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Abstract

Unlike the computational mechanisms of the past many decades, that involved individual (extremely

powerful) computers or clusters of machines, Cloud Computing (CC) is becoming increasingly pertinent and

popular. Computing resources such as CPU and storage are becoming cheaper, and the servers themselves are

becoming more powerful. This enables clouds to host more Virtual Machines (VMs). A natural consequence

of this is that many modern-day data centers experience very high internal traffic within the data centers

themselves. This is, of course, due to the occurrence of servers that belong to the same tenant, communicating

between themselves. The problem is accentuated when the VM deployment tools are not traffic-aware. In

such cases, the VMs with high mutual traffic often end up being far apart in the data center network, forcing

them to communicate over unnecessarily long distances. The consequent traffic bottlenecks negatively affect

both the performance of the application and the network in its entirety, posing non-trivial challenges for the

administrators of these cloud-based data centers.

The problem, and consequently the solution, can, quite naturally, be compartmentalized into two phases

which follow each other. In the first, the task is to consolidate VMs into clusters, where those that commu-

nicate with each other fall into the same cluster. The second phase assigns these clusters onto the available

server racks. Both of these phases must be executed in a traffic-aware manner. This paper provides efficient

intelligent solutions for both these phases. First of all, the VMs are consolidated with a VM clustering

algorithm, and this is achieved by utilizing the toolbox involving Learning Automata (LA). By mapping the

clustering problem onto the Graph Partitioning (GP) problem, our LA-based solution successfully reduces

the total communication cost by amounts that range between 34% to 85%. Thereafter, the resulting clusters

are assigned to the server racks using a cluster placement algorithm that involves a completely different

intelligent strategy, i.e., one that invokes Simulated Annealing (SA). This phase further reduces the total

cost of communication by amounts that range between 89% to 99%. The analysis and results for different

models and topologies demonstrate that the optimization is done in a fast and computationally-efficient way.
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1 Introduction

Cloud Computing (CC) is a relatively new phenomenon. It refers to an environment and computational model

in which physical and virtualized computing resources are distributed and accessed over the network. CC is

maturing to become a very central paradigm within the theory and applications of computation. Its robustness,

increasing user-friendliness, high flexibility and scalability, combined with its cost efficiency [11, 32, 38], make

it an increasingly popular model1 in real-life enterprises.

One of the main reasons behind the success of CC is that the concept of “virtualization”, central to this

computational model, allows the overall system to create, clone, migrate, restore, etc. Virtual Machines (VMs)

in a time-effective manner with minimal effort from the system administrator. Live migration allows VMs to be

moved from one physical host to another without the client/customer noticing it. This is because the service is

never interrupted before, during or after the process. These characteristics of virtualization provide CC with the

required robustness and flexibility, thus enabling the dynamic scaling of the infrastructure in a much more rapid

and effective way when compared to systems that invoke a “traditional” model of computation. Consequently,

CC is becoming one of the major driving forces behind the rapid growth of data centers around the world [17].

This is the arena in which we operate. The goal of this paper is to see how the VMs can be optimally

placed within a data center in a traffic-aware manner. Viewed from a traffic-aware perspective, the resource

of bandwidth becomes a bottleneck in the higher layers of the network, decreasing the performance when

it concerns communication [60] between the applications. This also increases the workload for the network

elements on the aggregation and core layers, which, in turn, often results in higher power consumption within

the data center [17], more greenhouse emissions, and the increased business costs. Resolving this is far from

trivial, as explained below, and accomplishing this is the goal of this paper.

First of all, the reader must observe that due to the exponential growth of data centers and the growing

computational power of modern computers, these data centers are not merely constrained by the computational

power, storage or any other computing resource, as in the past decades. Rather, they are increasingly con-

strained by the limitations of the systems’ networking capabilities [7]. Large data centers are typically hosting

hundreds/thousands of VMs for different CC service providers. The VMs are usually consolidated with resource

usage in mind with various tools, such as VMWare Capacity planner [62], Microsoft Assessment and Planning

(MAP) Toolkit for Hyper-V [40] or the IBM Workload Deployer [27], that can help plan and carry out VM

consolidation with regards to CPU, memory and disk usage. However, these tools do not take into account

network usage or VM intercommunication, which often results in VMs that communicate extensively with each

other being placed far away from one another and having to communicate over long distances unnecessarily.

The consequence of this is the overloading of the higher levels of the network2 that contain the most expensive

enterprise-grade equipment.

These problems pose a significant challenge not only for the environment and in terms of the increased power
1As per Intel’s survey of 200 IT Managers [11], 80% of them are in the process of deploying or have already adopted private

and/or public cloud facilities by moving parts of their IT environment onto it. The remaining 20% plan to do so in the near future.
2Facebook, for example, experiences roughly 1,000 times higher traffic usage inside its data center, when compared to the

incoming and outgoing traffic from and to its users [36].
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usage and business costs, but also for the performance of the network-dependent applications and the scalability

and the growth of data centers. The 2009 study by Benson et al. [6] has shown that for the most part, the

link utilization in the lower layers of data centers is very low. Thus, it is reasonable to assume that the link

utilization can be optimized by traffic-aware VM deployment eliminating traffic bottlenecks and ensuring high

communication performance between applications.

Problem description: The aim of this paper is to investigate an important aspect of the resource provisioning

which, as far as we can see, has not received enough attention in the literature. This is, indeed, the placement

of traffic-aware VMs. The problem is two-pronged.

First of all, it is clear that, in most cases, the applications communicating extensively with each other in

the cloud environment will belong to the same tenant. It would thus be beneficial for the whole network if the

VMs hosting applications with high mutual traffic were deployed in the close proximity with each other. To

accomplish this, we would like the VMs that communicate much with each other to be “clustered” together.

Such a placement would relieve the network elements in the upper layers of the networking infrastructure where

the most expensive equipment usually operate, and fully utilize the links at the lower levels of the network.

However, this, in and of itself, is far from trivial because the traffic patterns are not known a priori.

Secondly, once we have identified the VMs that really should be in the close proximity of each other, the

task is to assign them to the available server racks.

This paper addresses both these issues. Firstly, it investigates how the VMs with high mutual communication

can be consolidated into clusters in order to reduce the total communication cost. It then explains how these

clusters can be assigned to the racks.

One approach to resolve this problem could be to attempt all possible combinations of VM placements and

choose to choose the configuration that is “closest” to being optimal. However, since data centers usually host

hundreds/thousands of VMs, this would require us to test an astronomical number of different permutations

in order to find the best possible placement when the number of VMs is greater than 20 – the task would be

computationally infeasible. The modus operandus suggested in this paper breaks down the problem in two main

parts - each associated with one of the above distinct phases of solving the problem. We first determine the

VM clusters using a Graph Partitioning (GP) algorithm. This is achieved by utilizing the toolbox involving

Learning Automata (LA). By mapping the clustering problem onto the GP problem, our LA-based solution

successfully reduces the total communication cost since it succeeds in consolidating VMs with high mutual

traffic into distinct clusters. We then address the second phase of assigning the resulting clusters to the physical

hosts in the server racks in the data center. This problem could be as computationally hard as the previous

phase inasmuch as any algorithm that resolves the quadratic assignment problem should be able to handle it.

We have opted to solve this phase by invoking the tools in the toolbox of Simulated Annealing (SA).

The methods that we propose have been rigorously tested. Indeed, since several new data center network

architectures have been proposed in recent years, we will test our VM consolidation and cluster assignment

schemes on a number of different architectures in order to see the effect that the network topology has on the

traffic-aware VM consolidation. The paper also reports the topologies for which the algorithms yield the best

results. Our overall solution, which combines these two phases, reduces the communication cost by as much as

99%, and conclusively proves the strength of the techniques we have used.

The novelty of this paper is that it presents the application of LA in the traffic-aware consolidation of virtual
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machines in data centers, and also presents a strategy which serializes the tools in LA and SA to optimize CC.

As far as we know, the use of these methods in this domain, individually and in tandem, are unreported in the

literature.

2 Related Research and Background

Due to the exponential growth of CC, achieving a more efficient resource provisioning in data centers has become

an increasingly critical issue that has attracted research interest. This has led to proposals for more efficient

and scalable data center network architectures such as VL2 [21] and PortLand [47]. However, some researchers

have suggested a different, traffic-oriented VM consolidation approach to the problem. The material3 in this

section surveys the field.

2.1 Network-aware Approaches

In this section, we shall briefly review the available research avenues presented in the literature when it concerns

network-aware approaches.

Network-aware Virtual Machine Consolidation: Kakadia, Kopri and Varma address the internal band-

width optimization problem in a data center by identifying groups of virtual machines based on the network

traffic in the data center in [31]. The paper, which presents a network-aware consolidation strategy for VMs

for large data centers, proposes a greedy consolidation algorithm to ensure a small number of migrations and

fast placement decisions. The work includes algorithms to form VMClusters, to select VMs for migration and

to place them using the cost tree. The paper reports experimental results that evaluate the scheme in an

extended simulated cloud environment (NetworkCloudSim [19]) with its associated Software Defined Network

(SDN) functionality support. It also uses Floodlight4 as the SDN controller. The paper measured the runtime

performance improvement for the jobs that were executed, and based on these results the authors conclude that

I/O intensive jobs benefited the most. Besides these, short jobs also showed significant improvements. In terms

of traffic localization, the results presented demonstrated significant superiority to other approaches. The ToR

traffic displayed ∼60% increase, while the core traffic yielded ∼70% improvement.

VM Placement and Migration in CC: Piao and Yan [55] use a hypothetical scenario where a customer

requests a data storage space and VMs from a cloud service provider in order to host the applications and

process data. In this scenario the resources are arbitrarily provisioned without taking in account traffic usage

and as a result the data has to travel unnecessarily long distance. The paper proposes VM placement and

migration approach to be deployed in the host broker which is responsible for resource allocation. The VM

placement algorithm makes sure that the new VMs are placed intelligently so that the communication occurs

over the shortest possible path while the VM migration algorithm is triggered when the communication between

existing resources suffers due to some latency issues on the network. The latter algorithm is triggered when the

predefined service level agreement (SLA) based on the execution time of the application is breached. The VM

migration algorithm relocates the affected VM(s) intelligently to the physical host with better network status.

The experiment was conducted on the CloudSim 2.0 [10] data center simulation environment and the results

showed improved task completion time.
3The literature survey is quite detailed and comprehensive. The Referees have, generally speaking, recommended including it.
4http://www.projectfloodlight.org/floodlight/
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Scalability of Data Center Networks Traffic-aware VMs: Meng, Pappas and Zhang [39] address network

scalability by formulating the VM placement as an optimization problem and propose a two-tier approximation

algorithm to solve it for very large problems. The paper takes in account recently-proposed data center network

architectures. The authors use real-life production data center traffic traces and prove that they can obtain

significant improvements when compared to existing methods that ignore the traffic patterns and data center

architectures. The paper also specifies the network-aware VM placement problem and attempts to optimize it

by minimizing the average traffic latency caused by the network infrastructure with the assumption that each

network element causes an equal delay of communication between the VMs. The so-called Cluster-and-Cut

algorithm, which leverages the unique features of the traffic patterns and network topologies is used to optimize

the solution. The algorithm has two major components, namely SlotClustering and VMMinKcut. The authors

compare the results of Cluster-and-Cut and the two associated benchmark algorithms (i.e., LOPI [2] and SA

[9]) involving an environment with 1,024 slots and VMs are used. From the results provided, one can conclude

that the function value given by the Cluster-and-Cut algorithm is ∼10% smaller than the measures obtained

by the two benchmarks.

Starling: Minimizing Communication Using Decentralized Affinity-Aware Migration: Sonnek et al.

[60] introduce a decentralized affinity-aware migration technique for allocating VMs on the available physical

resources. The technique monitors the network affinity between the pairs of VMs and uses a distributed

bartering algorithm together with VM migration in order to dynamically move VMs in a way that ensures that

the communication overhead is minimized. This is achieved by placing the VMs with a high mutual traffic as

close to each other as possible, and this could involve placing them in the same server rack, cluster or local

network. The salient contributions of the paper include affinity-based VM placement and migration, the implicit

inference of dynamic job dependencies, and an efficient decentralized control mechanism. The affinity-aware

migration algorithm runs on each node and incorporates traffic monitoring and fingerprinting, affinity inference

and bartering and migration components. The experiment was conducted on a 7-node Xen-based cluster.

The Intel MPI benchmark suite5 and Cube MHD Jet (Cube)6 were used for simulation and benchmarking.

The results displayed about 42% improvement in the application’s runtime over a technique that included no

migration, and up to 85% reduction in the associated network communication overhead.

Detecting and managing vm ensembles: Liting Hu et al. [26] presents an application called ‘Net-Cohort’,

which is a lightweight system that continuously monitors a system to identify potential VM ensembles, eval-

uates the degree of communication (or so-called ‘chattiness’) among the VMs in the potential ensembles, and

enables optimized VM placement to reduce the stress on the bi-section bandwidth of the data center network.

Net-Cohort uses commonly available VM-level statistics in order to create VM subsets (or ensembles) using

correlation values and a hierarchical clustering algorithm. In the second step, it invokes a statistical packet

sniffer in order to identify VMs as members of a misplaced ensemble using the statistical algorithm proposed

by Golab and De Haan in [20], and to thus finally make new VM placement decisions. The experiment was

conducted on 15 Xen-based hosts and 225 VMs. Net-Cohort displayed the ability to detect VM ensembles at

low cost with about 90% accuracy. The experimental results showed that the new VM placement improved the

application throughput by 385% for an instance of RUBiS , while application throughput for an instance of

Hadoop improved by 56.4%. The quality of service (QoS) for a SIPp instance displayed an improvement by a

5Please see https://software.intel.com/en-us/articles/intel-mpi-benchmarks.
6Please see http://www.astro.umn.edu/groups/compastro/?q=node/1.
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factor of 12.76.

Introducing Predictive Guarantees: In their system Cicada, LaCurts et al. [35] introduce predictive

guarantees, which represents a new abstraction for bandwidth guarantees in CC networks. This is achieved

by analyzing traffic traces gathered over six months from an HP Cloud Services data center and developing a

prediction algorithm which is used by the cloud provider in order to suggest appropriate bandwidth guarantees

to the tenants. Cicada’s prediction algorithm adapts Herbster and Warmuth’s “tracking the best expert” concept

[24]. In order to predict the traffic and the underlying patterns, they utilize all the previously observed traffic

matrices. The advantage of this method is that it does not require an extensive amount of data in order to

make predictions. For VM placement, they invoke a two-stage “virtual oversubscribed cluster” (VOC) algorithm

introduced in Ballani et al. [4] which is designed to place clusters on the smallest subtree. Cicada’s greedy

algorithm tries to place the VM pairs with the most intercommunication on the highest-bandwidth paths,

typically on the same rack, within the same subtree. Cicada’s performance was compared to VOC algorithm on

a simulated physical infrastructure with 71 racks with 16 servers each. The reported results show that Cicada’s

placement algorithm leaves more inter-rack bandwidth available.

Application-Driven Bandwidth Guarantees in Datacenters: Lee et al. [36] introduce CloudMirror, a

solution that provides bandwidth guarantees to cloud applications by deriving a network abstraction based on

the application communication structure, referred to as the “Tenant Application Graph” or TAG. CloudMirror

provides a new workload placement algorithm that meets bandwidth requirements by using TAGs while taking

into account high availability considerations. The TAG model is introduced as a graph, where each vertex

represents an application component (or a tier) set of VMs performing the same function. A tenant can simply

map each tier onto a TAG vertex. Example of such tiers are the web, business logic and database tiers. Users

can either specify a matching TAG model and tune the bandwidth guarantees by themselves. On the other

hand, they can resort to cloud orchestration systems like OpenStack Heat or AWS CloudFormation to generate

TAG models. The simulation environment was written in Python and both the efficiency and the metric of

accepting more tenant requests by the CloudMirror placement algorithm (when compared to other schemes)

were evaluated in it. The results showed that CloudMirror outperforms the performance of the existing solutions.

CloudMirror was able to handle 40% more bandwidth demand when compared to the Oktopus [4] system. It

also improved the high availability from 20% to 70%.

Reducing Network Power Costs in Cloud Data Centers: The main focus in the paper by Fang et al.

[17] is to consolidate VMs in a way that allows a number of network elements to become redundant and be

removed or put in a power-saving state. The authors propose VMPlanner, a novel approach for network power

reduction in cloud-based data centers. VMPlanner does not merely try manage the VM placements but also

the traffic flow routing by implementing three approximation algorithms, namely a traffic-aware VM grouping

algorithm, a distance-aware VM-group to a server-rack mapping algorithm, and power-aware inter-VM traffic

flow routing algorithm. The VMPlanner system consists of three modules: an analyzer, an optimizer and a

controller that can all be implemented as NOX applications [22] to run on top of a network of OpenFlow switches.

The performance of VMPlanner was evaluated on a simulator developed in C++ using simulation parameters

and traffic conditions from real cases obtained from a private data center test-bed [14]. The experiment was

conducted with 2,000 VMs. The results reported were very preliminary but, at the same time, the paper

succeeded in demonstrating the potential of reducing power usage by consolidating VMs in a traffic-aware way
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and intelligently routing the traffic.

2.2 Three-tier network architecture

A data center network is traditionally based on a layered [13] [56] or a three-tier approach. Such a three-tier

network architecture consists of three layers of switches and routers (see Fig.1). The layered approach is designed

to enhance scalability, high performance and flexibility and to also improve the maintenance associated with

data center networks. These layers are explained below.

Internet

Load Balancer Load balancer

...

...

Layer 3

Core layer

Internet

Layer 2

Access Routers

L2 Switch L2 Switch

L2 Switch L2 Switch L2 Switch L2 Switch

Border Routers

Server Racks ...

Access and aggregation 

layers

Figure 1: The architecture of a traditional layered data center.

Access layer: This is where the servers are physically connected to the network by connections to the Layer

2 switches, also called the Access or Edge switches.

Aggregation layer: This layer provides functions such as service module integration, Layer 2 domain defini-

tions, spanning tree and default gateway redundancy.

Core layer: This layer handles all the incoming and outgoing traffic that comes in and leaves the data center.

This layer provides the connectivity required to various aggregation modules. It handles the Layer 3

networking with the access and border routers.

2.3 Top of Rack (ToR) and End of Row (EoR) Designs

Typical data centers consist of racks of rows of server. A server rack, sometimes referred to as server cabinet, is

usually a metal frame designed to hold various pieces of IT equipment such as servers, blade chassis, switches,

routers, network patch panels, and to provide power, connectivity and cooling to these components. Each rack

typically contains ethernet switches and patch panels on the top, although the switch does not not necessarily

have to, physically, be on the top of the rack. These switches are referred to as “Top of Rack” (ToR) switches and

provide non-blocking bandwidth for the directly-connected nodes [47]. The advantages of such a ToR design are

that it requires less cabling, flexible “per rack” architecture and fiber infrastructure. The primary disadvantages,

however, are that one requires more switches in the design. Further, it causes more server-to-server traffic in

the aggregation layer.
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Optimally, bandwidth is over-provisioned in the ToR switch and to a lesser extent in the aggregation layer.

However, an injudicious placement of “chatty VM” in different racks leads to cross-rack communication that

increases traffic in the aggregation layer.

An alternative design is called “End of Row” (EoR) design where the hosts in the server racks are connected

to a dedicated rack which is called the EoR rack. The switches in this scenario are called the EoR switches.

Physically, however, the EoR switches don’t necessarily have to be situated at the end of each row. This

approach requires fewer access switches and there are also fewer ports involved on the aggregation layer. On

the other hand, it requires expensive and bulky copper cabling. The other cons of this approach are that it

requires more patching and cable management. It also provides less flexibility [23].

2.4 Data Center Network Architectures

Due to the exponential growth of the cloud in data centers and the evolution of the computers in an of themselves,

computing power is no longer the constraining factor in the data centers. The servers are becoming increasingly

powerful and as the phenomenon of CC grows,the number of VMs correspondingly explodes. Thus, data

centers are faced with inherent problems in the traditional data center network (DCN) architecture. This

leads to real problematic issues such as bandwidth bottlenecks, oversubscription in the higher layers and the

under-utilization of the lower layers of the data center network are becoming [7]. To resolve this, several new

approaches to designing data center network topologies have been proposed in the recent years, one of which is

the “tree topology” discussed below (see Fig. 5).

A tree topology: As mentioned previously, modern-day data centers usually follow traditional three-tier

(or three-layer) network architectures. At the lowest level, referred to as the access tier, hosts connect to one

or multiple access switches. Each of the access switches is connected to one or multiple aggregate switches at

the aggregation layer. The aggregation switches, in turn, connect to multiple core switches at the core layer.

This design creates a tree-like topology where packets are forwarded according to a Layer 2 logical topology

[39]. The higher level network elements are usually enterprise-level devices and are often highly oversubscribed.

2.5 Recently proposed DCN architectures

Several new data center network architectures have been proposed as alternatives to the legacy DCN architec-

ture. We describe them briefly here.

PortLand (Fat-tree)

The PortLand data center network architecture is an attempt to solve cross-section bandwidth challenges of the

tree-topology. It makes use of the so-called Fat-tree network topologies. The network elements in a PortLand

DCN follow a hierarchical organization similar to the tree-topology and form a Clos7 (or a bipartite graph)

topology (see Fig. 6). The Fat-tree is organized in pods, where a Pod refers to a group of access and aggregation

switches forming a complete Clos topology. In a Fat-tree, each pod is connected to all of the core switches.

The number of available ports on each switch decides the number of pods. If k is the number of available

ports on each switch there will be k pods, k
2 access switches and k

2 aggregation switches in each pod. Each pod

7http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks–what-s-old-is-new-again.html.
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is connected to the k2

4 core switches on the higher level and with k2

4 server on the bottom layer. In total, there

will be 5k2

4 switches connecting k3

4 servers to each other.

VL2

The VL2 network architecture (see Figure 7) resembles the traditional three-tier tree architecture. Although it

is also, by definition, a three-layer architecture, the core and aggregation layers are a Clos topology [21].

In VL2 the data packets originating from the access switches are forwarded to the aggregation and the core

layers with the use of valiant load balancing. The traffic is first forwarded to a randomly elected core switch

and then forwarded back to the access layer to its actual destination switch. The idea behind this method is to

provide smoother load balancing on all available links when the traffic is unpredictable.

BCube

BCube (see Figure2) is a multi-level server-centric DCN architecture. The term “server-centric” refers to an ar-

chitecture in which the servers become part of the networking infrastructure and participate in packet forwarding

for the other servers.

Figure 2: The BCube topology.

2.6 Cost matrix

A cost matrix (or a distance matrix) is a two-dimensional array which contains information about the commu-

nication cost (or the distance) between the pairs of nodes in a set of nodes. The matrix usually has a size of

N ×N , where N is the number of the nodes in the set of nodes. Each row in the matrix corresponds to a single

node denoted by i and each column also represents a single node, denoted by j.
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Cij =

















c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

...
...

. . .
...

cN,1 cN,2 · · · cN,N

















(1)

In the example matrix displayed above, each element of the matrix represents cost of communication from

node i to node j, or quantifies the “distance” from node i to node j.

The Cost matrix should not be confused with the so-called Adjacency matrix. The main difference is that

the Adjacency matrix merely shows which nodes are connected to each other ignoring the communication costs

between them. The Cost matrix can be either asymmetric or symmetric. In some cases, an asymmetric matrix

is first constructed when the connection costs between the nodes are different depending on the “direction” of

the traffic. After obtaining an asymmetric cost matrix, a symmetric cost matrix can easily be calculated by

computing the average costs between the nodes.

3 Learning Automata (LA)

Our solution to the traffic-aware consolidation involves LA. LA have been used to model biological learning

systems and to learn the optimal action which a random environment offers. The learning is accomplished

by actually interacting with an environment and processing its responses to the actions that are chosen, while

gradually converging toward an ultimate goal. There are various applications that use LA including parameter

optimization, statistical decision making, telephone routing, pattern recognition, game playing, natural language

processing, modeling biological learning systems, string taxonomy, detection and tracking, distributing the

process of a parallel application, routing in communication networks and object partitioning [18, 25, 42, 45, 46,

48, 49, 51, 52, 53, 63]. More recently, LA have been utilized in cloud computing [43], adaptive Petri-nets [61],

optimization: [44], [37], vehicular systems [3], graph problems [41], social network analysis [58], cognitive radio

networks [29] and peer-to-peer networks [59]. Since the literature on LA is extensive, we refer the reader to [45]

for a good reference that also provides an overview of the field.

The functionality of the LA can be described as a sequence of repetitive feedback cycles. The feedback

cycle involves two entities, the Random Environment and the LA. During each cycle the automaton chooses

an action, which triggers a response from the Environment, and uses the received response - that can be either

a reward or a penalty- with the knowledge gained from the previous cycles to determine which is the next

action to be chosen. By the process of learning, the automaton adapts itself to the Environment and determines

the optimal action, i.e., the action which has the minimum penalty probability, or has a maximum reward

probability.

Incorporating LA in any application domain is an evidence of the power of the philosophy. Basically, LA

learn from the random environment. The actual technique involved in applying the LA philosophy in the

different applications involves modeling the actions, simulating the transforming functions, and representing

the system’s output in order to have reward or penalty responses. This is where the creativity of the researcher

becomes apparent.

Stochastic LA can be classified into two main classes:
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1. Fixed Structure Stochastic Automata (FSSA): These FSSA have the property that their transition and

output functions do not change with time. These LA seem to possess powerful properties useful for solving

different NP-hard problems.

2. Variable Structure Stochastic Automata (V SSA): These V SSA have a dynamically changing structure,

because their transition and output matrices are time varying. In practice, however, they are merely

defined in terms of action probability updating rules which are either of a continuous or discrete nature

[1, 50]. Automata with a variable structure are generally much faster in their convergence.

3.1 Fundamentals of FSSA

A FSSA is a quintuple (α, Φ, β, F, G) where:

• α = {α1, . . . , αR} is the set of actions that it must choose from.

• Φ = {φ1, . . . , φS} is a set of states.

• β = {0, 1} is its set of inputs. The ‘1’ represents a penalty, while the ‘0’ represents a reward.

• F is a map from Φ× β to Φ. It defines the transition of the internal state of the automaton on receiving

an input. F may be stochastic.

• G is a map from Φ to α, and it determines the action taken by the automaton if it is in a given state.

With no loss of generality, G is deterministic.

As discussed above, the automaton is offered a set of actions, and it is constrained to choose one of them.

When an action is chosen, the Environment gives out a response β(t) at a time ‘t’. The automaton is either

penalized or rewarded with an unknown probability ci or 1− ci, respectively. On the basis of the response β(t),

the state of the automaton φ(t) is updated and a new action is chosen at (t+1). The penalty probability ci

satisfies:

ci = Pr[β(t) = 1|α(t) = αi] (i = 1, 2, . . . , R).

The basic idea used to solve the traffic consolidation problem is based on a sub-class of LA solutions that

has been used to solve the object partitioning problem [52, 18], and more particularly the graph partitioning

problem. As documented in the literature, the object partitioning problem involves partitioning a set of |P|

objects into |N| groups or classes, where the main aim is to partition the objects into groups that mimic an

underlying unknown grouping. In other words, the objects which are accessed together must reside in the same

group [52]. In the special case when all the groups are required to contain the same number of objects, the

problem is also referred to as the Equi-Partitioning Problem (EPP ). Many solutions involving LA have been

proposed to solve the EPP , but the most efficient algorithm is the Object Migrating Automaton (OMA) [52].

The latter was first proposed by Oommen and Ma [52], and some modifications were added by Gale et.al. [18]

to create the Adaptive Clustering Algorithm (ACA). Since the OMA is, in one sense, the prior art on which our

present solution is built, we briefly describe its design here, before detailing the graph partitioning algorithm

later in the paper.
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3.2 Object Migrating Automaton (OMA)

The Object Migrating Automaton (OMA) is an ergodic automaton that has R actions {α1, . . . , αR} representing

the possible underlying classes. Each action αi has its own set of states {φi1, φi2 . . . , φiM}, where M is the

depth of memory, and 1 ≤ i ≤ R represents the number of classes. φi1 is called the most internal state and φiM

is the boundary (or most external) state.

A set of W physical objects {A1, A2, . . . , AW } is accessed by a random stream of queries, and the objects are

to be partitioned into groups so that the frequently jointly-accessed objects are clustered together. The OMA

utilizes W abstract objects {O1, O2, . . . , OW } instead of migrating the physical objects. Each abstract object

is assigned to a state belonging to an initial random group but in its boundary state. The objects within the

automaton move from one action to another, and so, in this case, all the W abstract objects move around in

the automaton. If the abstract objects Oi and Oj are in the action αh, and the request accesses < Ai, Aj >,

then the OMA will be rewarded by moving them towards the most internal state φh1 (Figure 3(a)).

On the other hand, a penalty arises if the abstract objects Oi and Oj are in different classes, say αh and

αg, respectively. Assuming Oi is in ζi ε {φh1, φh2, . . . , φhM} and Oj is in ζj ε {φg1, φg2, . . . , φgM}, they will be

moved as follows:

• If ζi 6= φhM and ζj 6= φgM , Oi and Oj are moved one state toward φhM and φgM , respectively (Figure

3(b)).

• If exactly one of them is in the boundary state, the object which is not in the boundary state is moved

towards its boundary state (Figure 3(c)).

• If both of them are in their boundary states, one of them, say Oi is moved to the boundary state of the

other object φgM . In addition, the closest object to them, given in the figure as Oi, is moved to the

boundary state φhM , so as to preserve an equal number of objects in each group (Figure 3(d)).

It is important to point out that the random stream of queries contains information about an optimal

partition, and the OMA attempts to converge to it. The automaton is said to have converged when all the

objects in a class are in the deepest (or second deepest) most-internal state.

The OMA can be improved by the following: Assume that a pair of objects < Ai, Aj > is accessed, where

Oi is in the boundary state, while Oj is in a non-boundary state. In this case, a general check should be made to

locate another object in the boundary state of the partition containing Oj . If there is an object, then swapping

is done between this object and Oi in order to bring the two accessed objects into the same partition. In turn,

instead of waiting for a long time to have these accessed objects in the same partition, the convergence speed

can be increased by swapping the objects into the right partitions.

The formal algorithm for the OMA is found in [18, 52], and omitted here in the interest of space.

The question that begs attention is that of explaining why we have chosen to use LA, and in particular, the

OMA to solve the problem at hand. The reason is, quite simply, the following: The underlying problem that we

deal with is that of “partitioning” based on a “infinite” data stream. This problem is NP-Hard because of the

number of possible partitions. Further, it involves estimating an exponential number of joint access probabilities.

The first prior solution to this involved a hill-climbing technique and required hundreds of thousands of query

pairs. The algorithm that succeeded this was the so-called Basic Adaptive Method, and it required tens of

12



φhMφhM−1

Oj

φhM−2

· · ·

Oi

φh1

αh

(a) On reward: Move the abstract objects towards the extreme states.
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(b) On penalty: Move the objects towards their boundary states (Case 1).
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(c) On penalty: Move the objects towards their boundary states (Case 2).
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φgM φgM−1

· · ·

φg3 φg2 φg1
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φhM−1φhM−2

· · ·
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(d) On penalty: Move the object to the boundary state of the other action (Case 3).
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φgM φgM−1

· · ·

φg3

Ol

φg2 φg1

αg

Figure 3: Transition rules for a two-action OMA. On reward, we move the abstract objects towards the extreme
states. On penalty, we move the abstract objects towards their boundary states or move them to the boundary
state of the other action. All these scenarios are depicted in the four sub-diagrams.
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thousands of query pairs. The solution that has been the benchmark for three decades is LA-based, and is,

indeed, the OMA, which is orders of magnitude faster than the BAM. This motivates the choice of LA-based and

OMA-based solutions for this problem because the application of any version of the OMA to this application

domain has been unreported.

4 Existing Solution

4.1 Data center models

Since no live data center is available for this research data center models will be implemented. The purpose of

a data center model is to simulate a network architecture used by the virtual machines in order to communicate

with each other and to provide the basis for the calculation of cost of communication. Simulating the network

elements and the links the traffic from one VM has to travel to reach its destination VM is necessary in order

to compute the communication cost between VMs in any given virtual machine pair and to ultimately calculate

the total cost of communication between all the existing communicating VM pairs in the data center for the

given period of time.

There are several different data center network architectures (DCN) in use in the world today as discussed

in the background section [13, 39, 21, 47]. In this paper, three of the data center network architectures will be

simulated in order to test the impact of the proposed algorithms.

The three DCN architectures chosen for this paper are: the legacy Tree data center network architecture,

the Fat-tree and the VL2 data center network architecture.

4.2 Cost matrices

One of the main methods for simulating a data center network will be calculation of the associated cost matrix.

Each row and the column with the corresponding index will be associated with a single server rack in the data

center. The matrix with N rows and N columns where each element will correspond to the cost associated with

the communication between two server racks.

The cost of communication between two nodes can be determined by the link speed between the nodes or

by the number of network elements (switches or routers) the packets have to travel through (also referred to as

number of hops) on their way to the destination. In this paper number of hops will be used to determine the

communication cost. For example if a data packet from server rack number 1 (R1) has to travel through one

switch before it reaches the destination rack number 2 (R2) the cost of communication between R1 and R2 will

be 1 and the corresponding edge will be found in the cost matrix in row 1 and column 1.

The cost matrix will be calculated by picking every server rack one by one and comparing its communication

cost with the rest of the server racks one by one while evaluating how many hops a data packet has to go through

on its way from one rack to another. In this way all the possible permutations will be taken in account and the

result of the calculation will be a two dimensional symmetric matrix.
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5 Proposed VM Clustering Algorithm

We shall now explain the strategy that we use to resolve the assignment of VMs. The reader must first of all

appreciate that the assignment of VMs is essentially a clustering exercise. Indeed, since the traffic patterns are

not known a priori, the assignment algorithm must learn the best assignment by inferring this from the real-time

traffic. In other words, the VMs that communicate much with each other must be in the close proximity of each

other, while those that communicate less could be, potentially, placed further apart. With a little insight, one

can see that this is precisely equivalent to the problem of partitioning the nodes of a graph into subsets based

on some pre-defined similarity criteria. This is exactly the paradigm that we invoke.

Our proposed VM clustering algorithm is based on Oommen’s Graph Partitioning Using Learning Automata

(GPLA) [54] algorithm. That being said, the GPLA, in and of itself, is not directly applicable to our application

domain. Rather, we shall see that it has to be adapted to resolve VM assignment. The GPLA attempts to solve

the Graph Partitioning Problem (GPP) [8, 15, 30] by using the toolbox that incorporate stochastic Learning

Automata (LA), which learn the optimal action offered by a random environment. Learning is achieved by

interacting with the environment as it constantly changes and by processing the response of the environment

to the actions taken. In this paper we deal with a version of the GPP in which all the sub-partitions are of

equal size, and this is precisely the so-called Equi-Partitioning Problem (EPP)8. The best solution to the EPP

is the so-called Object Migrating Automaton (OMA) proposed by Oommen and Ma [52]. This technique will

be adapted for the GPP and used in the proposed VM clustering algorithm.

As we will explain later in the section explaining the experimental results, the algorithm adapted for this work

will read the set of 1,600 nodes or vertices distributed over 16 sub-partitions, also referred to as groups or arms,

and deliver as its output the final solution of the corresponding graph partitioning problem. This will be achieved

by adopting the OMA used in Oommen’s algorithm. The strategy will involve checking pairs of vertices that

are randomly selected by the algorithm in order to determine whether they are connected “significantly”, based

on which they will be either rewarded or penalized depending on the corresponding conditions ofconnectivity.

We assume that we are given the symmetric VM traffic matrix, D. In order to determine whether the

nodes are connected “significantly”, we specify two important thresholds, SimilarityThreshold and Dissimilari-

tyThreshold, calculated by the following formulae, both of which involve a user-defined constant ρ:

SimilarityThreshold = (1 + ρ) ∗MeanEdge, and (2)

DisimilarityThreshold = (1− ρ) ∗MeanEdge. (3)

As mentioned above, ρ is a user-defined parameter. With regard to its value, the literature pertaining to the

OMA recommends a value of ρ equal to 0.25. Clearly, ρ controls the similarity and dissimilarity measure, which

in turn control the decisions for reward, penalty and “inaction” of the different pairs of objects. Thus, in all

our experiments, it was set to the fixed value of 0.25. An interesting avenue of research is that of designing a

meta-algorithm that can control the value of ρ. Further, the MeanEdge value was calculated by computing the
8By assuming that the “graph” is equi-partitioned, we can invoke a solution to the EPP to resolve it. The problem remains

unsolved if the relative sizes of the respective sub-graphs are unknown. Clearly, any new solution to a non-equi-partitioned version
of the OPP will also be applicable for the corresponding VM assignment problem.
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average edge value based on all the nonzero elements (or edges between the nodes) of the symmetric VM traffic

matrix, D.

When two random vertices Vi and Vj are picked and their corresponding edge Dij is higher than the

SimilarityThreshold the two nodes will be regarded as similar. If the nodes are found to be in distinct sub-

partitions they will be penalized since this state is unfavorable. If, however, the nodes are found in the same

sub-partitions they will be rewarded since this scenario is favorable. The penalize action will move the nodes

closer to the MinimumCertainty state towards the outer boundary of the sub-partition while the reward action

will push the nodes deeper into their sub-partitions, i.e., towards the MaximumCertainty state. When the

nodes reach the outer boundaries of their sub-partitions they could be made to migrate from their current sub-

partitions and moved to a better one. This process will be repeated until the maximum number of iterations is

reached.

Pseudocode for the VM Clustering Algorithm

The designed and implemented VM clustering algorithm is described by the following pseudocode:

• V = {V1, V2, ..., VKN}: The set of vertices to be partitioned

• {α1, α2, ..., αK}: Set of actions a node can fall into (K sub-partitions)

• {Φ1,Φ2, ...,ΦKM}: Set of memory states or memory depth (M)

• E: Edges between the nodes with the associated traffic matrix D

• β = {0, 1}: Input set, where 0 is reward and 1 is penalty

• Q: Transition function, which explains how the vertices should be moved between the states

• G: Function, which partitions the set of states for the sub-partitions
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Input: The set V = {v1, v2, ..., vKN} to be partitioned into K sub-partitions.

D is adjacency traffic matrix and V1, V2 ... VK are current feasible sub-partitions.

ρ is a parameter used to determine the similarity or dissimilarity of the vertices. M=100.

Output: The final partitions {V1, V2, ..., VK}

Preprocess:

Compute Mean_Edge. Randomly partition V into {V1, V2, ..., VK}

Assign all nodes to the boundary state of the actions

Data: Set of nodes to be partitioned: V = {v1, v2, ..., vKN}

Result: The final solution to the GPP

Method:

for Iteration :=1 to Max_Iterations do

for a random edge Eij do

if Cij > (1 + ρ) ·Mean_Edge then

if vi and vj are in same sub-partition then

RewardSimilarNodes(i,j)

end

else

PenalizeSimilarNodes(i,j)

end

end

else

if Cij < (1− ρ) ·Mean_Edge then

if vi and vj are in same sub-partition then

PenalizeDissimilarNodes(i,j)

end

end

else
Pass

end

end

end

end

Algorithm 1: The Pseudocode for the Function ClusterVMs

Data: Node indices i and j, where ωi and ωj are the state indices of similar nodes in the same
sub-partition.

if ωi mod M 6= 1 then /* i is not in the most internal state */
ωi = ωi − 1

end
if ωj mod M 6= 1 then /* j is not in the most internal state */

ωj = ωj − 1
end

Procedure The Pseudocode for the Function RewardSimilarNodes(i,j)
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Data: Node indices i and j, where ωi and ωj are the state indices of similar nodes in the different
sub-partitions.

if (((wi mod M) 6= 0)and((wi mod M) 6= 0))) then
ωi = ωi + 1 /* both are in internal states */

ωj = ωj + 1
else

end
if ωi mod M 6= 0 then /* vi is in internal state */

ωi = ωi + 1 /* update state of vi */

temp = ωj /* store the state of vj */

ωj = (ωidivM) ·M /* move vj to vi’s sub-partition */

t := index of a node in vi’s sub-partition with vt 6= vi and vt closest to the boundary state of ωi

ωt = temp /* move vt to the old state of vj */

else

end
if ωj mod M 6= 0 then /* vj has to be moved */

ωj = ωj + 1 /* update state of vj */

temp = ωi /* store the state of vi */

ωi = (ωjdivM) ·M /* move vi to vj’s sub-partition */

t := index of a node in vj ’s sub-partition with vt 6= vj and vt closest to the boundary state of
ωj

ωt = temp /* move vt to the old state of vi */

end

end

end
Procedure The Pseudocode for the Function PenalizeSimilarNodes(i,j)

5.1 Enhancement of the OMA algorithm for solving our problem

Our primary objective is to assign the VM clusters to the server racks in a manner that decreases the total

cost of communication. This assignment problem will be treated as a Quadratic Assignment Problem (QAP)

[28, 34, 39, 57], known to be one of the most difficult combinatorial optimization problems. The assignment of

the 16 clusters to the available 16 server racks that gives the lowest total communication cost will be considered

as the best assignment. The task of the cluster placement algorithm will be to conduct a search of the best

assignment in the possible solution space. Since the solution space for 16 groups is an astronomically large

number (i.e., 16!) the exhaustive search approach in order to find the best solution is computationally infeasible.

Instead, we seek a solution that is “closest” to being optimal from among a specific pool of solutions. In order

to find such an optimal solution to QAP, we will invoke a simulated annealing (SA) phase [12, 33]. SA ensures

that the algorithm does not get trapped in a local minimum and that it will be given a chance to explore a

wider range of possible solutions by visiting even the inferior solutions with constantly decreasing probability

[16].

Setting the Initial Cluster Placements

The cluster placement algorithm will read the set of nodes previously partitioned by the VM clustering algorithm

and the VM cluster traffic matrix S in order to check all the possible cluster pairs and sort them by the

corresponding edge values {Sij} in the descending order. To be more specific, the S matrix denotes the cluster-

to-cluster traffic matrix. The reader must observe that the clusters are obtained in the first phase via the OMA.
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Data: Node indices i and j where ωi and ωj are the state indices of dissimilar nodes in the same
sub-partition

if (((wi mod M) 6= 0)and((wi mod M) 6= 0))) then
ωi = ωi + 1 /* both are in internal states */

ωj = ωj + 1

end
else

if ωi mod M 6= 0 then /* vj is in internal state */

ωi = ωi + 1 /* update state of vi */

TempState1 = EvaluateCost of current partitioning /* store the state of vj */

Prev_Cost = EvaluateCost of current partitioning
for all remaining K − 1 partitions do

ωp = state of node closest to boundary in this current sub-partition
TempState2 = ωp

ωj = (ωpdivM + 1) ·M/* move vj to new sub-partition */

ωp = TempState1 /* move vp to vj’s old state */

New_Cost = EvaluateCost of current partitioning
if New_Cost > Prev_Cost then

ωp = TempState2 /* change is not superior */

ωj = TempState1 /* undo it */

end
else /* this change is superior */

Prev_Cost = New_Cost /* retain it */

end

end
else /* vj is in internal state */

ωj = ωj + 1 /* update state of vj */

TempState1 = ωi /* store state of vi */

Prev_Cost = EvaluateCost of current partitioning
for all remaining K − 1 partitions do

ωp = state of node closest to boundary in this current sub-partition, αZ

TempState2 = ωp

ωi = (ωpdivM + 1) ·M /* move vi to new sub-partition */

ωp = TempState1 /* move vp to old state of vi */

New_Cost = EvaluateCost of current partitioning
if New_Cost > Prev_Cost then

ωp = TempState2 /* change is not superior */

ωi = TempState1 /* undo it */

end
else /* this change is superior */

Prev_Cost = New_Cost /* retain it */

end
/* move vt to the old state of vi */

end

end

end

end
Procedure The Pseudocode for the Function PenalizeDissimilarNodes(i,j)
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It is thus straightforward to compute the S matrix based on the D matrix describing the VM traffic and the

results of the OMA partitioning. Subsequently, the total cost of communication will be calculated using the VM

cluster traffic matrix S and the communication cost matrix C. The result of this step will be set as the initial

and the current best states of the VM clusters. Observe that the initial placement will be an already-improved

placement when compared to randomly-assigned VM clusters, and this helps the cluster placement algorithm

to find an even more superior solution. In this regard. the total cost of communication will be calculated by

summing all the edges multiplied by their corresponding communication costs using the following formula:

CommTotal =
∑

i,j=··· ,n

Dij · Cπ(i)π(j), (4)

where Dij denotes a traffic rate between nodes Vi and Vj , and Cπ(i)π(j) denotes the cost of communication

between the server racks that the nodes Vi and Vj are assigned to.

5.2 The Simulated Annealing Process

Once the initial placement has been established and the initial total cost of communication has been calculated

the algorithm will start executing the N number of iterations by starting at a predefined value T (temperature)

and decreasing the temperature gradually. During each iteration two distinct clusters will be chosen and they

will swap with places.

After each swap the total cost of communication will be calculated and the new state will be stored tem-

porarily. If the new state yields total cost of communication which is superior to the previous (or the initial)

total cost of communication the algorithm will set is as the current best state. If the new state is inferior to

the previous state the algorithm will move to it with a certain probability, P, calculated as below:

P = e−
∆

T , (5)

where ∆ = TotalCostnew−TotalCostold, is the difference between the total communication cost yielded by the

new state and the total communication cost of the old state, and T is the temperature.

This process (see Figure 4) will ensure that the algorithm does not get stuck in the local minimum and falsely

assume that the optimal result has been obtained. Initially, the probability P will have a higher value implying

that the algorithm will accept inferior results more frequently. However, as the temperature T decreases over

time, the value of P will gradually decrease and the algorithm will be less and less likely to accept inferior results.

The simulated annealing technique will render to the cluster placement algorithm the potential of exploring a

wider range of the possible solutions space. Ultimately, it will yield the most superior solution encountered.

Pseudocode of the Cluster Placement Algorithm

The implemented cluster placement algorithm is described in detail with the pseudocode below:
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Input: Set of N partitioned VM clusters G = {g1, ...gKN} to be assigned to K server racks.

Output: Final solution to QAP.

Preprocess:Compute the cluster communication matrix S.

Find the highest mutual traffic cluster pairs and sort the set of clusters accordingly. Store the initial

state as BestState

Calculate the corresponding total cost of communication, TotalCostBestState

for Temperature := T to 0 do
Decrease T

for random distinct clusters Gi and Gj do
TempState = SwapPositions

Calculate TotalCostTempState

if TotalCostTempState < TotalCostBestState then

BestState = TempState /* go to the new state */ BestT otalCost = TotalCostBestState

end

else
Retain BestState

end

if TotalCostTempState > TotalCostBestState then

P = e−
∆

T /* Calculate probability P */

if P < RandomValue then

BestState = TempState /* go to the new state */

BestT otalCost = TotalCostBestState

end

else
retain BestState

end

end

end

end

Algorithm 2: The Pseudocode for the algorithm to place clusters.

Figure 4: This diagram displays the process followed by Simulated Annealing.
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6 Experiment Settings

In order to test the proposed algorithms on various kinds of data sets and to be able to retrieve reliable results,

we performed two sets of experiments9. They were conducted with two different sets of 1,600 VMs selected from

the obtained traffic traces. We also understood the importance of having a plan by which one could perform

the measurement and evaluation of the experimental results.

6.1 Experiment Set A

In this experiment set, we conducted three experiments on each of the simulated data center networking ar-

chitectures. In each case, we conducted a separate experiment in order to observe changes in the intracluster

and the intercluster traffic caused by the VM clustering algorithm with the use of graph partitioning. In the

experiments titled “Set A”, we randomly selected the set of 1,600 VMs from the collected traffic traces, with

the expectation that this set of 1,600 VMs will contain several VMs who have rather high mutual traffic while

most of the VMs communicate with each other at a significantly lower rate.

Experiment A1: Tree DCN

The first set of tests were run on the most widely-used legacy three-tier Tree DCN model. The Tree DCN model

(see Figure 5) contained 16 server racks. Each server rack was assumed to be able to accommodate 100 VMs.

The server racks constituted four groups, where each group consisted of four server racks connected to a single

access layer (or Layer 1) switch. The four access switches were connected to Layer 2 - the aggregation layer

switches. The aggregation layer, in turn, consisted of four switches. However only two of the four switches were

presumed to be active, while the other two were in a so-called “Standby” mode. Finally, there was one active

and one standby switch on the core layer at the top level of the data center network.

In the interest of brevity and space, we merely cite some of the important results obtained in the experiment.

In particular, we record TRandTreeA, the average total cost of communication with the randomly placed VMs for

the Tree DCN, TGpTreeA, the average total communication cost after the optimization with the VM clustering

algorithm for the Tree DCN, and TQapTreeA, the average total communication cost after executing the cluster

placement algorithm, where the ‘A’ in these notations refers to the Experiment Set A.

The simulated model of a three-tier data center networking architecture (see Figure 5) allows for the cost

matrix to be constructed for later use in the calculations of the cost of communication between the VMs placed

in the specific server racks.

Cost matrix for the Tree DCN In this work, we utilized the following communication cost matrix (see

Eq. (6)) for the Tree DCN:

9One anonymous Referee had requested that we put the data in the public domain, because it could help someone else working
independently to apply the findings, and to, maybe, subsequently contribute to this optimization. We are grateful for this request,
and the data is available at http://pages.cs.wisc.edu/t̃benson/IMC10_Data.html. The traces from three of the data centers given
in the above link are studied in [5].
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Figure 5: The Tree data center network model used in the simulations.
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Each row and each column in the cost matrix corresponds to a single server rack. For example, Row i

and Column j correspond to the respective rack numbers (see Figure 5), and thus, for example, the commu-

nication cost for the traffic between server rack number 1 and 10 can be found in corresponding entry of the

communication cost matrix and equals 5.

Experiment A2: Fat-tree DCN

The next experiment on which we conducted experiments was the relatively-recently-proposed data center

network architecture PortLand [47], based on a so-called Fat-tree network topology. In the Fat-tree DCN model

(see Figure 6) we used four pods out of 16 switches. Each pod contained 4 switches and were connected to all

the available 4 core switches. The traffic between the 1,600 VMs was then simulated as per this Fat-tree model.

The 1,600 VMs were divided in 16 sub-partitions of equal sizes each containing 100 VMs. Each sub-partition

was assigned to one of the 16 server racks.

The average total cost of communication with the randomly placed VMs for the Fat-tree DCN will be

noted as TRandFtreeA, the average total communication cost after the optimization with the VM clustering
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algorithm for the Fat-tree DCN will be abbreviated as TGpFtreeA and the average total communication cost

after executing the cluster placement algorithm will be denoted as TQapFtreeA where “A” in the abbreviation

refers to the Experiment Set A.

Figure 6: The Fat-tree data center network model used in the simulations.

Cost matrix for the Fat-tree DCN In this case, the cost of communication between the neighbor pairs of

racks R1 and R2 was 1. However, the cost across the neighboring pairs, for example, between R2 and R3, in

the same pod was 3. As opposed to this, the cost of communication across the pods was 5. A cost matrix C

was calculated for the experiment with Fat-tree DCN based on the number of the network elements (switches)

that the traffic has to travel through in order to reach its destination from one server rack to another. Thus,

the cost matrix used for the experiment is displayed in Eq. (7) below:
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Experiment A3: VL2 DCN

The third and the last experiment that was conducted was on a simulated VL2 [21] data center network

architecture. The VL2 is a newly proposed DCN and it shares many similarities with the traditional Tree DCN.
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However, the main difference between VL2 (see Figure 7) and the tree with regards to the cost of communication

is that the traffic in VL2 is forwarded all the way to the core layer before it is routed back to the access layer

and then to its destination. This difference will increase the cost of communication between the neighboring

access layer switches and also between the groups of the server racks associated with the given access switches.

The VL2 model that we used consisted of 12 switches and 16 server racks. The racks constituted four groups

each consisting of 4 racks. Each group was connected to a single access layer switch. The 1,600 VMs were thus

accommodated by the VL2 model, and were divided into 16 groups of 100 VMs each, with each server rack

being able to host 100 VMs.

1 2 3 4 5 6 7 8 13 14 15 169 10 11 12

Figure 7: The VL2 data center network model used in the simulations.

The average total cost of communication with the randomly placed VMs for the VL2 DCN is denoted as

TRandV l2A, the average total communication cost after the optimization with the VM clustering algorithm for

the VL2 DCN is abbreviated as TGpV l2A, and the average total communication cost after executing the cluster

placement algorithm is denoted as TQapV l2A. Again, the “A” in the abbreviations refers to the experiment set

A.

Cost matrix for the VL2 DCN The resulting cost matrix for VL2 (see Eq. (8)) was similar to the cost

matrix for the Tree reflecting the similarities and the differences between the two network topologies. The

matrix clearly describes the relatively higher cost compared to the previous data center models associated with

the communication across the rack groups belonging to the different access layer switches.
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Cij =
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6.2 Experiment Set B

The Experiment Set B consisted of the following experiments:

1. Experiment B1: Tree DCN

2. Experiment B2: Fat-tree DCN

3. Experiment B3: VL2 DCN

The Experiment Set B repeated the experiments described in the previous section refereed to as Experiment

Set A. The difference between the two experiments consisted in the set of 1600 VMs. For the Experiment Set

B different VMs will be chosen in order to better observe the effects of the graph partitioning and quadratic

assignment algorithms. After the three experiments an intercluster traffic experiment for the set B will be

conducted.

The purpose of repeating these three experiments and the intracluster experiment is to observe how the

optimization algorithms developed here behave with a different set of VMs and with distinct traffic patterns.

The new set used in the Experiment Set B was specifically chosen to contain the IP addresses of those who

“talk” to each other with relatively higher traffic rates compared to the VM set used in the Experiment Set

A. This was achieved by sorting (in descending order) the file containing the list of traffic rates (i.e., Di, j), in

terms of these rates, and by then removing the communicating pairs with significantly high traffic rates. This

had the effect of smoothing the graph of the distribution of the edges between the VMs participating in the

experiments.

We conducted three experiments in this scenario: Experiment B1 on a Tree, Experiment B2 on a Fat-tree,

and Experiment B3 on VL2 data center networking architectures, and in each case we conducted the experiments

with the exact same parameters as in Experiment Set A. Subsequently, the intracluster traffic experiment was

26



also conducted with the same parameters as in the Experiment Set A. The notations used for tge total cost

of communication is analogous to the ones used in the Experiment Set A, except that they will have suffix ‘B’

instead of ‘A’. Thus, for example, the total cost of communication with randomly assigned VMs in the Tree

experiment for the experiment set B (Experiment B1) will be denoted as TRandTreeB.

6.3 Measurement and Evaluation

In order to be able to assess how the problem statement has been addressed, it is important for us to reliably

evaluate the performance of the proposed VM clustering and cluster placement algorithms, and their respective

impacts on the total cost of the communication in the data center models. Since the experiments done in

this paper are conducted on virtual models of data center networking architectures, there is no possibility of

connecting the networks to physical devices and directly measuring real-time bandwidth usage on “real” links

prior to and and after the optimization. Instead, we will have to resort to other methods of measurement and

evaluation. Indeed, it is our expectation that that the total communication cost of for the whole data center

will decrease after both the VM clustering and cluster placement algorithms have been implemented. We also

expect the average intracluster (the traffic between the member VMs inside a group) traffic will increase after

invoking the VM clustering algorithm because the goal of this phase was to place VMs with high mutual traffic

within the same clusters. Simultaneously, we would expect the intercluster traffic to decrease as the result of

our optimization.

In order to compare initial and optimized states of the system, we first established a baseline setting by

randomly assigning VMs to the clusters and by thereafter computing and storing both the intracluster and

intercluster traffic data, and the total cost of communication for the whole system. There is, however, a

probability that we could obtain extreme results due to the sampling errors, since the highly communicating

VM pairs could end up in the same clusters hence yielding a relatively low total communication cost in the

baseline placement itself. This would have the effect of implying that the clustering and assignment algorithms

were not sufficiently expedient. In order to avoid such a scenario, and to allow us to obtain a baseline that

could be considered as a reliable-average un-optimized system, we generated multiple10 (N = 35) randomly-

distributed VM states. The average values for the total cost of communication was thus calculated and stored.

The average intracluster and intercluster traffic was also computed and stored for subsequent analysis. Such an

approach was expected to reduce the chance of random sampling error distorting the results. In order to reduce

the variation in the mean values and to obtain data that was as reliable as possible, the tests were repeated 35

times, and the obtained sets of (35) results were subsequently used in order to calculate the statistical values.

The results of the 35 experiments were stored in comma-separated text files with timestamps and experiment

names so that they could be subsequently easily accessed and used for analysis and plotting. The goal was that

the algorithms would have been able to optimize the randomly-generated systems and thereafter calculate

the new total cost of communication and the difference between the un-optimized and the optimized systems,

along with various other indications such as the number of times the reward or penalty procedures had to

be invokedetc. One of the indicators of the graph partitioning algorithm’s performance was the intracluster

communication before and after the graph partitioning. To evaluate this, the traffic between each element

inside a cluster was summed up. Another indicator to measure the performance of the VM clustering and
10Since at least 30 test samples is, usually, required in order to obtain reliable statistics, our test sample size was set to be 35.
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cluster placement algorithms was the time needed for them to converge and the stability in variation of the

results.

7 Experiment Results and Analysis

After running the two sets of experiments each with three sub-experiments for the three chosen data center

network architectures the results were obtained and stored for further analysis.

7.1 Analysis: Experiment Set A

Three instances of the simulator were run in parallel mode in order to simultaneously conduct the Tree, Fat-tree

and VL2 experiments.

Experiment A1 was conducted on the Tree data center network architecture. The simulator was run by

specifying the cost matrix for the Tree DCN. The simulator read the 35 .pkl files containing the 35 randomly

placed VM sets and executed the VM clustering and cluster placement algorithms 35 times for each of the 35

.pkl files. Thus the optimization algorithms were run totally 1,225 times for the Tree experiment. The number

of iterations for the VM clustering algorithm was calculated to be 82,920 each time. The SimilarityThreshold

was calculated to be 1020,756.33, and the DissimilarityThreshold was 612,453.80. The initial temperature sent

to the cluster placement algorithm for SA was T = 100, 000. Each test took roughly 3 minutes. The whole

experiment with 1,225 tests took approximately 19 hours.

Experiment A2 was conducted on the Fat-tree data center network architecture. The simulator was launched

in a parallel mode with Experiment A1 by specifying the cost matrix for the Fat-tree DCN. The simulator read

the same 35 .pkl files containing the 35 randomly placed VM sets and executed the VM clustering and cluster

placement algorithms 35 times for each of the 35 .pkl files. Again, the optimization algorithms were run 1,225

times for the Fat-tree experiment with the same values for the threshold and the maximum number of iteration.

Experiment 3 was conducted on the VL2 data center network architecture. The third parallel instance of

the simulator was launched by specifying the cost matrix for the VL2 DCN. The simulator read the same 35

.pkl files containing the 35 randomly placed VM sets. All the settings and parameters were identical to the ones

used in Experiment A1 and Experiment A2. The whole experiment with its 1,225 tests took approximately 16

hours.

The results showed that the traffic-aware consolidation of the VMs had a significant impact on the total

communication cost. The results also demonstrated that the cluster placement algorithm further decreased the

total communication cost. This section goes through and analyzes the results of each of the three experiments

by using the statistical data and the data visualization provided by the analysis tools developed in Python.

Experiment A1: Tree Analysis

When one considers at the baseline total communication cost, the first observation is the high variance (the

standard deviation is is as high as 12.11% of the mean) in the distribution of total costs (see Table 1)11. This

can be explained by the fact that the cost matrix for the Tree DCN (see Eq. (6)) can cause a higher variation

in the communication cost as the result of moving clusters with significantly high traffic slightly away or closer
11The first row in this table and all the other similar tables corresponds to the “random placement” setting.
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to their pairs with whom they exchange significantly high traffic. By way of comparison, the cost matrices for

the Fat-tree and VL2 configurations (see Eq. (7) and (8)) are more uniform.

The impact of the VM clustering algorithm using Oommen’s graph partitioning technique is obvious when

observing the plotted graphs. The VM consolidation decreases the total communication cost by 85.09% (from

11,744 to 1,751 GB), which is a significant improvement. It further stabilizes the variance as well (see Table 1).

One should also observe that at this juncture, the clusters are not assigned to the racks in manner that is “closest”

to being optimal. Indeed, after the cluster assignment with simulated annealing the total communication cost

drops further to 0.49 GB which amounts to a decrease of 97.17% when compared to the total cost of the

consolidated (clustered) VMs, and to a overall decrease of 99.58% when compared to the total communication

cost associated with randomly distributed VMs.

The significant advantage of using our algorithms is obvious!

Mean St.dev ∆Prev.mean ∆Overall

TRandTreeA 11,744 1,422 — —
TGpTreeA 1,751 0.062 -85.09% -85.09%
TQapTreeA 0.49 0.003 -97.17% -99.58%

Table 1: Change in the total cost of communication in the Tree set-up in Set A.

During the 82,920 iterations, the VM clustering algorithm invoked the RewardSimilarNodes procedure, on

average, 5,622 times, while the PenalizeSimilarNodes was invoked 1,576 times, on average. The average number

of the times PenalizeDissmiilarNodes was invoked was 2,213. The graph partitioning process took on average

3.4 seconds to complete.

This means that for most of the time, the algorithm picked nodes that were not significantly connected. This

occurred in 9,411 out of the total 82,920 iterations. Thus, the graph partitioning algorithm was “idle” 88.65%

of the total number of iterations when the picked edges were regarded to be neither similar nor dissimilar.

The results also showed that the cluster placement algorithm used the inferior configurations 149.4 times on

average (standard deviation 16.8) out of 100,000 iterations. It took the SA process (on average) 37.7 seconds

to complete the 100,000 iterations which was a significantly longer time compared to what the VM clustering

algorithm used. This can be explained by the fact that for most of the time (88.65%), the VM clustering

algorithm did not have to conduct any time consuming operations, while the cluster placement algorithm

executed time intensive calculation jobs for each of the 100,000 iterations.

Experiment A2: Fat-tree analysis

The results of the Fat-tree experiment revealed (see Table 2) that the baseline total communication cost in this

DCN model was more stable when compared to the baseline total communication cost for the Tree (in terms

of the variances). The standard deviation of the 35 tests was, on average, 8.04% of the mean. This can be

explained by examining the cost matrix for the Fat-tree set-up (see Eq. (7)), which was relatively uniform when

compared to the cost matrix of Tree. This observation might also be a good explanation for the fact why there

is a lesser variation in total cost as there is no difference caused in the cost of communication between two VMs
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if one of the VMs is moved from one rack to another, when the pair is already communicating with each other

from the server rack groups belonging to distinct access layer switches. However, there is greater change in cost

of communication for VM pairs migrated from one rack to another in cases of the VMs communicating with

each other within the same access layer switch their respective rack groups (see Eq. (7)).

In this case, the total cost of communication measured with the randomly distributed VMs decreased

significantly after the set of nodes were graph partitioned by the VM clustering algorithm. The average total

cost was reduced by 85.14%, i.e., from 14,406 to 2,140 GB (Gigabyte).

The VM clustering algorithm executed 82920 iterations and invoked the RewardSimilarNodes procedure,

on average, 5,619 times. The PenalizeSimilarNodes procedure was invoked 1,582 times, on average, while the

PenalizeDissimilarNodes was invoked on average 2,189 times. The average time used to achieve the GP was

3.33 seconds. The VM clustering algorithm behaved in the same way as during the Tree analysis as expected.

In this experiment too it was idle most of the time as the majority of the randomly picked VM pairs were

not considered to be either similar or dissimilar. The algorithm was busy 11.32% of the time rewarding and

penalizing the nodes. 40.16% of the picked VMs were penalized while the remaining 59.84% were rewarded.

The cluster placement algorithm was executed after the VM consolidation. This further decreased the

average total communication cost to 96.82% from 2,140 to 0,68 GB. Thus, the overall average total cost was

decreased by 99.52% from its initial value of 14,406 to the 0,68 GB after the cluster placement. Again, the

power of using our algorithms is clear.

mean st.dev ∆Prev.mean ∆Overall

TRandFtreeA 14,406 1,158 — —
TGpFtreeA 2,140 0.074 -85.14% -85.14%
TQapFtreeA 0.068 0.003 -96.82% -99.52%

Table 2: Change in the total cost of communication in the Fat-tree set-up in set A.

The cluster placement algorithm accepted on average 1,733.76 worse configurations during the SA process

which took 38.85 seconds to complete, on average.

Experiment A3: VL2 Analysis

The observed average total communication cost for the randomly distributed VMs in the VL2 set-up was

13,586,759,288.7 with a standard deviation of 1,414,884,915.62. The variance (10.41% of the mean) was thus

higher than the Fat-tree set-up, but lower than the Tree set-up. This result can be explained again by comparing

the cost matrices of the three data center architecture models displayed in the approach section.

The average total cost of communication decreased by 85.20% after the VM clustering from 13,586 to

2,010 GB. During the VM clustering the GP process invoked RewardSimilarNodes, on average, 5,619 times.

The PenalizeSimilarNodes procedure was invoked 1,581 times and the PenalizeDissimilarNodes procedure was

invoked 2,204 times, on average. The graph partitioning process took an average of 3.34 seconds to complete.

The cluster placement algorithm further decreased the total cost of communication by 97.02% compared to

the total cost of communication achieved after the GP. The new total cost went down to an average of 0.59
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mean st.dev ∆Prev.mean ∆Overall

TRandV l2A 13,586 1,414 — —
TGpV l2A 2,010 0.53 -85.20% -85.20%
TQapV l2A 0.59 0.03 -97.02% -99.56%

Table 3: Change in the total cost of communication in the VL2 set-up in Set A.

GB which, when compared to the initial total cost of communication represented a decrease of an incredible

99.56% decrease. The SA took, on average, 39.6 seconds while in 1,409 times out of the 100,000 iterations, the

algorithm chose an inferior state.

Intracluster and Intercluster Communication: Set A

It is clear that the traffic-aware consolidation of the VMs had significant impact on the total cost of communi-

cation which was greatly decreased through both the VM clustering and the subsequent quadratic assignment.

In order to understand the causes for this significant improvement, it is crucial to observe the changes in the

intracluster traffic and the changes in the intercluster traffic.

The results obtained during the intracluster and intercluster experiments clearly demonstrate how the intr-

acluster traffic was increased as a result of the GP process achieved using the GPLA algorithm. Indeed, Figure

8 illustrates the average intracluster communications inside the 16 clusters before the VM consolidation when

the clusters were populated by randomly distributed VMs for the 35 randomly generated VM sets.
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Figure 8: Intracluster traffic in the 16 clusters before executing the GP in Set A.

Figure 9 illustrates how the intracluster traffic looked within the same 16 clusters shown in the Figure 8,

after the VMs were consolidated with the VM clustering algorithm using the GP technique.
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Figure 9: Intracluster traffic in the 16 clusters after executing the GP in Set A.

Using the randomly assigned VMs, the aggregate average intracluster communication was 0.06 GB (with a

std of 0.0057) which was increased by 1,369.28% up to 0.907 GB after the GP. The reader should thus observe

the strength of the GP phase. Already at this stage, without even attempting the intelligent assignment of the

clusters to the available server racks, the data center traffic was significantly optimized compared to the state

prior to consolidating the virtual machines with the VM clustering algorithm. Such an effect was consistently

observed through all the 35 tests conducted for the 35 randomly generated VM sets (1225 times totally). The

stability and reliability of the VM clustering algorithm is remarkable.

As expected, while the intracluster traffic increased, the traffic between the clusters decreased. The average

initial aggregate intercluster traffic was measured to be 0.13 GB, and the traffic between the clusters was not

optimized as shown in Figure 11, from which it is evident that the clusters are communicating with each other

in a more or less chaotic manner with variable traffic rates. The average aggregate intercluster traffic decreased

by 84.92% to 0.002 GB after the VM clustering as the result of consolidating highly communicative VMs in the

same clusters.

This is further observed by considering Figure 10. The cells diagonally represent the traffic inside the clusters

(intracluster communication) while all the other cells refer to the traffic between (intercluster communication)

the 16 clusters. The colors correspond to the values that each cells represent, where the light blue colors represent

low values, while greater values are represented by darker shade of blue. Figure 10 shows, for example, that the

cell in row 1 and column 13 has a considerably darker hue of blue when compared to the neighboring cell in

row 1 and column 13. The figure also reveals that, on averagem 4 clusters had an especially high mutual traffic

compared to the rest of the clusters. The diagonal of the figure 10 reveals that none of the clusters had a high

internal traffic judging by the light blue color of the diagonal cells.
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Figure 10: Intra and intercluster traffic heatmap before executing the GP in Set A. Here, darker blue regions
denote higher intra/inter cluster traffic while lighter blue regions denote lower intra/inter cluster traffic, where
the intra cluster traffic is along the diagonal terms while inter cluster traffic is along the non-diagonal terms.
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Figure 11: Intra and intercluster traffic heatmap after executing the GP in Set A. Again, darker blue regions
denote higher intra/inter cluster traffic while lighter blue regions denote lower intra/inter cluster traffic, where
the intra cluster traffic is along the diagonal terms while inter cluster traffic is along the non-diagonal terms.

On the other hand, Figure 11 displays a significantly different picture, i.e., the one obtained after the VM

clustering was invoked. The diagonal cells representing the intracluster traffic are dark blue signifying the high

values whereas the rest of the cells are of much lighter color. The non-diagonal areas of the graph appear to be

more smooth and uniform signifying a decrease in the intercluster communication over the whole matrix.

Overall Comparison: Set A

As shown in the previous sections, due to the VM clustering algorithm consolidating VMs with high mutual

traffic in the same clusters, the intracluster communication increased by 1,369.28% while the intercluster traffic

decreased by 84.92% at the same time. These changes caused the decrease of the total communication cost

by 97.17% in the Tree set-up, by 96.82% in the Fat-tree set-up, and by 97.02% in the VL2 set-up. The smart

assignment of the clusters to the server racks with the use of the simulated annealing implemented in the cluster

placement algorithm further decreased the total communication cost by 99.58% in Tree set-up, by 99.52% in

the Fat-tree set-up, and by 99.56% in the VL2 data center network architecture models. Figure 12 illustrates

the total cost of communication with randomly assigned VMs, after the VM clustering phase and after cluster
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placement in all three data center network architecture models.
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Figure 12: Total cost of communication in all three experiments in Set A.

Without a single exception, in all the three experiments, the effect of the VM clustering and the cluster

placement was shown to be extremely effective in consolidating the strongly connected nodes in the same clusters

and ultimately greatly decreasing the total communication cost in the data center models. The optimization

results were both stable and consistent in all the tests conducted.

Traffic Matrix Characteristics: Set A

A deeper analysis of the traffic matrix used to conduct all three experiments shows that not only are the

2,555,854 out of 2,560,000 (99.84% of the total) values equal to zero in the matrix but the remaining 4,146 are

rather unevenly distributed. Indeed, Figure 13 displays the distribution of the 4,146 nonzero elements (or the

edges between the communicating VMs) of the traffic matrix. The graph is extremely skewed implying that

there are very few values that are “high”, while most of the edges are considerably lower. Thus the mean edge

is far apart from the median value, implying that merely 8.68% (360 edges) of the total number of the edges

terminate over the similarity threshold calculated by using the mean edge value, while the majority (87.51%)

of the edges, i.e., 3,628 values, end up below the dissimilarity threshold.
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Figure 13: Graph displaying all the edge values in the traffic matrix in Set A in terms of their 25% percentiles.
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Figure 14: The top 100 edge values in in the traffic matrix in Set A shown with their 10% percentiles.

7.2 Analysis: Experiment Set B

As discussed earlier, the experiments reported above were also conducted on a different set of 1,600 VMs referred

to as Set B, but with the same parameters. The purpose of this was to examine how the algorithms would

behave when they encounter VMs with a “smoother” communication patterns. In this case, Figures 13 and 14

show that only 10% of the edges were responsible for most of the traffic, while the remaining 90% of the edges

contained significantly lower values. This implied that there were very few VMs who communicated heavily

with each another while the rest of the VMs demonstrated a moderate amount of mutual communications.

The so-called Set B was intentionally chosen to exclude the VMs that possessed an extremely high level

of intercommunication compared to the rest of the nodes. The purpose of this study was to consider how the

algorithms that we had developed would perform in a markedly-different environment.
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Figure 15: Edge values in the traffic matrix in Set B shown with 10% percentiles.
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Figure 16: Intracluster traffic in the 16 clusters before executing the GP in Set B.
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Figure 17: Intracluster traffic in the 16 clusters after executing the GP in Set B.

Figure 15 shows the distribution of the edges in the symmetric traffic matrix for the data in Set B. It is

evident that the there was a more even distribution of edges in this experiment.

Due to the fact that the communication between the communicating VM pairs is much more evenly dis-

tributed (compared to the case of the VMs in Set A) the increase in the intracluster traffic and the decrease

in the intercluster traffic was less pronounced when compared to the corresponding results obtained from those

obtained in the case of Set A. The results showed that the intracluster traffic increased by 502.18% while the

intercluster traffic decreased by 33.67%.

Consequently, the decrease in total cost of communication after the VM clustering was also moderate com-

pared to the results obtained in the case of the data in Set A. The total cost of communication for the Tree

experiment (b1) after VM clustering decreased by 33.74%. After the cluster placement algorithm the total cost

of communication decreased by 98.48%. Similarly, the VM clustering algorithm decreased the total communi-

cation cost by 33.92% in the Fat-tree experiment (referred to as B2) and by 33.99% in the VL2 experiment

(referred to as B3). The cluster placement algorithm improved the results by 98.41% in the Fat-tree set-up

(B2), and by 98.47% in the VL2 (B3) set-up.

Without repeating the extensive details we mention thAT In this case, average number of RewardSimilarN-

odes invoked increased to 13,306.48 in the Tree experiment (B1). The average number of PenalizeSimilarNodes

was 13,013.23 while the average number of PenalizeDissimilarNodes was 868.82. During the Fat-tree set-up

B2) the number of RewardSimilarNodes was 13,330.65 while the average number of PenalizeSimilarNodes was
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12,994.87 and the PenalizeDissimilarNodes was 873.34. Finally, the average number of the RewardSimilarNodes

increased during the VL2 experiments (B3) as well and was 13,296.16 while the average number of PenalizeS-

imilarNodes invoked was 13,022.85. The average number of PenalizeSimilarNodes invoked was 875.69.

Table 4 shows the average total cost of communication in the Tree, Fat-tree and VL2 experiments respectively

with the data Set B with randomly assigned VMs, after the GP with the VM clustering algorithm was executed,

and finally after the cluster placement algorithm was done. The Table demonstrates the positive effect of the

GP and the further improvement in the total cost of communication after the quadratic assignment was done

with the use of the cluster placement algorithm.
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Figure 18: Intra and intercluster traffic heatmap before executing the GP in Set B. Here, darker blue regions
denote higher intra/inter cluster traffic while lighter blue regions denote lower intra/inter cluster traffic, where
the intra cluster traffic is along the diagonal terms while inter cluster traffic is along the non-diagonal terms.

Using the identical notation as in the case of Set A, the heatmap plots of the intra and intercluster com-

munications demonstrate how the traffic patterns look before and after GP was executed in Set B. Figure 18

shows that the traffic rates between the clusters, is on average, higher when compared to the results obtained

for Set A, while the intracluster communication (the diagonal cells) is considerably less. Figure 19 shows how

the VM clustering algorithm optimizes the traffic. The diagonal cells display how the intracluster traffic was

increased while the intercluster traffic was reduced.
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Figure 19: Intra and intercluster traffic heatmap after executing the GP in Set B. Again, darker blue regions
denote higher intra/inter cluster traffic while lighter blue regions denote lower intra/inter cluster traffic, where
the intra cluster traffic is along the diagonal terms while inter cluster traffic is along the non-diagonal terms.
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Again, the graph in Figure 20 illustrate how the total cost of communication gradually decreased first by

utilizing the VM clustering algorithm and thereafter with the use of the cluster placement algorithm. It is

obvious that the VM clustering achieved by GP had a considerable effect on the total communication cost.

However, due to the nature of the data set used in the the data Set B, the improvement was less pronounced

when compared to Set A.

Table 4 shows how the VM clustering and the cluster placement algorithms reduced the total cost of com-

munication in the Tree (B1), Fat-tree (B2) and VL2 (B3) set-ups for the data in Set B.

mean st.dev ∆Prev.mean ∆Overall

TRandTreeB 1,601 0.18 — —

TGpTreeB 1,061 0.012 -33.75% -33.75%

TQapTreeB 0.024 0.000373 -97.71% -98.49%

TRandFtreeB 1,950 0.017 — —

TGpFtreeB 1,288 0.012 -33.93% -33.93%

TQapFtreeB 0.030 0.00036 -97.61% -98.42%

TRandV l2B 1,835 0.022 — —

TGpV l2B 1,211 0.010 -33.99% -33.99%

TQapV l2B 0.028 0.000410 -97.68% -98.47%

Table 4: Changes in the total cost of communication for the various set-ups in the case of the data in Set B.
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Figure 20: Total cost of communication in all three experiments in in the case of the data in Set B.

Figure 20 shows the overall comparison of the average total cost of communication with the randomly

assigned VMs in the three data center network architectures experimented on, the average total cost of commu-

nication after the VM clustering with the GP technique, and finally, the average total cost of communication

after the clusters were assigned to the server racks in a traffic-aware manner utilizing simulated annealing.

The efficiency of the approach in general cases and for purely random patterns is unknown. However, our

solution is advantageous when there are some “chatty” VMs. Indeed, in the realm of data centers, it is becoming
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increasingly more common to have dependencies in terms of intercommunication between different applications.

One such typical example is the Map Reduce application that create a significant amount of inter-traffic or

multi-tier web applications running on different VMs.

We now consider the issue of how we could resolve the problem if the size of a few partitions is greater than

capacity of a rack. This can be solved via a “Bin Packing” in the initialization phase and small modification of

the OMA to accommodate the capacity constraints. To be more specific, in this article, we chose the size of the

partition based on the capacity of a rack and the total number of racks in the data center. In this sense, the

problem is rather an equi-partitioning problem. However, it is possible to add extra constraints and suppose

that the racks do not have equal capacity, and that the VMs do not have neither equal size. In such case, the

initialization of the OMA needs to start from a feasible solution, and each swapping of objects between two

clusters needs to ensure that the constraints are not violated. In order to ensure starting the OMA algorithm

from an initial feasible assignment, it is possible to deploy a “Bin Packing” algorithm to place the different VMs

in different racks so as to satisfy the different constraints. Intuitively, the initial solution is feasible in terms of

the constraints but it is not optimal in terms of traffic, thus requiring the invocation of the OMA. Thereafter,

the OMA algorithm can proceed (not equi- partitioning, in this case) as normal but rather with an extra-check

operation to ensure that swapping elements do not to violate these constraints. In the worst case, where no

feasible solution is available, some over-provisioning can be allowed – which is a known paradigm in the cloud.

8 Conclusion and Future Work

The aim of this paper was to demonstrate how a Learning Automaton-based Graph Partitioning (GP) algorithm

could be used to consolidate VMs in a traffic-aware manner, and to also show how a subsequent solution to a

quadratic assignment algorithm could help in assigning the produced VM clusters to the server racks in order

to reduce the total communication cost in a data center.

The first phase of the solution involved developing a VM clustering algorithm based on Oommen’s Learning

Automata based Graph Partitioning Algorithm (GPLA). The subsequent cluster placement algorithm involved

the paradigm of simulated annealing. The two algorithms were utilized, one after the other, to partition

1,600 VMs into 16 clusters and to assign the clusters to 16 server racks. The strength of the algorithms was

demonstrated by performing rigorous experiments on three different data center networking architecture models

simulated using publicly available traffic traces from a live data center. The GPLA and SA algorithms were

tested extensively with two different data sets in order to strengthen the reliability of the results.

The analysis of the results of over 2,500 tests conducted revealed that the VM clustering algorithm decreased

the total cost of communication from 34% to 85% depending on the characteristics of the original input data.

Thereafter, the SA-based cluster placement algorithm further decreased the total cost of communication by a

total improvement of more than 98%. The analysis showed that the VM clustering algorithm was fast, resource-

effective and extremely capable of consolidating the VMs with high mutual traffic in clusters while the cluster

placement algorithm managed to find a significantly improved placement for the resulting clusters in all the

data center network topologies tested.

With regard to future work we mention that several features and functions can be developed to further

improve and expand the capabilities of the VM clustering and cluster placement algorithms. These include:

39



• Constraints: One avenue for future work could focus more on expanding the VM clustering algorithm by

developing custom constraints-handling for tenants on the cloud where VMs are not allowed to be freely

moved from one server rack to another due to various reasons. This could occur, for example, in cases

when VMs who communicate excessively with one another are the VMs who should not be hosted on same

physical servers due to strict redundancy or security requirements. One could also consider architecture

models it in which the link capacity is not the same for all the links.

• Minimizing migrations: One could also investigate how the VM clustering algorithm can be improved

by requiring the minimal number of migrations is needed for the final optimization. Such a feature would

be very important as migrating large numbers of VMs a resource-consuming task, and could be difficult

to plan and execute in a large and complex cloud environments.

• From static to dynamic optimization: Rendering the current “offline” algorithms to be dynamic (i.e.,

to work in an on-line manner) would be a fascinating avenure for future research. A dynamic version

would constantly monitor the changes in the traffic of the data center and generate suggestions, possibly

incremental, for VM migrations after reliably detecting the VM clusters.
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