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Abstract
Computational intelligence is often used in smart environment applications in order to determine a user’s
context. Many computational intelligence algorithms are complex and resource-consuming which can be
problematic for implementation devices such as FPGA:s, ASIC:s and low-level microcontrollers. These
types of devices are, however, highly useful in pervasive and mobile computing due to their small size,
energy-efficiency and ability to provide fast real-time responses. In this paper, we propose a classi-
fier, CORPSE, specifically targeted for implementation in FPGA:s, ASIC:s or low-level microcontrollers.
CORPSE has a small memory footprint, is computationally inexpensive, and is suitable for parallel pro-
cessing. The classifier was evaluated on eight different datasets of various types. Our results show that
CORPSE, despite its simplistic design, has comparable performance to some common machine learn-
ing algorithms. This makes the classifier a viable choice for use in pervasive systems that have limited
resources, requires energy-efficiency, or have the need for fast real-time responses.

Keywords: Classifier, Energy-saving, Parallel computing, FPGA, Microcontroller, Embedded

1. Introduction

Pervasive devices are often kept small in order
for them to be unobtrusive. Reducing the phys-
ical size of a system, however, typically also re-
duces computational resources (e.g. memory and
CPU) which affects the choices of hardware and
software. It is also common for pervasive devices
to be battery-powered which enforces even harder
constraints upon their hardware and software de-

sign. These resource-constraints can be challeng-
ing when creating context-aware devices or services,
since such systems often rely on machine learning
(ML). ML algorithms often require significant com-
putational resources (e.g. memory, CPU) that makes
them difficult to implement in devices such as Field-
Programmable Gate Arrays (FPGA), Application-
Specific Integrated Circuits (ASIC) and low-level
microcontrollers. Many such algorithms (e.g. neu-
ral networks, Support Vector Machines) also rely on
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floating point operations, which further complicate
such implementations1. This is unfortunate, since
low-level components such as FPGA:s are typically
highly useful for pervasive computing due to their
small size, energy efficiency, fast response times,
and high throughput (i.e. when pipelined).

In this work we extend our previous efforts on
creating a classifier specifically targeted at low-level
and resource-constrained devices2. We propose a
Classifier Optimized for Resource-constrained Per-
vasive Systems and Energy-efficiency, CORPSE for
short. The classifier is based on Elementary Cel-
lular Automata (ECA) which can show complex
behaviour emerging from seemingly simple rules3.
This makes it an interesting underlying model for a
classifier, since it exhibits nonlinear behaviour and it
can work at the edge of chaos; a powerful realm for
computations4. Additionally, ECA has been proven
capable of universal computation (Rule 110)5 which
shows that the model holds extensive expressive
power.

Another interesting property of ECA is that it
does not rely on a global state for making computa-
tions. This makes it suitable for parallel processing,
which can be utilized for reducing power consump-
tion or decreasing real-time response times in per-
vasive computing. Furthermore, ECA requires only
a binary lattice and a set of boolean algebra rules
to perform its computations which allows for effi-
cient implementations on low-level devices such as
FPGA:s and ASIC:s.

Given the attractive properties of ECA com-
bined with the challenges of performing context-
recognition on low-level devices, the research ques-
tions addressed in this paper are:

RQ1: Can Elementary Cellular Automata be ex-
tended to create a computationally inexpensive
classifier by allowing varying neighborhoods
across space and time?

RQ2: Which are the important parameters in terms
of setup and training to optimize the performance
of such an algorithm?

This paper is structured as follows: section 2 re-
views related work, section 3 describes the CORPSE

classifier and explains how it is trained using a Ge-
netic Algorithm, section 4 shows the evaluation of
the algorithm, section 5 shows the results, followed
by discussion in section 6, and conclusions and fu-
ture work in section 7.

2. Related Work

Being able to run machine learning algorithms
on resource-constrained devices allows for richer
context-aware applications, such as determining be-
havioural patterns of a user6,7. Several efforts have
been made to adapt existing machine learning algo-
rithms for such systems. Lee et. al8 stated that using
machine learning offer promising tools for analyz-
ing physiological signals, but that the computations
involved are not well handled by traditional DSP:s.
In their work they propose a biomedical processor
with configurable machine-learning accelerators for
low-energy and real-time detection algorithms.

Kane et. al9 state that the computational pro-
cess of Support Vector Machine classification suf-
fers greatly from a large number of iterative math-
ematical operations and an overall complex algo-
rithmic structure. Their work proposed a fully
pipelined, floating point based, multi-use reconfig-
urable hardware architecture designed to act in con-
junction with embedded processing as an accelera-
tor for multiclass SVM classification. Other work
such as DianNao10 and PuDianNao11, has also fo-
cused on hardware accelerating the most resource-
consuming computations of common machine learn-
ing algorithms.

While most research on machine learning for use
on resource-constrained devices has been focused on
adapting and optimizing existing algorithms for im-
plementations in FPGA:s, the classifier proposed in
this paper is, however, designed specifically for this
purpose. The simple principles of CORPSE yields
a low computational complexity while using only
rudimentary binary operations2. These properties
makes it easy to implement on digital circuits and
depending on the configurations of the classifier it
can also be fully or partially pipelined.

The use of ECA for classification on resource-
constrained devices is not a novel approach. Sev-
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eral researchers have utilized the attractive proper-
ties of ECA in order to create computationally ef-
ficient classifiers. Chaudhuri et al.12 did extensive
work on additive cellular automata. Among their
work we find a multiclass pattern classifier using
Multiple Attractor Cellular Automata (MACA)13.
Ganguly et. al14 performed pattern recognition with
CA:s using Generalized Multiple Attractor Cellu-
lar Automata (GMACA). Their study confirmed the
potential of GMACA to perform complex computa-
tions, like pattern recognition, at the edge of chaos.

While these pattern recognition algorithms using
(G)MACA:s are highly computationally efficient,
they act as content-addressable memories and do
not necessarily create generalized models over data.
They also require that patterns belonging to the same
class must be close to each other in terms of Ham-
ming Distance14. This can be problematic for use
in pervasive systems since data from e.g sensors or
other peripherals first need to be encoded into bi-
nary patterns in a way that upholds this requirement
(e.g. Gray code15, thermometer encoding16 or scat-
ter code17). Our proposed algorithm does not re-
quire any such encoding so the input data can be fed
straight from any sensors to the classifier.

Cellular Automata Neural Networks (CANN)
are another example of where principles of cellular
automata are used to create classifiers18. CANN:s
have shown to be successful in, for example, im-
age processing19, fluid dynamics20 and statistical
physics21. Unfortunately, CANN:s still rely on float-
ing point values to perform its computations, which
complicates the implementations in digital logic.
However, the CORPSE classifier is not limited in
this way.

3. CORPSE Algorithm

3.0.1. CORPSE working principles

CORPSE’s basic principle is similar to an ECA with
the difference that each cells neighborhood can vary
spatio-temporally (See figure 1). The rationale be-
hind this is that it creates a function similar to a
sparse neural network where each neuron has three
incoming connections of unit weight and uses the
ECA rule as an activation function. This creates

a novel combination of neural networks and cel-
lular automata that aims to add powerful compu-
tational properties from neural networks to ECA.
Since the ECA neighborhood varies in space, it en-
ables a cell A to shortcut its interactions with an-
other cell B in the automata without having to propa-
gate changes through the cells between them during
multiple timesteps. By allowing the neighborhood
to also connect across timesteps, cell A can also in-
teract with any previous state of cell B. This enables
to have temporal dependencies between cells in the
network. Each cell also has the possibility to con-
nect to bias cells which have a constant value of zero
or one.

""

Fig. 1. The principle of determining neighborhood and up-
dating of a CORPSE neuron/cell.

Since most researchers are likely more familiar
with neural networks than with cellular automata,
we will introduce the notion of CORPSE as a bi-
nary neural network. CORPSE can be viewed as
a sparsely connected binary neural network where
each neuron has three connections to neurons in pre-
vious layers. Each connection has unit weight, i.e.
only copies the value from the connected cell. The
activation function used for the network can be any
ECA rule.

The CPU operations required to calculate a neu-
ron’s state, consists of evaluating a boolean expres-
sion (the activation function). E.g. for rule 110 that
is used in this work:

q = (¬ a∧b)∨ (b∧¬ c)∨ (¬ b∧ c) (1)

Where q is the next state for a neuron with in-
coming connections a, b, c. Each update thus re-
quires 8 instructions when implemented on a CPU
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(assuming AND, OR and NOT are part of the CPU
instruction set and are atomic).

To perform a classification, all features’ bit pat-
terns are loaded onto the input layer. Then the net-
work is run in a forward-propagation manner which
will produce a bit pattern at the output layer. This
output pattern is then compared to a set of bit pat-
terns that corresponds to each class. The compar-
ison between the output pattern and the classes bit
patterns is performed using a binary similarity mea-
sure. The class with the highest similarity to the out-
put pattern is chosen.

3.0.2. CORPSE Hyper parameters

There are five different setup parameters for
CORPSE:

1. The number of network layers.

2. Whether to allow neurons’ connections to skip
over layers (i.e. connect to a neuron in any
previous layer)

3. The bit pattern for each class (that the output
pattern will be compared to).

4. The similarity measure used to compare the
output pattern to the classes bit patterns.

5. The cellular automata rule to use as activation
function for the network.

Using a deeper network model is assumed to al-
low for a higher degree of expressiveness for the
classifier model. A deeper model, however, results
in a larger search space for the Genetic Algorithm
(GA) to explore during training. The number of lay-
ers also affect the computational resources required
for running the algorithm.

Since CORPSE is based on ECA, the computa-
tional expressiveness could be limited when only a
small number of layers is used. By allowing neu-
rons to connect to a neuron in any previous layer and
not just the adjacent (previous) layer, the expressive
power of the classifier could increase due to intro-
ducing the ability of having temporal dependencies
between neurons. It should be noted, however, that

using this setting complicates a fully pipelined im-
plementation of the classifier.

The bit patterns assigned to the classes interacts
with the GA fitness model and the output similarity
measure. Together, these parameters make up the
discriminative function of the classifier. In order to
achieve optimal results, these parameters should be
tuned to fit the classification problem at hand.

There exists 256 different rules for ECA that can
be used for CORPSE. While these rules have known
characteristics in ECA, it is not clear how they af-
fect the behaviour of CORPSE when the neighbor-
hood configurations are different. Most likely, the
activation rule should be chosen with regards to the
comparative bit patterns, the output similarity mea-
sure, and the dataset.

3.0.3. Training

Training is performed using a GA where an indi-
vidual represents all connections between cells in
the network. The fitness of an individual is the to-
tal amount of correct classifications the individuals
network gets on the training set. Regeneration is
performed using tournament selection and elitism is
used to prevent degeneration. The least fitted indi-
viduals are culled and replaced with random individ-
uals. Uniform crossover is performed by randomly
picking connections from the parents and assigning
these to the offspring. The probability for an indi-
vidual to mutate is based on the mutation rate. If an
individual is chosen to mutate, a selected amount of
its connections will be randomly changed (with the
constraint that each cell must connect to a cell in a
previous layer).

4. Evaluation of CORPSE

4.1. Evaluation setup for the CORPSE algorithm

4.1.1. Implementation

In order to evaluate the algorithm, CORPSE was im-
plemented in Java to work with the WEKA machine
learning suite22. This choice allowed the algorithm
to be compared with other machine learning algo-
rithms whose implementation and performance is
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known within the research community. Five classi-
fiers of different types (Bayesian, Tree, Neural net-
work, Ensemble) were chosen to be used for com-
parison with CORPSE’s results. The choice of hav-
ing multiple algorithms as a baseline was based on
the fact that some datasets are better classified with
a certain type of classifier. Using several algorithms
for comparison reduces the effect of this while also
giving readers a better bases for further reasoning
about the performance of CORPSE.

4.1.2. GA Training Parameters

In an effort to find well-performing parameters for
the GA, a series of 192 tests were performed vary-
ing: number of generations, elite size, tournament
size, crossover type(uniform, single-point), and mu-
tation rate. Average fitness plots were used to val-
idate convergence of the GA. From these experi-
ments, the best overall performing parameters were
selected:

• 400 generations
• 100 population size
• 85 tournament selected individuals
• 2 elites
• 13 individuals culled
• Uniform crossover
• 90 percent mutation rate (amount of connections

changed in a mutation was randomly chosen be-
tween 1-5)

4.2. Datasets and Feature Selection

Due to our earlier work and findings2, this article
focuses on binary classification problems. 8 differ-
ent datasets (See Table 1.) were used for evaluat-
ing the proposed algorithm. Datasets 1-7 were cho-
sen since they included with WEKA, which makes
it easy to reproduce our results. They also allow
for a comparison with our previous efforts2. For
more information about these datasets, please refer
to the WEKA documentation. Dataset 8 was cho-
sen based on that it consists of an activity recogni-
tion task using accelerometer data from a wrist-worn
device23. This was considered a good use-case of

the proposed algorithm. It is also significantly larger
than datasets 1-7. In order to avoid overfitting and to
put a resource-constraint on the feature selection, the
three highest ranked features for each dataset were
selected using InfoGain24.

4.3. Evaluating hyper parameters

A series of tests were performed varying different
hyper parameters of CORPSE to analyze its perfor-
mance. All these tests were performed using 10-fold
cross validation. Following are the the different tests
and their results.

4.3.1. Allowing connections to skip layers

This test aimed at exploring if an increased expres-
sive power of the classifier could enhance perfor-
mance. Results showed that allowing neurons to
connect (skip) over layers did, in fact, have a pos-
itive effect on the performance.

4.3.2. Using bias neurons

Since the GA can choose whether to connect ”regu-
lar” neurons to bias neurons or not, the hypothesis in
this test was that using bias neurons should always
yield a better result. Our tests, however, showed
that using bias could actually degrade performance
slightly.

4.3.3. Using different bit patterns for classes

Two different models were used for generating the
bit patterns for each class. The first one was to
randomly choose the bit pattern belonging to each
class. This choice was based on the assumption
from hyper-dimensional computing that two random
binary vectors is approximately orthogonal if their
dimensionality is in the thousands. Although the
dimensionality in this paper only reaches the hun-
dreds, this model was still considered an interesting
setup since the two patterns will still likely be dis-
criminative in hamming space.

The second choice was to use a equidistant and
maximized hamming distances between each pat-
tern. This was achieved by dividing the total pattern
length in two and filling the first half with ones for
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class A and the second half with ones for class B.
This setup was also chosen to make the two patterns
be discriminative in hamming space.

The test’s results indicates that the difference be-
tween using maximum hamming distance patterns
compared to using random patterns, is very small.
This parameter gave an inconclusive result and also
had an varying effect depending on the dataset.

4.3.4. Using different output compare models

Two different similarity measures, Hamming Dis-
tance and Jaccard Similarity Coefficient, were used
in order to determine which class the output layer
is closest to. Surprisingly, the difference between
using the two output compare models showed little
differences in our tests.

4.3.5. ECA rule (activation function)

There was no evaluation of how different rules affect
the performance of the algorithm. Instead, the ECA
rule was kept fixed to rule 110 throughout this pa-
per. This choice was based on the fact that rule 110
is the only ECA rule that has been shown capable of
universal computing.

4.3.6. Varying the amount of network layers

In this last test, the best found hyper parameters
from the previous tests were used while varying the
network layer size between 2-6 layers (See table 2).
The hypothesis was that a larger amount of layers
could yield a better performance due to a higher ex-
pressive power for the classifier. As can be seen
from the results, however, the optimal number of
layers changes with the dataset and no clear conclu-
sion can be drawn from this.

5. Results

The comparison between CORPSE and the compar-
ative classifiers (see Table 1) was performed using
the following hyper parameter setup found by the
hyper parameter experiments:

• Allowing connections across layers

• Using bias nodes
• Using random bit patterns for class comparisons
• Output compare model set to Jaccard similarity

coefficient

Results show that CORPSE is performing with
an accuracy and kappa statistics similar to the com-
parative algorithms. In all datasets, CORPSE is out-
performing one or more of the comparative algo-
rithm. For dataset 1, CORPSE is even outperform-
ing all of the comparative algorithms. It should be
noted, however, that all classifiers used a standard
setting and were not setup in any way to fit each
dataset. The results for the classifiers in this paper,
including CORPSE, should therefore not be consid-
ered to be optimal.

Given the results, it is clear that an extended
ECA can be used in order to create a computation-
ally inexpensive classifier (RQ1). Allowing neurons
to connect across layers showed an improvement in
performance, while adding bias nodes sometimes
reduced performance slightly. No clear conclusion
could be drawn from how the number of layers, the
output patterns and the output compare models af-
fect the performance. (RQ2).

6. Discussion

In the light of how simplistic the CORPSE algo-
rithm’s working principle is, its results in compar-
ison with other more advanced ML algorithms are
remarkable. It should also be noted that the perfor-
mance could be further increased by using other out-
put compare models, bit patterns for classes, or fit-
ness functions. These could also be tailored to fit the
underlying classification problem.

Results also show that our different choices of
output compare models and classes’ bit patterns,
had a negligible effect on the results. This result
is counter-intuitive but could possibly be explained
by that the discriminative ability of each of these
choices are similar. E.g. if two sets of points are
sufficiently far apart, it makes little difference if one
uses a line or a curve to separate them.
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Table 1: The classification results for the algorithms on the different datasets.
Datasets CORPSE Naive Bayes Bayes Net Multi-layered Perceptron K-star J48 Random Forest
1 Breast Cancer 73.77% 71.8% 72.08% 70.14% 73.36% 71.86% 69.30%
2 Labour 78.94% 85.17% 78.5% 84.37% 81.90% 82.33% 84.30%
3 Vote 94.71% 94.71% 94.71% 95.08% 94.71% 95.63% 95.24%
4 Diabetes 73.82% 76.39% 75.57% 76.08% 73.52% 74.65% 72.21 %
5 Ionosphere 84.61% 86.82% 89.15% 87.56% 89.66% 90.17% 90.06%
6 Supermarket 65.24% 63.71% 63.71% 63.71% 63.71% 63.71% 63.71%
7 German-Credit 73.60% 73.94% 73.01% 73.5% 72.86% 72.06% 70.97 %
8 Strong and Light 76.45% 75.59% 79.23% 77.86% 81.30% 82.41% 81.68%

Table 2: CORPSE: Results of Accuracy / Kappa statistic from Layer2 - Layer6
Datasets LAYER2 LAYER3 LAYER4 LAYER5 LAYER6
1 Breast Cancer 73.37%/0.2379 72.72%/0.2446 73.42%/0.2522 70.97%/0.2055 73.77%/0.2080
2 Labour 78.94%/0.5378 64.91%/0.2297 78.94%/0.5270 64.91%/0.2470 70.17%/0.3377
3 Vote 94.71%/0.8896 94.71%/0.8896 94.71%/0.8896 94.71%/0.8896 94.48%/0.8846
4 Diabetes 73.82%/0.3749 72.91%0.3747/ 73.82%/0.3985 73.43%/0.3933 73.43%/0.3845
5 Ionosphere 84.61%/0.6610 84.04%/0.6434 82.33%/0.6121 84.33%0.6504 83.76%/0.6389
6 Supermarket 65.24%/0.119 65.16%/0.1181 65.16%/0.1181 65.24%/0.119 65.24%/0.119
7 German-Credit 72.40%/0.2367 73.6%/0.2731 73.40%/0.2756 72.70%/0.2573 72.70%/0.2573

Another counter-intuitive result is that using bias
nodes actually could degrade the performance. The
reason for this might be that the bias nodes could
be utilized by the GA to quickly achieve a relatively
high fitness, but ending up in a local optima. This
reveals a possible flaw in the fitness function since,
theoretically, the addition of bias nodes should not
degrade the performance. If the fitness function and
GA works properly, it should simply disregard con-
necting neurons to the bias nodes if it is not benefi-
cial for the final solution.

In our results no clear conclusion could be drawn
from how the amount of layers affect the perfor-
mance of the algorithm. A reason for this could be
that the fitness function of the GA was too coarse.
We can consider an example where there exists
two different candidates which both would increase
the number of correct classifications by an equal
amount. One of these could, however, be closer to
the global optima but our fitness function would fail
to recognize this and consider them equal. If the
numbers of layers are few, the effect of this could be
less significant due to the amount of candidates that
give rise to equal fitness are potentially fewer. With

this in mind, a different fitness function should be
designed in order to properly evaluate the possibili-
ties of using deeper network structures.

7. Conclusion

In this paper we present the CORPSE algorithm,
a computationally inexpensive classifier that is tar-
geted for resource-constrained devices. We have
shown that it has comparable performance to
other well known algorithms using eight different
datasets. The computational properties of the algo-
rithm are interesting and it is possible that the algo-
rithm could be used also for regression, filtering, or
feature extraction. Our experiments also revealed a
possible flaw in the fitness function of the genetic
algorithm used for training. Future work should
therefore primarily focus on designing a better fit-
ness function or finding alternative training meth-
ods. This could possibly improve performance by,
for example, better utilizing deeper network struc-
tures.
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