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Abstract 

At Skarpnes village (Southern Norway), the houses as zero energy buildings (ZEB) are installed 

with Building Integrated Photovoltaic (BIPV) systems, and these houses are not containing smart 

control of equipments. The aim of such buildings is that the amount of electrical energy produced 

is the same as that consumed in the buildings on an annual basis. In this thesis, the main objective 

is to analyse the methods for increasing self -consumption in BIPV, by minimizing the cost of 

purchasing electricity from the grid at time with no PV production, and maximizing the utilization 

of solar PV generated power,  which reduces the power sold back to the grid. To achieve this, two 

methods for increasing self-consumption, namely demand side management (DSM) and energy 

storage using domestic hot water (DHW) tank were analyzed. Maximizing self-consumption of 

residential PV systems is profitable, because the sale cost of exported power to the grid is lower 

than that of importing power from the grid. To achieve high self- consumption, shiftable loads 

(e.g. heat pump) are controlled so that solar PV energy utilization especially at time with high solar 

irradiation can be maximized. The results show that, load shifting play an important role in 

minimizing the cost of  imported energy, for example in May, by storing the excess PV production 

through DHW tank to be used in the evening or morning the following day. By considrering some 

selected clear days in six months, this excess PV energy boosted water from 40 0 C to 90 o C, 

(corresponding to the set limits for minimum and maximum temperature) without assistance from 

the grid distribution network. Supply and demand cover factors were used to determine when the 

loads in houses are covered by PV production or not. Based on the available dataset, it has been 

found that in December 2015 and May 2016, 3.3 % and 56.7 % of demand respectively is covered 

by solar PV. Loss of load probability (LOLP) is used to analyze the time where load demand is 

not covered by PV production at desired reliability level. The results of this research are important 

in implementation of DSM techniques for economic analysis in BIPV systems. Also, the use of 

excess PV energy storage through DHW tank minimizes the energy exchange between BIPV and 

the grid. The results of this thesis will contribute further to the investigation of self- consumption 

analysis in the BIPV systems, by maximizing energy utilization in the BIPV systems.  

 

Keywords: BIPV, PV production, electric loads, self-consumption, cover factors, Load-shifting, 

heat pump, domestic hot water storage. 
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Chapter 1. INTRODUCTION  

 

This chapter gives the reader a fundamental understanding of the background and motivation for 

the thesis, problem statement, objectives of thesis and thesis outline. The key assumptions and 

limitations are also highlighted. 

1.1. Background and Motivation  

Nowadays, domestic appliances are some of the modern electrical loads without which life cannot 

be imagined. With continuous increase in electrical loads, peak power demand has caused 

undesirable effects to the reliability and stability of an electric power system during the past few 

decades. The increase in peak demands has also put the transmission and distribution network lines 

on risk of failure and outages due to excessive stress caused by overloading. Electrical energy 

cannot be stored cheaply in great quantities. Therefore, supply and demand must be balanced 

simultaneously. To ensure sustainability of power supply with grid- connected system, demand 

side management (DSM) techniques provide a variety of measures to reduce energy consumption 

from the grid and maximize the on-site energy generation, which leads to more manageable 

demand [1]. DSM is an important in smart grid with nZEB that allows consumers to make 

decisions regarding energy consumption, and helps energy users to shape the load profile and to 

reduce peak load demand [2], this also results in cost saving for building owner [3]. 

 

At Skarpnes Zero Energy Village (Skarpnes Boligfelt) outside Arendal, Skanska has built five 

‘near-zero energy buildings’(nZEB), i.e. houses that are equipped with PV systems on the roof and 

modern equipment for heating and ventilation, to enable an annual zero energy budget. These five 

houses have also been equipped with instrumentation to closely monitor the electrical energy 

production and consumption in the households, as well as other parameters related to indoor 

climate and efficient energy control. The village is the basis for several research projects, including 

“Electricity Usage in Smart Village Skarpnes” which is funded by the Research Council of Norway 

(RCN) and run by the local utility owner Agder Energi Nett in collaboration with the University 

of Agder, the research institute Teknova and the power electronics and conversion company Eltek. 

The main goal of the RCN project at Skarpnes village is to investigate the characteristics and 
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influence of power peaks of the electrical loads and how these may be mitigated to reduce the 

demands on the grid and maintain always high power quality. A sub-goal is to investigate the 

characteristics of PV production and how it influences the power exchange with the grid. It is very 

important to analyze the solar PV in grid- connected systems and its applications for an optimal 

economical and energetic operations, like Skarpnes zero energy village, where nZEB concept must 

be achieved. This is achieved with the increase in self- consumption of on-site solar PV production. 

Load shifting is widely applied as the most effective load management technique. It takes 

advantage of time independence of loads and shifts the high load energy consumption from period 

without PV production to the period with available PV production. 

Technical appliances with a high consumption of electrical energy and an independent use 

regarding time could be integrated into a DSM system with load shifting for having a good plane 

of HP demand. The customer’s acceptance is an important factor since he must agree to a shift of 

his electrical devices if there is no lack of comfort [4]. Therefore, load shift (e.g. heat pump) must 

match with customer heat demand sufficiency all times, which is accomplished with help of 

domestic heat water storage for delivering heat at the time HP is shifted at high PV production. 

1.2. Problem statement 

PV energy production depends on the periods of the year and the hours of the day. Domestic loads 

vary with time of use during the day, where during the morning and evening the power 

consumption increases with no much PV power production. High power demand of electrical loads 

like heating, ventilation and air-conditioning (HVAC) equipments is a challenge for houses owner 

due to higher cost of electrical energy, also it affects the power system of grid network due to the 

fluctuations in demand and can cause the power outage in the network. The quantity of power 

utilisation from solar PV in BIPV system can be evaluated by the amount of PV energy self-

consumed during a given period. The cost of buying electricity from the grid is higher than that of 

selling from solar PV to the grid. Thus, maximizing the PV power utilization is important in 

reduction of this cost. Thus, it is important to identify shiftable loads for increasing self-

consumption. The excess solar PV production instead of exporting it, it can be used for domestic 

hot water (DHW) tank to be used for the following day for increasing self- consumption in BIPV. 
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1.3. Goals and Objectives  

The main objectives of this thesis are to analyse the self- consumption of PV power production 

and the loads in corresponding houses with load management. Peak power demand for household 

loads affects the electricity cost due to high import power from the grid, which happens at time 

where power production from solar PV is not sufficient to cover the whole demand. The following 

objectives are highlighted during this thesis: 

❖ Evaluate average and maximum power production and consumption (time duration and 

when it occurs) for each house.  

❖ Discuss the strategies for increasing self- consumption. 

❖ Developing a load shifting model and for reducing the cost of energy from and grid. 

❖ Excess solar PV energy storage using DHW tank. 

❖ Quantify the match between PV production and electrical consumption. 

1.4. Key Assumptions and Limitations 

In Skarpnes village, two houses of different azimuthal orientation named H1 and H2 will be 

investigated with the solar PV production on their rooftops. During this thesis, there was 

consideration of electrical energy supplied to heat pump to produce heat, which in turn, supplies 

heat to the domestic hot water(DHW) storage. For demand side management, heat pump shifting 

is done for days (clear days) where solar PV is great than heat pump energy consumption. Also, 

ventilation, fan convector and circulation pump are analyzed. The system to be considered is grid- 

connected without electrical energy storage by help of batteries. 

1.5. Thesis Outline  

This thesis is organized into six chapters. In chapter one, there is an introduction to the background 

of this thesis work, the problem statement regarding the case study, goals and objectives of this 

thesis, and the limitation of the work. In chapter two, there is a theoretical background for some 

relevant topics related to solar PV production, energy consumption, demand side management by 

focusing on HP pump shifting, and heating systems. In chapter three, there is a geographical 

description of the houses H1 and H2 where data were collected. There is also presentation of the 

solar panel specification which are mounted on the rooftop of these houses. Then, the methods 

used for data collection and analysis of results are presented in this chapter. Chapter four discusses 

the important formulae to be used for cost minimization with load shifting. It shows also the 
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algorithm for load shifting of heat pump referred to the availability of solar PV production. Then, 

there is modelling of heating system with calculation of heat produced from heat pump to the 

domestic hot water tank. Chapter five shows the results of HVAC energy consumption, HP 

shifting, the cost of energy without and after HP shifting, the storage system of heat in DHW tank 

using the excess of PV energy instead of exporting it into the grid. It quantifies also the cover 

factors in H2 with HVAC equipments in six months, and cover factor with total electrical loads in 

the both H1 and H2. The last chapter six presents the conclusion regarding this thesis, and it gives 

important suggestions and remarks for future work.  
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Chapter 2. LITERATURE REVIEW 

 

In this chapter, theoretical reviews are described for more understanding of thesis objectives. Solar 

PV production and electrical loads consumption are compared for evaluating the level of self-

consumption in the house. Also, strategies for increasing self- consumption with DSM and energy 

storage with help of DHW tank are described. For analyzing matching between energy production 

and consumption, demand and supply cover factor are used.  

2.1. Theoretical background 

The energy consumption of in BIPV typically peaks in the morning and evening, and the solar PV 

production depends on the local weather and seasons with system characteristics of installed PV 

modules [5]. The utilisation of on-site renewable energy sources in BIPV systems is leading to a 

mismatch barrier between on-site renewable energy production and the household load demand. 

Power mismatching occurs when the quantity of on-site energy production differs from that of the 

energy consumption [6]. When PV production is higher during the day it can exceed power demand 

especially during summer, and it could be better to store the excess of energy produced during 

daytimes, but storage in batteries is very expensive and requires high investment cost. In case this 

storage system is not yet implemented, the excess of electricity generated is fed back to the grid 

network which compensate the use of energy during the night where there is no PV production [7]. 

The actual possible storage system   in the village   is done as thermal storage, where the domestic 

hot water (DHW) tank get heat from heat pump.  

2.1.1. Residential loads with solar PV production  

Solar photovoltaic panels (PV) installed on the roofs of domestic houses generate electricity from 

sunlight, which is important for reducing electrical power consumption from the grid [8]. The 

example is shown in Figure 1, where for an average solar home in Honolulu, 56 percent of solar 

electricity is sold back into the grid [9]. From Figure 1, there is matching between PV production 

and consumption at the point between 7 and 8 am; it happens also at the point between 17-18 hour 

in evening for the same day. For other times, there is load mismatching with buying or selling 

electrical power to or from the grid. Solar energy in Norway, especially at Skarpnes zero energy 

village, during winter when a large demand of heating equipments is required, the irradiance 

received is at its lowest value due to the Earths position relative to the Sun. A good matching of 
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PV generation to the domestic demand is important, as it decreases the exchange with the 

distribution grid and maximizes the utilization of on-site generation. General, the ability of PV to 

match peak demand increases its value. Load matching in each house is highly variable depending 

upon the power produced and power consumed. The degree of matching in individual households 

depends on activity patterns that influence the appearance of the daily load curve [10].  

 

 

Figure 1: Average annual residential load and PV production for Honolulu [9] 

Due to the load mismatch, some amount of PV electricity may be exported to the grid because the 

PV field is oversized or the electrical demand is temporarily small; the surplus would be stored or 

consumed with help of DSM by introducing a programmable load shift strategies, because the 

selling price of electricity to the grid is generally less than purchase price from the grid. Adversely, 

higher energy consumption, which does not match the available PV generation, requires to be 

supplemented by the grid electricity. The presence of the load mismatch due to the improper habits 

in using the electrical appliances can cause the occurrence of disadvantageously purchasing 

electricity from the grid and/or squandering the unexploited PV energy. If only a very small part 

of the PV generation is used to supply the household appliances, benefits will not compensate 

disbursements. When almost all PV electricity is used by the household, the economic benefits 

with self-consumption can be very convenient [11]. 

2.1.2.  Residential power management and appliance classification 

The installation of a PV plant can have a significant impact on the energy behavior of users. The 

energy management problem can be expressed as the minimization of energy cost function. Thus, 
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it is possible to monitor electrical consumptions of each appliance in the house [12]. Home 

appliances are classified into three main categories [13]: 

Non-shiftable appliances: They have fixed power requirement and operation period; the 

optimization will ensure continuous supply of power, for example Televisions or Refrigerators.  

Power-shiftable appliances: They can be operated using less power when the load is more. So, 

scheduling is done to operate them with respect to their power consumption. e.g. Bulbs, heaters. 

Time-shiftable appliances: These appliances can be switched to work at the time when load is 

less. Hence these called as time shiftable. e.g. washing machines, heat pump. 

2.2.Grid- connected system for matching production and consumption 

Grid-connected PV systems are the most popular solar electric system on the market today. A grid-

connected system consists of five main components: (1) a PV array, (2) an inverter, (3) the main 

service panel or breaker box, (4) safety disconnects and (5) meters. The PV array produces DC 

power (voltage, current), which is commonly used for many electrical appliances [14]. Figure 2 

shows a simplified PV grid connected system. There are two basic types of inverters; line-

commutated and self-commutated string [15]. SMA inverters, which are used in Skarpnes village 

are line-commutated inverters which are used to ensure a very low harmonic distortion and a power 

factor very closed to unit. 

 

Figure 2: Simplified PV grid connected system [16] 
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In a grid-connected system, if the buildings use more electricity than their solar PV feed into the 

grid during a given month, the building owners pay only for the difference between the used power 

and the produced one by help of net metering (recording in- out power flow) [17]. Electrical smart 

metering is an important parameter in grid- connected system because they used to register 

electricity consumption every hour, and automatically send information about the consumption to 

energy company, which is Agder Energi Nett for the case of Skarpnes village. The smart meter 

opens for digital and smart power management in the house. With this technology, it becomes 

possible to discover and resolve faults in the power grid faster, and this results in a more reliable 

power supply. This is the reason why, the Norwegian Water Resources and Energy Directorate 

(NVE) have decided that all electricity consumers in Norway shall have smart electricity meters 

installed by 1st of January 2019 [18]. From the grid connected system with PV- solar panels 

installed on the rooftop of building, the nearly zero energy building can be achieved with a system 

which produces an equal amount to the consumption on an annual basis [19].  

2.3. Zero energy balance system 

The Net Zero energy building, (Net ZEB) has become a prominent wording to describe the building 

energy efficient and renewable energy utilization to reach a balanced energy budget over a yearly 

cycle. The sketch shown in Figure 3 gives an overview of relevant terminology addressing the 

energy use in buildings and the connection between buildings and energy grids for achieving 

nZEB. The annual import/export balance is used in the present case. The balance is calculated 

between energy delivered or imported into the building (EIm) and the energy exported from the 

building (EEx) to the grid, as seen in equation (2.1).  

                                                          E - E= E ImExnet                                                     (2.1) 

This energy is calculated by taking the total sum over the year for all energy generated and 

consumed within the given house in the village [20]. A net zero energy balance is reached if E net 

(kWh) is close to zero, and positive net energy balance means more exported than delivered, 

commonly termed a plus house. 
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Figure 3: Connection between buildings and energy grids showing relevant terminology [20]. 

The key role of Net ZEB is based on the approach of reducing the amount of delivered energy and 

generating credits by feeding energy into grids. The Directive of the European Union Parliament 

on the energy performance of buildings requires all new buildings to be nearly zero-energy by the 

end of 2020 and after 31 December 2018, new buildings occupied and owned by public authorities 

are nearly zero-energy buildings [21].  

2.4.Self-consumption of PV electricity in residential buildings 

Self-consumption (SC) in BIPV system can be defined as the fraction of on-site renewable energy 

generated which is used to power domestic loads, rather than being exported to the grid [22]. 

Mechanisms promoting SC of PV electricity are based on the idea that PV electricity will be used 

first for local consumption and that all this electricity should not be injected into the grid [23]. The 

Figure 4 shows the size of self- consumption compared to the power injected into the grid and that 

consumed from the grid. 
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Figure 4: Comparison of production and consumption profiles (with modification) [23] 

 

Most of the power production takes place when residents are not at home. Thus, demand response 

represents the practice of managing electricity demand in a way that peak energy use is shifted to 

off-peak periods enabling higher rates of self-consumption or, more generally, the adaption of 

demand to grid issues. With electricity storage and demand response, rates of SC can be raised, 

and benefits in terms of mitigation of network costs due to the integration of PV could be achieved 

[24]. In the next years, PV systems will not be designed just to generate the amount of electricity 

as high as possible, but even to limit electricity exportation from the building to the grid and allow 

the user to achieve high degree of electricity self-consumption [25]. 

 

During this thesis, modelling of self-consumption is done in terms of the supply cover factor, while 

self-sufficiency the same as demand cover factor which are described in section 2.10. The Figure 

4 shows a schematic outline of the power profiles of on-site PV generation and power 

consumption. The areas A and B are the total net electricity demand and generation, respectively. 

Here, the overlapping part in area C is the PV power that is utilized directly within the building, 

referred as self- consumption [26]. From Figure 4, the SC can be defined using equation (2.2).   

                                                     

  
CB

C
SC


                                                                    (2.2) 
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The self- sufficiency (SS) is defined as the degree to which the on-site generation is sufficient to 

fill the energy needs of the building, and can be defined using equation (2.3) using Figure 4 data. 

 

BA

C
SS


                                                                      (2.3) 

2.5. Important factors affecting self-consumption 

When evaluating and interpreting the PV self-consumption, it is important to be aware of how a 

couple of factors affect the results: 

 

-Relative sizes of PV power generation and power demand. Self-consumption, as defined above, 

is normalized by the total power generation, and self-sufficiency by the total power demand. 

Therefore, increasing the PV generation relative to the demand will always decrease the self-

consumption while self-sufficiency will be increased or remain unchanged. 

 

-Time resolution. In many practical situations, the self-consumption of a building is determined 

from discrete data series of average power generation and demand, typically hourly values. A 

general conclusion seems to be that for individual buildings, sub-hourly data are needed, especially 

to capture the behavior of high peak powers [26]. 

 

Typically, electricity production and consumption are registered and presented on an hourly basis 

or longer. A low time resolution (large time step) may lead to an overestimation of the self-

consumption since fluctuations of the power production and power consumption are levelled by 

averaging the values [27]. The important fluctuations on short time scales (1-min or 10-min) may 

be overlooked when using data averaged over longer time intervals (1-h). In energy and building 

simulations, 1 hour is a commonly used time-step [10]. Moreover, there are many events where 

the time scale is considerably shorter, e.g. in minutes or even in seconds. One example is the power 

production of a photovoltaic (PV) system during a scattered cloudy day [28]. At Skarpnes zero 

energy village, the time resolution is accounted initially on 1-minute basis from Hidacswebview, 

and it is converted into 15-minute and 1-hour time-resolution. In this thesis, these different time 

resolutions are evaluated and compared. 
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2.6. Options for improved self-consumption 

There are two methods used for improved self-consumption, namely energy storage and load 

management. These techniques can either be used separately or combined. Load management is 

hereafter included in the broader concept of demand side management (DSM) [26]. In DSM, load 

shifting and peak clipping are modelled with objective functions subjected to specific constraints. 

2.7. Demand side management 

The scope of the DSM programs is the planning, development and implementing of programs 

whose objective is to shape actively the daily household load profiles of customers to realize or 

achieve better overall system utilization [29]. DSM defined here as actions taken to influence the 

way consumers use electricity to achieve energy savings and higher efficiency in energy use of 

residential consumers is increasingly viable with the use of highly efficient electrical appliances 

that can be remotely controlled [30]. The goal of DSM is to reduce electricity demand, and to 

increase the efficiency of the system by bringing both demand and supply to the best possible low 

value [31]. DSM has been regarded as the “Holy Grail” of efficient power generation and it can 

also be classified into the following two terminologies. 

 

•Energy efficiency (EE): programs which are designed to reduce electricity consumption 

throughout the year by focusing on reducing energy consumption and overall energy demand.  

•Demand Response (DR): It can be defined as the changes in electricity usage by end- use 

customers from their normal consumption patterns in response to changes in the price of electricity 

overtime. It is using programs which are automatic with a processing unit having the right to 

moderate or turn-off certain appliances (e.g. air-conditioners, pool pumps, washing machines, etc.) 

for a short time- period at customer sites [32].  

 

The heat pumps are included in the DSM model to plane the residual load curve because the heat 

pumps consumption is expected to be very high in comparison to the remaining domestic loads. 

The only thing the customer requires is to have his individual heat demand always covered [4]. 

The control strategies using DSM for HP are based on the facts that, heat pump could be operated 

during onsite-excess production hours to store heat in domestic hot water (DHW) tank, and 

standard controls to merely enforce heat pump switching during excess production has shown 

limitation in reaching improving self-consumption. In such controls, a contrast in profiles of the 
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two entities exists. On one side, the heat pump in such control works independent of onsite 

production and operates at full loads to meet the loads that are set by comfort control whereas on 

the other side, the onsite solar PV production has a strong variability in profile and increasing 

along the day with highest peak somewhere at mid-day [33]. 

2.7.1. Architecture and components of DSM 

DSM frameworks are designed to optimally manage the electric resources of users through a 

specific architecture. The following are the basic components of the DSM framework: 

 

•Local generators: local energy plants generate electric energy that can be either used locally or 

injected into the grid, and in this thesis, solar PV mounted on the rooftops of houses are the local 

generators. 

•Smart devices: electric appliances that are capable to monitor themselves, thus providing data, 

such as their energy consumption, and that can be remotely controlled. Those are shiftable loads 

in the house, where heat pump is selected in this thesis due to its higher variations in power 

consumption. 

•Sensors: used to monitor several data within the house, temperature and light. Power meter 

sensors can be used to monitor and control these appliances, so that appliance can be shifted. 

•Energy storage systems: are storage devices that allow the DSM system to be flexible in 

managing electric resources. 

•Smart grid domains: the distribution, operation, market, service provider and customer domains 

of the smart grid. A utility company, which is part of the market domain, supplies electric energy 

to users from whom it receives payments with respect to energy tariffs [2]. 

2.7.2. Demand side management techniques 

DSM program is a program used to control the load profile indirectly to achieve the utility 

objectives. These objectives are: 

✓ To have the load factor as close as possible to 1.0 

✓ To have the peak load within the proper margin. 
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Figure 5: Demand Side Management Techniques with load shape objectives [34] 

The load shapes which indicate the daily or seasonal electricity demands of industrial, commercial 

or residential consumers between peak and off peak times can be altered by means of six broad 

methods: peak clipping, valley filling, Load shifting, Strategic conservation, Strategic load growth 

and Flexible load shape [35] as seen in Figure 5. 

 

Load shifting: is widely applied as the most effective load management technique. It takes 

advantage of time independence of loads and Shifts the peak period loads to off-peak hours. For 

the new load shifted, the net effect is a decrease in peak demand, but no change in the total energy 

consumption [29]. The effect of a load shifting in a residential PV scenario is shown in Figure 6, 

where the red line is the PV production, green line is the original household consumption profile, 

blue line is the consumption profile after the shift. The principle of load shifting is that the power 

before load shift is the same as that after shifting. 
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Figure 6: Load shifting technique [12]. 

Basically, the power consumption is much more in the morning and evening than during the day 

where there is maximum solar PV power generation, which requires to import power from the 

grid, while in mid-day, there is excess of solar PV production to be exported to the grid, thus, 

applying DSM with load shifting is can be used to increase the self- consumption.  

Peak Clipping: This is used to decrease the demand during the peak load periods. Also, these 

loads can’t be shifted to the off- peak periods. This could be due to lack of installed capacity during 

these periods. This program could be achieved be indirectly forcing the consumers to decrease 

their loads on their supply points [29]. Generally, this method is used by utilities which don’t have 

enough power generation to meet the peak load. The main objective of peak clipping method is to 

reduce the operating costs by avoiding the use of expensive peak power plants [36]. 

 

Energy Conservation: This program is used when it is required to decrease the energy 

consumption all over the load period. It can be achieved by using high efficiency components [29]. 

Load Building: This program is used when it is required to increase the energy consumption. This 

could be very beneficial in case of surplus capacity. This is because the average cost per KWh will 

decrease [29]. 

Flexible Load Shape: is mainly related to reliability of smart grid can reduce a consumer load 

demand if needed. The customer must then produce his own electricity or use other energy sources 

to meet his demands [35]. 
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Valley Filling: In this program, the main objective is to increase the demand during the off-peak 

periods while having the same load peak. This could be achieved by encouraging the consumers 

to increase their demand [29].  

 

The first two techniques (A and B) of DSM are proposed to be applied on the residential loads in 

this thesis since, they are considered as new resources that can help the utility to meet the 

increasing in self- consumption [36]. 

2.7.3. Implementation of DSM Techniques 

Referring to [29] and [34], the scope of implementing DSM techniques are classified into two main 

categories, direct and indirect load control: 

1. Direct load control(DLC): This is a method by which the utility can modify customers load 

pattern. It can be applied by switching off the power supply on specific category of customers at 

specific time interval, or force the customers not to use a specific type of electrical load at specific 

time interval. From [37], when households allow DLC, consumer loads can be: (i) scheduled, (ii) 

interrupted, and (iii) sequenced.  

 

(i) Scheduling: Appliances can be scheduled for off-peak periods. Not only on a day to day basis, 

but also on an hourly basis.  

(ii) Interruption: During high load periods, appliances can be interrupted to reduce consumption. 

Appliances will resume when the load returns to off-peak periods, e.g. dishwashers, etc.  

(iii) Sequencing: Appliances with multiple interval usage, e.g. cooling or heating appliances, can 

be sequenced to reduce peak building and create a more continuous demand load.  

 

2. Indirect load control (ILC): it is the optimal way by which the utility can change the customers 

load pattern by using special methods such as: i) Time of use rates, ii) Thermal energy storage iii) 

Efficient tariff system, iv) Electrification technologies and v) Efficient end use technologies. For 

example, using ILC method, an electronic messaging service which alerts consumer of high loads 

and prices, or real-time electricity price displays, to persuade consumers to reduce their 

consumption by turning “off” non-essential appliances.  
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2.7.4. Demand Side Management Applications 

The main target for the end user is to reduce the amount of the electricity bill without any 

contraction with the production policy or quality of the product. While the target for the utility is 

to improve the load factor and increase the spinning reserve of the system. Load factor (L.F) is 

defined as ratio of average energy consumption over a period to peak energy consumption in that 

period [38] and the system L.F belongs between 0 and 1. The two proposed programs must achieve 

the target of the utility and end user taking into consideration the constraints imposed on both 

utility and end users [34]. Therefore, the objective function is formulated either to improve system 

performance by increasing load factor and enhance customer service quality or to control the use 

of the supply side resources subject to end user demand. The mathematical formulation of DSM 

techniques as optimization problem where the optimization problem is generally determined by 

clarifying the following questions [34], [29]: 

1. What does the model seek to determine? 

2. What are the objectives (goals) needed to be achieved to determine the best solution? 

3. What are the variables of the problem? 

4. What constraints must be imposed on variables to simulate properly actual variables? 

 

The objective function is formulated either to control the use of the supply side resources subject 

to end user demand for power and energy without loss of production or comfort, or to improve 

system performance by increasing load factor and enhance the customer service quality. Two kinds 

for the objective function are contributed, either to maximize the system load factor for the utility, 

or to minimize the total cost of the bill for the customer [29]. By reducing consumption and shifting 

loads during periods when the system is constrained results in less system losses (both production 

and transportation losses), lower system balancing costs and so increase system efficiency. 

Furthermore, DSM programs can reduce electricity prices as a shift of demand during peak periods 

could reduce the need for higher marginal cost generation power plants to operate [37]. 

2.7.5. Constraints and objective functions of the DSM optimization problem 

To make the optimization model easier to follow and understand, constraints are grouped into five 

categories, as represented in Figure 7.  There are electric devices, local energy generators (in this 

case is solar PV), energy storage systems (not yet installed in Skarpnes village), energy balancing 
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and electric energy market (price). Firstly, constraints on electric devices are introduced to model 

the electric appliances of residential customers. Specifically, three different kinds of devices are 

considered: fixed devices, whose usage cannot be modified, shiftable devices, which can only be 

shifted in time without altering their load profile, and elastic devices, which are fully adjustable, 

both in terms of usage time and instantaneous power consumption [39].  

 

 

Figure 7: Constraints and objective functions of the DSM optimization problem [39] 

Local generators and storage systems are described to constrain the net- generation of renewable 

energy sources (RES) and the charge/discharge rates and state of charge of the batteries. The 

energy balancing constraints, are defined to realistically model the interaction of consumers with 

the grid. Finally, the constraints on the electricity market are used to define the energy tariffs, 

regarding the cost of exportation and importation of energy [39]. Constraints and objective 

functions of the DSM optimization problem with load shifting are described in chapter four. 

 



P. Hategekimana                                       Strategies for Increasing Self-Consumption with BIPV 

 

19 
 

2.8. Heat pump terminologies in domestic housing for heat storage  

Heat pumps are also appropriate measures for demand side management in smart grids because 

they can convert (sustainably generated) electrical energy into thermal energy, which can be used 

in the built environment later for space heating/ cooling or hot- water storage. A heat pump 

consumption in BIPV is high and can double the electrical use of an average household in existing 

buildings [40].  

2.8.1. Heat pump components 

 

The heat pump is a complete heat pump installation for heating and hot water. Certain models have 

an integrated water heater. Using the tap water stratification technology, more effective heat 

transfer and efficient layering of the water in the water tank is achieved. The heat pump is equipped 

with control equipment, which is operated using a control panel. Heat is distributed throughout the 

house via a water-borne heating system. The heat pump supplies as much of the heat demand as 

possible before auxiliary heating is engaged and assists. The heat pump consists of five basic units 

shown in Figure 8 [41]. 

 

Figure 8: Heat pump components [41] 

1. Heat pump unit with compressor, heat exchanger, circulation pumps for brine and heating 

systems, valves and safety equipment. 
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2. Water heater 

3. Exchange valve or shunt valve that the heated water either passes through to the heating 

system or to the water heater depending on whether heating or hot water is to be produced. 

4. Auxiliary heater with an electrical heater installed on the heating system’s supply line. 

5. Control equipment [41]. 

 

Compared with a system based solely on direct electric heating, heat pump systems have typically 

an annual energy saving in the range of 50 – 80 %. Figure 9 shows a highly-simplified sketch of a 

heat pump system for heating and cooling of buildings. HP can use different heat sources, where 

ambient air, ground source and seawater are the most interesting. Ambient air is the most common 

heat source for heat pump in smaller residential buildings in Norway. For heat pump systems in 

large non-residential buildings, ground source and seawater are the most common heat sources 

[42]. 

 

 

Figure 9: Principle sketch of a simple heat pump, source/sink and heating/ cooling system [42]. 

During this thesis based on the data available at Skarpnes, the ground heat pump is used to deliver 

building heating and domestic hot water.  Refer to [43], to increase the self-consumption of 

buildings, there must have certain flexibility regarding to energy demand. Such flexibility must 

consider thermal comfort. Measurement data gained from a small, well-insulated multi-family 

dwelling shows that, the self-consumption of electricity generated on site by (PV) was 
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approximately 28 % between September 2011 and April 2012 during daytime hours from 10 am 

to 4 pm each day. During the remaining hours of the day, approximately 27 % of the overall 

electricity consumption could be attributed to the heat pump. Therefore, the most promising 

regarding shifting loads into daytime hours can be used for increasing self-consumption. 

Therefore, the run-time of the heat pump was constrained to 10 am through 7 pm starting February 

2013. This resulted in a shift of approximately 1MWh from night-time to daytime hours. The 

overall self-consumption was thus increased from 21 % (winter 2011/2012) to 34 % (winter 

2013/2014). Modelling, diagram with more explanation are developed in chapter four and the 

resulting values compared to this case are found in chapter five.  

 

At Skarpnes, the ground source heat pumps will be drilled for each single-detached dwelling. The 

apartments will share pumps. The ground source heat pumps will have a constant temperature 

throughout the year (7-8 degrees Celsius) and will be used for both heating of building and water 

as well as for cooling the building during the hot season [44]. 

2.8.2. Working principle of heat pump 

A heat pump is a device in which a refrigerant is circulated that undergoes phase transitions; from 

liquid to gas (evaporation) and from gaseous to liquid (condensation) [40]. External energy (most 

of the time electrical) is therefore needed as input for the compression [45]. A heat pump generates 

sustainable heat with the help of electrical energy, thus, the advantages and disadvantages of heat 

pump can be found in [46] and [47]. The heat generated from heat pump (heat supply) is delivered 

to the domestic hot water (DHW) tank, which in turns, supply hot water to the building. The 

smaller the temperature difference between source and delivery system (the so-called ‘temperature 

lift’ of the heat pump), the higher the yield coefficient of performance (COP), of the heat pump 

[40]. The COP is defined as the ratio of the useful heat over the work input. A classic electric 

heater has a ratio of 1 [45].  

 

Nowadays, Norway is one of the few countries where electricity is the main heating source. The 

main heating source for about 73 % of the households is based on electricity, either by electric 

space heaters (48 %), electric floor heating (7%), air-air heat pumps (21 %) or central heating with 

electricity [47], and refer to one case in Netherlands, it is expected that solar PV can supplement 

about 35% of the annual electric consumption of the heat pump [40]. The study of heat pump 
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system is helpful in domestic load analysis at Skarpnes. The type of HP installed at Skarpnes 

village of “IVT Premium Line® HQ “model is shown in Appendix- A. 

2.8.3. Daily profile of heat pump electricity demand 

Referring to [48], four periods of 14 days each were studied in detail with respect to daily patterns 

of consumption. The 4 periods were distributed over different seasons during 2010 (March 18th – 

31st, July 11th – 24th, October 10th – 23rd, December 1st – 14th. Figure 10 gives the daily average 

demand of the heat pumps expressed in half-hourly intervals. In all four seasons two maxima can 

clearly be seen, at around midnight and around 8-9 a.m.  

 

 

Figure 10: Daily profile of heat pump electricity demand by seasons for a given case [48] 

The shape of the daily profile shown in Figure 10 is essentially driven by two factors, the external 

ambient temperature and the times when heating of DHW tank takes place. Heat pump 

manufacturers and installers generally recommend that space heating should operate continuously, 

with a control mechanism that seeks to maintain a constant room temperature by varying the 

temperature of the circulating water in the radiator system so that the heat transfer from the 

radiators to the rooms matches the losses to the external environment. This leads to an electrical 

load proportional to the difference between room and external ambient temperatures [48]. From  

Figure 10, daily profile of heat pump electricity demand varies depending up on the seasons, where 

power demand increases from July to December. During this thesis, the circulation pump is 

maintained in action continuously, whereas heat pump necessary to supply DHW tank is 

controlled, depending up on the availability of solar PV energy production. 
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The domestic hot water utilization is between 17 and 39% of household energy demand; 

consequently, domestic hot water tanks represent a potentially significant source of energy storage 

to accommodate the large and intermittent demands of instantaneous power that occur throughout 

the day in a typical dwelling. The transition towards renewable energy sources has led to an 

increased focus on the potential application of demand side management strategies for electric 

domestic hot water systems [49]. 

2.8.4. Domestic hot water storage tank  

PV electricity can be stored as heat to be used for domestic needs, for example a water tank to be 

used when the heat demand is high. The thermally stratified tanks are characterized by gradually 

stratified layers of water volumes at different temperatures, designed to minimize the mixing of 

the volumes. When water is used as the storage medium, it naturally becomes stratified because of 

its higher density at lower temperatures: the cold water remains at the bottom, the hot water moves 

to the top, and the intermediate region is called the thermocline as shown in Figure 11 [50]. When 

observing the temperature distribution as function of height (x) in a real tank, one concept used to 

characterize the level of stratification within a storage is to quantify the temperature gradient 

(dT/dx) and thickness of the thermocline (intermediate region) that separates the hot and cold 

regions within the storage [51]. The water’s thermal stratification is affected by several aspects, 

such as the size and shape of the tank (the ratio of its height to its diameter), the location and 

geometry of the inlets and outlets, and the temperatures and flow rates during charging and 

discharging [50].  
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Figure 11: Different levels of stratification in a storage tank with equivalent stored energy [51] 

For different levels of stratification within a storage tank, the three storage tanks containing 

equivalent energy are illustrated in Figure 11 . In Figure 11 (a) the temperature gradient between 

the hot and cold regions of the storage is observed to be large and the thickness of the thermocline 

small. In Figure 11 (b) the temperature gradient is smaller and the thickness of the thermocline is 

larger than the storage shown in Figure 11 (a). In effect, the storage shown in Figure 11 (a) is more 

highly stratified than the storage shown in Figure 11(b). Finally, in Figure 11 (c), the storage is at 

a uniform temperature and is observed to be unstratified. 

DHW should be delivered without increased risk for bacterial growth. The highest risk of 

Legionella proliferation is in temperature range 35-45°C, i.e. exactly the temperatures of DHW 

used for tapping [52]. Usually, there is no growth above 55°C, and a temperature of over 60°C has 

a bactericidal effect [53]. The maximum temperature is 90 °C, and this is also precaution measures 

for the case study of Skarpnes, where the domestic hot water tank is heated once a week to prevent 

Legionella. 

 

The heat capacity of a water tank containing 90 o C hot water at an ambient temperature of 21 o C 

is 87.2 Wh/kg as compared to electricity storage densities for Li-ion batteries of 140 Wh/kg. 

Comparing to electricity storage batteries, hot water tanks provide a cheaper means of energy 

storage [54]. The stratification in the storage tank mainly depends on how the energy is added to 

and extracted from the storage. This includes the value of the inlet and outlet flow rates and their 

temperatures and positions [50].  

2.8.5. Domestic hot water components and application 

A domestic hot water tank is made up of the following main components:  

• An insulated cylindrical hot water storage tank usually is made of stainless steel.  

• An electric heating element located at the bottom of the tank.  

• A cold-water inlet and a hot water outlet.  

• A tempering valve that regulates the water temperature at the usage outlets.  
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Figure 12: Simplified block diagram of DHW for showering [55] 

During a shower, the cold water at mains pressure flows into the bottom part of the storage tank, 

while hot water flows through the outlet at the top of the tank and enters the tempering valve. The 

tempering valve regulates the water temperature at its outlet to a preset value by mixing the right 

amount of hot (from hot water storage tank) and cold water (from mains supply). A thermostatic 

element immersed in the mixed water contracts or expands to move a piston that regulates the flow 

of hot and cold water entering the valve [55]. 

2.9.Electrical energy storage system for self- consumption improvement 

Another option for increasing self- consumption is introducing small storage units as buffers 

between the PV system and the distribution grid. When the PV system overproduces power, the 

battery stores energy up to the battery capacity. Figure 13 shows grid- connected solar PV systems 

with battery storage. At net demand, the battery unloads energy with a good efficiency [56]. 

 

Figure 13: Grid connected solar PV systems with battery storage [57] 
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Today, the cost of a battery storage system is high, which is one important drawback [58]. There 

are a few different battery technologies available on the market suitable for residential electricity 

storage, for example lead-acid, lithium-ion (Li-ion), Sodium-Sulphur (NaS), Nickel–cadmium 

(NiCd) and Nickel metal hydride (NiMH). From these batteries, lead-acid is the most mature 

storage technique but lithium-ion batteries have the greatest potential for future development and 

optimization due to high storage efficiency as well as high energy density [26].  

 

In this thesis, the li-ion battery is recommended for future study in electrical storage system 

because of its advantages in the combination of performance capability, safety, lifespan and costs 

over other types of batteries, and Table 1 shows the comparison of characteristics between Lead 

acid and Lithium ion battery types. Compared with other types of battery used in battery storage 

for PV systems, the charge and discharge curve of li-ion battery is nearly flat, and this means less 

voltage variation will appear in the system [8]. 

 

Table 1: Characteristics of Lead acid and Lithium ion battery types [59] 

 

 

The electricity demand of households has been growing rapidly for the last decades [31]. This 

requires the large distribution network for electric supply, which results in an increase in 

infrastructure cost, and the important strategy to manage loads in BIPV with grid- connected 

system is to shift the power demands (not covered by the solar PV power) to the time with higher 
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PV generation (clear day time). In terms of energy saving with help of batteries, peak generated 

energy can be used later to cover the load demand when there is no solar PV generation [31]. 

Figure 14 shows the demand energy from the grid with battery saving for load and PV matching 

where the excess solar PV generated is stored in batteries. 

 

Figure 14: Energy demand from the grid with battery saving for load and PV matching [31] 

When using energy storage, it is important not to count losses related to it as self-consumption. 

Since management of energy storage, i.e. charging, storing energy and discharging, always leads 

to losses, it is more efficient to use the generated PV electricity instantly if possible, instead of 

storing it for later use. This aspect is important to be considered, since energy storage is likely to 

be used as method of increasing the self-consumption in future building development [60]. The 

management of energy storage systems (ESSs) in BIPV requires an electrical setup which 

comprises smart meters, smart sockets, for realizing the load-shift of different appliances, and a 

main controller to realize load management [61]. Considering the single PV/ESS (energy storage 

systems) and the demand of the house where it is connected the control works as follows: 

 

•the ESS is charged when there is power surplus between the PV production and the demand; 

•the ESS is discharged when the demand exceeds the generation; 

•otherwise, the ESS is in idle mode. Each customer controls independently its PV/ESS [62]. 

 

Therefore, with storage system the solar PV self-consumption is increased, thereby purchase of 

electricity can be avoided and the energy costs are decreased. 
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2.10. Load matching indicators 

The load matching indicators describe the degree of matching of on-site energy generation to local 

energy demand, and thus they can also indicate the building expected interaction with the energy 

infrastructure, i.e. the amount of imported and exported energy [63]. These indicators show the 

capacity of solar PV power plant to cover or not the household loads and the building-grid 

exchange variation for a specified time within a given period.  

2.10.1. Demand and supply cover factor 

Cover factor (electrical cover factor) is defined to quantify the mismatch or non-simultaneity 

between local demand and production of a certain energy flow. It identifies the ratio to which the 

local supply is covered by local demand (or self-consumption) and vice versa (or self-generation) 

[64]. Within this context, the demand cover factors γD (or load cover factor) and supply cover 

factor γS provide information about demand and supply between building and the grid. Referring 

to the Figure 15, the net energy consumption is the difference between PV production, and 

electrical energy from the grid.  Therefore, γD is defined as ‘the ratio to which the energy of the 

load is covered by the BIPV supply’, and γS is defined as ‘the ratio to which the BIPV supply is 

covered by the energy demand’ respectively [5]. During this thesis, the storage and system losses 

are ignored in calculation of cover factors and the parameters to be considered are mentioned in 

Figure 15, which are considered as those for houses H1 and H2 in the Skarpnes case study. Also, 

this figure gives an overview of the energy flows and terminologies used in this case study. From 

this figure, PS is the BIPV supply power i.e. here from the photovoltaic system to the loads and PD 

the power demand by domestic loads. 
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Figure 15: Schematic view of the electrical energy flows with BIPV system. 

The principle of energy balance suggests that the sum of energy supplied by solar PV (Ps) with 

that imported from the grid(PIm) should be equal the sum of energy consumed by the loads(Pd) and 

that exported (PEx) to the grid as shown in equation (2.7) in terms of energy. 

 

                                                EXLdPV EEEE  Im                                                (2.7) 

The cover factors for a period [t1, t2] are defined in equation (2.8) and equation (2.9). However, 

these two equations do not yet include the possible storage (either electrical or thermal energy) 

systems of locally solar PV produced electricity, and the system losses are not considered. 
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The term min {PS, Pd} represents the part of the power demand covered by the supply power or 

the part of the supply power covered by the power demand [5]. The γD, represents the percentage 

of electricity consumption covered by on-site generation, and [65].  
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2.10.2. Loss of Load Probability 

Loss of load occurs when the system load exceeds the generating capacity available for use and is 

used to analyze the generation and demand system reliability. Loss of Load Probability (LOLP) is 

a projected value of how much time, in the long run, the load on a power system is expected to be 

greater than the capacity of the available generating resources. It can be further explained as, for 

the BIPV, the probability of the system load exceeding the available on-site generating capacity 

[66], and thus, how often energy must be supplied from the grid [63]. The LOLP can be calculated 

using equation (2.10) [63]. The LOLP can be also defined in terms of import and export by 

considering the net difference between the energy imported from the grid to that exported to the 

grid during a given period. 

T

Time
LOLP PsPd                                                 (2.10) 

where; T: Time resolution for a given period;  
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Chapter 3. DATA COLLECTION AND METHODS 

 

In this chapter, the Skarpnes zero energy village is described with its geographical orientation and 

system details. The specifications of the solar PV panels mounted on the rooftops of houses are 

shown. The methodology used to collect data and to analyze results are presented. 

3.1. Description of Skarpnes Zero Energy Village 

The Smart Village Skarpnes (58.43°N, 8.72°E) is located close to the city of Arendal in south of 

Norway. The Skarpnes buildings lie on a sunny hill on the west side of Nidelva in Arendal and 

was at the time of installation the largest zero net energy housing project in the Nordic countries, 

developed by the building contractor- Skanska [44]. Five buildings in this village have solar panels 

on the roof, which provide electricity to these buildings.  In addition, five of the houses are built 

as nZEB with BIPV systems on the roof, where all technical solutions have been carefully designed 

to minimize the annual energy consumption [67]. 

During this study, only two houses H1 and H2, where one is oriented towards South-Est and other 

is oriented towards South- West are to be taken into consideration. Figure 16 shows the orientation 

of houses in Skarpnes village while  Figure 17 shows one of the houses with solar PV on the 

rooftop.  

 

Figure 16: The orientation of house in Skarpnes village  
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Figure 17: View of a typical house in Skarpnes, with solar PV on the rooftop 

The tilt angle of the BIPV solar panels is 320 .H2 is oriented towards the South-East while H1 is 

oriented towards South -West .  As these BIPV systems are fixed with different orientations, they 

receive peak solar irradiation at slightly different times, means that, PV power production occurs 

differently between these two houses. During this work, the heat pump as electrical load is supplied 

by electricity from either solar PV or grid distribution network depending upon the season of the 

year and hours of a day. Figure 18 shows the main components of heating system with HP, which 

will be useful in modelling of hot water temperature from domestic hot water tank. In this figure, 

the source of cold water is not shown for modelling simplification. The houses at Skarpnes is using 

ground source (brine- to-water) heat pump system, which harnesses natural heat or ground heat 

source (QGHS) from underground by pumping brine through it. The HP is receiving electrical 

energy (Pel) from PV system during high irradiation (clear day) or from the grid distribution 

network. This HP increases the QGHS into QHP, which is then applied to the domestic hot water 

storage tank (Qst of DHW) for delivering hot water to be used for example in shower. This QHP is 

also supplied to building heating storage (Qst of BH) to deliver heat (QBH) for building heating 

with help of heat exchanger. 
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Figure 18: Heating system in the residential heating system  

By linking the thermal and electrical networks of a house, heat pumps in combination with thermal 

storage offer significant advantages over costlier and more complex electrical storage methods 

(like batteries) [68]. 

3.2. Specifications of PV system for each building and data for heating system 

The solar panels used at Skarpnes were provided by SunPower 230(E18). Utilizing 72 all back-

contact solar cells, the SunPower 230 delivers a total panel conversion efficiency of 18.5%. Figure 

19 (left) shows the comparison of solar panel efficiency used in Skarpnes village is compared with 

other types of panels. 
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Figure 19: SunPower’s efficiency (left) and I-V characteristics (right) of PV module at Skarpnes [69] 

Specifications of PV system for each building are as the following: 

  

❖ PV system has been built with 32 panels with single inverter.  

❖ PV panel model: Sunpower E18/230 Solar Panel, model SOLRIF-SPR-230NE-BLK-D  

❖ Total PV area per house: 32 x 1.244 m2 = 39.8 m2  

❖ Total installed PV power per house: 32 x 230 wp = 7360 wp  

❖ PV roof tilt angle: 32 degrees  

❖ Inverter type: SMA Tripower 7000TL20  

 

Figure 19 (right) shows the I-V characteristics of the solar panel module used at Skarpnes. The 

panel’s voltage-temperature coefficient and low-light performance are listed as attributes that 

provide high energy yield per peak power watt [69]. The electrical characteristics of the SunPower 

solar panel used at Skarpnes zero energy village is found in Appendix- A, Table A. Technical data 

for heating system with heat pump can found in Appendix- B in Figure B. 

3.3. Research methods and data analysis  

During this thesis, data are collected in Skarpnes zero energy village for two houses named H1 

and H2, including household load profiles with PV production. The data to be analyzed are from 

Hidacswebview SQL server database, taken from ABB electrical power meters (instruments 

counting in and out flow of energy) and an SMA inverter. The data are available in 1-minute 

resolution, and are converted into 15- minutes and 1-hour time resolution for further analysis. 

Then, results are simulated and analysed using excel spreadsheets and MATLAB, and the choice 
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of datasets is based on available data, which are limited to six months for H2 and three months for 

H1. For daily load and PV analysis, six clear days (4th December, 1stJanuary 2016, 3rd February 

2016, 25th March 2016, 1st April 2016 and 25th May) in the house (H2) are considered.  

The loads in the houses are identified as shiftable (i.e. heat pump) and no shiftable loads. The 

MATLAB code developed is used in load shifting methods, which is used to minimize the use of 

power from the grid by increasing the self- consumption from solar PV generation. Due to the 

variation in electrical load demand with respect to time solar PV production, DSM is used to shift 

some specific loads at the time with higher PV production for reducing demand from the grid. It 

is economical to maximize the use of PV produced on- site because the selling cost of energy from 

the BIPV to the grid in Norway (CP =0.3 NOK/kWh taken as average) [70] is less than the 

purchasing cost of energy from the grid to the house (CN = 0.8 NOK/kWh taken as average) [47]. 

This shows that by using the self-produced PV power, which is done by increasing self- 

consumption, there will be a profit. 

In this thesis, the potential applications of heat pump in households connected to a thermal storage 

are analyzed as they hold a high impact on the overall energy system. The optimal operation and 

how the storage sizing influences the temperature system performance in DHW tank are 

investigated, whereby increasing the size of the tank, the time required to heat water up to the 

maximum allowable temperature is increased. Modelling of DHW and BHW tank, which get heat 

from HP, are used to store the excess PV energy instead of sending it back to the grid. This excess 

PV energy is assumed in this work to heat water tank from lower temperature limit of 40 0 C to an 

upper temperature limit of 90 0 C, which is used for domestic hot water heating and for building 

heating. The time to heat this water is determined for the selected volumes of storage tanks. The 

analysis of the matching energy production and consumption in this work is done with help of 

demand and supply cover factors and loss of load probability (LOLP). 

3.4.PV production with domestic loads 

During this thesis, two types of loads are considered separately; HVAC (where heat pump is used 

for shiftable loads) and total electrical loads.  Figure 20 and Figure 22 show the total solar PV power 

production and the total HVAC loads respectively during the month of May 2016 for both H1 and 

H2.  Thus, it is important to analyze the self-consumed energy in different time-resolutions, and 

apply the control strategies for increasing the self- consumption with PV in corresponding houses.  
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Figure 20: Total PV production, H2, May 2016 

 

Figure 21: Total PV production, H1, May 2016 

 

Figure 22: Total HVAC power consumption, H2, May 2016 
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Figure 23: Total HVAC power consumption, H1, May 2016 

For the house H2 in May 2016, the total PV production is 1077.41 kW, while the total HVAC 

consumption is 294.18 kW, which implies that only 27.3 % of PV production is consumed by the 

loads, while 72.7 % of production is exported to the grid. For the house H1, as shown in Figure 21 

and Figure 23, 38.8% of PV production is consumed by the HVAC loads, while 62.2 % of 

production is exported to the grid. During May for both houses, more energy is export to the grid. 

To increase the self- consumption in BIPV system, this excess energy can be stored either 

electrically by help of batteries or thermally by help of domestic hot water (DHW) storage tank. 

Likewise, load shifting with HP can be used to increase the self-consumption in BIPV. Therefore, 

the results about strategies to increase self-consumption are developed in chapter five. 
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Chapter 4. MODELLING AND OPTIMIZATION METHODS 

 

The goal of optimization is to find the values of a model's variables that generate the best value 

for the objective function, subject to any limiting conditions(constraints) to the variables [29]. The 

objective is a function which is required to be minimized while meeting the constraints [3]. 

Appling DSM at Skarpnes village, the objective function is to minimize the cost of selling power 

to the grid, by increasing self-consumption with reduction in the high load demand. With higher 

demand or supply in comparison to other, it results in more import or export to or from the grid 

(higher exchange with the grid). In this chapter, the circuit diagram of heating system in the house 

is illustrated. Therefore, modelling of the heat flow from HP to hot water storage is done for 

determining the hot temperature in both domestic hot water tank and in building hot water tank. 

4.1.Minimization of the Residential Electricity cost 

Let the variable C, be defined to represent the cost of electricity for a given period (week, month 

or year). In this method, the cost to be minimized is the difference between the cost of imported 

energy and the profit of exported energy as shown in equation (4.1). The cost of import energy 

(CImp) exists at time the power demand is greater than PV production, while the cost of export 

(CExp) happens when PV power production is greater than power demand during the time of a day. 

Objective function 

)( Im Expp CCMinMinC                                                                             (4.1) 
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where; 

CImp: is the cost of imported energy from grid, (NOK) 

CExp: is the total profit of selling electricity to the grid, (NOK) 

PL (j): is power consumed by load in time interval j, (kW) 

PPV (j): is the solar PV power produced in time interval j, (kW)   
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CN: is the normal cost of buying electricity from the grid to the house 

CP: is the profit or selling cost electricity from PV to the grid 

t (j): Time resolution conversion  

Constraints 

Refer to equation (4.1), this optimization reduces the domestic electricity bill, and the shiftable 

devices should operate at average low cost. Hence, in optimizing the appliance schedule plan, the 

time with solar PV energy greater than load energy is considered. The optimization problem is 

then formulated by adding equation (4.1) with the inequality and equality constraints on the load 

consumption as in equation (4.4) and (4.5) [3]. 

 

                     Inequality constraint:                      
 


N

j

N

j

jMjT EE
1 1

)()(                                        (4.4)   

Equality constraint:                          )()( iOldiNew EE                                          (4.5) 

where; 

ET (j): is the total energy consumption in time interval j expressed in kWh; 

EM(j): is the maximum energy consumed in time interval j expressed in kWh   

E New(i): is the energy consumed for load (i) after shifting 

E Old(i): is the energy consumed for load (i) before load shifting 

In this work, the energy consumption to be considered is for HP which is considered as shiftable 

load. The equality constraint clarifies that the energy consumption before load shifting is the same 

as that after shifting and the only change is the time at which energy is used. 

4.2. DSM with load shifting algorithm for import and export analysis 

This work is developing an algorithm for managing the energy consumption of home appliances 

regarding to the solar PV production. The focus of this work is to control selected load or appliance 

for maintaining its power consumption below or equal to that of PV production during the daytime.  
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The algorithm for DMS with load shifting is shown in Figure 24. The HVAC loads in this algorithm 

are heat pump(HP), circulation pump(CP), ventilation(Ventil) and fan convector(FC), and the 

demand for these loads is to be compared with power supply (P Supply) from solar PV. 

Start

Match results of 
Demand and 

supply

        Yes

No

CP HP FC Ventil Solar PV

P Demand P Supply

Is P demand 
matching 

with P supply?

Apply DSM with 
Load shift

End 

 

 

Figure 24: DSM with load shifting algorithm 
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 Figure 25: Load shifting algorithm for minimizing import and export power to or from grid 
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The detailed algorithm for load shifting is shown in Figure 25. The algorithm starts by checking 

the properties of load demand profiles, whether is shiftable or not (here the shiftable load is heat 

pump). Then, it comes to know if the load profile during the day can be covered by corresponding 

solar PV production or not. In this shifting, the principle point is to shift the load at time with PV 

production greater than the heat pump demand (PPV>PHP), and check the resultant reduction in cost 

of purchasing power (cost of import power) from the grid (CImp), and cost of selling power (profit 

of export power) to the grid (CExp). 

4.3. Maximizing the overall system load factor 

 The load factor(LF) is explained in section 2.7.4. With a perfect (ideal) load management, the 

value of LF becomes 1, means that there is no variation in power consumption, thus, the average 

consumption is the same as the its maximum for the whole period. So, equation (4.6) is used to 

calculate the average consumption(PAv), while equation (4.7) is used for maximizing system L.F.                               
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4.4. Modelling of heat flow in the building with heat pump and DHW tank 

In this system, the heat pump supplies heat to the domestic heat storage (DHW) tank for domestic 

hot water demand (shower), and building heating storage (BHW) tank for space (building) heating. 

This HP is consuming electrical energy from either grid system or solar PV depending upon the 

availability of solar PV power, and on this diagram, the electrical supply to the HP is not shown. 

In case this HP is not providing sufficient heat demand to the system, an electric heating element 

(extra) is used to boost the heat from HP to meet the heat requirement. Figure 26 illustrates the 

circuit diagram of two hot water storage tanks, heat pump and heating system used in the buildings. 

The domestic hot water storage (DHW) at Skarpnes is specifically designed to force the effect of 

difference in mass between cold and hot water to prepare a hot area on upper part of the tank. The 

origin of this diagram can found in Appendix- B in Figure A with heating system for domestic hot 

water tank and building heating. For DHW tank, this hot area is used to provide the domestic hot 

water to be used for showering, while that for BHW tank is used for building heating. The actual 
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DHW tank is having the capacity of 185 litres, while BHW tank is 40 litres, both to be heated by 

heat pump. The cold water supplied to the DHW tank is from the district drinking water which is 

operating as open system. 
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Figure 26: Circuit diagram of hot water storage tanks, heat pump and heating system in the house 

Heat exchangers (H.E) in this figure are used to facilitate the exchange of heat between two 

fluids (hot and cold) that are at different temperature while keeping them from mixing with 

each other. The hours required to heat water in tank at maximum temperature of 90 o C have been 

determined with four types of tank volume as models and the actual volume of tank used at 

Skarpnes village, with minimum temperature of 40 o C. This will show that, as the volume for the 

DHW tank increases, the time required to get water in tank heated at 90 o C increases also as shown 

in chapter five. The stored energy is depending on the domestic hot water needed in house and 

space heating demand and this is achieved through the nominal power of the compressor electrical 
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power demand. Refer to Figure 18 and use the parameters for heating system, the coefficient of 

performance(COP) of HP is calculated using equation (4.8).   

Ele

HP

P

Q
COP        and                  QHP=COP*PEle                               (4.8) 

 

      where;        PEle = QHP – Q GHS                                                                                                               (4.9) 

 

                    PEle = Electrical energy from either grid or PV 

                    Q GHS = heat extracted from the ground 

 

The COP for the HP is measured as 2.2 based on the analysis after the first year of operation [71]. 

Heat storage modelling is done by considering the heat from HP supplied to hot water storages for 

both shower and building heating. During modelling and simulation, the heat storage is assumed 

as lossless. Also, the heat loss in pipe from HP to hot water storage is not considered. Thus, thermal 

energy storage (QST) can be used to help balance between heat generated by HP and heat demand 

for domestic hot water, QST (DHW) and for building heating, QST (BH) as shown in equation (4.10).                          

QHP = QST (DHW) + QST (BH)                                                                                                                  (4.10) 

 

Therefore, for simplification, in one case, the heat transfer from the HP is assumed to be the same 

as that for DHW storage tank, while for other case, the heat transfer from the heat pump (Q HP) is 

considered as equal to that for building heating. Thus, the heat transfer rate for hot water used in 

shower (QBH) and that for building heating (QDHW)can be calculated using equation (4.11), and 

(4.12) respectively.   

 

QDHW = ṁDHW * Cp * ΔT                                                             (4.11) 

 

QBH = ṁBH * Cp *ΔT                                                                   (4.12)                            

where;               

              Cp: is heat capacity, (kJ/kg oC) 

             ṁ: is the mass flow to the DHW tank or to BH tank, (kg/s)  
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             ΔT: is the temperature difference (Thot- Tcold), (
oC) 

             Q: Heat transfer rate, (kW) 
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Chapter 5. RESULTS AND DISCUSSIONS 

 

In this chapter, shiftable (heat pump) and non- shiftable (ventilation, circulation pump and fan 

convector) loads are identified and analysed. For shiftable loads, heat pump has been selected 

because it is one kind of controllable load. Thus, the heat pump demand can be shifted with 

higher flexibility compared to other HVAC loads. Then, the profit of exporting energy to the 

grid and the cost of importing energy from the grid during six months in house (H2) are 

analysed for better understanding the benefit of load shifting. Also with help of energy storage, 

excess PV were used for heating water up to 90 oC in domestic hot water tank. It is also 

important to evaluate demand and supply cover factor before and after load shifting for 

selected clear days in 6-months for H2. The loss of load probability (LOLP) was also discussed 

in this chapter. 

5.1. Analysis of HVAC loads and solar PV energy 

Table 2 shows the values for solar PV energy with specified HVAC electrical loads, heat 

pump(HP), ventilation, circulation pump(CP) and fan convector (FC) in House H2 during the 

period of 6 months recorded using 1- resolution. 

Table 2: Total HVAC loads with PV from Dec 2015 to May 2016, H2 

Month 
PV 

(kWh) 

HP 

(kWh) 

Ventilation 

(kWh) 

CP 

(kWh) 

FC 

(kWh) 

Total HVAC 

loads 

Net 

Import 

Net 

Export 

Dec-15 76.38 286.02 109.00 30.81 7.87 433.71 357.32 - 

Jan-16 35.56 296.67 86.75 25.72 7.22 416.36 380.81 - 

Feb-16 417.47 419.14 62.58 34.30 7.39 523.41 105.94 - 

Mar-16 538.32 374.68 62.08 34.68 6.78 478.22 - 60.10 

Apr-16 841.93 284.38 35.28 30.17 4.47 354.31 - 487.63 

May-16 2174.15 460.12 98.77 48.85 5.10 612.83 - 1561.32 

 

Considering data from Table 2, this shows that, the solar PV is not enough to cover the energy 

required for HVAC loads in this house from Dec 2015 to February 2016, while total household 

loads from March to May are covered by solar PV. 
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The HP is requiring more energy than the sum of other non- shiftable loads, which means that, 

optimization could be considered to stabilize and match energy system especially for shiftable 

load. Shifting the peak period for HP power consumption to off-peak hours, by considering the 

time from PV production off-peak hours of the day to peak production hours for maximizing the 

cost savings because the cost of purchasing electricity from the grid is greater than that of selling 

the excess electricity back to the grid. 

Referring to table B in Appendix- A, the peak energy for HP (31.5 Wh) and ventilation (30.7 Wh) 

is high compared to circulation pump and fan convector (1.6 Wh and 2.0 Wh respectively). The 

time at which the peak demand occurs are found in table B in Appendix- A. As expected, table B 

show that, most of household loads peak in the morning and evening, while peak solar PV occurs 

in mid-day, and this difference in peak requires energy exchange between the solar PV on the roof 

of building and the grid energy, to satisfy the load demand. By comparing HP with ventilation in 

January 2016, the peak and average energy consumption of HP is more than three times compared 

to that of ventilation.  

 

Figure 27: Energy import and export, and associated cost of import(purchase) and export(sale), for 6- 

months in H2 

Figure 27 shows the change in import and export energy with corresponding cost for H2 over a 

period of six months. From December to May, the energy exported increases and profit increases, 
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while and the energy imported decreases with decrease in imported energy cost. Thus, much 

interest is to maximize the use of solar PV generated than selling it to the grid. Table D from 

Appendix -A shows the corresponding values in each month. 

5.2. Heat pump consumption with solar PV production 

For maximizing the on- site PV energy utilization with HP, the peak demands are shifted to low 

demand, considering especially the time with high local PV production during the day [40], and 

this will increase the self- consumption. From this Figure 28, by considering the month of May 

with 1- minute resolution, the maximum PV production is 7.2 kW, while that for the HP power 

consumption is 1.9 kW. For this month of May, if HP demand is only supplied by solar PV, it can 

use 21.2 % of total PV production and other 78.8% of PV production is exported to the grid or can 

be used by other loads in the house as well. In this month, there is more power exported to the 

grid, and to maximize the utilization of this energy, HP demand must be shifted to the time with 

low demand corresponding to high PV production. 

 

Figure 28: Power consumption of solar PV and heat pump, H2, May 2016 

Refer to Figure 29, this day in May has PV generation of 3011.5 kW with HP demand of 485.2 

kW, which means that the HP is consuming 16.1% of solar PV production. Without load shifting, 

there is a grid- BIPV power exchange and the HP requires 190.4 kW from the grid during the 

period without enough PV production, while solar PV export 2716.7 kW to the grid during the day 
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with high irradiance. The maximum solar PV production is 6.4 kW, while that for HP consumption 

is 1.9kW. 

 

Figure 29: Solar PV, import and export power without load (HP) shifting, H2, 4-May16 

 

Figure 30: Solar PV, import and export power without load (HP) shifting, H2, 9-Dec-15 

Figure 30 shows the solar PV, HP, import and export power without HP shifting for one clear day in 

December. Here, the total demand is not covered by the solar PV but from 11:15 to 16:15 the BIPV is 
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exporting a net power of 25.9 kW to the grid, whereby importing a net power of 30.6 kW during a time 

with not enough solar PV. With load shifting, it is economical to decrease this grid- BIPV power exchange.  

5.3.Analysis of non- shiftable loads 

In this thesis, non- shiftable loads (Ventil, CP, FC) have lower power consumption compared to 

the heat pump. From Figure 31 (H2, May) and Figure 32 (H2, December), ventilation shows higher 

variations in power consumption compared to CP and FC. The average power of ventilation (0.147 

kw) is more than ten times that of fan convector (0.011 kw), while that of circulation is 0.041kw. 

 

 

Figure 31: Power consumption of non -shiftable HVAC loads, May2016, H2 
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Figure 32: Power consumption of non -shiftable HVAC loads, Dec 2015, H2 

 

Figure 33: Power consumption of non -shiftable HVAC loads, weekend day, 9 Apr 2016, H2 

These non-shiftable loads implement the BIPV system’s power constraint on the household 

appliances that are fixed and cannot be shifted and power consumption with these loads is not 

varying regularly like that of shiftable loads which are switched ON and OFF in a constant interval 

of time. For example, by comparing load profile of ventilation from Figure 31 to Figure 33 using 

different time- resolutions (1- minute and 15- minute), there is irregularity in power demand, which 
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implies that it is not possible to control this load in terms of load shifting. It also reports that the 

energy cost of the non- shiftable loads is changing according to the time of use of these equipments. 

 

5.4. Energy cost for heat pump and solar PV 

Figure 34 illustrates an example of excess solar PV energy production (supposed to be exported) 

and excess heat pump energy consumption (supposed to be covered by the grid) and the 

corresponding costs in H2, for a clear day of 12th Apr 2016. During this day, for PV production of 

45.7 kWh, there is 41.87 kWh to be sent to the grid and sold at price of 12.56 NOK. In this day, 

when PV production is less than HP demand, HP requires 5.37 kWh at cost of 4.29 NOK. By 

maximizing the utilization of this PV energy using load shifting method, the whole demand is 

covered by solar PV and no energy needed from the grid. Here, excess PV (exported) is calculated 

by considering the time where the load (heat pump) is using less energy compared to that generated 

by solar PV, while excess HP(imported) is when the heat pump is not covered by the on -site PV 

energy production and requires additional energy from the grid to cover its demand. 

 

Figure 34: Excess PV energy (exported) excess HP energy (imported) and associated profit and cost for 

solar PV production and HP consumption without shifting, H2, (12 Apr 2016) 

From Appendix -A Figure J shows the monthly value of excess PV and HP energy and associated 

profit and cost for H2, Dec 15- May 16(calculated from 15- minute- resolution data).To avoid this 
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unbalance of energy tariff for purchased and sold electricity, load shifting (for selected months 

May and April) is used to maximize the use of this solar PV production instead of selling it back 

to the grid.  

5.5. Load shifting analysis 

By using scripts developed in MATLAB according to the method described in chapter 4, HP 

demand is shifted to the time with higher solar irradiance, meaning higher PV energy production 

so that the energy generated during this time is stored by help of domestic hot water storage, which 

can be used at time without solar irradiation (morning and night). In this section, the impact of 

load shifting with HP is discussed with corresponding reduction in energy cost. 

5.5.1. Heat pump load shifting 

During load shifting, the building users must agree to a shift of his electrical devices if there is no 

lack of comfort in electrical energy demand like building heating or domestic hot water demand. 

So, HP shift must match with building user heat demand sufficiency all times. With help of DHW 

storage, the heat demand can be covered either by the heat storage tank or by direct use of 

electricity (from grid or solar PV). Figure 35 (left) shows the HP demand with solar PV production 

before applying load shifting method for 1 clear day in May. The result for HP shifted at time with 

high solar energy production is shown in Figure 35 (right). In this shifting, the HP is switched on 

at time with solar PV energy production greater than HP demand continuously and is stopped when 

fulfilling the daily heat requirement with the energy being the same as that before shifting. 

  

Figure 35: HP without shifting(left) and HP shifted(right), H2, 25-May16 
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Here, the total HP demand is fully covered by the solar PV power production and no power 

imported from the grid is required for its operation, which is the advantage of load shifting. In both 

cases (left and right) from Figure 35, the total solar PV is 51.44 kWh, while that for HP is 7.58 

kWh before and after shifting. With shifting, the HP is running continuously from 11 am to 6 pm, 

meaning 7 hours of working instead of running it for the whole day (24 hours). During this time, 

the whole heat generated cannot be used, this heat is used for DHW tank heating, which could be 

used at time with no solar PV generation, and this is discussed more in section 5.8. 

  

Figure 36: HP without shifting(left) and HP shifted (right), H2,1- April 2016 

Figure 36 shows the HP demand profile with and without load shifting, for example, a clear day in 

April. The result of this shifting shows the increase in self- consumption with solar PV production 

and the total demand is covered by on- site energy production without importing energy from the 

grid as shown in this figure (left). During this day, the HP is operating from 11 am to 4 pm (5 

hours) to complete the whole heat demand in the house. 

Considering winter day (4- December 2015 in Appendix- A, Figure -G), solar PV will not cover 

the whole HP load demand in the building but there are some hours where there is enough PV 

power production. From that figure(left), the HP is switched on and off during the whole day and 

thereby importing power from the grid to cover the demand. This figure (right) shows the HP after 

shifting at time with PV production. Because of lower PV production with higher HP demand for 

this day, the total load is not covered by only solar PV, it shares demand with grid.  

For this condition for importing energy from the grid after load shifting, it is not very important to 

apply shifting control strategies during the period with lower solar PV production, especially 

winter seasons. To apply load shifting, it does not change the total load energy, therefore, the 
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energy before and after load shifting remains the same as equality constraint. From this figure in 

general, the HP energy consumption remains equal to 14.63 kWh for both cases (without and after 

shifting) as highlighted in figures. In this shifting, the HP is operating continuously during daytime 

to maximize the available solar PV energy until its total energy becomes the same as before 

shifting. 

It is important to note that, for the case with HP load shifting, the HP is not receiving energy before 

the availability of solar PV irradiances because the whole HP demand is shifted at time with higher 

solar PV and the DHW tank in not receiving heat from HP. When the solar PV energy becomes 

high, the HP is electrically supplied from solar PV source, and the heat generated is supplied to 

the DHW tank and this tank is used as heat storage, when the stored heat will be used for the next 

time (during the night). Design of volume of DHW tank is referred to the time required to heat 

water up to 90 oC as shown in Figure 52. 

5.5.2. Cost of heat pump energy before and after shifting 

In this section, the impact of HP load shifting was evaluated with regards to the cost of importing 

and exporting electrical energy from or to the grid. From Figure 37 to Figure 40 the cumulative 

costs of imported energy and profit of exported energy before and after load shifting are shown. 

From Figure 37, due to high PV production as clear day in May, the import energy after HP load 

shifting is zero, meaning that there is no cost for importing energy from the grid during this day, 

and the corresponding values are highlighted in Table B from Appendix- A. 
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Figure 37: Cost of import and profit of export before and after shifting, H2, 25-May-2016 

 

Figure 38: Cost of import and profit of export before and after shifting, H2,4-December- 2015 

Figure 38 shows how cost of import and export is reduced after applying load shifting. In this 

analysis, the time with high PV production are considered during the shifting of HP demand. 

Generally, in December, there is low PV production with high power demand, which affects the 

house owner and the power grid company. After shifting HP, the cost of import is reduced from 

8.76 to 5.89 NOK, while the profit of exporting energy to grid is reduced from 1.96 to 0.88 NOK. 

From Figure 39 of 3rd February-2016, after shifting HP, the cost of import is reduced from 6.25 to 

2.50 NOK, while the profit of exporting energy to grid is reduced from 4.29 to 2.88 NOK. 
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Figure 39: Cost of import and profit of export before and after shifting, H2,3-February -2016 

 

Figure 40: Cost of import and profit of export before and after shifting, H2,26 March -2016 

During this analysis, clear (weekend and working) days within six months have been selected. 

From Figure 41, the cost of importing power from the grid and the profit of exporting power to the 

grid are reduced with help of load shifting. 
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Figure 41: Daily cost and profit before and after shifting HP for selected days (H2, 1-minute resolution) 

For the time with high solar irradiation, after HP load shifting, the cost of imported energy is 

reduced up to zero cost. For example, refer to the moth of April in  Figure 40, the cost of import 

energy is reduced from 4.41 NOK to 0 NOK after shifting, while the profit of exporting is reduced 

from 11.24 NOK to 9.59 NOK. As results of load shifting, less amount of money is paid to the 

grid company due to the reduction in energy importation. This may help to improve grid stability 

because high peak demands are shifted at time with high PV power production. Thus, refer to [72], 

when the surplus energy is injected to the grid network, it may cause power quality issues, such as 

voltage violation. Under this condition, it is assumed that customer is not allowed to inject power 

into the grid if the BIPV is not well controlled and certified for grid energy exchange, thus, this 

requires advanced and modern technology to match the on-site power quality with that of grid. 

However, if the building owner can shift a percentage of the consumption to the high PV 

production period in the middle of the day, then the self- consumption could be increased.  

5.5.3. Improving load factor with load shifting 

The load factor(LF) expressed as percentage is obtained by taking the total kilowatt-hours (kWh) 

consumed in a month divided by the product of the maximum demand in kilowatts (kW) and the 

number of hours in that month. LS can also be explained as average load over maximum demand 

during given period [73] as shown in equation (5.1).  
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xhourkWdemandpeak

kWhEnergy
LF

)(.

)(
(%)                                                                    (5.1) 

The higher the LF is, the smoother the load profile is, and the more the infrastructure between grid 

and the building demand is being utilized. The highest possible load factor is 1, which indicates a 

flat load profile and the lowest is zero. Referring to equations from chapter two and four, load 

shifting is important in maximizing the load factor of grid system. Therefore, Figure 42 illustrates 

the percentages of LF before and after load shifting for selected clear days in six months, where 

for example the LF for the 1- day in March has been increased from 25.5 % to 38.5 %. It can be 

concluded that with load shifting, the LF is increased during for the whole selected days in the six 

moths.  

 

Figure 42: Load factor before and after load shifting in six months in H2 

Furthermore, a good load factor implies a more constant rate of electrical use, because kW demand 

is held to a minimum relative to total overall use. In this context, the lower the existence of power 

demand with respect to kilowatt-hour (kWh) use, the better the load factor, the lower the relative 

cost for electric service.  

5.6.Analysis of self-consumption with heat pump shifting 

In this section, the HP shifting is done only for two months (May and April) in house H2, where 

there is more irradiance, which implies that the solar PV energy production is great than energy 

consumption for HP for the evaluation of PV self- consumption. Figure 43 and Figure 44 show the 
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self-consumption during one week in May 2016 for heat pump with and without shifting with 

corresponding PV energy production respectively, based on 15- minute resolution data. 

 

Figure 43: PV energy production and self-consumption for heat pump without HP load shifting, May-

2016, H2 

 

Figure 44: PV energy production and self-consumption for heat pump after HP load shifting, May-16, H2 

From these two figures, the importance of shifting the HP is to increase the SC by 43.6% after HP 

load shifting as highlighted in both figures, which results in reduction of energy imported from or 

exported to the grid. The additional role of this shifting is that the HP is operating on a fixed rated 

value of 3.8 Watts, which results in minimizing the peak load operation of HP which reaches at 

7.8 Watts (15:45:00) at the last day of this week when there is no HP shifting. This peak demand 

of HP is having an inconvenient to the grid distribution network because this causes the fluctuation 

in the grid system as explained previously. 

 

Figure 45 shows two operating modes of HP when is shifting and not shifted with regards to the 

generated solar PV energy of 1081.64 kWh for one month in May 2016. Thus, the resulting data 
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for SC without and after HP shifting for the month of May and April 2016 are illustrated in Figure 

48, which shows that the shifting method is important because the SC is increased 2.2 times (from 

84.1 to 188 kWh) that without HP load shifting. The figure for April-16 showing the SC without 

and after HP shifting is illustrated in Appendix- A Figure I. From Figure 45 , five days (22nd, 23rd, 

29th, 30th and 31st) are with lower PV energy production with respect to the HP consumption 

[(PPV(i)<PHP(i)], which makes load shifting impossible as explained in algorithm for load shifting 

in chapter four.  

 

Figure 45: Self-consumption without HP shift(blue) and with HP shifting (green), May-16, H2 

Figure 46 shows the SC without HP shifting and the required energy to be imported from the grid 

(green line) to cover the HP demand during 1-week in April. During this time, with the total solar 

PV energy produced 225.85 kWh and HP energy consumption of 65.98 kWh, the only self- 

consumed energy with HP from solar PV is 9.7 % o when there is no HP shifting, which implies 

that the energy required to cover the HP demand is to be imported from the grid. From Figure 47, 

the SC is increases by shifting the operation time of HP to the time with higher PV energy 

production, where this SC is improved up to 25.3 %. Comparing the SC without and after HP 

shifting this SC is increased 2.6 times that of without HP load shifting, with is important as strategy 

to increase PV SC with BIPV systems. 
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Figure 46: PV energy production, grid import and self- consumption without HP shifting in 1- week (14-

20, April 16), H2 

 

Figure 47: PV production and self -consumption after HP shifting in 1 week (14-20, April 16) 

Figure 48 illustrates the summary of improved SC after HP shifting for both May and April with 

respect to the PV energy produced and HP consumption. From this figure, it can be observed that, 

with a HP consumption of 231.22 kWh in May, the SC is increased from 36.75 % to 81.31 %, 

while in April with the HP consumption of 286.18 kWh, the SC in increased from 27.15 % to 

70.48 %. By analyzing energy flow from the grid and HP, the sum of energy imported from the 

grid with the SC energy is equal to the HP consumption without shifting.  
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Figure 48: Summary of SC with solar PV and without and after HP shifting, May- April (2016), H2 

Shifting the operation of the HP at daytime would be a possible means to greatly increase the SC 

of electricity production and reduce the grid interaction without an expensive technical effort. The 

results show that, the operation of the heat pump is limited to daytime from 10 am through 7 pm, 

where is higher solar PV production. The monitored data shows this is sufficient to heat the 

building and the domestic hot water. By reducing run-time also would further increase self-

consumption and reduce grid interaction and run it continuously during the time where 

PPV(i)>PHP(i) [43]. 

5.7. Heat pump and ground- source heat 

A ground source heat pump increases the temperature from the ground by between one-and-a-half 

and four times [74]. During this thesis, the forward temperature (FTemp) from ground heat 

source(GHS) to the heat pump and return temperature (RTemp) from the heat pump to GHS are 

presented by considering data of the month of May. By using equation from chapter four, the heat 

flow from the HP (QHP) can be calculated with help of temperature difference and heat capacity or 

thermal capacity (Cp). Note that data for HP consumption after 30th May 2016 (16:20) are missing. 
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Figure 49: Time series of heat pump temperature, H2, May 2016, 1-hour resolution 

 

The higher the difference in temperature between FTemp and RTemp with higher mass flow of water, 

the higher the heat production from HP. From Figure 50, the peak heat demand from the heat pump 

always happens in morning and evening, where people in the house need to use hot water. 

 

Figure 50: Electrical energy applied to HP and heat produced from HP to DHW tank (May 2016) 
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As shown in equations from chapter four, the heat produced by HP is equal the electrical power 

energy applied to the HP plus the ground heat source. Figure 51 shows the cumulative 

representation of the total electrical energy consumed from either grid or solar PV (PEle) and the 

corresponding heat produced from HP (QHP) with ground heat source(QHS). 

 

Figure 51: Cumulative electrical energy applied to HP, heat produced from HP and ground heat source 

In the heating process, this heat from HP is applied to the DHW tank to heat water, which in turn 

will be used in hot water demand and building heating. The more the heat produced with 

corresponding temperature, the more the better performance of HP as result of equation (4.8). 

Thus, the better the HP, the more the temperature in the building for domestic use is produced. 

5.8.Heat flow, temperature and volume of DHW tank 

In this section, a model of 4 types of volumes is presented to evaluate the time required to heat up 

to 90 oC for a small volume and big volume tank of water. The excess sola PV energy is used to 

for DHW tank heating as heat storage instead of exporting it into the grid distribution network. 

5.8.1. Analysis of hot temperature with different volumes of DHW tank as models 

In this analysis, the time taken to get Thot from 40 oC to 90 o C for four types of tank taken as 

models with 50, 100, 150 and 200 liters were found and results are plotted in Figure 52, by 

considering lossless heat flow from HP to the DHW tank. When the temperature in DHW get s 

higher than to 90 o C, the heat produced is considered as heat loss. The volume of DHW tank 

affects the time required to heat tap water up to the maximum hot water temperature. In this model, 
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it is assumed that the HP is with rated power 0f 1 kW is considered to heat water up to maximum 

allowable temperature in the tank of 90 oC (Thot), with cold water temperature of 40 o C (T cold). 

Considering that there is no heat loss in pipes between HP and DHW tank, equation (4.8) and 

(4.14) are equal to find the Thot in the storage tank. This Thot can be found using equation (5.2). 

cold
k

Hot T
C

Q
T  tan

                                                        (5.2) 

                                            where, C: heat capacity of the of water. 

 

Figure 52: Hot temperature from HP using 50, 100, 150 and 200 liters of DHW tank as models  

Comparing these four cases in one figure, it is shown that with increase in volume, the time 

required to heat tap water from low temperature to the maximum allowable temperature of DHW 

tank increases also. Thus, referring to the Figure 52, as the volume is doubled, the time required 

to heat the temperature up to 90 oC is also doubled. For example, it takes 5 hours to rise 50 liters 

up to 90 oC, 100 liters requires 10 hours, 150 liters is 15 hours, while 200 liters requires 20 hours.  

This model is important is designing a backup DHW tank, which can be used to store the excess 

solar PV energy instead of selling to the grid. Generally, for a hot water tank, the volume of hot 

water consumption through a thermally stratified tank is less-compared to a mixed tank. The reason 

is that the temperature in the top part of a stratified tank as well as the outlet from the tank is higher, 

and therefore less volume of hot water is needed to supply a certain comfort temperature in the 
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building to be used for showering and kitchen. Referring to Figure 11, the average temperature at 

the top of a stratified tank is generally higher than in a comparable mixed tank. Thus, the comfort 

temperature is more often available in a stratified tank, where it is shown in Figure 11. 

5.8.2. Hot temperature in DHW tank in Skarpnes house  

During this case, the HP is supposed to use electrical energy from either solar PV or from the grid, 

and with low HP energy consumption, the temperature in the DHW tank is towards the minimum 

allowable limit (here set 40 degrees Celsius) due to low heat generated from that electrical energy 

consumed by HP. The hot temperature of DHW tank is proportional to the heat stored in the tank. 

Figure 53 shows the profile of P V production and HP consumption energy for 1-week (22- 28 May 

2016). The electrical energy of this HP converted into heat, which is then applied to the DHW 

storage tank. As shown in this figure, the HP consumption at day five is low, which results in low 

heat generation. 

 

Figure 53: PV production and HP consumption energy for 1- week, (22- 28 May 2016) 

Figure 54 and Figure 55 show the variation of hot temperature inside DHW tank with corresponding 

heat storage for one week in December and May, obtained as cumulative, where the DHW tank is 

heated for the whole day with assumption that no hot water is removed from the tank. As shown 

in Figure 54, the hot temperature for the day five does not reach to 90 0 C due to low heat applied 

to the DHW tank from the HP, because at this day, the HP is using less electrical energy, which is 

converted into low heat. 
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Figure 54: Hot temperature and heat stored in DHW tank, H2, 1-week (22-28 May 2016) 

 

 

Figure 55: Hot temperature and heat stored in DHW tank, H2, 1-week (1-7 Dec 2015) 

From these two figures, the heating process is done for rising the temperature in DHW tank from 

40 to 90 o C. When the temperature reaches to 90 oC, the heating process is done at constant 

temperature, where the excess heat in this process is considered as loss. Thus, with backup heat 

storage in terms of DHW tank, this excess heat can also be reused for heating system in the 

building.  
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Figure 56 and Figure 57 illustrate the hot temperature distribution inside the DHW tank during one 

selected week between for December 2015 and May 2016 (refer to Figure 55 and Figure 56). From 

the figure of December, the hot water is heated 89 times reaching up to 90 oC and 38 times for 45 

oC, while from the figure of May, it happens 73 times to heat water up to 90 oC and with 40 times 

for obtaining 45 oC, and this is clear that in December, it requires more heat to be applied to the 

DHW tank, where hot water is more needed for domestic services in comparison with that of May. 

 

Figure 56: Hot temperature distribution in DHW tank, 1-7 Dec 15 

 

Figure 57: Temperature distribution in DHW tank, 22-28 May 16 

However, it is necessary to keep the hot water tank at temperature set-points between 60 oC and 

90 oC for eliminating health risks associated with Legionella proliferation, as well as guaranteeing 

high levels of comfort to the building owner as discussed in chapter two. Thus, the Figure 56 and 



P. Hategekimana                                       Strategies for Increasing Self-Consumption with BIPV 

 

70 
 

Figure 57 clarify that, most of the time, the hot temperature inside the DHW tank is between 60 

and 90 0 C. 

5.8.3. Improving self-consumption using excess PV for hot water storage 

From this section, the excess PV energy (for selected clear six days in six months) instead of being 

exported to the grid, it is used in DHW tank, where this energy is applied to the HP to produce 

heat. With the heat supplied to DHW, the time required to heat water from 40 oC to 90 oC is found 

in Figure 58. From this figure, the excess PV energy for only two days (in May and April) can be 

used to heat DHW tank up to 90 oC because of high solar irradiance (in spring season), while the 

maximum temperature in tank using excess PV energy for selected days in December and January 

are 54.1 and 41.1 oC respectively, and do not reach to 90 oC inside the tank. 

 

Figure 58: Excess PV energy to heat DHW tank and resulting hot temperature for selected days in H2 

It can be concluded that the backup for storing the excess solar PV in terms of DHW storage tank 

is necessary in BIPV systems especially during the time with higher solar irradiance for saving the 

cost of energy imported from the grid, which is beneficial than selling the surplus PV energy back 

to the grid, which results in increasing sola PV self-consumption with HP. 

5.9. Demand and supply cover factor analysis  

 

As mentioned in chapter two, the graphical representation of load and supply cover factors gives 

a quite good picture of the correlation between on-site demand and supply of energy. During this 
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thesis, demand and supply cover factor have been calculated using equation from chapter two, and 

it becomes useful to evaluate cover factors for HVAC loads and all electrical loads separately. HP 

shifting also shows the variation in cover factors where the values for both γD and γS before and 

after load shifting are presented, and as mentioned earlier, the values of γD and γS vary from 0 to 

1. Lack of values for γS indicates periods with no solar PV generation, and at this time, γS 

corresponds to the value equals one.  Thus, it is important to know that with a high value of γS, 

the solar PV is generating least power and the load requires more energy from the grid. 

Nethertheless, for higher value of of γD, the solar PV is generating more power and the load is 

covered at sunrise, whereby, the excess of power is to be sent  to the grid as advantage for the 

house owner. 

Refering to the work for others, Figure 59 shows demand cover factor γD and supply cover factor 

γS for the case study of SB6 house. For this case study, there is a significant seasonal variation of 

γD and γS. For example, in this house SB6, at 2 p.m. The γD varies between 0.38 and 0.99, and 

the γS ranges from 0.18 to 0.89. It is a result of big azimuth and altitude angle variations during 

the year. In consequence of it, during summer months the electricity load during the day is almost 

fully covered by the on-site generation, and still a significant party of the generated electricity, at 

noon it may even reach 90% or 0.9, is exported to the grid, referring to Figure 59 [63].  

 

Figure 59: Mean daily load(demand) cover factor (left) and supply cover factor (right) in 4 months [63] 

In this work, it can be observed are that, when the γS equals one, local generation is covered (or 

totally consumed) by local demand, and no excess locally generated electricity needs to be put on 
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the grid. For the γD equals one, this would mean that all demand could be met by local generation. 

The analysis was made by using high resolution data from both monitored and simulated buildings. 

The hourly values of the cover factors (γD and the γS) give quite a good balance understanding 

between on-site demand and supply of energy compared to yearly and daily resolution [75].  

5.9.1. Demand and supply cover factor with HVAC loads at Skarpnes  

In this section, the γD and γS are modelled by considering energy consumption Pd(t) for HVAC 

loads in house H2. Figure 60 shows the demand cover factor for six months averaged in hours of 

day. The γD varies significantly with seasons (from Winter to Spring) and this factor is important 

in DSM, where it identifies the time at which the load is either covered by the solar PV power 

generation or not, which implies that there is import or export of energy. While installing the PV 

system especially in BIPV systems, the γD should be greater than zero and for clear day it can 

reach to 1 or 100% as shown from Figure 60.  

 

Figure 60: Average demand cover factor with HVAC loads, December 2015- May 2016 in H2 

From Figure 60, the values of γD increase from December to May with the corresponding 

percentages illustrated in Table 6. This is explained that in December, only 0.7% of the load 

demand on daily average basis is covered the solar PV, while other 99.9% of demand is imported 

from the grid.  For the month of May with higher solar irradiation, 56.7% of demand is covered 

by the on- site PV production, and it can export the surplus energy to the grid, especially at noon 

time. Comparing results from Figure 60, Table 3 and Table 6, this shows the variation of how the 
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building is behaving towards the solar PV production, and as explained in chapter two, for γD 

equal to 1, the building energy is self-sufficient and no energy needed from the grid 

distribution network. 

 

Figure 61: Average supply cover factor with HVAC loads. December 2015- May 2016 in H2 

Figure 61 shows the decrease in average γS from December to May with HVAC loads, which 

explains the percentage of energy to be supplied to the household loads during this period. The 

higher the γS, the higher the demand required by the household to be covered from the grid. 

Table 3: Demand and supply cover factor with HVAC loads in 6-months for H2 

CF/ month Dec Jan Feb Mar Apr May 

γS [%] 99.6 93.1 82.9 76.3 65.0 57.8 

γD [%] 0.7 3.3 27.7 35.9 48.5 56.7 

 

5.9.2. Demand and supply cover factor before and after heat pump shifting 

Load shift with HP is also important in the evaluation of load matching indices (demand and supply 

cover factors). Table 4 shows the values of both γD and γS before and after load shifting with HP 

for the six selected clear days in the period from December 2015 to May 2016. 
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Table 4: Demand and supply cover factor before and after HP shifting 

Cover factors  γD before LS γD after LS γS before LS γS after LS 

4-Dec-15 0.258 0.197 0.818 0.950 

1-Jan-16 0.188 0.058 0.829 0.993 

3-Feb-16 0.317 0.250 0.730 0.859 

26-Mar-16 0.447 0.325 0.642 0.781 

1-Apr-16 0.481 0.253 0.588 0.544 

25-May-16 0.621 0.238 0.443 0.368 

 

For the days where the total load is not fully covered by solar PV from this table, there is reduction 

in γD and an increase in γS after HP shifting. Considering the example of 4- December-15, γD is 

reduced from 0.258 to 0.197 after shifting, while γS is increased from 0.818 to 0.950.  

5.9.3. Demand and supply cover factor for total electrical loads in H1 and H2 

In this section, it is important to quantify the γD and γS on monthly basis averaged in one day for 

evaluating how the house is covered with the on- site PV energy generation. Also, there is a 

comparison of cover factors for both houses. The resulting values  for γD  corresponding to May, 

April and December for H1 and H2  are presented in  Figure 62 and Figure 63. From these figures, 

due to high solar irradiances in May, these two houses have high values of γD than December and 

more energy is sold to the grid. To evaluate the γD by comparing two houses H1 and H2, Table 5 

shows the average values of these CF. As the solar panels at the rooftop of these two house are 

fixed at different orientation, and this affects the values of CF. 
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Figure 62: Daily average demand(left) and supply (right) cover factor for 3- months, H1 

  

Figure 63: Daily average demand (left) and supply(right) cover factor for 3- months, H2 

From Figure 63 and Figure 63 (left) , it can be observed that H2 starts getting values for γD great 

than zero (5:00 am) before H1 (6:00 pm). Due to the defference  in demand profile and PV 

production as well, the H2 covers more the loads than H1 as seen in Table 5. This difference is due 

two basis parameters. The first is that, the orientation of solar panels on the rooftop of both houses 

are fixed in different direction as mentioned earlier. The second parameter is the household loads 

energy consumption which is different for both houses, meaning that the H2 is more comfortable 

than H1 towards the energy management.  
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Table 5: Comparison of cover factors in H1 and H2 for 3-months 

Cover factors  May- 2016 Apr- 2016 Dec- 2015 

H2  
γD 0.538 0.424 0.049 

γS 0.784 0.867 0.998 

H1  
γD 0.513 0.382 0.045 

γS 0.795 0.895 0.997 

 

In additional, there is significant seasonal variation of γD and γS. For example, considering H2, 

the average γD varies from 0.049 in December to and 0.538 in May, and γS varies from 0.998 

(December) to 0.784(May) as shown in Table 5. 

5.10. Loss of load probability analysis 

During this thesis, the loss of load probability (LOLP) is calculated to evaluate the system 

reliability for generation system in house H2 using 1-hour and 1- minute time- resolution as shown 

in Table 6. To quantify the behavior of power generation from BIPV with respect to the domestic 

load consumption, LOLP is an important parameter to use, because it shows how often during a 

given period for the household loads to not be covered by on-site power generation. 

 

Table 6: Loss of load probability in 6-months for H2 

Indices Dec Jan Feb Mar Apr May 

LOLP [%] (1-hour) 93.1 99.0 76.3 69.1 56.7 48.3 

LOLP [%] (1-minute) 91.9 95.0 76.0 68.6 55.9 48.3 

 

Using 1- hour resolution for house H2 in December 2015, 93.1 % of the load is not covered by 

BIPV generation, while in May 2016, 48.3 % of the loads is not covered. Comparing 1-hour and 

1-minute resolution, this shows that it is advantageous to evaluate the LOLP with higher time steps 

(1-minute resolution) because there is a decrease in LOLP in the corresponding months during the 

mentioned period. For example, refer to Table 6, in December the LOLP decreases from 93.1 (for 

1-hour) to 91.9% (for 1- minute), while in April it decreases from 56.7 (1-hour) to 55.9 % (for 1-

minute).  
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This index suffers from the fact that it does not show the uncovered part of load in terms of 

electrical energy, it shows only the percentage values, and the data for electrical energy to import 

or export are found in  Table 2 and Table. Therefore, the LOLP analysis is helpful for illustrating 

the percentage of required energy from the on- site generation system (here solar PV) for not 

covering the domestic load during a given period. By using the LOLP factor, designing companies 

of buildings with solar PV systems for the purpose of behaving as nZEB have to evaluate various 

load control strategies for maximizing the utilization of on-site energy generation by increasing 

self- consumption.  
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Chapter 6. CONCLUSION AND FUTURE WORK 

 

In this chapter, the general conclusion about the work regarding this thesis is summarized by 

showing the facts and figures resulting from the objectives of this research. For continuous studies 

at Skarpnes village, the recommendation for future studies are also highlighted. 

6.1. CONCLUSION 

 

The objectives of this study were to evaluate the maximization of on-site solar PV energy 

production by increasing the self- consumption with domestic electrical loads at Skarpnes zero 

energy village. During this thesis, DSM strategies with load shifting are discussed as mean to 

increase the self-consumption of electricity produced locally from solar PV systems, which is 

important for limiting the injections of electricity into the grid distribution network. It has been 

shown that, the load-shifting techniques was a better method for household load management in 

BIPV systems, because they do not change the total production output and are easier to implement 

by help of programmable settings. Load shifting techniques suffer from the flexibility of customers 

(building users) to accept and plan for the time without heat pump in use by waiting the availability 

of solar irradiance, where heat pump must be in service.  

This load shift is applied to minimize the charges on domestic loads (specifically shiftable loads) 

and maintain system reliability on the grid distribution utility company due to the reduction in 

demand at time without PV production. The results show that, it is economical to apply shifting 

strategies for the day where the total solar PV production is greater than the HP energy demand. 

The results of HP shifting for one week in May, the SC is increased from 36.75 % to 81.31 %, 

while in April, the SC in increased from 27.15 % to 70.48 % of the whole PH energy produced 

energy in corresponding week, which shows the importance of load shifting. 

PV self-consumption at Skarpnes zero- energy village can be economically attractive option for 

using the on- site generated solar PV electricity in nZEB systems. Heat pumps can be used to 

increase PV self-consumption with DSM control strategies. A variable speed heat pump offers the 

flexibility to follow the household heat demand scheduling time, and with help of smart metering, 

the HP consumption is regulated to be shifted at time with higher PV energy production. The 
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results have shown that heat pump with domestic hot water storage offer the opportunity to shift 

electricity loads e.g. to periods with high solar radiation, which significantly increase the PV self-

consumption rate and help to reduce the cost of importing energy from the grid. By using the 

excess PV generation in DHW storage system instead of sending it into the grid, it has been found 

that this energy can boost water from 40 oC to 90 oC during April and May (for selected clear days) 

without assistance from the grid network. Demand and supply cover factors have been used to 

quantify the matching between the on- site PV generation and household loads in BIPV. Results 

show that γD increases from December to May, while  γS decreases from January to May. 

Comparing two houses H1 and H2, it has been found that γD  for H2 is higher than that of H1, 

meaning that, the household loads in H2 are more cover by the on- site solar PV energy,for 

example in April, γD for H2 was found as 0.424, γD for H1 was 0.382. Contrary, γS for H2 for the 

same month of April (0.867) is less than that of H1(0.895). LOLP has been used to show how 

often during a given period for the BIPV is not covered by on-site power generation. Using 1-

minute and 1-hour resolution datasets, the results have shown that, for H2 in December2015, the 

LOLP decreases from 93.1 (for 1-hour) to 91.9% (for 1- minute), while in April 2016 it decreases 

from 56.7 (1-hour) to 55.9 % (for 1-minute).  

 

6.2. RECOMMENDATION FOR FUTURE STUDY 

 

During this work, DSM with load shifting coupled with DHW storage tank has been used to study 

the increase of PV self-consumption. Thus, a programmable system could be installed on shiftable 

loads with smart control to monitor and allow shifting demand at the time with higher solar PV 

production. For the future work, the presence of on-site battery storage of type Lithium ion which 

can be used to store excess solar PV energy during clear day could be further investigated as a 

mean to increase PV self- consumption with BIPV and to improve the energy matching of the 

building.  
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APPENDIX -A 

 

 
Table A. Electrical data of solar panel used at Skarpnes 

 

Figure A. Solar PV and Heat pump, H2, April 2016 

  
 

Figure B. PV production and total domestic loads, H1, May 16 
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Table B. Peak energy, time for peak energy, and average energy for PV production, heat pump (HP), 

ventilation, circulation pump (CP) and fan convector (FC). Data for H2 for the 6-month period Dec-15 to 

May-16, 1-minute time- resolution). 

Time Categories PV (Wh) HP (Wh) 
Ventilation 

(Wh) 
CP (Wh) FC (Wh) 

Dec-15 

Peak energy  54.86 31.07 30.80 1.56 0.50 

Time for peak  
12/3/2015 

13:05 

12/1/2015 

22:39 

12/27/2015 

5:10 

12/15/2015 

6:06 

12/19/2015 

7:21 

Average energy 1.71 6.41 2.44 0.69 0.18 

Jan-16 

Peak Demand & PV  59.91 30.97 31.0 1.35 0.67 

Time 
1/31/2016 

14:38 

1/30/2016 

5:17 

1/16/2016 

5:56 

1/5/2016 

19:01 

1/27/2016 

7:26 

Average 0.80 6.65 1.94 0.58 0.16 

Feb-16 

Peak Demand & PV  95.92 30.91 30.73 1.31 2.00 

Time 
2/22/2016 

13:46 

2/6/2016 

13:03 

2/12/2016 

1:50 

2/18/2016 

9:00 

2/5/2016 

12:18 

Average 10.00 10.04 1.50 0.82        0.18 

Mar-16 

Peak Demand & PV  112.01 31.00      30.94 1.37 0.93 

Time 
3/29/2016 

12:08 

3/8/2016 

4:13 

3/1/2016 

5:53 

3/4/2016 

10:11 

3/13/2016 

19:47 

Average 12.10 8.42 1.40 0.78 0.15 

Apr-16 

Peak Demand & PV     119.63 31.12 30.69 1.21 0.92 

Time 
4/19/2016 

14:22 

4/28/2016 

23:59 

4/23/2016 

6:16 

4/30/2016 

11:26 

4/29/2016 

18:24 

Average 19.489 6.583 0.817 0.698 0.103 

May-16 

Peak Demand & PV  119.692 31.460 30.505 1.120 0.771 

Time 
5/3/2016 

14:24 

5/10/2016 

19:34 

5/4/2016 

7:40 

5/6/2016 

7:16 

5/18/2016 

5:38 

Average 24.350 5.153 1.106 0.547 0.057 

 

Table C. Summary of cost before and after shifting for selected days (H2, 1-minute resolution) 

Categories 

Cost of import 

(without 

shifting) 

Profit of export 

(without shifting) 

Cost of import 

(after shifting) 

Profit of export 

(after shifting) 

4-Dec-15 8.76 1.96 5.89 0.88 

1-Jan-16 3.98 0.47 3.02 0.11 

3-Feb-16 6.25 4.29 2.50 2.88 

26-Mar-16 5.35 4.54 1.41 3.06 

1-Apr-16 4.41 11.24 1.52 10.16 

25-May-16 2.28 14.01 0.00 13.16 
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Figure C. Distribution of PV energy production, Apr2016 

 

Figure D. Distribution of total load energy consumption, Apr 2016 
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With IVT Premium Line® HQ we are introducing a whole range improvements - and a revolution. It is 

namely prepared Smart Grid. It means the heat pump can be connected directly at the power exchange and 

even adapt so that it works hardest when the electricity price is lower. * 

Figure E. Liquid / water heat pump installed at Skarpnes 
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Figure F. Example of results from Hidacswebview  

  

Figure G. HP without shifting(left) and HP shifted (right), H2,4-Dec-15 
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pressure and temperature, and goes to the condenser. This system is working as heat exchanger in 

which the refrigerant condenses to release heat to the heating medium. The heat absorbed by the 

evaporator is released in the condenser at elevated temperature together with the compressor heat. 

In this way, the heat pump shifts the evaporated heat [40] 

 

 

Figure H. Schematic diagram of a heat pump [40] 

 

Figure I. Self-consumption without HP shift(blue) and with HP shifting (green), April-16 
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Table D: Cost of import and export energy in H2 for 6 months 

Months 
Export- PV 

to grid(kWh) 

Import-  grid to 

house(kWh) 

 Cost of exported PV 

(NOK/ month) 

Cost of import from 

grid (NOK/ month) 

Dec-15 43.97 401.29 13.19 321.03 

Jan-16 23.46 404.27 7.04 323.42 

Feb-16 295.87 401.82 88.76 321.45 

Mar-16 411.22 351.12 123.37 280.90 

Apr-16 700.12 212.50 210.04 170.00 

May-16 935.37 154.75 280.61 123.80 

 

 

 

Figure J: Monthly values of excess PV and HP energy and associated profit and cost for H2, Dec 15- 

May 16(calculated from 15- minute- resolution data) 
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APPENDIX -B 

 

Figure A: Diagram of heating for domestic hot water and building heating system with heat pump 
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 Figure B: Technical data for heating system with heat pump in the house. 

 


