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Abstract—In this paper, we present a wideband multiple-input
multiple-output (MIMO) car-to-car (C2C) channel model based
on a geometrical semicircular tunnel (SCT) scattering model.
From the geometrical SCT scattering model, a reference channel
model is derived under the assumption of single-bounce scat-
tering in line-of-sight (LOS) and non-LOS (NLOS) propagation
environments. In the proposed reference channel model, it is
assumed that an infinite number of scatterers are randomly
distributed on the tunnel wall. Starting from the geometrical
scattering model, the time-variant transfer function (TVTF) is
derived and its correlation properties in time, frequency, and
space are studied. Expressions are presented for the space-
time-frequency cross-correlation function (STF-CCF), the two-
dimensional (2D) space CCF, the 2D time-frequency CCF (TF-
CCF), the temporal autocorrelation function (ACF), and the
frequency correlation function (FCF). Owing to the semicircular
geometry, we reduced the originally threefold integrals to double
integrals in the computations of the correlation functions, which
simplifies the numerical analysis considerably. From the TVTF
characterizing the reference model, an efficient sum-of-cisoids
(SOC) channel simulator is derived. Numerical results show
that both the temporal ACF and the FCF of the SOC channel
simulator match very well with those of the reference model. A
validation of the proposed model has been done by fitting the
delay spread of the reference model to that of the measured chan-
nel, which demonstrates an excellent agreement. The proposed
channel simulator allows us to evaluate the performance of C2C
communication systems in tunnel environments.

Index Terms — Car-to-car, semicircular tunnel scatter-
ing model, time-variant transfer function, diffuse compo-
nent, line-of-sight component, angle-of-departure, angle-
of-arrival, frequency correlation function, delay spread.

I. INTRODUCTION

In recent years, there has been an increased interest in
developing C2C communication systems that offer new traf-
fic telematic applications for improving safety and mobility
on roads. Efficient C2C communication systems integrate
information and communication technology into transport
infrastructures, cars, and end-user devices [1]. To improve
safety in C2C communication environments, many research
projects have been carried out throughout the world, for
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example, the C2C Communication Consortium (C2C-CC)
[2], the European Road Transport Telematics Implementation
Coordinating Organization (ERTICO) [3|] in Europe and the
Intelligent Transportation Systems (ITS) [4] in the US. Despite
many research and technological development activities, C2C
communication systems still face some challenges, induced
by safety requirements and wireless channel conditions. One
of the most important issues in C2C communications is the
channel congestion, causing the loss of safety messages [J5].

To achieve the best performance of future C2C communi-
cation systems, it is important to have a detailed knowledge of
the statistical properties of the underlying radio channel. Nu-
merous mobile-to-mobile (M2M) channel models have been
developed based on different geometrical scattering models,
such as the two-ring model [6], the elliptical model [7]], the
rectangular model [8], the T-junction model [9]], the cross-
junction model [10], and the curve model [11]]. Narrowband
MIMO C2C channel models can be found in [12]f], [13]] for 5.9
GHz, which is the carrier frequency in dedicated short-range
communication (DSRC) [14] systems. However, all these
models are 2D models, which have been proposed for certain
environments, such as suburban and rural areas. In order
to provide more appropriate radio propagation models for
urban areas, three-dimensional (3D) multiple-input multiple-
output (MIMO) M2M channel models have been developed
and studied in [15]-[17]. A 3D geometrical scattering model
based on concentric spheres at the transmitter and the receiver
is assumed in [16], [17]]. In [17], a 3D parametric reference
model for 2 M2M wideband dual-polarized multipath fading
channels has been developed. In [[18]], the importance of differ-
ent propagation mechanisms in NLOS propagation conditions
are highlighted for merging lanes on highways and four-way
cross-junction scenarios. For vehicle-to-vehicle (V2V) com-
munications, new wideband single-input single-output (SISO)
and MIMO channel models based on measurement campaigns
carried out at 5.2 GHz have been presented in [[19]] and [20],
respectively.

To characterize propagation channels and to evaluate the
performance of wireless communication systems, it is impor-
tant to distinguish between slow and fast fading. For example,
it is well-known that from the temporal ACF the Doppler
spread can be computed, which is one of the most important
characteristic quantities of C2C channels. In the literature



[12]], [21[]-[23]], several C2C channel measurements have been
carried out to investigate the Doppler spread of C2C channels.
One advantage of geometry-based stochastic channel models
is that their spatial and temporal correlation properties can be
studied analytically. Thus, the temporal and spatial correlation
properties of C2C channels influence the performance of
C2C communication systems [24]]. The effect of the temporal
and spatial correlation properties of C2C channels on the
system performance (bit error probability) of Alamouti-coded
orthogonal frequency division multiplexing (OFDM) systems
has been studied in [25].

In [[19]], the geometry-based stochastic model (GBSM) ap-
proach [20] has been used to model the discrete scattering
component under the assumption that the underlying V2V
channel is non-stationary. In general, C2C channels are non-
stationary in nature. However, for non-stationary channels, it
has been reported in the literature [[19], [20], [26] that the wide-
sense stationary uncorrelated scattering (WSSUS) assumption
is still valid for short observation time intervals, commonly
referred to as stationary intervals [27]]. The performance of
C2C communication systems has recently been studied in
[28]], where a new regular-shaped GBSM for non-isotropic
scattering wideband C2C Rician channels has been proposed.

Roads are often passing through tunnels, which can have
different geometrical shapes [29] p. 31], such as rectangular,
horseshoe, oval, circular, and semicircular shapes. Modelling
of channels in tunnel environments is of importance for the
development of C2C communication systems. It is especially
important for countries with mountainous areas, where many
roads are passing through tunnels. The characteristics of
mobile radio channels inside a tunnel environment have been
widely investigated by using a geometrical optical model [30],
a wave guide model [31], and a full wave model [32]. A
theoretical analysis of the wireless channel in tunnels with
vehicular traffic flow has been introduced in [33]]. It has been
shown that the signal propagation in these tunnels is influenced
by the number, size, and position of the vehicles, the size
of the tunnel, and the vehicular traffic load. The authors of
[34] have presented a ray-tube tracing method to simulate
the wave propagation in curved road tunnels. A parametric
study has been carried out to investigate the influence of the
tunnel geometry and the carrier frequency on the path loss. A
geometrical stochastic channel model for train-to-train com-
munications has been derived based on the WINNER model
in [35]. There, it has been shown that the channel statistics
of the WINNER-based model are close to the deterministic
one, which are obtained from a 3D ray tracing simulator. In
[36], the authors measured a channel inside an arched tunnel
and analyzed the radio propagation channel in terms of delay
spread and dominant scatterers. The investigations showed that
more than 90% of the extracted paths consist of LOS and
single-bounce scattering components.

In channel modelling, the distribution of the scatterers is
an important aspect affecting the angle-of-departure (AOD)
and the angle-of-arrival (AOA) statistics. In three-dimensional
(3D) scattering models, the knowledge of the distributions of
the elevation and azimuth angles of the transmitted and the
received plane waves is important, as it allows us to investigate

the temporal, frequency, and spatial correlation properties of
the underlying fading channel. In this regard, the proposed
models for tunnel environments [30]-[34] do not consider the
impact of the distributions of the scatterers on the statistics of
the azimuth AOD (AAOD), azimuth AOA (AAOA), elevation
AOD (EAQOD), and the elevation AOA (EAOA). To fill this
gap, we have recently proposed a wideband SISO C2C channel
model based on a geometrical SCT scattering model [37].

In this paper, we expand the channel model proposed in
[37] by considering the effect of multiple antennas at both
the mobile transmitter and the mobile receiver. In this regard,
we derive a wideband MIMO C2C channel model from the
geometrical SCT scattering model, in which the effect of LOS
and NLOS propagation conditions is taken into account.

To simplify the mathematical analysis, we have assumed
that the WSSUS assumption is valid over a short observation
time interval. This assumption is supported by the study in
[26]], where the authors investigated the time interval over
which the fading process in a tunnel environment can be
considered as wide-sense stationary. The analysis of the mea-
surement data in [26] has revealed that the mean stationary
intervals in LOS and LOS delay compensated tunnel scenarios
are 0.97 s and 1.6 s, respectively.

We study the statistical characteristics of a wideband ref-
erence channel model assuming that an infinite number of
scatterers are randomly distributed on the SCT wall. Starting
from the geometrical SCT scattering model, we derive the
TVTF of the reference model assuming single-bounce scat-
tering. An analytical expression is presented for the STF-
CCF from which the 2D space CCF, the 2D TF-CCF, the
temporal ACF, and the FCF are derived directly. Furthermore,
we derive an SOC channel simulator from the reference model.
For deriving our SOC channel simulator, we have used the L,,-
norm method (LPNM) [38, Sec. 5.4.3] to compute the model
parameters. According to the study in [39]], the LPNM has the
best performance among the five alternative methods.

It is shown that the designed channel simulator matches
closely the underlying reference model with respect to the
temporal ACF and the FCF. Finally, we evaluate and present
the Doppler statistics and the delay statistics of the proposed
SCT channel model. The usefulness of the proposed reference
model is validated by demonstrating an excellent match be-
tween the delay spread of the reference model and the one of
the measured channel reported in [36].

The rest of this paper is organized as follows. Section II
describes the geometrical SCT scattering model. In Section III,
the reference channel model is derived from the geometrical
SCT scattering model. Section IV analyzes the correlation
functions of the reference model, such as the STF-CCF, the
2D space CCF, the 2D TF-CCF, the temporal ACF, and the
FCF. In Section V, the simulation model is briefly discussed
and a measurement-based computation of the proposed model
parameters is presented. The illustration of the numerical
results found for the correlation functions characterizing the
reference and simulation models is the topic of Section VI
Finally, Section VII provides the conclusion of the paper.



Fig. 1. A typical propagation scenario in an SCT.
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Fig. 2.  Randomly distributed scatterers (+) on the wall of a tunnel with
radius R = 5 m and length L = 100 m.

II. THE GEOMETRICAL SCT SCATTERING MODEL

This section describes briefly the geometrical SCT scatter-
ing model for a wideband MIMO C2C channel. A typical
propagation scenario in a tunnel is illustrated in Fig. 1| The
proposed geometrical SCT scattering model describes the
scattering environment inside a tunnel with a length of L. It
is assumed that the cross-section of the tunnel is a semicircle
with radius R. We assume that the scatterers are randomly
distributed on the tunnel wall as illustrated in Fig.

The geometrical SCT scattering model is shown in Fig.
where we use the Cartesian coordinate system (z,y, z) to de-
scribe the position of the scatterers S(™") form = 1,2,..., M
and n = 1,2,..., N. Owing to the semicircular shape of the
tunnel, we can describe the z-axis in terms of the y-axis as
z = y/R? —y2. This allows us to present the position of
the scatterers S(™") in the 3D plane by (2., Yn, /B2 — y2),
where x,, and y,, are random variables. Hence, the distribution
of the scatterers S(™") is completely determined by the
distribution of x,, and y,,.

The symbols MSt and MSp, in Fig. [3 stand for the mobile
transmitter and the mobile receiver, respectively. We assume
that the mobile transmitter (receiver) is equipped with a
uniform linear antenna array consisting of Mr (Mpg) antenna
elements. The spacings between the antenna elements at the
transmitter and the receiver antennas are denoted by dr and
dr, respectively. The orientations of the transmitter and the
receiver antenna elements in the zy-plane relative to the x-axis
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Fig. 3. The geometrical SCT scattering model with single-bounce compo-
nents (---), a LOS component (— - —), and a specular component (— - - —)

for an Mr X Mpr MIMO C2C channel.

are described by the angles v and g, respectively. Similarly,
the elevation angles of the transmitter and the receiver antenna
arrays with respect to the xy-plane are denoted by ¢ and ¢,
respectively. The positions of the antenna arrays of the mobile
transmitter MS+ and the mobile receiver MS p are determined
by (zr,yr, 2r) and (zg,yr, 2r), respectively. It is supposed
that the mobile transmitter MS+ and the mobile receiver MS p
are inside the tunnel, such that 0 < z7 < zp < L and
—R < yr <yr < R. It is assumed that there is a LOS path
between the mobile transmitter and the mobile receiver. The
angles a(Tmn), agm), ﬁ(Tmn), and ﬁ%m") denote the AAOD,
AAOA, EAOD, and the EAOA, respectively. Moreover, it is
assumed that both the transmitter and the receiver move with
speeds vy and vy in the direction determined by the angles
of motion ¢! and @[, respectively. The distance Dg’mn
denotes the path length between the /th transmitter antenna
AW (I = 1,2,...,Mr) and the scatterer S, whereas
D%I;mn’k) is the distance from the scatterer S(™™) to the kth
receiver antenna Ag) (k=1,2,..., Mg). Finally, the symbol
D’Er{}l;) denotes the length of the LOS path from the Ith
transmitter antenna to the kth receiver antenna. In our analysis,
we assume single-bounce scattering and consider the scattering
effects only from the scatterers which are located between
the transmitter and receiver. These scatterers are addressed as
effective scatterers.

III. THE REFERENCE MODEL

This section presents the reference model for the MIMO
C2C channel under LOS and NLOS propagation conditions.
From the geometrical SCT scattering model the TVTF will
be derived and presented as a sum of diffuse and LOS
components.

A. The TVTF

The propagation environment inside the tunnel is character-
ized by 3D scattering, where M - N effective scatterers S("")
are randomly distributed on the tunnel wall. The reference
model is based on the assumption that the number of local
scatterers on the tunnel wall is infinite, i.e., M, N — oo. The
MIMO C2C channel can be described by an Mg x M channel
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matrix H(7',t) = [hwi (7', t)] 0 x My » Where by (77, 1) denotes
the time-variant impulse response. The time-variant impulse
response of the reference model can be expressed as

hkl(Tlv t) = hll?lIF(T/ﬂ t) + hk?s (Tlv t) + hzll)E(T/7 t) (1)

where RRIF(7/,t), hEOS(77,t), and h3PE(7/,t) denote the im-
pulse responses of the diffuse, the LOS, and the specular
components, respectively.

To further simplify the analysis, we will use the TVTF
instead of the impulse response. The TVTF is the Fourier
transform of the time-variant impulse response hy(7’,¢%)
with respect to the propagation delay 7/, i.e., Hy(f',t) =
Frr{hi (', 1)} [38 p. 59]. With reference to (1), Hyi(f’,t)
can be presented as

Hiu(f' 1) = HRE(f 1) + Hi?S(f 0 + Hy (1) ()

where HPIF(f',t), HEOS(f',t), and HFE(f’,t) denote the
diffuse, the LOS, and the specular components of the TVTE,
respectively.

From investigations in [40], it is known that single-bounce
scattering components carry more energy than double-bounce
scattering components. Therefore, in our analysis, we model
the diffuse component HPF(f/,t) by only considering the
single-bounce scattering effects. From the geometrical SCT
scattering model shown in Fig. [3] we can observe that the
(m,n)th homogeneous plane wave emitted from the /th trans-
mitter antenna element Ag) travels over the local scatterer
S(mn) before impinging on the kth receiver antenna element
A% Hence, the diffuse component HPF(f',t) of the TVTF

Hy(f',t) of the link from Ag) to Agf) can be derived as [6]
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where
plrm = plmm . plmnk) (4)
Fomm = g 4 ) )
:(an) = fr,.. COS (agpm") - <va> cos ( gpmn)) (6)
I(%mn) = fRo.. COS (ag%mn) — apf‘) cos ( gn")) 7

The symbol D,gln") in (3) denotes the total distance, which
a plane wave travels from the /th transmitter antenna element
to the kth receiver antenna element via the scatterer S(™m™).

The total distance D,(Jl’m) is determined by @) in which the
distances Dg’mn) and Dgzm"’k) are given as in and @)
respectively. In (6) and (7), the symbols fr,... = vr/X and
fRu.. = VR/A denote the maximum Doppler frequencies
associated with the transmitter and the receiver, respectively,
where ) is the wavelength. The symbol cp in (3) is the summa-
tion of the Rice factors cIéOS and C%)E, ie., cp = cléos + C%)E.
The Rice factors %5 and ¥ will be defined below. The
phase (™) in denotes the phase shift caused by the
interaction of the transmitted plane wave and the effective
scatterers S(™")_ It is assumed that the phases 6(™") are
independent, identically distributed (i.i.d.) random variables,
which are uniformly distributed over the interval [0,2).

Finally, the symbol Tl;(lmn) in (3) denotes th(ejropagation delay

(mn)

of the diffuse component. Using D, in (4), the propagation
delays 7™ can be computed as 7" = D" /¢y, where

co is the speed of light. It is worth mentioning that one
can easily extend our analysis on the basis of single-bounce
scattering to the case of double-bounce scattering by following
a similar approach as in [11]].

In an analogous manner, the LOS component Hy S(f/,t)
of the TVTF Hy;(f’,t) in (2) can be written as
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In , f}o) and fl(%o) denote the Doppler shifts of the
LOS component caused by the movement of the transmitter
and the receiver, respectively. The angles ag) ) (6(TO )) and
agg) (6}(;?)) in and represent the AAOD (EAOD)
and the AAOA (EAOA) of the LOS component, respectively.
The symbol C%%os in represents the Rice factor, which
is defined as the ratio of the mean power of the LOS
component to the mean power of the diffuse component, i.e.,
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symbol T,’C(l stands for the propagation delay of the LOS
component. This quantity is given by Tk(o) Dg}g) /co.
Similarly to the LOS component, the specular component
HPE(f',t) of the TVTF Hyy(f',t) in (2) can be presented as
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The symbol c3F in represents the Rice factor, which

is defined as the ratio of the mean power of the specular

component to the mean power of the diffuse component, i.e.,
= E{i%"f(f' DY/ BUHER (1)), The symbol
Dy p'spg in (18) denotes the travelling dlstance of the plane
wave from the [th transmitter antenna element to the kth
receiver antenna element via the specular reflection point
S, The position of the specular reflection point S™)_is
determined by (zs,ys, 2s). The symbols f;l) and fg) n l|
denote the Do J)g)ler shifts of the specular component. The
angles aT (BT 1) (ﬁ ) in and l| represent
the AAOD (EAOD) and the AAOA (EAOA) of the specular
component, respectively. The symbol T]/c(ll) in stands for
the propagation delay of the specular component, which is
given by T,'C(ll) = Dg}g.)SPE/CO' In analogy to [38, p. 61],
the LOS component H,%los( f’,t) and the specular component
HPE(f,t) of the TVTF are deterministic processes, while
the diffuse component HP'F(f/,t) is a stochastic process.

B. The Elevation and the Azimuth Angles

In the reference model, the position of all effective scatterers
S(mn) is described by the Cartesian coordinates (', Yn).

With reference to Fig. [3] we take into account that the
AAQOD agf'm) and the AAOA a("m) are dependent. By using

trigonometric identities, we can express the AAOD agpm"),

AAOA o™ EAOD 8™, and EAOA B in terms of
the coordinates (2, ¥,,) of the position of the scatterers S (™)
as follows [37]:

| B f@m,yn), if yn > ;i
—g(zm, R2 < %
Bi<$ma yn) = { g( xy:my:;;) , if \/.Rziyn2 > ;z (25)

where the index ¢ refers to the transmitter (receiver) if ¢ =T
(i = R). The functions f(z,y) and g(x,y) are given in (26)
and (27)), respectively.

IV. CORRELATION PROPERTIES OF THE REFERENCE
MODEL

In this section, we derive a general analytical solution for
the STF-CCF, which will then be used to compute the 2D
space CCF, the 2D TF-CCEF, the temporal ACF, and the FCF.

A. The STF-CCF

Using (2), the STF-CCF between the TVTFs Hy,(f’,t) and
Hyp(f,t) can be expressed as
prikr (07,0, V', 7) == E{H;(f' ) Hpy (f'+ V', t+7)}
= PR (01,0, V', 7)
+ Pk (07, 0R, V', 7)
+ Pkt (07,68, V', 7) (28)

where () denotes the complex conjugate, and E{-} stands for
the expectation operator that applies to all random variables:
the phases #(™") and the coordinates x,, and y,, defining the
position of the scatterers S(™").

Using (3), the STF-CCF p.; (67, 3R, v/, 7) of the diffuse
component HP'F(f,t) can be expressed as
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The expression above has been obtained by averaging over
the random phases 6(™") Here, it is important to note that
the quantities cll, ™) dk;?,") f(mm) and T,’C(lm") are functions
of the coordinates x,, and ¥,. The random variables x,, and
Yy, are supposed to be i.i.d. uniformly distributed, such that

their probability density functions (PDFs) are given by [37]
v
(zr —z7)

1 .
3R if ye (—R,R)

Da,, () = , if = € [z, zR] (32)

Py, (y) = (33)
respectively. Hence, the joint PDF p,, . (z,y) of the random
variables z,, and y, can be expressed as the product of the
marginal PDFs p,, (z) and p,, (v), i.e.,

Pimyn (T,Y) = DPa,, () Dy, ()
S if z € [xp,zR]
= QR(IR—.’IZ‘T)’ T:LR]

€(—R,R). (39

The infinitesimal power of the diffuse component corre-
sponding to the differential coordinates dx and dy is pro-
portional to py, ., (x,y)dzdy. In the limit as M, N — oo,
this infinitesimal contribution must be equal to 1/(MN), i.e.,
1/(MN) = pg,.y., (z,y)dzdy. Consequently, the STF-CCF

PP (87, 8R, v/, 7) of the diffuse component in (29) can be
wrltten as

1 R TR
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Pri,k'l (67, 0R, V', T) 2R(zn — v17)(crt D cw (z,y)
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thi@,y) = — (DY (@.y) + D (@.p)) (41)
0

By using the functions in (]E[) and (9), the distances
D! )(a: y) and D( )(as y) in can be expressed as shown in
@) and (#3), respectwely In @) and (@0), we recall that the
AAOD (AAOA) ar(z,y) (ar(z,y)) and the EAOD (EAOA)
Br(z,y) (Br(x,y)) are functions of the coordinates (z,y) of
the scatterers according to (24) and (23), respectively.

The STF-CCF pi$ k,l,((ST, Ogr, V', T) of the LOS component
can be expressed as

LOS T (0) T(O)V
o 0,5,/ 7) = B0l ) )

Ft1 Crpr Qg ©
where
Cl(lo/) 0327 S (1=1) cos dr cos yr (47)
d;(i)/ ejzﬂ R (k—k') cos dp cos (ag’)—m) .(48)
Analogously to the LOS component, the STF-CCF

P3¥E 1 (07,0R, V', ) of the specular component can be pre-
sented as

CgE ()d(l) _/27r(f( T— TM 1/')

priier Or, 0r, V', 7) = ey djoe (49)
where
cﬁ) — I2m S (1=1) cos ¢ cos yr (50)
a4 - (927 (k=) cos o cos () —vn) 51)

B. The 2D Space CCF

The 2D space CCF pg i (dr,0r) is defined as
pkl,k’l’(5T75R) = E{Hgl(f/,t)Hk/l/(f/,t)}, which is equal
to the STF-CCF py i1 (07,0, v/, 7) atv/ = 0and 7 = 0, i.e.,
pkl,k/l/(5T,5R) = PkLE1 (5T75R7070)- HGHCG, the 2D Space
CCF can be presented as

R zgp

1
1 6 5 = ’
prt kv (07, OR) SRrm— o) (en 1) //Cu (z,9)

—RzxT

(0) 4(0)
1w g

CLOS
. dkk’ ((I,', y)dxdy + c it

. CRE )0
n+1 Cpr Cpger

(52)



C. The 2D TF-CCF

The 2D TF-CCF of the reference model is defined as
the correlation of the TVTFs Hy;(f',t) and Hy(f',t), ie.,
pa (V' 1) = E{H}(f',t)Hu(f + vV',t + 7)}. The 2D
TF-CCF pg;(v/,7) can easily be obtained from the STF-
CCF ppiiv (07,0, v, 7) by setting the antenna element
spacings 6 = 0 and g = 0 to zero, i.e., pp(v',7) =
pkl,k/l/(0,0, l//,T). Thus,

R zp

1 .
(W 7) = / pi2m ()T
Pl T) = R —wr)en + 1)
—Rzr
e P2 @)Y Gy
CIROS ej27r(f(0)'rf'r;€(10)u')
cr+1
SPE . (1)
CLeﬂ""(f(l)T—"'kz v ) ) (53)
cr+1

From the 2D TF-CCF two further correlation functions can be
derived, such as the temporal ACF and the FCF.

D. The Temporal ACF

The temporal ACF of the TVTF H(f’,t) of the transmission
link from AY (1=1,2,..., M) t0 AW (k=1,2,..., Mg)
is defined by ry (1) = E{H;,(f",t)Hu(f,t + 1)} (41l p.
376]. Alternatively, the temporal ACF r;(7) can be obtained
directly from the 2D TF-CCF py,; (v, 7) by setting the fre-
quency separation variable v’ to zero, i.e., rx;(7) = pri(0, 7).
In both cases, we obtain

RacR

1

327 F (@97 doed
ri(7) 9R(zr — 27)(cr + 1) ¢ v
—Rzxr
4 CLROS ejQﬂf(O)T CSR?E ej27'rf(0)7‘ (54)
cr+1 cr+1

for k = 1,2,...,Mr and | = 1,2,..., M. Note that the
temporal ACF 7y;(7) in is independent of k and [, which
means that all TVTFs Hy,;(f’,t) modelling the link from Ag)

to Ag) are characterized by the same temporal ACF ry;(7)
forall k=1,2,..., Mg and [ =1,2,..., Mrp.

E. The FCF

The FCF of the TVTFs Hy(f',t) and Hy (f' + v/,¢t) is
defined by (V') = E{H},(f',t)Hu(f + v',t)} [41l p.
376], which is equal to the 2D TF-CCF pg;(v/,7) at 7 = 0,
i.e., re (V') = pri(V/,0). Thus, the FCF can be written as

1 R zp
(V) = =927 (@Y o d
kl( ) QR(CUR — -TT)(CR + 1) 4
—Rxr
LOS SPE
+ ‘R e—jQTrT;(LO)V/ 4 Cr e—jQﬂ'T);(ll)V/ ) (55)
cr+1 cr+1

In contrast to the temporal ACF ry;(7), the FCF rg (V')
depends on k and [ due to the propagation delays 7}, (z, y) and
T,/g(lo). However, by assuming that the antenna element spacing

of the transmitter (receiver) antenna array dp (6g) is small in

comparison to the radius R of the tunnel arch, we can take
profit from the inequality max{dr,dr} < R. Consequently,
the total travelling distance D ,Jln") in () can be approximated
as

D\~ p 4 pir) (56)

where D;m") and Dg’m) are given in and , respec-
tively. Thus, the propagation delays 7, (x,y) and T,’Cl) will be

independent of k and .

FE. The Doppler power spectral density (PSD)

The Doppler PSD is the Fourier transform of the temporal
ACF ry (1) with respect to 7, i.e., Sy(f) = Fr{ru(r)} 38
Sec. 3.3]. Hence, the Doppler PSD can be presented as

oo

/ T‘kl(T)Gijzﬂ-deT.

— 00

Sy(f) = (57)

The two most important statistical quantities characterizin
the Doppler PSD Sy (f) are the average Doppler shift B}l

and the Doppler spread BJ(CQ) [38, Sec. 3.3]. The average

Doppler shift B}l) describes the average frequency shift that
a carrier frequency experiences during the transmission over a
multipath fading channel. The average Doppler shift is defined
as the first moment of Sy(f), which can be expressed as
follows

T 18p(har
BJ(£1) _ —00

< . (58)
Jsi(ndf

The Doppler spread BJ(?) describes the frequency spread
that a carrier frequency experiences during the transmission
over a multipath fading channel. The Doppler spread is defined
as the square root of the second central moment of .S f( f),ie.,

o LB s
Bf =

= (59)
J Sy

According to [38, Sec. 3.3], the average Doppler shift Bj(fl)

and the Doppler spread B}2) can alternatively be computed by
using Fourier transform techniques enabling to express these
quantities in terms of the ACF ry,;(7) and its first and second
time derivatives at the origin as follows:

W _ 1 70
By = o o) (60)
. 2 .
g®» _ 1 <m(0)) _ (0) 61
f 2 Tkl(()) ’I“;Cl(O) ( )



G. The power delay profile (PDP)

The PDP measures the average power associated with a
given multipath delay 7;;,. The PDP is the inverse Fourier
transform of the FCF with respect to v/, i.e., Sﬂéz (t7,) =
f,;l{rkl(z/)} [38} Sec. 7.3]. Hence, the PDP can be expressed
as

o0

Ser (Th) = /rkl(vl)eﬂ”,”;ldy’.

— 00

(62)

From the PDP S,/ (7;;), we can derive two other important
characteristic quantities, namely the average delay and the

delay spread. The average delay is denoted by BS) and
kl
defined as the first moment of the PDP S, (77,), i.e.,
fﬁézsr,’cl(ﬁéz)dﬁgz
B =2 (63)
kl

STéz (17,)dT],

The delay spread is denoted by B( ) and defined by the
square root of the second central moment of S (Tkl),

~BY) 8, ()
(2) Tlil Tkl kl kl
B =

Thi

(64)

Sy (14,)dT],

kl

Alternatively, the equivalent expressions for B( ) and B(2)

can be obtained by using Fourier transform techmques Wthh

allows us to present the average delay Bi,) and the delay
kl

spread B( ) in terms of the FCF rr (V') as well as its first
and seconél frequency derivative at the origin as [38], p. 64]

1
Tkl 21§ ri(0)
and
] 2 .
1
B® _ m(0) " _ 7w(0) 66)
Thi 27 r%1(0) 711(0)
It is worth mentioning that owing to the inequality

max{dr, g} < R, both the average delay BS) and the delay
kl
spread BS) can be independent of k£ and [.
kl

V. THE SIMULATION MODEL

In this section, we describe the simulation model and we
provide some background information on the parametrization
methods usually used to determine the parameters of the sim-
ulation model. Furthermore, we also present a measurement-
oriented method for the computation of the model parameters.

A. Description of the Simulation Model

The reference model presented in Section III is an ana-
lytical model, which assumes an infinite number of scatter-
ers (M, N — o0). Owing to the practical implementation
complexity, the reference model is non-realizable. However,
the reference model described in Section III can serve as a
starting point for the derivation of stochastic and determin-
istic simulation models. Using the generalized principle of
deterministic channel modelling [38, Sec. 8.1], a stochastic
simulation model can be obtained from the reference model
described by (2) by using only a finite number of scatterers.
By employing this concept, an accurate and efficient channel
simulator can be designed, which allows us to reproduce
the statistical properties of the reference model with high
accuracy controlled by M and N. Several different models
are available that can be used for the simulation of mobile
radio channels. Here, we have used an SOC model, which
allows the efficient modelling and simulation of mobile radio
channels under realistic non-isotropic scattering conditions.
A detailed description of SOC models can be found in [42]]
and [43]]. In the literature, several parametrization techniques
for SOC models have been proposed, such as the extended
method of exact Doppler spread (EMEDS) [6], the LPNM
[42]], and the generalized method of equal areas (GMEA) [44]].
In our proposed model, we computed the model parameters
by using the L,-norm method (LPNM), which is one of the
best parameter computation methods for the design of SOC
channel simulators.

B. The Measurement-Based Computation of the Model Param-
eters

In this section, we determine the set of model parameters
P {R .’L'T,yT,ZT,LL'R,yR,ZR,CR} dCSCI'ibiIlg the SCT

scattering model in such a way that the Doppler spread By (2)

and the delay spread B&kl) of the reference model in and

match the corresponding Doppler spread B @ and delay

spread BT“ of the measured channel, respectively. To find the
set of model parameters P, we minimize the error function:

Enin = Wi E, + Wy E, (67)

where W7 and W5 denote the weighting factors. The symbols
E; and Es in stand for the absolute errors of the Doppler
spread and the delay spread, respectively, which are defined
as

*(2)

B, = argmln‘B ;2)‘ (68)

Ey, = argmln‘B:,(z)—
P kl

(69)

and (69), the notation argminf(x) denotes the set
xT

)
of ents that achieve the global minimum of f (x). At the
beginning of the optimization procedure, the weighting factors
W1 and Wy are selected such that they satisfy the equality
W1 4+ Ws = 1. There are scarcity of measured channels with
respect to both delay statistics and the Doppler statistics in
tunnel environments. Therefore, we use only the delay spread



TABLE I
MEASUREMENT-BASED PARAMETERS OF THE SCT SCATTERING MODEL
AND THE RESULTING DELAY SPREAD.

Scenario I Scenario II
SCT model 25 =8m 25 =25m
Parameters 2% = 2.5 m [36] 25 = 2.5 m [36]
rp=25m | 2 =50 m zf =50 m
R (m) 9.87 6.83 7.14
z7 (m) 0.01 0.01 0.012
yr (m) 0.01 0.01 0.01
z (m) 8.2 79 2.57
zRr (m) 224 54.66 53.9
ypr (m) 0.01 0.01 0.01
zr (m) 2.7 2.64 2.62
CR 0.5 0.51 0.52
Measured
delay spread 10 5 5
le,f) (ns) [36]
Theoretical
delay spread 10 5 5
Bf_zi (ns)

of the measured channel reported in [36]. Thus, we have set the
weighting factor W to zero, implying that the error function
Ein in equals Fy;, = Es.

By using the measured channel in [36], we have computed
the measurement-based model parameters under two different
scenarios, called Scenario I and Scenario II. Scenario I and
Scenario II stand for the cases where the transmitter antenna
height z7. is set to 8 and 2.5 m, respectively, while the receiver
antenna height 2% equals 2.5 m for both cases. For Scenario I,
two points were used for the mobile receiver MSg in the z-
axis, i.e., % = {25,50}. However, for Scenario II, we have
considered only one point for MSy, in the x-axis, where MSr
and MSg were separated from each other by 50 m, i.e., z =
50. For the computation of the model parameters, we have
considered 200 scatterers (cisoids), i.e., M x N = 10 x 20.
For the measured channels in [36], the measured delay spreads
B:},f) are presented for two different scenarios in Table [Il In
the same table, we have also presented the resulting optimized
model parameters and the corresponding delay spreads B( )
From the results found for the simulation model, we observe
an excellent fitting of delay spreads of the simulation model
to those of the measured channel, which proves the validity
of the proposed SCT scattering C2C channel simulator. It is
worth mentioning that not only the delay spreads but also the
transmitter and receiver antenna heights closely agree with
those used in the measured equipment (see Table [I).

VI. NUMERICAL RESULTS

This section presents numerical results obtained by eval-
uvating (52)-(55) and (66). The correctness of the analytical
results will be verified by simulations. The performance of the
tunnel channel simulator has been assessed by comparing the
temporal ACF and the FCF with the corresponding correlation
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Fig. 4. Absolute value of the 2D space CCF |p1122(d7, dr)| of the reference
model for an NLOS propagation scenario (cg = 0).

functions of the reference model described by (54) and (53)),
respectively.

As our geometrical scattering model, we consider an SCT
with a radius of R =5m and a length of L = 100m. With
reference to Fig. 3] the locations of the transmitter and the re-
ceiver are defined by the Cartesian coordinates (zr, yr, 21) =
(20m,2m,1m) and (zg,yr,2r)=(40m,2m,1m), respec-
tively. For the reference model, all numerical results have been
obtained by choosing the following parameters: p! =X =0°,
¢r=0¢r=45, yr=yr=45°, and fr,,.. = [R,.. =91 Hz.

In [20], it is stated that the LOS component may contain
more than just the true LOS signal, for example, the ground
specular component. In our numerical studies, for the sake
of simplicity, we do not take into account the effect of the
specular component, i.e., c%f’E is set to zero. Thus, the Rice
factor cp equals cg = cléos + CSI‘%PE = CIROS, which was chosen
from the set {0,0.5,1}. The effective scatterers are randomly
distributed on the SCT wall over a length of zg —2x7 = 20m.
The LPNM has been used to optimize the parameters of the
simulation model by assuming a finite number of scatterers
(cisoids). For the simulation model, the number of scatterers
was set to M x N = 30 x 20.

The absolute value of the 2D space CCF |p11,22(d7,dR)|
of the reference model has been computed by using (52).
The obtained results are illustrated in Fig. [] for an NLOS
(cr = 0) propagation scenario. We can observe that the 2D
space CCF |p11,22(07,0R)| decreases as the antenna element
spacings o7 and Jg increase. For comparison reasons, the
absolute value of the 2D space CCF is depicted in Fig. [5] for a
LOS (cg = 1) propagation scenario. As can be seen in Fig.[3]
under LOS propagation conditions, the TVTFs H(f',t) and
H(f'+v',t+7) are highly correlated even for relatively large
antenna element spacings.

Similarly, the absolute value of the 2D TF-CCF |p;;1(v/, 7)|
of the reference model has been evaluated by using (53).
Figs. [6 and [7] illustrate the results for NLOS (cg = 0) and
LOS propagation scenarios. Regarding the influence of a LOS
component, the 2D TF-CCF |pq1 (¢, 7)| behaves similar as the
2D space CCF.
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Fig. [§] illustrates the absolute value of the temporal ACF
|rri(7)| for the case that the transmitter and the receiver are
moving with the same speed in the same direction. A good
match between the temporal ACF of the reference model and
the simulation model can be observed. Fig. [§|demonstrates also
that the experimental simulation results of the temporal ACF
match very well with the theoretical results. The experimental
results have been obtained by computing the time average
of the deterministic SCT simulation model making use of
MATLAB function xcorr.m.

Fig. [9] illustrates the absolute value of the FCF |ri;(v/)]
for the same scenario. A good agreement between the FCF
of the reference model and the simulation model can be seen.
Again, it can be observed that the experimental simulation
results of the FCF match very well with the theoretical ones.
From Fig.[9] we can conclude that our proposed SCT scattering
model can be considered as a frequency-nonselective channel
model for DSRC systems [14]], where the system bandwidth
is 10 MHz. From both Figs. [§|and [9] we can observe that the
approximation errors caused by a limited number of scatterers
(cisoids) M and N can in general be neglected in the presented

R

AT
ol
gossny

1 vt
0.8
0.6
0.4

0.2

TF-CCF, |pn(V/,7)|

0
0

40 o
. 0™
al 0 k)
Separartiou 80 o Sg{)m
0.06 100 . e0n®Y
» (s ) Y\‘eo*\\

0.02
Tt’?]npol
0.04

Fig. 7. Absolute value of the 2D TF-CCF |p11(v/,7)| of the reference
model for a LOS propagation scenario (cg = 1).
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Fig. 8. Absolute value of the temporal ACF |ry;(7)| of the reference model
and the temporal ACF of the simulation model for different Rice factors cg.

domains of 7 and v/ if M > 30 and N > 20.

In Fig. |10} the absolute value of the FCF |ry; ()| is shown
for different transmission links Ag) — Ag) (I,k = 1,2) under
LOS propagation conditions. It is interesting to see that the
FCF |ri;(v')] has the same curves for the transmission links
Ag} ) _ Ag) and Ag ) _ Ag), which shows the symmetrical
positions of the mobile transmitter and the mobile receiver.

Figs. and present the delay spread BS) evaluated
by using (66) for different values of the SCT arch radius R
under NLOS and LOS propagation conditions, respectively.
By increasing the tunnel arch radius R from 5 to 8 m, we
can observe that the delay spread increases. By comparing
Figs. and we can see that the delay spread under LOS
propagation conditions is smaller than the one under NLOS
conditions. This fact can be attributed to the presence of a
strong direct path.

Fig. shows the delay spread Bg? for different trans-
mission links from Agﬁ) to Agf) under NLOS propagation
conditions, where the transmitter (receiver) antenna element
spacing d7 (dg) is in the order of the tunnel radius R, such
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as 07 = dg = 3. Similarly to Fig. [I0} from Fig. [13]it can
be observed that the delay spread B7,; has identical graphs
for the transmission links A(T1 — Ag) and Ag? ) _ Ag), which
attributes to symmetrical positions of the mobile transmitter
and the mobile receiver. For comparison reasons, in Fig. [E[,
we present the delay spreads Bfiz for small values of dp
and 0g, i.e., 7 = dg = 0.3\. One can see that the delay
spreads Bg? are the same for all transmission links from A
to Agf) (I, k = 1,2), which means that the delay spread Bé,)
can be considered as independent of [ and k if the inequality
max{dr,0r} < R holds.

VII. CONCLUSION

In this paper, a reference model for a wideband MIMO C2C
channel has been derived by starting from the geometrical SCT
scattering model. In this model, it has been assumed that the
scatterers are randomly distributed on the wall of an SCT.
Taking into account single-bounce scattering under LOS and
NLOS propagation conditions, we have analyzed the STF-CCF
of the reference model. To find a proper simulation model,
the SOC principle has been applied. It has been shown that
the designed SOC channel simulator approximates closely the
reference model with respect to the temporal ACF and the
FCF. Moreover, the delay spread of the reference channel
model has been evaluated and presented for both LOS and
NLOS propagation environments. A validation of the useful-
ness of the proposed model has been done by demonstrating
an excellent fitting of the delay spreads of the reference
model to those of measured channels. Validating the proposed
channel model with respect to the other channel statistical
quantities could be a topic for future studies, if the required
measured data is available. Numerical results have shown that
the proposed model can be considered as a narrowband model
for DSRC systems, where the system bandwidth is 10 MHz.
The proposed channel model allows us to study the effect
of multipath propagation on the performance of future C2C
communication systems under propagation conditions, which
are typical for tunnels.
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