Line Wars

Deep Line Wars show excellent results when generating data using CCDN
to generate future states ŝ = G(s|a). Table 6.1 illustrates the transition
from real states (Left side) to generated future states by training CCDN
using SDG.

CCDN was not able to converge, but it is possible that this is due to our
low neuron count of 32 in the fully-connected layer. Figure 6.1 shows that
the loss inclined gradually while the accuracy declined. Loss and accuracy
do not reflect the generated images seen in Table 6.1. The observed tran-
sitions at Day 5-6.5 illustrate realistic transition behavior between states.
Observations indicate that CCDN learns input features like:

• Background intensity (Represents health points)

• Possible mouse position (White square)

• Possible unit positions

• Building positions

The model is still not able to correctly predict the movement of units. This
could potentially be solved by stacking several state transitions before pre-
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dicting future states [6]. This could be done using ConvNets or the use of
recurrence in neural networks (RNN).
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6.2. Deep Line Wars CCDN

Deep Line Wars: Conditioned State Transitions

Day 1 Day 4

Day 1.5 Day 4.5

Day 2 Day 5

Day 2.5 Day 5.5

Day 3 Day 6

Day 3.5 Day 6.5

Table 6.1: CCDN: Deep Line Wars
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Figure 6.2: CCDN: Deep Maze: Training Performance

6.3 Deep Maze

Deep Maze should be considered as one of the more straightforward envi-
ronments to generate high-quality training data because it has the simplest
state-space. From Table 6.2 it is clear that CCDN recognized features like
the maze structure early in the training process. Figure 6.2 illustrates that
CCDN converged quickly, having a loss near 0 at the 5th epoch of train-
ing. High accuracy was reported during training when using MSE as the
loss function. By inspecting the produced images manually, it was clear
that CCDN did not learn how to predict the position of the player inside
the maze. Hallways inside the maze did not show any sensible information
about the actual location of the player. Instead, the maze hallways were
generated as random noise. There are however some parts of the maze that
presents less noise, indicating that the player did not visit these locations
as frequently.
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Deep Maze: Conditioned State Transitions

Day 1 Day 4

Day 1.5 Day 4.5

Day 2 Day 5

Day 2.5 Day 5.5

Day 3 Day 6

Day 3.5 Day 6.5

Table 6.2: CCDN: Deep Maze
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6.4. FlashRL: Multitask CCDN

Figure 6.3: CCDN: FlashRL: Training Performance

6.4 FlashRL: Multitask

CCDN produced high-quality state transitions when applying it to Flash
RL: Multitask. Since Multitask is an environment consisting of several
different scenes (Menu, Stage 1, Stage 2), it was expected that it would fail
to generate sensible output. Table 6.3 illustrates that CCDN was able to
extract features from all states and map it to correct action. Transitions
from Day 2.5 and Day 3.5 illustrates a slight change in the paddle tilt
and the position of the ball. This shows that the algorithm can to some
extend understand game mechanics. In addition to this, CCDN can draw
the menu including a slight change in the mouse position. The results show
that CCDN can learn to extract:

• The current scene layout

• Primitive physics

Figure 6.3 illustrates that CCDN did not reach more than 5% accuracy
at training time even though the loss was close to zero. It is not clear
what is causing the training instability because measuring loss of the images
manually using MSE gave far better accuracy for most training samples.
The results indicate that CCDN did indeed learn to extract features from
the Multitask environment.
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Flash RL: Conditioned State Transitions

Day 1 Day 4

Day 1.5 Day 4.5

Day 2 Day 5

Day 2.5 Day 5.5

Day 3 Day 6

Day 3.5 Day 6.5

Table 6.3: CCDN: FlashRL: Multitask
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6.5. Flappy Bird CCDN

Figure 6.4: CCDN: Flappy Bird: Training Performance

6.5 Flappy Bird

Table 6.4 illustrates the generated transitions for the third party game
Flappy Bird. Figure 6.4 show that CCDN has a gradual decrease in the
loss while the accuracy increases to approximately 35%. Flappy Bird has
the highest accuracy for the tested game environments, but observations
shows that CCDN is only able to generate noise.

The reason is that Flappy Bird has a scrolling background, meaning that
CCDN must encode a lot more data than in the other environments. Be-
cause of this, CCDN could not determine how to generate future state rep-
resentations for this game.

It is expected that this problem could be mitigated by performing data
preprocessing. Literature indicates that RL algorithms often strip away the
background to simplify the game-state [13]. Also, it is likely that CCDN
could successfully encode Flappy Bird with additional parameters, but this
would increase the training time to several weeks.
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Flappy Bird: Conditioned States

Day 1

Day 3

Day 4

Day 6

Table 6.4: CCDN: Flappy Bird
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6.6. Summary CCDN

6.6 Summary

CCDN is a novel algorithm suited for generating artificial training data
for RL algorithms and shows great potential for some environments. The
results indicate that CCDN has issues in game environments with a sparse
state-space representation. Flappy Bird illustrates the problem well because
CCDN generates noise instead of future states for action and state pairs.
One method to combat this problem may be to increase the neuron count
for the fully-connected layer in the CCDN model.

ANN based algorithms frequently suffer from training instability. The re-
sults show that the CCDN algorithm was not able to accurately determine
the loss using regular MSE. This could potentially be the cause of the train-
ing instability because the optimizer would not be able to determine how
well it is doing when updating network parameters. It is likely that replacing
the MSE loss function could improve the generated images drastically.

The results presented in this Chapter shows excellent potential in using
CCDN for generation of artificial training data for game environments. It
shows excellent performance in Deep Line Wars and Flash RL: Multitask
and could potentially reduce the required amount of exploration in RL al-
gorithms
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Chapter 7

Deep Q-Learning

This chapter presents experimental results of the research done using Deep
Q-Learning with CapsNet and ConvNet based models. The goal is to use
CapsNet in Deep Q-Learning to solve the environments from Chapter 4.

RL algorithms are known to be computationally intensive and are thus
difficult to train for environments with large state-spaces [62]. Models are
trained using hardware specified in Appendix A. Chapter 5 proposed 7 DQN
architectures that could potentially control an agent well within the environ-
ments. Model 1 and 6 from Table 5.2 was selected as the primary research
area to limit the scope of this thesis 1. To increase training stability for
all environments, hyper-parameters from Table 5.4 is tuned further per en-
vironment. The datasets are populated with 20% artificial training data,
generated from CCDN. Table 7.1 illustrates updated hyper-parameters that
performed best when experimenting with CapsNet and ConvNet based mod-
els. The DQN models use SDG to optimize its parameters. Initial training
data is sampled using random-play strategies, gradually moving into ex-
ploitation using ε-greedy.

Experiments conducted in this thesis are available at http://github.com/
UIA-CAIR.

1Training time for 7 models in 5 environments: 7 × 5 × 7 = 245 days (Approx 7 days
per experiment)
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Deep Q-Learning

Environment α γ ε-decay Batch Size Dataset-Size

Deep Line Wars 3e-5 0.98 0.005 16 1M

Deep Maze 3e-5 0.98 0.005 16 1M

FlashRL:Multitask 1e-4 0.98 0.005 16 1M

Deep RTS 3e-5 0.98 0.005 16 1M

Flappy Bird 2e-4 0.98 0.005 16 1M

Table 7.1: DQN: Hyper-parameters
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7.1 Experiments
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Figure 7.1: DQN-CapsNet: Deep Line Wars
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Figure 7.2: DQN-ConvNet: Deep Line Wars
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Figure 7.3: DQN-CapsNet: Deep RTS
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Figure 7.4: DQN-ConvNet: Deep RTS
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Figure 7.5: DQN-CapsNet: Deep Maze
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Figure 7.6: DQN-ConvNet: Deep Maze
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Figure 7.7: DQN-CapsNet: Flappy Bird
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Figure 7.8: DQN-ConvNet: Flappy Bird
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7.2 Deep Line Wars

For Deep Line Wars, both agents illustrated relatively strong capabilities
when it comes to exploiting game mechanics and finding the opponents
weakness. The opponent is a random-play agent, that builds an uneven
defense, sending units without any economic considerations. Figure 7.1 and
Figure 7.2 show that both agents find the opponents weakness to be defense.

Figure 7.9: DQN-CapsNet: Agent building defensive due to low health in
Deep Line Wars

Results shows that the game mechanics are not balanced, making the Pur-
chase Unit 1 the obvious choice for offensive actions. This unit is strong
enough to survive most defenses and does the most damage to the oppo-
nents health pool. The ConvNet agent performs better in a period of 100
episodes, and both agents can master the random-play opponent.

7.3 Deep RTS

Deep RTS shows exciting results, where DQN-CapsNet starts at a low loss
with a high total reward, slowly diverging in reward and loss. The results
show that DQN-CapsNet and DQN-ConvNet perform comparably. It is
not clear why DQN-CapsNet diverged, but the high action-space is a likely
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candidate. It is difficult to see any sense in the determination of action-state
mapping, but some observations indicated that the agent favor gathering
instead of military actions.

7.4 Deep Maze

The goal of Deep Maze is to find the shortest path from start to goal in a 25×
25 labyrinth. Figure 7.5 and Figure 7.6 shows that DQN-CapsNet had issues
with the training stability. The algorithm is tested with several different
hyper-parameter configurations, but there was no solution to remedy this.
DQN-ConvNet did not indicate any issues during the training. Both agents
had issues finding the shortest path, looking at the total reward, both agents
had a negative score. For each move done after reaching the optimal move
count, a negative reward is given the agent. Observations show that both
agents have similar performance in this experiment.

Figure 7.10: DQN-CapsNet: Agent attempting to find the shortest path in
a 25× 25 Deep Maze

Figure 7.10 illustrates an in-game image of the 25 × 25 map used in this
experiment. The green square is the start area, while the red is the goal.

82



7.5. FlashRL: Multitask Deep Q-Learning

The optimal path for this experiment is a series of 21 actions.

7.5 FlashRL: Multitask

For FlashRL: Multitask, the DQN-CapsNet was not able to compete with
DQN-ConvNet. It was not able to learn how to control the first paddle.
The results are for this reason not included for this environment. Refer to
Publication B for results using DQN-ConvNet.

7.6 Flappy Bird

Flappy Bird is a difficult environment for an agent to master because the
state-space is large due to the scrolling background. In literature, the train-
ing time for this environment is between one and four days. For this ex-
periment, the agent trained for seven days, in the hope that both agents
would converge. Figure 7.7 and Figure 7.8 shows that both agents per-
formed well, where DQN-ConvNet scored 0.4 points higher. For each pipe,
the bird passes, 0.1 points are awarded to the total reward.

7.7 Summary

Looking at the results, it is clear that DQN-CapsNet overestimates actions
for almost all environments. Instead of having a sensible distribution of
actions, it often chooses to favor a particular move after a short period of
training.

Recent state-of-the-art suggests that self-play using dueling methods may
increase stability and performance in the long-term [43], but this was not
possible due to GPU memory limitations. It is clear that DQN-CapsNet
can work for other tasks then image recognition, but there are still many
challenges to solve before it can perform comparably to DQN-ConvNet.
A significant issue is that Capsules do not scale well with several outputs
(actions), resulting in a model that quickly becomes too large for the GPU
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memory to handle. The upcoming paragraphs summarize the findings of
the experiments conducted using DQN-CapsNet and DQN-ConvNet.

Training Loss
An interesting observation during the training was that none of the models
had a gradual decline in the loss during training. This may be because the
state-space was quite large for all environments in the test-bed. Some inves-
tigation revealed that environments with sparse input had a more significant
loss increase. By comparing Figure 7.1 and Figure 7.3, it is clear that Deep
RTS has far more loss compared to Deep Line Wars when predicting the
best Q-Value for an action. Since CapsNet primarily detects objects, it is
likely that the sudden jumps in loss (Figure 7.5) can be explained by sev-
eral capsules changing its prediction vector at the same time. A possible
improvement would be to decay the learning rate throughout the training
period. It is likely that the training loss issues can be managed for models
with several new hyper-parameter configurations.

Action Frequency
Results shows that CapsNet tends to overestimate actions drastically in
environments with few actions (Deep Maze and Flappy Bird). It is possible
that this is because a Capsule looks for parts in the whole. Since CapsNet is
positional invariant, one explanation may be that the model classifies states
by looking for the existence of an object, instead of the likelihood of the
best action. For Flappy Bird, the model determines that the agent should
use Flap as long as the bird exists in the input. For environments with large
action-spaces, observations show a more consistent action frequency.

Agent Performance
Table 7.2 shows that DQN-CapsNet does indeed perform above random-
play agents in selected environments, but falls behind compared to DQN-
ConvNet. For all environments, a higher score is better. In Deep Line
Wars, the reward increases as the agent keep surviving the game or defeat
the enemy. The CapsNet agent has approximately 57% win chance while
ConvNet wins in 78% of the games against a random-play agent.

In Deep RTS, the accumulated score is measured during the first 600 sec-
onds of the game. This is typically resource harvesting, as the agent was
never able to create long-term strategies. In early training, CapsNet accu-
mulated far more resources then ConvNet, but it gradually declined while
training. This means that the model diverged from the optimal solution.
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Environment Random DQN-CapsNet DQN-ConvNet

Deep Line Wars 50 57 78

Deep RTS 1.4 5.0 5.1

Deep Maze -600 -275 -225

FlashRL: Multitask 14 N/A 300

Flappy Bird 1.4 7.9 8.3

Table 7.2: Comparison of DQN-CapsNet, DQN-ConvNet, and Random ac-
cumulative reward (Higher is better)

It is likely that this is because the model starts to overestimate action Q-
values. In comparison, results show that both models perform comparably
while performing well beyond the capability of random-play agents.

In Deep Maze, none of the agents were able to find the optimal path to the
goal. Additional experiments were conducted and showed better results for
smaller mazes (9x9 and 11x11). For 25x25 the CapsNet used on average 275
additional actions to reach the goal, while ConvNet performed marginally
better using 225 actions.

The CapsNet agent is able to perform well in Flappy Bird. With only 0.4
points less then ConvNet, it is clear that both agents perform at the same
level of expertise. It is possible that the CapsNet agent could achieve far
better results if a solution is found for the Q-Value overestimation problem.

85





Chapter 8

Conclusion and Future Work

This thesis conclusively shows that Capsules are viable to use in advanced
game environments. It is further shown that capsules do not scale as well as
convolutions, implying that capsule networks alone will not be able to play
even more advanced games without improved scalability.

This thesis has focused on Deep Reinforcement Learning using Cap-
sules in Advanced Game Environments. This work presents several
new game environments that are tailored for research into RL algorithms
in the RTS genre. This contribution could potentially lead to a ground-
breaking performance in advanced game environments that could enable
RL agents to perform well in games like Starcraft II. The combination of
Capsule Networks and Deep Q-Learning illustrated comparable results to
regular ConvNets, in regards to stability, on the new learning platform. As
a secondary goal, a generative model was implemented, CCDN, which suc-
cessfully generates future state representations in the majority of the test
environments.

Since Capsule Networks are a novel research area that is in its early infant
stage, more research is required to determine its capabilities in RL for ad-
vanced game environments. This chapter presents the thesis conclusion and
future work for the continuation of a PhD thesis in DRL.
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8.1 Conclusion

Hypothesis 1: Generative modeling using deep learning is capable of
generating artificial training data for games with sufficient quality.

Our work shows that it is indeed possible to generate artificial training
data using deep learning. Our work shows that it is of sufficient quality
to perform off-line training of deep neural networks.

Hypothesis 2: CapsNet can be used in Deep Q-Learning with comparable
performance to ConvNet based models.

The research shows that CapsNet can be directly adapted to work
with Deep Q-Learning, but the stability is inferior to regular ConvNet.
Some experiments show comparable results to ConvNets, but it is not
clear how CapsNets do reasoning in an RL environment.

Goal 1: Investigate the state-of-the-art research in the field of Deep Learn-
ing, and learn how Capsule Networks function internally.

A thorough survey of the state-of-the-art in deep learning was outlined
in Chapter 3. Much of the performed work was inspired by previous
research, which enabled several exciting discoveries in RL. Results
show that it is possible to combine CapsNet with other algorithms.

Goal 2: Design and develop game environments that can be used for
research into RL agents for the RTS game genre.

The thesis outline four new game environments that target research
into RL agents for RTS games.

Deep RTS is a Warcraft II clone that is suited for an agent of high-
quality play. It requires the agent to do actions in a high-dimensional
environment that is continuously moving. Since the Deep RTS state
is of such high-dimension, it is still not feasible to master this envi-
ronment.
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Deep Line Wars was created to enable research on a simpler scale, this
enabled research into some of the RTS aspects, found in Deep RTS.

To simplify it even further, Deep Maze was created to only account for
trivial state interpretations. Flash RL was created as a side project,
enabling research into a vast library of Flash games.

Together, these game environments create a platform that allows for
in-depth research into RL problems in the RTS game genre.

Goal 3: Research generative modeling and implement an experimental
architecture for generating artificial training data for games.

CCDN is introduced as a novel architecture for generating artificial
future states from a game, using present state and action to learn the
transition function of an environment. Early experimental results are
presented in this work, showing that it has potential to successfully
train a neural network based model.

Goal 4: Research the novel CapsNet architecture for MNIST classification
and apply this to RL problems.

Section 5.2 outlines the research into CapsNet in scenarios that are
different from the MNIST experiments conducted by Sabour et al [45].
The objective of Capsules is redefined so that it could work for RL
related problems.

Goal 5: Combine Deep-Q Learning and CapsNet and perform experiments
on environments from Achievement 2.

In Chapter 7, DQN and CapsNet were successfully combined and il-
lustrated that it has the potential to perform well in several advanced
game environments. Although these results only show minor agent
intelligence, it is an excellent beginning for further research into this
type of deep models.

Goal 6: Combine the elements of Goal 3 and Goal 5. The goal is to train
an RL agent with artificial training data successfully.
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Results shows that training data generated with CCDN can be used
in conjunction with real data to train an DQN algorithm successfully.

All of the goals defined in the scope of this thesis were accomplished. Al-
though the results are not astounding for all goals, it enables further re-
search into several new deep learning fields. The work presented in this
thesis enables further research into CapsNet based RL in advanced game
environments. Because of the new learning platform, researchers can better
perform research into RTS games. It is possible that the work from this
thesis could be the foundation for novel RL algorithms in the future.

90



8.2. Future Work Conclusion and Future Work

8.2 Future Work

Environments

1. Continue work on Flash RL, enabling it to replace OpenAI Universe
Flash.

2. Propose partnership with ELF1 and implement Deep RTS and Deep
Line Wars into ELF.

3. Develop a full-fledged platform that expands beyond gym-cair.

4. Implement Image state-representation for Deep RTS.

Generative Modeling

1. Additional experiments with hyper-parameters with the existing mod-
els.

2. Attempt to stabilize training.

3. Investigate if it is possible to use adversarial methods to train the
generative model.

4. Identify and solve the issue with the loss function in CCDN.

Deep Capsule Q-Learning

1. Improve stability of current architecture, enabling less data. prepro-
cessing for the algorithm to function.

2. Improve the scalability of Capsules for large action spaces.

3. Do additional experiments with multiple configurations to find the
cause of the training instability.

4. More research into combining Capsules with RL algorithms.

1ELF Source-code: https://github.com/facebookresearch/ELF
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Planned Publications2

1. Deep RTS: A Real-time Strategy game for Reinforcement Learning.

2. CCDN: Towards infinite training data using generative models.

3. DCQN: Using Capsules in Deep Q-Learning.

2Proposed Publication titles may change in final versions
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Abstract. There have been numerous breakthroughs with reinforce-
ment learning in the recent years, perhaps most notably on Deep Rein-
forcement Learning successfully playing and winning relatively advanced
computer games. There is undoubtedly an anticipation that Deep Rein-
forcement Learning will play a major role when the first AI masters
the complicated game plays needed to beat a professional Real-Time
Strategy game player. For this to be possible, there needs to be a game
environment that targets and fosters AI research, and specifically Deep
Reinforcement Learning. Some game environments already exist, how-
ever, these are either overly simplistic such as Atari 2600 or complex
such as Starcraft II from Blizzard Entertainment.

We propose a game environment in between Atari 2600 and Star-
craft II, particularly targeting Deep Reinforcement Learning algorithm
research. The environment is a variant of Tower Line Wars from War-
craft III, Blizzard Entertainment. Further, as a proof of concept that
the environment can harbor Deep Reinforcement algorithms, we pro-
pose and apply a Deep Q-Reinforcement architecture. The architecture
simplifies the state space so that it is applicable to Q-learning, and in
turn improves performance compared to current state-of-the-art meth-
ods. Our experiments show that the proposed architecture can learn to
play the environment well, and score 33% better than standard Deep Q-
learning—which in turn proves the usefulness of the game environment.

Keywords: Reinforcement Learning · Q-Learning · Deep Learning ·
Game environment

1 Introduction

Despite many advances in AI for games, no universal reinforcement learning
algorithm can be applied to Real-Time Strategy Games (RTS) without data
manipulation or customization. This includes traditional games such as Warcraft
III, Starcraft II, and Tower Line Wars. Reinforcement Learning (RL) has been
applied to simpler games such as games for the Atari 2600 platform but has to
the best of our knowledge not successfully been applied to RTS games. Further,
existing game environments that target AI research are either overly simplistic
such as Atari 2600 or complex such as Starcraft II.

c© Springer International Publishing AG 2017
M. Bramer and M. Petridis (Eds.): SGAI-AI 2017, LNAI 10630, pp. 101–114, 2017.
https://doi.org/10.1007/978-3-319-71078-5_8
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Reinforcement Learning has had tremendous progress in recent years in learn-
ing to control agents from high-dimensional sensory inputs like vision. In simple
environments, this has been proven to work well [1], but are still an issue for
complex environments with large state and action spaces [2]. In games where
the objective is easily observable, there is a short distance between action and
reward which fuels the learning. This is because the consequence of any action
is quickly observed, and then easily learned. When the objective is more com-
plicated the game objectives still need to be mapped to the reward function,
but it becomes far less trivial. For the Atari 2600 game Ms. Pac-Man this was
solved through a hybrid reward architecture that transforms the objective to a
low-dimensional representation [3]. Similarly, the OpenAI’s bot is able to beat
world’s top professionals at 1v1 in DotA 2. It uses reinforcement learning while
it plays against itself, learning to predict the opponent moves.

Real-Time Strategy Games, including Warcraft III, is a genre of games much
more comparable to the complexity of real-world environments. It has a sparse
state space with many different sensory inputs that any game playing algorithm
must be able to master in order to perform well within the environment. Due
to the complexity and because many action sequences are required to constitute
a reward, standard reinforcement learning techniques including Q-learning are
not able to master the games successfully.

This paper introduces a two-player version of the popular Tower Line Wars
modification from the game Warcraft III. We refer to this variant as Deep Line
Wars. Note that Tower Line Wars is not an RTS game, but has many simi-
lar elements such as time-delayed objectives, resource management, offensive,
and defensive strategy planning. To prove that the environment is working we,
inspired by recent advances from van Seijen et al. [3], apply a method of sep-
arating the abstract reward function of the environment into smaller rewards.
This approach uses a Deep Q-Network using a Convolutional Neural Network
to map actions to states and can play the game successfully and perform better
than standard Deep Q-learning by 33%.

Rest of the paper is organized as follows: We first investigate recent discov-
eries in Deep RL in Sect. 2. We then briefly outline how Q-Learning works and
how we interpret Bellman’s equation for utilizing Neural Networks as a function
approximator in Sect. 3. We present our contribution in Sect. 4 and present a
comparison of other game environments that are widely used in reinforcement
learning. We introduce a variant of Deep Q-Learning in Sect. 5 and present a
comparison to other RL models used in state-of-the-art research. Finally we
show results in Sect. 6, define a roadmap of future work in Sect. 7 and conclude
our work in Sect. 8.

2 Related Work

There have been several breakthroughs related to reinforcement learning per-
formance in recent years [4]. Q-Learning together with Deep Learning was a
game-changing moment, and has had tremendous success in many single agent
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environments on the Atari 2600 platform [1]. Deep Q-Learning as proposed by
Mnih et al. [1] as shown in Fig. 1 used a neural network as a function approxi-
mator and outperformed human expertise in over half of the games [1].

Fig. 1. Deep Q-Learning architecture

Hasselt et al. proposed Double DQN, which reduced the overestimation of
action values in the Deep Q-Network [5]. This led to improvements in some of
the games on the Atari platform.

Wang et al. then proposed a dueling architecture of DQN which introduced
estimation of the value function and advantage function [6]. These two functions
were then combined to obtain the Q-Value. Dueling DQN were implemented
with the previous work of van Hasselt et al. [6].

Harm van Seijen et al. recently published an algorithm called Hybrid Reward
Architecture (HRA) which is a divide and conquer method where several agents
estimate a reward and a Q-value for each state [3]. The algorithm performed
above human expertise in Ms. Pac-Man, which is considered one of the hard-
est games in the Atari 2600 collection and is currently state-of-the-art in the
reinforcement learning domain [3]. The drawback of this algorithm is that gen-
eralization of Minh et al. approach is lost due to a huge number of separate
agents that have domain-specific sensory input.

There have been few attempts at using Deep Q-Learning on advanced simu-
lators specifically made for machine-learning. It is probable that this is because
there are very few environments created for this purpose.

3 Q-Learning

Reinforcement learning can be considered hybrid between supervised and unsu-
pervised learning. We implement what we call an agent that acts in our envi-
ronment. This agent is placed in the unknown environment where it tries to
maximize the environmental reward [7].

Markov Decision Process (MDP) is a mathematical method of modeling
decision-making within an environment. We often use this method when uti-
lizing model-based RL algorithms. In Q-Learning, we do not try to model the
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MDP. Instead, we try to learn the optimal policy by estimating the action-value
function Q∗(s, a), yielding maximum expected reward in state s executing action
a. The optimal policy can then be found by

π(s) = argmaxaQ∗(s, a) (1)

This is derived from Bellman’s Equation, because we can consider U(s) =
maxaQ(s, a), the Utility function to be true. This gives us the ability to derive
following update-rule equation from Bellman’s work:

Q(s, a) ← Q(s, a)+ α︸︷︷︸
Learning Rate

(
R(s)︸︷︷︸

Reward

+ γ︸︷︷︸
Discount

maxa′ Q(s
′
, a

′
)︸ ︷︷ ︸

New Estimate

− Q(s, a)︸ ︷︷ ︸
Old Estimate

)

(2)
This is an iterative process of propagating back the estimated Q-value for

each discrete time-step in the environment. It is guaranteed to converge towards
the optimal action-value function, Qi → Q∗ as i → ∞ [1,7]. At the most basic
level, Q-Learning utilize a table for storing (s, a, r, s

′
) pairs. But we can instead

use a non-linear function approximation in order to approximate Q(s, a; θ).
θ describes tunable parameters for approximator. Artificial Neural Networks
(ANN) are a popular function approximator, but training using ANN is rela-
tively unstable. We define the loss function as following.

L(θi) = E
[
(r + γmaxa′ Q(s

′
, a

′
; θi) − Q(s, a; θi))

2
]

(3)

As we can see, this equation uses Bellman equation to calculate the loss for
the gradient descent. To combat training instability, we use Experience Replay.
This is a memory module which stores memories from experienced states and
draws a uniform distribution of experiences to train the network [1]. This is what
we call a Deep Q-Network and are as described in its most primitive form. See
related work for recent advancements in DQN.

4 Deep Line Wars

For a player to play RTS games well, he typically needs to master high difficulty
strategies. Most RTS strategies incorporate

– Build strategies,
– Economy management,
– Defense evaluation, and
– Offense evaluation.

These objectives are easy to master when separated but become hard to perfect
when together. Starcraft II is one of the most popular RTS games, but due to
its complexity, it is not expected that an AI-based system can beat this game
anytime soon. At the very least, state-of-the-art Deep Q-Learning is not directly
applicable. Blizzard entertainment and Google DeepMind has collaborated on
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an interface to the Starcraft II game [8,9]. Starcraft II is for many researchers
considered the next big goal in AI research. Warcraft III is relatable to Starcraft
II as they are the same genre and have near identical game mechanics.

Current state-of-the-art algorithms struggle to learn objectives in the state-
space because the action-space is too abstract [10]. State and action spaces
define the range of possible configurations a game board can have. Existing DQN
models use pixel data as input and objectively maps state to action [1]. This
works when the game objective is closely linked to an action, such as controlling
a paddle in Breakout, where the correct action is quickly rewarded, and a wrong
action quickly punished. This is not possible in RTS games. If the objective is
to win the game, an action will only be rewarded or punished after minutes or
even hours of gameplay. Furthermore, gameplay would consist of thousands of
actions and only combined will they result in a reward or punishment.

Fig. 2. Properties of selected game environments

Collected data in Fig. 2 argues that games that have been solved by current
state-of-the-art is usually non-stochastic and is fully observable. Also, current AI
prefers environments which are not simultaneous, meaning they can be paused
between each state transition. This makes sense because hardware still limits
advances in AI.
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By doing rough estimations of the state-space in-game environments from
Fig. 2, it is clear that state-of-the-art has done a big leap in recent years. With
the most recent contribution being Ms. Pac-Man [3]. However, by computing
the state-space of a regular Starcraft II map only taking unit compositions into
account, the state space can be calculated to be (128x128)400 = 16384400 =
101685 [11].

Fig. 3. State-space complexity of selected game environments

The predicament is that the difference in complexity between Ms. Pac-Man
and Starcraft II is tremendous. Figure 3 illustrates a relative and subjective com-
parison between state-complexity in relevant game environments. State-space
complexity describes approximately how many different game configurations a
game can have. It is based on map size, unit position, and unit actions. The com-
parison is a bit arbitrary because the games are complex in different manners.
However, there is no doubt that the distance between Ms. Pac-Man, perhaps the
most advanced computer game mastered so far, and Starcraft II is colossal. To
advance AI solutions towards Starcraft II, we argue that there is a need for sev-
eral new game environments that exceed the complexity of existing games and
challenge researches on multi-agent issues closely related to Starcraft II [12]. We,
therefore, introduce Deep Line Wars as a two-player variant of Tower Line Wars.
Deep Line Wars is a game simulator aimed at filling the gap between Atari 2600
and Starcraft II. It features the most important aspects of an RTS game.

The objective of this game is as seen in Fig. 4 to invade the opposing player
with units until all health is consumed. The opposing player’s health is reduced
for each friendly unit that enters the red area of the map. A unit spawns at a
random location on the red line of the controlling player’s side and automatically
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Fig. 4. Graphical interface of Deep Line Wars

walks towards the enemy base. To protect your base against units, the player can
build towers which shoot projectiles at enemy units. When an enemy unit dies,
a fair percentage of the unit value is given to the player. When a player sends a
unit, the income variable is increased by a defined percentage of the unit value.
Players gold are increased at regular intervals determined in the configuration
files. To master Deep Line Wars, the player must learn following skill-set:

– offensive strategies of spawning units,
– defending against the opposing player’s invasions, and
– maintain a healthy balance between offensive and defensive in order to max-

imize income

and is guaranteed a victory if mastered better than the opposing player.
Because the game is specifically targeted towards machine learning, the game-

state is defined as a multi-dimensional matrix. Figure 5 represents a 5 × 30 × 11
state-space that contains all relevant board information at current time-step.
It is therefore easy to cherry-pick required state-information when using it in
algorithms. Deep Line Wars also features possibilities of making an abstract
representation of the state-space, seen in Fig. 6. This is a heat-map that represent
the state (Fig. 5) as a lower-dimensional state-space. Heat-maps also allows the
developer to remove noise that causes the model to diverge from the optimal
policy, see Formula 3.

We need to reduce the complexity of the state-space to speed up training.
Using heat-maps made it possible to encode the five-dimensional state informa-
tion into three dimensions. These dimensions are RGB values that we can find
in imaging. Figure 6 show how the state is seen from the perspective of player 1
using gray-scale heatmaps. We define
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Fig. 5. Game-state representation

Fig. 6. State abstraction using gray-scale heat-maps

– red pixels as friendly buildings,
– green pixels as enemy units, and
– teal pixels as the mouse cursor.

We also included an option to reduce the state-space to a one-dimensional matrix
using gray-scale imaging. Each of the above features is then represented by a
value between 0 and 1. We do this because Convolutional Neural Networks are
computational demanding, and by reducing input dimensionality, we can speed
up training. [1] We do not down-scale images because the environment is only
30 × 11 pixels large. The state cannot be described fully by these heat-maps as
there are economics, health, and income that must be interpreted separately.
This is solved by having a 1-dimensional vectorized representation of the data,
that can be fed into the model.
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5 DeepQRewardNetwork

The main contribution in this paper is the game environment presented in Sect. 4.
A key element is to show that the game environment is working properly and we,
therefore, introduce a learning algorithm trying to play the game. This is in no
way meant as a perfect solver for Deep Line Wars, but rather as a proof of concept
that learning algorithms can be applied in the Deep Line Wars environment. In
our solution we consider the environment as a MDP having state set S, action set
A, and a reward function set R. Each of the weighted reward functions derives
from a specific agent within the MDP and defines the absolute reward of the
environment Renv with following equation:

Renv(s, a) =

n∑

i=1

wiRi(s, a) (4)

where Renv(s, a) is the weighted sum wi of reward function(s) Ri(s, a). The
proposed algorithm model is a method of dividing the ultimate problem into
separate smaller problems which can be trivialized with certain kinds of generic
algorithms.

Fig. 7. Separation of the reward function

When reward for the observed state is calculated, we calculate the Q-value
of Q(s, a) utilizing Renv by using a variant of DQN.

6 Experiments

We conducted experiments with several deep learning algorithms in order to
benchmark current state-of-the-art put up against a multi-agent, multi-sensory
environment. The experiments were conducted in Deep Line Wars, a multi-
agent, multi-sensory environment. All algorithms were benchmarked with iden-
tical game parameters.

We tested DeepQNetwork, a state-of-the-art DQN from Mnih et al. [1], Deep-
QRewardNetwork, rule-based, and random behaviour. Each of the algorithms was
tested with several configurations, seen in Fig. 8. We did not expect any of these
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Fig. 8. Property matrix of tested algorithms

algorithms to beat the rule-based challenge due to the difficulty of the AI. The
extended execution graph algorithm (see Sect. 7) was not part of the test bed
because it was not able to compete with any of the simpler DQN algorithms
without guided mouse management.

Tests were done using Intel I7-4770k, 64 GB RAM and NVIDIA Geforce GTX
1080TI. Each of the algorithms was trained/executed for 1500 episodes. Each
episode is considered to be a game that either of the players wins, or the 600 s
time limit is reached. DQN had a discount-factor of 0.99, learning rate of 0.001
and batch-size of 32.

Throughout the learning process, we can see that DeepQNetwork and Deep-
QRewardNetwork learn to perform resource management correctly. Figure 9
illustrates income throughout learning from 1500 episodes. The random player is
presented as an aggregated average of 1500 games, but the remaining algorithms
are only single instances. It is not practical to perform more than a single run
of the Deep Learning algorithms because it takes several minutes per episode to
finish which sums up to a huge learning time.

Figure 9 shows that the proposed algorithms outperform random behavior
after relatively few episodes. DeepQRewardNetwork performs approximately
33% better than DeepQNetwork. We believe that this is because the reward
function R(s, a) is better defined and therefore easier to learn the optimal pol-
icy in a shorter period of time. These results show that DeepQRewardNetwork
converges towards the optimal policy better, but as seen in Fig. 9 diverges after
approximately 1300 games. The reason for the divergence is that experience
replay does not correctly batch important memories to the model. This causes
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Fig. 9. Income after each episode

the model to train on unimportant memories and diverges the model. This is
considered a part of future work and is addressed more thoroughly in Sect. 7. The
rule-based algorithm can be regarded as an average player and can be compared
to human level in this game environment.

Fig. 10. Victory distribution of tested algorithms

Figure 10 shows that DeepQNetwork and DeepQRewardNetwork have about
63–67% win ratio throughout the learning process. Compared to the rule-based
AI it does not qualify to be near mastering the game, but we can see that it
outperforms random behavior in the game environment.
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7 Future Work

This paper introduced a new learning environment for reinforcement learning
and applied state-of-the-art Deep-Q Learning to the problem. Some initial results
showed progress towards an AI that could beat a rule-based AI. There are still
several challenges that must be addressed for an unsupervised AI to learn com-
plex environments like Line Tower Wars. Mouse input based games are difficult
to map to an abstract state representation, because there are a huge number
of sequenced mouse clicks that are required, to correctly act in the game. DQN
cannot at current state handle long sequences of actions and must be guided in-
order to succeed. Finding a solution to this problem without guiding is thought
to be the biggest blocker for these types of environments, and will be the focus
for future work.

DeepQNetwork and DeepQRewardNetwork had issues with divergence after
approximately 1300 episodes. This is because our experience replay algorithm
did not take into account that the majority of experiences are bad. It could not
successfully prioritize the important memories. As future work, we propose to
instead use prioritized experience replay from Schaul et al. [13].

Fig. 11. Divide and conquer execution graph

Figure 7 show that different sensors separate the reward from the environ-
ment to obtain a more precise reward bound to an action. In our research, we
developed an algorithm that utilizes different models based on which state the
player has. Figure 11 show the general idea, where the state is categorized into
three different types Offensive, Defensive, and No Action. This state is eval-
uated by a Convolutional Neural Network and outputs a one-hot vector that
signal which state the player is currently in. Each of the blocks in Fig. 11 then
represents a form of state-modeling that is determined by the programmer. Our
initial tests did not yield any promising results, but according to the Bellman
equations, it is a qualified way of evaluating the state and successfully perform
learning, on an iterative basis.
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8 Conclusion

Deep Line Wars is a simple but yet advanced Real-Time (strategy) game simu-
lator, which attempts to fill the gap between Atari 2600 and Starcraft II. DQN
shows promising initial results but is far from perfect in current state-of-the-art.
An attempt in making abstractions in the reward signal yielded some improved
performance, but at the cost of a more generalized solution. Because of the enor-
mous state-space, DQN cannot compete with simple rule-based algorithms. We
believe that this is caused by specifically the mouse input which requires some
understanding of the state to perform well. This also causes the algorithm to
overestimate some actions, specifically the offensive actions, because the algo-
rithm is not able to correctly build defensive without getting negative rewards.
It is imperative that a solution of the mouse input actions are found before DQN
can perform better. A potential approach could be using the StarCraft II API
to get additional training data, including mouse sequences [14].
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Abstract
Reinforcement Learning (RL) is a research area that has blossomed
tremendously in recent years and has shown remarkable potential in
among others successfully playing computer games. However, there only
exists a few game platforms that provide diversity in tasks and state-
space needed to advance RL algorithms. The existing platforms offer
RL access to Atari- and a few web-based games, but no platform fully
expose access to Flash games. This is unfortunate because applying RL
to Flash games have potential to push the research of RL algorithms.

This paper introduces the Flash Reinforcement Learning platform
(FlashRL) which attempts to fill this gap by providing an environment
for thousands of Flash games on a novel platform for Flash automation.
It opens up easy experimentation with RL algorithms for Flash games,
which has previously been challenging. The platform shows excellent
performance with as little as 5% CPU utilization on consumer hardware.
It shows promising results for novel reinforcement learning algorithms.

This paper was presented at the NIK-2017 conference; see http://www.nik.no/.



1 Introduction
There are several challenges related to developing algorithms that can interact
with human-level performance in real-world environments, such as computer games.
Researchers often use toy experiments when working with Reinforcement Learning
(RL), because it is easier, cheaper and consumes less time to orchestrate. With
several applications for RL in daily life, it has become an essential field of research
[13, 4]. However, existing learning platforms for games have major limitations such
as few game environments and little environment control.

OpenAI is a non-profit company that is currently one of the leading researchers
of RL. OpenAI Universe is a software platform that has several game environments
aimed at artificial research. The problem with this software is that individual
developers are not directly permitted to supplement new environments to the
repository, and there is little documentation on how to contribute to new
environments. FlashRL changes this with our proposed architecture as the control
is given back to each researcher.

Adobe Flash is a multimedia software platform used for the production of
applications and animation. The Flash run-time was recently declared deprecated
by Adobe, and by 2020, no longer supported. Flash is still frequently used in
web applications, and there are several thousand games created for this platform.
Several browsers have removed support for Flash, making it impossible to access
the mentioned game environments. Games have proven to be an excellent area of
machine learning benchmarking, due to size and diversity of its state-space. It is
therefore essential to preserve Flash as an environment for reinforcement learning.

Automating Flash applications is a relatively untouched area. The technology
has been succeeded by several better options for web development, for example,
HTML5. This makes it hard for algorithms to control Flash environments
programmatically. There are already reinforcement learning platforms that support
Flash games as part of their game library, but these use browsers to execute the
Flash run-time.

Figure 1: Interacting with Flash through browser automating

Figure 1 illustrates how interaction with the Flash environment would typically
be carried out through browser automation software such as Selenium. Selenium can
automate most modern browsers. It does not directly support Flash automation,
but can easily be used for this purpose with minimal customisation [3]. With the
loss of browser support, the difficulty of controlling Flash applications increases,
and there is a significant risk that excellent game environments for reinforcement
learning are lost.

FlashRL is unique for reinforcement learning as it allows researchers to use any
desired Flash environment. It gives full control of the game environment and is not
based on running Flash applications in the browser.



FlashRL is targeted research in reinforcement learning, but can also be used in
other machine learning algorithms. It supports all kinds of Flash applications but
is primarily used for agent-based gameplay. Several thousand game environments
are included in the first release of the software1. Multitask 2 is a Flash game that is
excellent for reinforcement learning as it requires the agent to perform several tasks
simultaneously. We show in this paper that our learning platform can be used to
train novel reinforcement algorithms without any customisation.

In Section 2, we discuss related work for existing learning platforms in machine
learning. We also argue why web browsers are no longer viable as Flash run-
time. Section 3 briefly outline what reinforcement learning is and explains how Q-
Learning works. Section 4 outlines the proposed platform and thoroughly describe
its underlying architecture. In Section 5 we show initial results of utilizing the
proposed learning platform for reinforcement learning. At Section 6 summarises
the work and argue why the proposed learning platform is used for reinforcement
learning research. Section 7 outlines a road-map for further development of the
platform.

2 Related Work
With the increasing popularity in RL, there is a need for flexible learning platforms.
Several learning platforms exist that can run a limited number of games, but no
platform that features an open-source interface with possibility to run any Flash
game.

Bellemare et al. provided in 2012 a learning platform Arcade Learning
Environment (ALE) that enabled scientists to conduct edge research in general
deep learning [1]. The package provided hundreds of Atari 2600 environments that
in 2013 allowed Minh et al. to do a breakthrough with Deep Q-Learning and A3C.
The platform has been a key component in several breakthroughs in RL research.
[11, 9, 8]

In 2016, Brockman et al. from OpenAI released GYM which they referred
to as "a toolkit for developing and comparing reinforcement learning algorithms"
[2]. GYM provides various types of environments from following technologies
[2]: Algorithmic tasks, Atari 2600, Board games, Box2d physics engine, MuJoCo
physics engine, and Text-based environments. OpenAI also hosts a website where
researchers can submit their performance for comparison between algorithms. GYM
is open-source and encourages researchers to add support for their environments.

OpenAI recently released a new learning platform called Universe. This
environment further adds support for environments running inside VNC. It also
supports running Flash games and browser applications. However, despite OpenAI’s
open-source policy, they do not allow researchers to add new environments to the
repository. This limits the possibilities of running any environment. Universe is,
however, a significant learning platform as it also has support for desktop games
like Grand Theft Auto IV, that allow for research in autonomous driving [7].

Selenium is a software for automating web browsers and is used primarily for unit-
testing of web content. There were some efforts to create a version that allowed to
interact with Flash content, but it was quickly abandoned. There is limited support
for interacting with Flash, by selecting the DOM-Element in HTML and sending

1Author of this paper takes no credit for any game environments



key-presses via Javascript. Several learning platforms utilize this method, but due
to the deprecation of Flash in browsers, it is no longer a viable option.

3 Reinforcement Learning
Reinforcement learning can be considered hybrid between supervised and unsuper-
vised learning. We implement what we call an agent that acts in our environment.
This agent is placed in the unknown environment where it tries to maximize the
environmental reward [14].

Markov Decision Process (MDP) is a mathematical method of modeling decision-
making within an environment. We often use this technique when utilizing model-
based RL algorithms. In Q-Learning, we do not try to model the MDP. Instead,
we try to learn the optimal policy by estimating the action-value function Q∗(s, a),
yielding maximum expected reward in state s executing action a. The optimal policy
can then be found by

π(s) = argmaxaQ
∗(s, a) (1)

This is derived from Bellman’s Equation, because we can consider U(s) =
maxaQ(s, a), the utility function to be true. This gives us the ability to derive
following update-rule equation from Bellman’s work:

Q(s, a)← Q(s, a) + α︸︷︷︸
LearningRate

(
R(s)︸︷︷︸
Reward

+ γ︸︷︷︸
Discountfactor

maxa′Q(s
′
, a

′
)︸ ︷︷ ︸

NewEstimate

− Q(s, a)︸ ︷︷ ︸
OldEstimate

)

(2)
This is an iterative process of propagating back the estimated Q-value for each

discrete time-step in the environment. It is guaranteed to converge towards the
optimal action-value function, Qi → Q∗ as i →∞ [14, 10]. At the most basic level,
Q-Learning utilize a table for storing (s, a, r, s

′
) pairs. But we can instead use a

non-linear function approximation in order to approximate Q(s, a; θ). θ describes
tunable parameters for approximator. Artificial Neural Networks (ANN) are a
popular function approximator, but training using ANN is relatively unstable.

4 Flash Reinforcement Learning (FlashRL)
The proposed platform is an interface that acts as a bridge between the Gnash Flash
player and the reinforcement learning algorithms. Flash Reinforcement Learning
(FlashRL) is a new platform that allows researchers to run algorithms on any Flash-
based game efficiently.

The learning platform is developed primarily for the operating system Linux but
is likely to run on Cygwin with few modifications. There are several key components
that FlashRL uses to operate adequate, see Figure 2. It uses a Linux library called
XVFB to create a virtual frame-buffer that is used for graphics rendering [6]. Inside
this frame-buffer, a Flash game chosen by the researcher is executed by a third party
flash player, for example, Gnash. A VNC server serves the XVFB frame-buffer and
allows FlashRL to access it by utilizing a VNC Client. The VNC Client can then
issue commands like keyboard presses and mouse movements. The VNC Client
pyVLC was specially made for this learning platform. The code base originates
from python-vnc-viewer [15]. The last component of FlashRL is the Reinforcement



Figure 2: FlashRL Architecture Overview

Learning API that allows the developer to access the input/output of the VNC client.
This makes it easy to develop sequenced algorithms by using the API callbacks or
manually by threading.

Figure 3: Frame-buffer Access Methods

Figure 3 illustrates two methods of accessing the frame-buffer from the Flash
Game. Both approaches are sufficient to perform reinforcement learning, but each
has its strength and weaknesses. Method 1, seen in Figure 3 allows the developer to
get frames served at a fixed rate, for example, 60 frames per second. Method 2 does
not restrict the frequency of how fast the frame-buffer is captured. This is preferable
for developers that do not require images from fixed time-steps as it requires less
processing power per frame. The framework was developed with deep learning in
mind and is proven to work with Keras and Tensorflow.

Several thousand game environments are shipped with the initial version of
FlashRL. These game environments were gathered from different sources on the
web. FlashRL has a relatively small code-base and to preserve this size, all of the
Flash games are hosted remotely. The quality varies, and some of the games are not
tested or labeled. Most games are however tested and can be played without issues,



Figure 4: Selected environments from the FlashRL game repository

see Figure 4.

5 Experiments
This section presents experiments of reinforcement learning algorithms applied in
FlashRL. We use the game Multitask 2 2 to test the learning platform. Multitask 2
was chosen because it challenges the algorithm to master four different mini-games
simultaneously.

The experiments are grouped in two. The first experiment determines the
hardware requirements of the platform and benchmarks the speed of critical
operations. The second experiment is an implementation of standard Deep Q-
Learning trained on raw state images from Multitask 2 to perform game actions.
The latter is meant as a proof of concept that RL algorithms can be applied in
FlashRL.

All experiments were conducted on Ubuntu Linux 17.04 x64 running Python
3.5.3. The machine has 64GB memory, Nvidia GeForce 1080TI, and Intel I7-7770k
as hardware.

Multitask 2
Figure 5 illustrates the game-play of Multitask 2. The game is split into four-game
phases. The first phase (lower right corner in Figure 5) is a single paddle that the
player must balance a ball on. In state two (lower left corner in Figure 5) , the
player must control the second paddle to avoid arrows traveling towards it. The
third phase (upper right corner in Figure 5) consist of an arrow with mechanics
relatable to the game Flappy Bird [12]. In the final phase (upper left corner in
Figure 5), the player must additionally jump over holes on the ground. For the
player to succeed the game, he must control eight actions simultaneously. The score
is calculated by adding a single point for each second survived in the game.

Experiment 1: Hardware Requirements
Recall from section 4 that there are two methods of accessing the frame-buffer.
The first method (Method 1) is based on retrieving the frame-buffer at fixed time

2Multitask 2 - http://multitaskgames.com/multitask-2.html



Figure 5: In-game footage of the game Multitask

intervals. The second method (Method 2) does not have any interval restriction.
This makes Method 2 faster because it does not require sleep between frames. This
causes the framework to consume all available CPU, which is not always preferable.

We can see from Figure 6 that using Method 1 with the interval set to 30 fps
uses approximately 5% of the CPU. Increasing the interval to 300 increases it to
13%. We gradually increased the interval until the CPU ran at maximum. A single
I7-7700k can compute approximately 6300 fps images from the frame-buffer before
struggling to keep up.

The GPU Did not recognize any load during these test because the Flash
environment is software rendered. Memory consumed were between 200MB and
500MB depending on the speed. We believe that the reason for memory increase is
that Python does not garbage collect old frame-buffer snapshots between iterations,
and therefore gets an increased memory load.

Experiment 2: Reinforcement Learning
Deep Q-Network (DQN) is a novel algorithm architecture developed by Minh et al.
at Google DeepMind. It combines Q-Learning estimating Q-Values from a neural
network. [11]

In our tests we used Double Q-Learning from Hasselt et al. [5]. We also
used Dueling from Wang et al. that increases the learning precision by using
two estimators: state-value and action-advantage function [16]. We used a
discount factor of 0.99, learning rate of 0.001 and mini-batch of 16. We used
exploration/exploitation strategy with ε-greedy where it started at 0.9 and finished
at 0.1. The ε annealing was set to 10 000 steps. This is a relatively low epsilon
phase. But it seemed to work well in this environment.

Figure 7 illustrates the training of DQN, where the x-axis represents episodes



Figure 6: Hardware benchmark

Figure 7: Deep Q-Learning Training



of the game and y-axis score before reaching the terminal state. The agent had
troubles adapting to the third phase (see Section 5). Phase 3 is relatively hard to
master because it requires the user balance the arrow in the air. At around 230
episodes we saw a drop in score. This is because the network seems to prioritize the
first phase of the game. It reached the second phase a few times but was not able
to successfully control the paddle for longer periods of time. This is why it stales
at approximately 400 episodes. We believe that the network could have performed
better with additional training time. It trained for a total of two days. Hopefully,
it will be easier to train the network when FlashRL can speed-forward games, see
section 7. The results are overall acceptable as we can see that FlashRL deliver
quality states that a reinforcement learning agent can learn from.

6 Conclusion
FlashRL offers an easy-to-use architecture for performing RL in Flash-based games.
It is demonstrated to work well for Multitask 2, one of the environments included.
FlashRL fills the gap that emerged with the deprecation of Flash, Its main focus is
RL, but can also be used for other machine learning genres. This paper shows that
FlashRL can be used to train RL algorithms, in particular, Multitask 2. The work
shows promising results and continuing to expand the game repository may provide
new insights about RL in the future.

FlashRL will be kept alive as long as flash environments are an asset to the
machine learning community. It is available to the public at https://github.com/
UIA-CAIR/FlashRL, and can easily be adapted to every research requirement.

7 Future Work
Several improvements are planned for FlashRL. This paper outlined features of the
initial version of the FlashRL, and it is by far sufficient for simple reinforcement
learning research. As seen in section 5, a Deep Q-Learning based agent can
successfully learn from the environment Multitask and gradually perform better.

Speed-forward Option
Learning algorithms often require several thousand episodes to gain expert
knowledge of the environment. FlashRL is currently limited to the speed of which
the game loop is executed (usually 30 fps in real-time). An important improvement
would be to lift this restriction and allow algorithms to train at an accelerated rate.
This would certainly improve training duration of feedback based algorithms.

Game Repository Analysis
The game repository features many unlabeled, unrated and untested games. Some
games are potentially useless in a machine learning setting and require a review.
The review phase is time-consuming, and authors of this paper did not have enough
time to analyze each of the environments manually. The goal is to add labels and
categorize all games in the repository gradually.



Website
A future goal is to allow execution of algorithms from a web interface and to
add gamification aspects to the library. This would potentially create competition
between researchers much like Kaggle and OpenAI Universe.

Cross-Platform Support
FlashRL is in the initial version, only supported in Python 3 on the Linux platform.
The goal is to extend it so that it also can run without modifications on Microsoft
Windows operating systems.
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