
This master’s thesis is carried out as a part of the education at the University of Agder 

and is therefore approved as a part of this education. However, this does not imply that 

the University answers for the methods that are used or the conclusions that are drawn. 

 

 

University of Agder, 2016 
Faculty of Health and Sport Science 

Institute of Public Health, Sport & Nutrition 
 

 

 
 
Prevalence of Relative Energy Deficiency in Sport among well-trained 

male Norwegian cyclists and long-distance runners 
 

 
 
 

Thomas Birkedal Stenqvist 
 
 

 
 
 

Supervisors 
Monica Klungland Torstveit, Associate Professor 

Øystein Sylta, PhD student 
 

 
 
 
 
 
 

 

 

 
 



 



 I 

Abstract 
Introduction 

Relative Energy Deficiency in Sport (RED-S) links low and reduced energy availability (EA) with 

negative health and performance consequences, though not well investigated in male endurance 

athletes. The aim of this study was to investigate the prevalence of RED-S and associated health 

consequences in well-trained male endurance athletes. 

 

Methods 

Forty-one subjects, cyclists (n=21) and runners (n=20) [age: 40 (31-45) years; BMI: 23.5 (21.4-24.0) 

kg/m2; body-fat: 14.0% (10.0-16.5%); training volume: 12 (9-16) h/week presented as median + 

interquartile range] were recruited. Protocol included assessment of bone health, body composition, 

resting metabolic rate (RMR), blood pressure, energy intake, energy expenditure, hormonal 

biomarkers, blood glucose and lipids. 27 subjects were included in the final analysis. 

 

Results 

Eighteen subjects had reduced EA (<40kcal/kgFFM/day) and showed a trend of lower RMR ratio 

compared to the optimal EA group (0.83 vs. 0.86, P=0.026). Six subjects had low bone mineral 

density (BMD), but not related to EA status. The reduced EA group showed a trend of higher BMD 

in femur (P=0.037), hip (P=0.057), lumbar spine (P=0.01) and total body (P=0.035). No associations 

between groups were observed in hormonal biomarkers, blood glucose or blood lipids.  

 

Conclusion 

We found high prevalence of reduced EA accompanied by metabolic alterations in this group of 

well-trained athletes. However, no differences were observed between EA groups in either 

anthropometric, hormonal biomarkers, blood glucose, blood lipids or BMD. This may indicate that 

well-trained male endurance athletes are better protected against associations to negative health 

consequences in combination with reduced EA, compared to female endurance athletes. 

 

Keywords 

Athlete health, bone health, energy availability, hormonal biomarkers, male endurance athletes, 

resting metabolic rate 

 

Due to word limitations in the master thesis, the following will only be present in the article (part 2); 

results, discussion regarding results and conclusion.   
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Sammendrag 
Introduksjon 

Relativ energimangel innen idrett (RED-S) knytter lav- og redusert energitilgjengelighet (EA) med 

negative helse- og prestasjonskonsekvenser, men dette har ikke vært undersøkt i tilstrekkelig grad 

blant mannlige utholdenhetsutøvere. Formålet med denne studien var å undersøke forekomsten av 

RED-S og de assosierte helsekonsekvenser blant godt trente mannlige utholdenhetsutøvere. 

 

Metode 

41 subjekter, syklister (n=21) og løpere (n=20) [alder: 40 (31-45) år; kroppsmasse indeks (KMI): 

23.5 (21.4-24.0) kg/m2; kroppsfett: 14.0% (10.0-16.5%); trener: 12 (9-16) timer/uke presentert som 

median med interkvartil bredde] ble rekruttert. Protokoll inkluderte måling av beinhelse, 

kroppssammensetning, hvilemetabolisme (RMR), blodtrykk, energiinntak, energiforbruk, 

hormonelle biomarkører, blodglukose og blodlipider. Total ble 27 subjekter inkludert i den endelige 

analysen.  

 

Resultater 

18 subjekter hadde redusert EA (<40kcal/kgFFM/dag). Gruppen med redusert EA tenderte til lavere 

RMR ratio sammenlignet med gruppe med optimal EA (0.83 vs. 0.86, P=0.026). Seks subjekter 

hadde lav benmineraltetthet (BMD), men dette var ikke relatert til EA. Videre, gruppen med redusert 

EA viste en trend til høyere BMD i lårhals (P=0.037), hofte (P=0.057), lumbalcolumna (P=0.01) og 

helkropp (P=0.035). Det ble ikke observert noen forskjeller mellom antropometriske data eller 

hormonelle biomarkører. 

 

Konklusjon 

En høy forekomst av redusert EA ble observert, inkludert en trend til en metabolsk forskjell. Det ble 

ikke observert noen forskjeller mellom gruppene på hverken antropometriske data eller hormonelle 

biomarkører i relasjon til EA. Videre, redusert EA var ikke relatert til lav BMD. Slike resultater kan 

indikere at mannlige utøvere kanskje er bedre beskyttet mot negative helsekonsekvenser som 

kommer fra redusert EA, sammenlignet med kvinnelige utholdenhetsutøvere. 

 

Nøkkelord 

Beinhelse, energitilgjengelighet, hormonelle biomarkører, hvilemetabolisme, mannlige 

utholdenhetsutøvere, utøverhelse 
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1. Introduction 
In all types of sports, body weight and body composition are important to both athletic performance 

and athlete health (Ackland et al., 2012). Athletes’ ways of maintaining body composition vary from 

both healthy methods to pathological and extreme methods in order to reduce body mass quickly 

and/or to gain competitive advantages (Donnelly et al., 2009; Sundgot-Borgen et al., 2013). The 

consequences of extreme dieting or very low body weight in female athletes in particular are 

associated with unhealthy hormonal alterations, degeneration of bones and alterations of 

reproductive function, and in a worst case scenario, can be fatal (Ackland et al., 2012; Mountjoy et 

al., 2014; Nattiv et al., 2007). Such states of extreme dieting and low body weight are now present in 

more and more sport disciplines, where especially athletes in endurance sport, aesthetic sport and 

weight-class sports seem to be more at risk compared to athletes from other sports (Sundgot-Borgen 

et al., 2013). Alterations in energy intake (EI) to change body composition do not always alter body 

weight however, and it has been observed, that athletes with low dietary intake in some cases 

maintain their body weight, but alter metabolic functions such as their resting metabolic rate (RMR) 

(Redman et al., 2009).  

 

Research on possible negative associations between reproductive function and body composition 

originally began in the mid 1980s when Barbara Drinkwater found a relationship between menstrual 

dysfunction and low bone mineral density (BMD) in female athletes (Drinkwater et al., 1984; 

Drinkwater, Nilson, Ott, & Chesnut, 1986). Research developed, but for a long period focused on 

females where several position stands on this topic were released in the 1990s up until 2014 

(Drinkwater, Loucks, Sherman, Sundgot-Borgen, & Thompson, 2005; Nattiv et al., 2007; Otis, 

Drinkwater, Johnson, Loucks, & Wilmore, 1997). During this period it was observed that females, 

especially in endurance sports and sport emphasizing leanness, had a prevalence of one or more of 

the discovered components of what is defined as the female athlete triad (Triad) (Nattiv et al., 2007). 

The components of the Triad are energy availability (EA), menstrual function and BMD (see 

theoretical background for more information), and move on a continuum from health to disease and 

the prevalence has been reported to be relatively high amongst elite female athletes (Torstveit & 

Sundgot-Borgen, 2005). Studies of females have shown that reducing EA by <30 kilocalories 

(kcal)/kg fat-free mass(FFM)/day results in different hormonal changes, such as a reduction in blood 

glucose, triiodothyronine (T3), luteinizing hormone, insulin and insulin-like growth factor-1 (IGF-1) 

(Loucks & Thuma, 2003; Loucks, Verdun, & Heath, 1998).  

Scientific research has subsequently classified EA that is less than 30kcal/kgFFM/day as low EA, 

30-44 kcal/kgFFM/day as reduced EA and ≥45 kcal/kgFFM/day as optimal EA, but these 

classifications are limited to female athletes (Mountjoy et al., 2014). 
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Only defined for females until recently, the interpretation of the Triad underwent a major revision in 

an International Olympic Committee (IOC) position stand from 2014, where the IOC stated that the 

Triad was no longer limited to female athletes but also included male athletes (Mountjoy et al., 

2014). The IOC incorporated the Triad into a more comprehensive description named “Relative 

Energy Deficiency in Sport” (RED-S), where EA is still the main essence of the RED-S model 

(Mountjoy et al., 2014). There further exists an uncertainty on how to classify cut-off points for the 

different EA categories (low, reduced and optimal) in male athletes, where different studies have 

used different cut-off for the categories (Koehler et al., 2016; Viner, Harris, Berning, & Meyer, 

2015). Based on assumptions that the energy costs of the male reproductive function costs less 

compared to females (Bronson, 1985), the cut-off point for reduced and optimal EA in males have 

been proposed to be set at 40kcal/kgFFM/day, but the cut-off point for low EA remains uncertain 

due to lack of scientific research targeting males (Koehler et al., 2016). Research into RED-S in male 

athletes, however, is not as extensive as research involving females and the Triad, and studies 

investigating the prevalence of EA among male athletes and how this impacts both performance and 

health variables are generally lacking (Mountjoy et al., 2014). A study of male soldiers subjected to 

severe energy deficiency found lower levels of testosterone, T3 and IGF-1 compared to controls with 

much lesser energy deficit (Friedl et al., 2000). Another study by Koehler et al. (2016) found that 

male athletes, who exercised more than three hours/week, subjected to an EA of <15 

kcal/kgFFM/day reduced their leptin and insulin levels, but not IGF-1, testosterone or T3. Despite 

these findings, the research involving male athletes in general is very limited. 

 

The main aim of this master’s thesis is to investigate the prevalence of reduced energy availability 

and associations between reduced energy availability (<40kcal/kgFFM/day) and selected health 

variables among well-trained male Norwegian cyclists and long-distance runners. 

 

1.1.  Research question and null-hypothesis 

Research question 

What is the prevalence of reduced energy availability and what are the associations between reduced 

energy availability and selected health variables among well-trained male Norwegian cyclists and 

long-distance runners? 
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Null-hypothesis 

This study’s null-hypotheses are the following: 

• Well-trained male cyclists and long-distance runners do not show signs of reduced energy 

availability. 

• Reduced energy availability in well-trained male cyclists and long-distance runners is not 

associated with low BMD. 

• There are no differences in metabolic function between well-trained male cyclists and long-

distance runners with reduced energy availability and optimal energy availability. 

• There are no differences in hormonal biomarkers between well-trained male cyclists and 

long-distance runners with reduced energy availability and optimal energy availability. 

1.2.  Delimitation of the thesis 
This thesis will look only at the prevalence of reduced EA and possible associations with selected 

health variables, but recognizes that EA is a more complex phenomena and the elements are more 

interrelated than the theoretical section emphasizes. Due to limitations in this thesis, other 

components of the concepts of RED-S than described in the theoretical section will therefore not be 

in focus (such as, but not limited to, gastrointestinal, hematological and immunological factors). It is 

recognized, however, that all factors can and will in some way affect each other in combination with 

EA. This master’s thesis will therefore focus only on bone health, hormonal biomarkers and 

metabolic factors and describe the available knowledge on this theme in combination with EA. There 

is no room for detailing the different effects of every hormone tested, and this can be found in 

textbooks such as McArdle, Katch, and Katch (2015) and papers such as Loucks (2014).  

 

Researchers have also focused on female athletes and defined three groups of EA; Optimal EA, 

reduced EA and low EA (Nattiv et al., 2007). Due to limited research on male athletes, this thesis 

will only focus on reduced EA in males, defined as <40kcal/kgFFM/day based on Koehler et al. 

(2016). The term “reduced EA” in this thesis in male athletes is therefore adequate in terms of both 

low and reduced EA used in female athletes.  
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2. Theoretical background 

2.1.  Cycling 
Cycling is a type of exercise where mechanical energy is generated in order to overcome external 

resistance (riding position, body mass, rolling resistance, air resistance and gradient) (Jeukendrup, 

Craig, & Hawley, 2000). One method of going faster in cycling refers to decreasing the various 

sources of resistance, where one key element is to reduce the mass (i.e. the weight of the cycle or the 

rider), which is crucial for changing the power demands (Jeukendrup et al., 2000). Furthermore, 

there are three ways in which bodyweight slows a rider down: hindering acceleration, adding mass to 

be carried uphill and adding rolling resistance (Jeukendrup et al., 2000). Professional riders who 

participate in Tour de France are estimated to have a daily energy expenditure (DEE) of between 

5,700–9,500 kcal per day during the race (Saris, van Erp-Baart, Brouns, Westerterp, & ten Hoor, 

1989). Although well-trained cyclists never reach the same energy demands as professionals, they 

still have high energy demands during training (Jeukendrup et al., 2000). Cycling is defined as a non-

weight-bearing activity due to the absence of ground reaction force during cycling and therefore has 

little osteogenic effect on the skeletal system (Nichols, Palmer, & Levy, 2003; Warner, Shaw, & 

Dalsky, 2002). 

2.2.  Running 
In running, the aim is to move the centre of mass of the body forward, using muscles to exert force 

on the ground and thereby creating a forward movement (Kaneko, 1990). Some of the factors which 

influence running performance are maximum oxygen uptake (VO2max), running economy, stride 

length and stride rate (Foster & Lucia, 2007; Hall, 2007). It usually takes three to six hours for 

recreational athletes to complete a marathon and requires a great expenditure of energy (Loftin et al., 

2007). Energy expenditure for completing the Boston marathon was estimated by Costill and Fox 

(1969) to be 2410 kcal for elite runners. Loftin et al. (2007) estimated the energy expenditure of 

recreational runners to be approximately 2792kcal in a marathon, but this depended on factors such 

as body size. Running is defined as a weight-bearing activity and research has shown that runners, 

compared to sedate control groups, have equal or slightly better bone health (Scofield & Hecht, 

2012). Compared to other types of high-impact sports, running has consistently shown lower BMD, 

especially within endurance running where EA can be critical for bone health (Scofield & Hecht, 

2012). 
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2.3.  Historical perspectives on the Triad and Relative Energy Deficiency in 

Sport 
Research into the Triad syndrome had a breakthrough in the early 1980s, when it was observed in 

two studies that female athletes with menstrual dysfunction had low BMD (Cann, Martin, Genant, & 

Jaffe, 1984; Drinkwater et al., 1984). Furthermore Drinkwater et al. (1986) found that females with 

menstrual dysfunction did not significantly improve their BMD even after they had returned to a 

normal menstruating cycle pattern (eumenorrhea) and normal body weight. These new findings led 

to the assumption that females with a menstrual dysfunction would be at a greater risk of losing bone 

mass and subsequently developing osteoporosis. Research furthermore linked female athletes with an 

eating disorder and a menstrual dysfunction to low BMD and in 1992, the American College of 

Sports Medicine (ACSM) defined this phenomenon as “the female athlete Triad” (Triad) (Yeager, 

Agostini, Nattiv, & Drinkwater, 1993). The Triad was later revised by the ACSM in 1997 (Otis et al., 

1997), and in 2005 the IOC released its position stand relating to the Triad. They outlined that girls 

and women should participate in sport, but that health professionals played an important part in the 

well-being of these athletes and in understanding the influence of nutritional factors on both the 

reproductive function and skeletal health (Drinkwater et al., 2005). The ACSM redefined its position 

stand on the Triad again in 2007 (see Figure 1) as follows: “The female athlete triad (Triad) refers to 

the interrelationships among energy availability, menstrual function, and bone mineral density, 

which may have clinical manifestations including eating disorders, functional hypothalamic 

amenorrhea, and osteoporosis” (Nattiv et al., 2007, p. 1867).  

 

 
Figure 1. The female athlete Triad includes a continuum from optimal energy availability, optimal bone 
health and normal menstrual function to low energy availability, osteoporosis and menstrual dysfunction, 
which impairs the health of athletes (Nattiv et al., 2007).  
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Almost all research on the Triad up until 2014 was done on female athletes, and the Triad seemed to 

be limited to women only. This changed, however, when the interpretation of the Triad underwent a 

major revision in an IOC position stand from 2014 (Mountjoy et al., 2014). In this statement the IOC 

declared that the Triad is no longer confined to female athletes but also includes male athletes 

(Mountjoy et al., 2014). The IOC reformed and renamed the syndrome to Relative Energy 

Deficiency in Sport (RED-S). This new definition states that; “The syndrome of RED-S refers to 

impaired physiological function including, but not limited to, metabolic rate, menstrual function, 

bone health, immunity, protein synthesis, cardiovascular health caused by relative energy 

deficiency” (Mountjoy et al., 2014, p. 1). Insufficient energy or EA is the essential component of 

RED-S which supports a range of functions in the organism involved in optimal health and 

performance (Mountjoy et al., 2014). RED-S includes not only menstrual function and bone health as 

variables, but also immunological factors, endocrine factors (hormonal biomarkers), metabolic 

factors, haematological factors, growth/development, physiological factors, cardiovascular factors 

and gastrointestinal factors (see Figure 2) (Mountjoy et al., 2014). Another new element of the RED-

S syndrome is that it now also includes and recognizes different negative aspects on performance 

variables (see Figure 3) such as decreased glycogen stores, decreased muscle strength, decreased 

endurance performance (anaerobic and aerobic), increased injury risk, decreased training response, 

impaired judgment, decreased coordination and decreased concentration as well as irritability and 

depression (Mountjoy et al., 2014).  

 

 

Figure 2. Health consequences from Relative Energy 
Deficiency in Sports (RED-S), from Mountjoy et al., 
(2014). The red area is what is known as the Triad for 
female athletes. 

Figure 3. Performance consequences from Relative Energy 
Deficiency in Sports (RED-S), from Mountjoy et al., 
(2014). 
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2.4.  Energy availability 

The main problem underlying RED-S is a lack of energy to support a range of different body 

functions in order to achieve optimal health and performance for all athletes (Mountjoy et al., 2014). 

As a way of quantifying EI in relation to energy spent in training and daily life, scientists use EA in 

relation to fat-free mass as a way of assessing athletes and their potential risk of jeopardizing their 

health (Mountjoy et al., 2014; Nattiv et al., 2007).  

2.4.1. Definition 

EA is often referred to as a continuum from optimal EA to low EA with or without an eating disorder 

(Nattiv et al., 2007). Nattiv et al. (2007, p. 1868) define EA as “dietary energy intake minus exercise 

energy expenditure, energy availability is the amount of dietary energy remaining for other body 

functions after exercise training.” Mathematically, EA can be calculated as follows: EA=(EI - 

EEE)/FFM, where EI is energy intake (kcal/day or kJ/day), EEE is exercise energy expenditure and 

FFM is fat-free mass (Loucks, 2014). Melin (2015) has defined EEE more precisely in her equation 

and subtracts both resting metabolic rate and non-exercise activity thermogenesis (NEAT) from the 

duration of exercise. The formula used by Melin (2015) is as follows: EA=(EI - (EEE - (DEE - 

EEE))/(FFM). 

 

Different studies and position stands have defined EA, but almost all use female athletes as their 

point of reference (Loucks, 2014; Melin et al., 2015; Mountjoy et al., 2014; Muia, Wright, Onywera, 

& Kuria, 2015; Sundgot-Borgen et al., 2013). Traditionally, EA has been grouped into different 

categories; low EA (<30 kcal/kgFFM/day); reduced EA (30-44 kcal/kgFFM/day); and optimal EA 

(≥45 kcal/kgFFM/day) (Gibbs, Williams, & De Souza, 2013; Loucks, 2004). Only a few studies have 

investigated EA in male athletes and defined the categories of EA, and no agreement exists about 

these categories. Two studies have used the same definitions for both male and female athletes 

(Loucks, Kiens, & Wright, 2011; Viner et al., 2015), and one recent study used a slightly lower cut-

off (<40kcal/kgFFM/day) between optimal and reduced EA in male athletes, but proposed no new 

cut-off point for low EA in male athletes (Koehler et al., 2016). 

2.4.2. Prevalence 

Studies of low EA have focused on female athletes, but low EA has also been reported in male 

athletes (Sundgot-Borgen et al., 2013). Although studies of low EA in male athletes are few, it seems 

that low EA is found in some of the same risk sports as for female athletes (Mountjoy et al., 2014). 

These sports include weight-sensitive sports, where leanness and/or weight are important factors for 

performance (long-distance running, road cycling, etc.) and weight-class sports disciplines such as 

boxing and wrestling (Sundgot-Borgen et al., 2013). Low EA with as little as 8 kcal/kgFFM/day has 
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been reported in elite male cyclists in a cross-sectional study by Vogt et al. (2005). Furthermore, a 

high prevalence of underweight was reported in a longitudinal study including world-class male ski 

jumpers (Muller, Groschl, Muller, & Sudi, 2006).  

 

Low EA causes the amount of energy used for thermoregulation, growth, cellular maintenance and 

reproduction to be reduced by physiological mechanisms (Wade, Schneider, & Li, 1996). However, 

this compensation seems to reinstate energy balance, which helps survival, but can damage the 

health of the athlete (Nattiv et al., 2007). Factors especially influencing EA seem to be various eating 

disorders and/or excessive exercise (Mountjoy et al., 2014). Both eating disorders and disordered 

eating are serious mental disturbances with huge effects on the body and, in a worst case scenario, 

are lethal (Smink, van Hoeken, & Hoek, 2012). These types of mental disturbances are highly 

prevalent among athletes, both adolescents and adults participating in weight sensitive sports such as 

aesthetic sports, cycling, running, cross-country skiing, and horse-racing (Baum, 2006; Torstveit, 

Rosenvinge, & Sundgot-Borgen, 2008). In one of the largest epidemiological studies to date, 

Sundgot-Borgen and Torstveit (2004) assessed the prevalence of eating disorders in 687 Norwegian 

male and female athletes compared to 629 non-active control persons. The study showed an 8% 

prevalence of eating disorders among the male athletes and 0,5% prevalence among the male 

controls. The researchers also found a higher prevalence (12.9%) of eating disorders among males 

participating in sports where leanness is important (aesthetics, weight-class, anti-gravitation and 

endurance sports) compared to sports where leanness is not as important (4.6%) (power, technical, 

ball-game and motorsports) (Sundgot-Borgen & Torstveit, 2004). The prevalence of eating disorders 

and/or disordered eating in male elite athletes has been found to be as high as 50% in cycling 

(Ferrand & Brunet, 2004) but also in contact and combat sports such as wrestling and boxing (Schaal 

et al., 2011; Sundgot-Borgen & Torstveit, 2004).  

2.4.3. Risk-factors and possible associations between reduced energy availability and 

selected health variables 

2.4.3.1. Bone health 

Movement, exercise and training are all important factors for the development of bone health and for 

increasing BMD, and are especially important during development and growth (Khan, 2001). To 

optimize bone strength and thereby decrease the risk of fracture, both males and females must 

accumulate and maintain peak bone mass throughout the lifespan (Tenforde, Barrack, Nattiv, & 

Fredericson, 2015). Bone strength is dependent on bone mass, bone size, shape, microarchitecture or 

a combination of all elements (Khan, 2001). The density, including internal structures of the bone 

mineral and the quality of bone protein are important factors for bone strength and the risk of 
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fracture, and may explain why some people suffer from fractures while others do not, even though 

their BMD is equal (Nattiv et al., 2007).  

 

BMD is often referred to on a continuum from optimal bone health to osteoporosis, whereas 

osteoporosis is defined as ‘‘a systemic skeletal disease characterized by low bone mass and 

microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and 

susceptibility to fracture” (Kanis, 2002, p. 1929) (see also Figure 1).  

Low BMD is defined by the International Society of Clinical Densitometry in children and 

adolescents  as a Z-score of -2 or less, and osteoporosis is defined as a Z-score of -2 or less including 

a fracture, and therefore cannot be classified by Z-score alone (Lewiecki et al., 2008). Athletes 

participating in high-impact sports are often observed having a 5–15% higher BMD than non-

athletes (Tenforde & Fredericson, 2011). Athletes are therefore expected to have a higher BMD 

compared to the normal population (Tenforde, Barrack, et al., 2015). This is not always found in 

endurance athletes, where a “below average” or even “low BMD” is often observed (Tenforde, 

Barrack, et al., 2015). Low BMD for athletes is defined by ACSM as a Z-score between -1 and -2 

and can include a stress fracture, nutritional deficiencies or other secondary clinical risk factors for 

fracture. Osteoporosis is defined by a Z-score of -2 or lower in athletes (Nattiv et al., 2007). 

 

Several other elements play a role in the acquisition and maintenance of peak bone mass, where 

genetics is the strongest (Nattiv et al., 2007). The timing of impact also seems to play a role in how 

strong a gain in BMD a person will acquire, where the second decade of life seems especially 

important and here BMD may almost double (Tenforde, Barrack, et al., 2015). Research has 

indicated that most males achieve their peak accumulation of BMD between 13 to 15 years of age, 

and that they acquire their maximum bone mass when they reach the age of 20 years (Heaney et al., 

2000). The loss of BMD in adulthood is not always an accelerator of osteoporosis, but may be linked 

to not acquiring optimal BMD as a child or adolescent (Borer, 2005; Nattiv et al., 2007). A recent 

39-year prospective cohort study by Tveit, Rosengren, Nilsson, Ahlborg, and Karlsson (2012) 

showed no serious decline in BMD from an already high baseline (active athletes) to follow-up 

(retired athletes) in male runners, soccer players, swimmers and weight-lifters, indicating that peak 

bone mass is an important factor for BMD later in life. Research suggests that people who continue 

to participate in sports will maintain the full benefits of a peak bone mass and even maintain some 

benefits if they stop participating (Tenforde & Fredericson, 2011). Results of under-stimulation of 

the bones is clearly seen during prolonged bed rest and in space-flight where weightlessness 

eliminates the mechanical stress on the bones resulting in a decline in bone strength (Bikle & 

Halloran, 1999).  
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Other significant factors for optimal BMD are diet (especially EA, calcium and vitamin D) and 

exercise (type, intensity, frequency and duration), where high-impact and multidirectional exercise, 

such as soccer, volleyball and martial arts seems to promote the strongest gains in BMD (Fredericson 

et al., 2007; Kohrt et al., 2004). For this reason, bone strength and bone density seem to be 

determined by the kind of strain exerted by the bones. Wolff´s law explains how various 

physiological stress factors results in the adaptation of the bone structure, thereby ensuring that 

material proportion, geometry and bone mass are equal to and appropriate for the applied load of the 

bones (Khan, 2001; Wolf, 1995). Endurance activities such as cycling, long distance running and 

swimming do not seem to promote a gain in BMD due to the low impact loads and repetitive 

movements (Guillaume, Chappard, & Audran, 2012; Tenforde, Barrack, et al., 2015; Tenforde, 

Fredericson, Sayres, Cutti, & Sainani, 2015). A systematic review by Olmedillas, Gonzalez-Aguero, 

Moreno, Casajus, and Vicente-Rodriguez (2012) found that cycling did not have osteogenic effects 

on bone, most likely because these athletes spend many hours in a weight-supported position on the 

bike and also due to the long recovery time of sitting or lying, especially in competitive road cycling. 

Research has found that the prevalence of osteopenia and osteoporosis is quite high (up to 70%) 

among male road cyclists (Nichols et al., 2003). Cross-sectional studies of male athletes have 

reported low BMD or osteoporosis in sports that emphasize leanness, such as horce-racing (jockeys), 

running and cycling (Dolan, Crabtree, et al., 2012; Rector, Rogers, Ruebel, & Hinton, 2008). 

 

Degeneration of the bones also seems to be related to weight loss and in general low body weight 

amongst athletes. Low body weight or weight reduction reduces BMD which seems to be caused by 

reduction in mechanical loading on the bones and changes in hormones (Ihle & Loucks, 2004). 

Research also indicates that low EA at all deficiency levels is an independent factor of poor bone 

health, due to a decrease in bone formation markers and IGF-1 levels (Mountjoy et al., 2014). 

Furthermore, an increase in hormones such as stress-hormones and cortisol in relation to low EA 

seems to have a negative effect on BMD (Fuqua & Rogol, 2013), whereas Hind, Truscott, and Evans 

(2006) have proposed that low levels of testosterone might be related to low BMD in male athletes. 

It has also been shown that, in the absence of disordered eating there is still a high risk of low BMD 

in endurance athletes in non-weight-bearing activities (Guillaume et al., 2012; Rector et al., 2008; 

Smathers, Bemben, & Bemben, 2009). Finally, bone loss appears to be irreversible (Keen & 

Drinkwater, 1997).  
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2.4.3.2. Hormonal biomarkers 

Research on female athletes has shown that there is a risk of developing functional hypothalamic 

amenorrhea in a state of low EA (Nattiv et al., 2007). Menstrual dysfunction is relatively simple to 

detect (Tenforde, Barrack, et al., 2015), but the long term-effect of low EA on the reproductive 

functions in females is still unknown (Mountjoy et al., 2014).   

 

Studies involving females have also focused on other hormonal biomarkers. An experimental study 

found that sedentary women with an EA of <30kcal/kgFFM/day for more than five days reduced 

insulin, leptin, IGF-1 and glucose availability, and increased growth hormone (GH) (Loucks et al., 

1998). Leptin, which is mostly produced in fat cells, plays an important role in regulating and 

suppressing the appetite in healthy adults (Fuqua & Rogol, 2013). Low EA seem to reduce the levels 

of leptin, which then enhances the release of neuropeptide Y and agouti-related peptide which 

ultimately leads to an increase in appetite and a risk of binge eating (Loucks & Thuma, 2003; 

Torstveit et al., 2008). Furthermore, in a review article, Warren (2010) reported lowered levels of 

leptin in patients with eating disorders, and the author highlights that in females, low blood glucose, 

low T3, elevated cortisol and total cholesterol are often observed in patients with eating disorders 

such as anorexia nervosa. One randomized, repeated-measure experiment in sedentary women found 

that five days of EA of < 30kcal/kgFFM/day reduced blood glucose and biomarkers of bone 

formation, elevated cortisol and suppressed hypothalamic-pituitary-axis hormones such as T3 and 

luteinizing hormone (Loucks & Thuma, 2003).  

Loucks (2014) has further proposed that biomarkers for the investigation of low availability of 

energy and glucose in athletes could be the ratio between GH and insulin. GH along with insulin is a 

regulator of the cycling of fatty acids in adipose tissue, whereas GH stimulates lipolysis, insulin 

inhibits lipolysis (Loucks, 2014). Therefore, the ratio between GH and insulin may lead to elevation 

in ketones in the urine, which is a key sign of accelerated lipolysis. Glucose deficiency also lowers 

levels of T3, which is a key stimulant in mitochondrial biogenesis and ATP production, and could 

reduce skeletal muscles’ ability to produce mechanical work and power, thereby influencing 

muscular endurance, strength and power (Loucks, 2014). It has also been found that lowered levels 

of oestrogen in females as a result of low EA can negatively adjust the lipid profile and vascular 

function (Rickenlund, Eriksson, Schenck-Gustafsson, & Hirschberg, 2005). Furthermore it has been 

found that athletes with menstrual dysfunction can have higher levels of low-density lipoprotein 

(LDL) compared to normal menstruating athletes (Rickenlund et al., 2005). 

 

Similar conditions in male athletes, such as the evaluation of the reproductive function, require 

advanced techniques and may therefore obscure the connection between low EA and reduced 
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reproductive function. In trying to clarify and find such conditions, the clinical symptoms are few 

and such evaluation may require fertility and sperm analysis (De Souza & Miller, 1997; Tenforde, 

Barrack, et al., 2015). Studies including sports such as cycling, running or other sports that 

contribute to leanness or weight-sensitiveness have found lower levels of reproductive hormones in 

male athletes including but not limited to testosterone (Tenforde, Barrack, et al., 2015). In relation to 

testosterone only, a study by Griffith, Dressendorfer, Fullbright, and Wade (1990) found that 

testosterone levels were reduced by 12% in well-trained endurance athletes training more than 1 - 2 

hours a day, 6-7 days a week. A prospective study by Wheeler, Singh, Pierce, Epling, and Cumming 

(1991) reported a decrease in testosterone levels in 15 previously sedentary males, who started 

running up to 56 km a week over a period of six months. A cross-sectional study by Hackney, 

Fahrner, and Gulledge (1998) showed significantly lower serum testosterone levels in well-trained 

male endurance athletes, compared to a sedate control group. However, two other studies of runners 

did not find lower levels of testosterone compared with a sedentary control group (Bagatell & 

Bremner, 1990; McColl, Wheeler, Gomes, Bhambhani, & Cumming, 1989). Another study from 

Safarinejad, Azma, and Kolahi (2009) found that testosterone decreased, but sex hormone-binding 

globulin, which is a major transport protein for testosterone in males, increased as a result of 12 

weeks of moderate and high-intensity training. 

 

In relation to alterations in hormone production, combined with reduced EA, two prospective studies 

of male wrestlers found that GH increased during the season, while testosterone and IGF-1 decreased 

in conjunction with reduced EA, which lead to reduced body weight, muscle strength and fat mass 

(Roemmich & Sinning, 1997a, 1997b). Field studies of male soldiers have identified a reduction in 

T3, testosterone and IGF-1 when the soldiers were exposed to various levels of energy deficiency 

during long military exercises (Friedl et al., 2000; Kyrolainen et al., 2008). In a study by Friedl et al. 

(2000), soldiers participating in an 8-week US Army Ranger course were exposed to four repeated 

cycles of energy restriction of either 1200 or 1000 kcal/day. During these energy restrictions, a 

decline to “below normal reference” in T3 was observed, testosterone plummeted to near-castration-

levels, levels of IGF-1 were halved and cholesterol increased. When refeeding the soldiers between 

the cycles, an immediate normalization was observed in T3, testosterone and IGF-1, leading the 

researchers to suggest that T3, testosterone and IGF-1 are reliable markers of energy deficiency in 

males (Friedl et al., 2000). In the study by Kyrolainen et al. (2008) male soldiers participating in a 

three-week (20-days) field exercise, with a weekly energy deficit of 4000, 450 and 1000kcal/day, 

reported an increase in cortisol and GH combined with a decrease in insulin and testosterone levels 

in week one. During the second week, cortisol and GH returned to base levels. It was further 

observed that testosterone and insulin also recovered to base levels after week three, suggesting that 
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energy deficiency of <1000 kcal/day allows for recovery of hormonal changes in males over time 

(Kyrolainen et al., 2008). Another recent study on male jockeys by Dolan, McGoldrick, et al. (2012) 

reported that elevated IGF-1 and sex hormone-binding globulin concentrations was related to low 

BMD in relation to the low body weight of the jockeys. 

2.4.3.3. Metabolic factors 

RMR, which usually represents 55 - 65% of the DEE in normal sedentary people (Speakman & 

Selman, 2003), can be described as a combination of different metabolic processes that includes the 

energy cost of basic physiologic functions (growth, reproduction, thermoregulation, immunity and 

cellular maintenance) (Melin, 2015). FFM is the largest determinant of RMR, but energy balance 

also seems to play a key role (Speakman & Selman, 2003). A review by Wade and Jones (2004) 

found that when humans do not ingest enough energy to maintain basic physiological processes, the 

body prioritizes the processes that are crucial for survival, such as cell maintenance, circulation and 

neural activity. A RCT-study by Redman et al. (2009) and an experimental study by Goldsmith et al. 

(2010) found that humans who were subjected to long-term low EA were in some cases preserving 

their body tissue as a result of metabolic adaptations such as increased work efficiency or reduced 

RMR.  

 

Thyroid hormones such as thyroxine (T4) and T3 are often referred to as the major metabolic 

hormones, involved in the adjustment of RMR (McArdle et al., 2015). Thyroid hormones are also 

involved in the regulation of growth and development, the skeletal and nervous system and 

reproduction (McArdle et al., 2015). Research on trained endurance athletes has shown that they 

have an elevated RMR after exercise, which can be maintained for a minimum of 36 hours 

immediately after the end of the training session (Sjodin et al., 1996). A cross-sectional study of 

female athletes with a menstrual dysfunction, has shown a lower RMR compared to eumenorrheic 

athletes (Lebenstedt, Platte, & Pirke, 1999). In order to identify low RMR, the term “RMR ratio” is 

widely used in the literature in relation to female athletes. The RMR ratio is described as the ratio 

between measured RMR (RMRm) and predicted RMR (RMRp) and is defined as “normal” when the 

RMR-ratio is >0.90 in female athletes (De Souza et al., 2008; Melin, 2015). In some studies 

involving patients with an eating disorder, the RMR ratio has been reported to be between 0.60 - 

0.80 (Marra et al., 2002; Platte, Lebenstedt, Ruddel, & Pirke, 2000). 

 

Few studies have focused on metabolic alterations in relation to reduced EA in male athletes, but one 

recent randomized cross-over study by Papageorgiou, Elliott-Sale, Greeves, Fraser, and Sale (2015) 

evaluated changes in metabolic markers, including IGF-1 and T3 hormones in 11 males. The subjects 

completed two experimental five-day trial periods; a restricted EA trial (<15kcal/kgFFM/day) and a 
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controlled EA trial (45kcal/kgFFM/day). The researchers found no differences in either metabolism 

or hormonal biomarkers between the periods, which may suggest that more restricted levels of EA 

are necessary for seeing changes in this group of males (Papageorgiou et al., 2015; Tenforde, 

Barrack, et al., 2015).  

2.4.4. Prevention and treatment of low energy availability 

In order to prevent low EA, the IOC has established recommendations to address RED-S (Mountjoy 

et al., 2014). Several important factors are highlighted, including but not limited to educational 

programmes on RED-S (including healthy eating, nutrition, EA, risks etc.) and to reduce the 

emphasis on weight (and emphasize nutrition) (Mountjoy et al., 2014). To develop realistic goals in 

relation to body composition and weight, coaches should avoid negative and critical comments 

regarding the weight of an athlete, use well-established scientific information and, finally, promote 

an awareness that good performance does not always equal good health (Mountjoy et al., 2014). 

 

To treat low and reduced EA, athletes should either increase their EI, decrease their energy output or 

persue a combination of both (Mountjoy et al., 2014). Adding energy-rich supplements to athletes’ 

daily EI combined with a small reduction in energy output or a weekly resting day is currently the 

only established scientific method of successfully increasing EA among athletes (Mountjoy et al., 

2014). Despite the fact that these studies are few and their sample sizes are small, the researchers’ 

interventions successfully restored energy balance and restored hormones to normal levels (Dueck, 

Matt, Manore, & Skinner, 1996; Kopp-Woodroffe, Manore, Dueck, Skinner, & Matt, 1999). Not all 

studies following the same strategy have produced similar results, perhaps due to the many 

underlying and physiological factors of RED-S (Guebels, Kam, Maddalozzo, & Manore, 2014; 

Mountjoy et al., 2014). The consensus statement from the IOC suggests a practical treatment of 

implementing an eating plan to increase EI by 300-600 kcal/day combined with practices in relation 

to the time of energy ingestion around training sessions and dietary composition (Mountjoy et al., 

2014).  

 

In general, there are limited evidence-based guidelines to assist both the athlete and the coach in 

relation to RED-S and sport participation (Mountjoy et al., 2014). Guidelines from the Norwegian 

Olympic Training Centre and expertise from the IOC Consensus group have been used to develop a 

new model to help athletes and coaches assess the health-risk of sport participation (Mountjoy et al., 

2014). This model is named Return-to-Play, and is currently used in Norway (Mountjoy et al., 2014). 

The model consists of three categories (high risk: red light, moderate risk: yellow light and low risk: 

green light). Athletes in the red light group are not allowed to participate in competitions, since it 

could seriously jeopardize their health. Athletes in the yellow light group can participate in 
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competition, but with supervised participation and a medical treatment plan. Athletes in the green 

light group can participate in competition without restraint (Mountjoy et al., 2014). 

3. Materials and methods 

3.1.  Design and recruitment 

The study design in this master thesis is cross-sectional, designed to measure the prevalence of 

reduced EA in 41 well-trained male endurance athletes. In this study, subjects were recruited in two 

phases. Twenty one cyclists were recruited in phase one during the spring of 2015 in addition to 20 

runners in phase two during the autumn of 2015 (see Figure 4). The ethical part is presented in 

section 5. 

3.2.  Subjects 
The cyclists were recruited through local cycling clubs, as part of an on-going training intervention 

study (Sylta et al., 2016, unpublished). The runners recruited were all active at regional level, 

competing and training for various distances such as 10 km, half-marathon, marathon, ultra-running 

and orienteering. Some of the runners also competed at a national level at distances of 10km, 

marathon and orienteering. At the group level, subjects were categorized as well-trained according to 

Jeukendrup et al. (2000). 

3.2.1. Criteria for inclusion/exclusion of subjects 

This study used inclusion criteria based on Jeukendrup et al. (2000) defining the difference between 

trained, well-trained, elite and world-class cyclists. Due to the anthropometry and the difference 

between cyclists and runners, both inclusion criteria from the trained and well-trained groups were 

used to assess whether the subjects should be included. 

The inclusion criteria were: 

• male. 

• absence of disease or injuries that prohibit participation 

• ≥18 but ≤ 50 years 

• VO2max ≥ 60mL·kg-1 ·min-1 or ≥ 4.0 L·min-1 

• training volume last year: ≥5 sessions per week 

• history of training: Active bicycle/running for more than 1 year 

The exclusion criteria were: 

• disease/injuries preventing participation in the study 
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3.2.2. Dropouts and exclusion 

One cyclist dropped out for personal reasons. Three other subjects (out of the 41) were excluded 

from the final analysis due to the provision of invalid activity data. One activity tracker had faulty 

measurements and two subjects had only worn the activity tracker during training. Two subjects 

were excluded from the analysis due to complications with the registration, saving and sending of EI 

data for analysis (e.g. one subject only sent two out of four days of food registration). Eight subjects 

were excluded for providing food-registration data of poor validity. Therefore, this study includes 27 

subjects (66% of the subjects recruited) in the statistical analysis (see Figure 4).  

 

 

 
Figure 4. Timeline of recruitment of subjects for phases one and two, dropouts, and exclusion. 
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3.3.  Testing procedure and measurements 

The subjects in this study were tested on four non-consecutive days. Day 1 measured the 

performance variable, where as day 2-4 measured health variables (see Figure 5). 

 
Figure 5. The study protocol. Testing on day 1, 2 and 3 was performed on the University campus. Testing on 
day 4 was performed at Sørlandets Hospital, Kristiansand, Norway. The subjects met in a state of fasting on 
day 2, 3 and 4. Recording of parameters on days 5-8 was performed in their home-environment. RMR; resting 
metabolic rate, measured using a ventilated hood; DXA, dual x-ray absorptiometry. 

 
Day 1 

3.3.1. Anthropometry 

The height of the subjects was measured using a wall-affixed centimetre scale (Seca Optima, Seca, 

UK). The test was performed without shoes, and was recorded to the nearest cm. The weight of the 

subjects was obtained using an Inbody 720 body composition analyser (InBody 720, Biospace, 

Seoul, Korea), and was performed without shoes and only light clothing.  

3.3.2. Performance measurement 

The subjects went through a standardized warm-up protocol on the treadmill/bicycle, before an 

incremental test to exhaustion was performed to determine the subjects VO2max. The cyclists were 

tested on a Velotron cycling ergometer (Velotron Dynafit Pro, Racermate, Inc., Seattle, WA, USA) 

whereas the test started with one minute of cycling at a power output corresponding to 3 W/kg 

(rounded down to the nearest 50 W), and increased by 25 W/min. until voluntary exhaustion or 
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failure to maintain a cadence ≥ 70 RPM. The runners were tested on a Lode Katana Sport treadmill 

(Lode B.V., Groningen, The Netherlands). In the protocol used, the runners started at 12 km/h with a 

constant positive incline of 3 degrees (corresponding to 5.3% incline). The speed was increased by 1 

km/h/min until voluntary exhaustion. 

 

VO2 was measured using Oxycon Pro™ with mixing chamber and 30 seconds sampling time 

(Oxycon, Jaeger GmbH, Hoechberg, Germany), using a two-way T-shape non-rebreathing valve and 

a reusable nose clip series 9015 (Hans Rudolph, Kansas, MO, USA). Gas sensors were calibrated 

using an automated process using certified calibration gasses of known concentrations before every 

test. The flow turbine (Triple V, Erich Jaeger) was calibrated using a 3L calibration syringe (Hans 

Rudolph, Kansas, MO, USA). Heart rate (HR) was measured using Polar V800 (Polar Elektro Oy, 

Kempele, Finland). Capillary blood samples were analyzed for whole blood using a stationary lactate 

analyzer (EKF BIOSEN, EKF diagnostic, Cardiff, UK). VO2max was calculated as the average of the 

two highest 30-sec consecutive VO2 measurements. Plateau of VO2 curve and/or HR ≥95% of known 

HRmax, RER ≥1.10 and [la-] ≥8.0 mMol.L-1 were used as criteria for the attainment of VO2max. If the 

subject did not have a VO2 plateau, the test was classified as a VO2peak -test, showing the highest 

possibly VO2 the subject could attain on that day, and not the true maximal VO2 level. 

Day 2 
3.3.3. Resting metabolic rate 

Subjects arrived at the laboratory between 6 and 8 a.m. and the testing was estimated to last 

approximately 1 - 1.5 hours. All subjects met in a fasting state according to protocol (Compher, 

Frankenfield, Keim, Roth-Yousey, & Evidence Analysis Working, 2006) and no use of alcohol or 

tobacco was allowed for a minimum of 12 hours prior to the test. Furthermore, the subjects were 

instructed to travel to the lab using only motorized transportation, and under no circumstances were 

allowed to walk or ride a bicycle. Training was restricted to a maximum of 60 minutes of low 

intensity endurance training the day before the test, and at least 12 hours before the test (strength 

training was not allowed).  

 

RMR was measured via indirect calorimetry using a canopy hood (Oxycon Pro, Jeager, Germany). 

and calibrated using the same standards as described in section 3.3.2. The subjects were instructed to 

lie on a bed for a 15-minute rest, in order to minimize errors in measuring RMR before the test began 

(Compher et al., 2006). The measuring of RMR lasted a total of 30 minutes, bringing the total resting 

time to 45 minutes. During the RMR test, the subjects was not allowed to move, talk or fall asleep 

and was checked up on several times by lab personnel. A heart rate monitor from Polar 
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(V800/M400) was used to record the lowest resting HR during the test. An RMR test was declared 

successful if the coefficient of variation for VO2 and VCO2 for the last 20 minutes of the test was ≤ 

10% (Compher et al., 2006). 

3.3.4. Blood pressure 

The resting blood pressure (rBP) and orthostatic blood pressure (oBP) of the subjects were measured 

using an electronic sphygmomanometer (Microlife BP A100, Widnau, Switzerland). Before the 

measurement the cuff was carefully placed 2 cm above the elbow with the tube on the inside of the 

arm pointing downwards. The cuff was firmly closed to fit the arm and at the same level as the heart, 

according to the manufacturer’s instructions (Microlife, 2015). The rBP was first measured three 

times in a lying position. The oBP was then measured three times in a standing position. The first 

result of both rBP and oBP was excluded from the analysis; hence the average of the two last 

measures was used. 
 

In addition, the subjects were lectured on how to weigh and register food and, plot this in on the 

computer and how to use the Polar heart rate monitor. The runners were further instructed in how to 

use and wear an additional activity tracker (Sensewear armband, BodyMedia, Inc., Pittsburgh, PA, 

USA) for comparison between Polar and Sensewear (see section 4.3.3). 

Day 3 
3.3.5. Blood sampling 

On day three, the subjects arrived in a fasting state at the lab between 7 and 9 a.m. for a blood 

sample. A bioengineer took the sample using a tourniquet and the Safety blood collection set 

(Greiner Bio-One, GmbH, Kremsmünster, Austria). A 10-mL BD Vacutainer CAT (BD, Plymouth, 

United Kingdom) was filled and left to stand for at least 30 minutes. After 30 minutes the blood 

sample was centrifuged for 10 minutes at 3000 rpm (StatSpin Express 4, Beckman Coulter, USA) 

and two 1.8-mL Cryotube Vials (Termo Fischer Science, Roskilde, Denmark) were filled with the 

serum using a pipette. The Cryotubes with the serum were immediately placed in freezer at a 

temperature of -18 degrees (Electrolux CF100, Stockholm, Sweden), where they were stored until 

transportation to the analysis institute. Cyclists blood samples was analysed at Hormonlabor C831, 

Bern, Switzerland and the runners blood samples was analysed at Sørlandets Hospital, Arendal and 

at Aker Hormonlab Norway. The serum was analysed for the following hormones: cortisol, total 

testosterone, IGF-1, insulin, glucose, T3, total cholesterol (TC), high density lipoprotein (HDL), low 

density lipoprotein (LDL) and triglycerides. 
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Day 4 
3.3.6. Body composition, including bone health 

The body composition and BMD was measured by the same experienced observer and was obtained 

using dual-energy X-ray absorptiometry (DXA; GE-Lunar Prodigy, Madison, WI, USA) at 

Sørlandets Hospital, Kristiansand, Norway. DXA is an objective method that is non-invasive, very 

accurate and widely used for assessing BMD and risk of osteoporosis. It is considered the “gold 

standard” for measuring bone mass (Kleerekoper, 1998; Marshall, Johnell, & Wedel, 1996). The 

DXA delivers a two-dimensional picture of the site scanned, rather than volumetric density, and 

therefore DXA determines the bone mineral content (BMC) of the scanned area, and divides this by 

area. It is therefore areal density (g/cm2), and not volumetric density (mg/cm3) as a quantitative 

computed tomography would show, that is used in the analysis. 

 

The test was performed in a fasting state between 7 and 9 a.m. on the fourth test day. The subjects 

were instructed to arrive by motorized transport to the hospital. Before the test both weight and 

height were measured, and no jewellery or other ornaments were allowed to be worn during the 

DXA test. Subjects were instructed to lie down, with both hands slightly away from but alongside 

the body and legs were to be kept straight. The DXA scanned the subjects in a supine position from 

head to toe (see Picture 1). 

 
Picture 1. Body composition, including bone health assed by a DXA-scan ("DXA-scan "Picture"," 2014)  
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DXA determines BMC, FFM and BMD at femur neck, total hip, lumbar spine (L1-L4), and total 

body. BMD was classified in the subjects as recommended in previous position statements of 

athletes (Mountjoy et al., 2014; Nattiv et al., 2007): 

• normal BMD: Z-score of higher than -1 in the measured areas 

• low BMD: Z-score between -1 to -2 in at least one area 

• osteoporosis: Z-score of -2 or lower in at least one area 

Day 5-8 

3.4.  Estimations and calculations of energy intake and energy availability 

3.4.1. Estimating energy intake 

A researcher carefully guided the subjects in how to weigh and register the intake of food and 

beverages. All subjects borrowed a kitchen scale from either Exido (Exido 246030 Kitchen Scale, 

Gothenburg, Sweden) or OBH (OBH Nordica 9843 Kitchen Scale Color, Taastrup, Denmark) and 

were instructed in how to weigh their daily intake of food and beverages. The kitchen scales weighed 

to the nearest 1 gram. The subjects logged their food and beverage intake with the food registration 

software Dietist Net (Dietist Net, Kost och Näringsdata, Bromma, Sweden). Dietist Net has access to 

the Norwegian food table (Matvaretabellen 2014), an open Norwegian nutritional information 

database (MILLUM PDB) and the U.S national nutrient database (US Department of Agriculture).  

 

The cyclists were instructed in how to weigh their food and beverages for three days, two weekdays 

and one weekend day and the runners were instructed in how to weigh their food and beverages for 

four days, two weekdays and two weekend days. The days for registering food intake were chosen 

by the researchers, in cooperation with the subjects. The days for registering should be representative 

of their normal days of eating habits, and not contain days that were not representative (e.g. partying, 

travelling). A manual for the programme was distributed to the subjects, which also included a paper 

form where they could record their intake of food and beverages (see Appendix 6). Data on food 

registration was controlled by researchers for under-reporting and poor validity using the Goldberg 

cut-off as described by Black (2000). Subjects who delivered records of poor validity were excluded 

from the analysis (see Figure 4).  
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3.4.2. Calculating energy availability 

Few studies have examined male endurance athletes and defined the categories of EA. Those found 

up until 2015 have used the same definitions of both male and female endurance athletes (Loucks et 

al., 2011; Viner et al., 2015). Based on a study of male and female mammals by Bronson (1985), it 

has been proposed that the female reproductive system requires more energy compared to the male 

reproductive system. An experimental study by Koehler et al. (2016) therefore proposes that the cut-

off point for optimal EA in males should be set at 40kcal/kgFFM/day based on the assumption 

described above. Koehler et al. (2016) proposes no new cut-off for low EA in males, but in their 

experimental design participants experienced EA both at 15kcal/kgFFM/day and 40kcal/kgFFM/day. 

This thesis will therefore use the 40kcal/kgFFM/day as the cut-off point for optimal and reduced EA. 

EA was calculated as EA=(EI - (EEE - (DEE - EEE))/(FFM) as outlined in section 2.4.1. When 

calculating DEE and EEE, we used predefined MET values in different activity and intensity zones 

as defined by Polar (see Appendix 1). 

3.5.  Statistics 
All data were analyzed using SPSS for Macintosh (v. 22; SPSS Inc., Chicago, IL, USA). Figures and 

tables were made using Microsoft Excel 2016 for Macintosh (Microsoft Corporation, Redmond, 

Washington, USA) and GraphPad Prism 7 for Macintosh (GraphPad Software, Inc., 7825 Fay 

Avenue, La Jolla, CA 92037, USA). The subjects were divided into two groups based on their 

current EA status (reduced and optimal EA) and were controlled for missing data and sign of non-

normality using histograms. Due to the small numbers in each group, it was difficult to identify 

normal distribution. All data are therefore presented as non-normally distributed data; median plus 

interquartile range (25 - 75). Due to the non-normality, non-parametric tests (Mann-Whitney U-test) 

was used to search for statistical differences between the groups on all variables. When checking for 

correlation between variables we used Spearman´s rho (ρ) due to non-normal distributed data. When 

assessing for associations between reduced EA and selected health variables, a logistical regression 

was performed on one variable at a time. Odds-ratio (with 95% confidence interval), P-value and 

Nagelkerke R Square was used to assess wheter there were an association between the variable and 

reduced EA. In order not to draw false conclusions based on false statistical significant levels for all 

the different statistical tests performed, an α-level of 0.01 was used. Effect size (ES) was calculated 

in order to interpret the meaningfulness of the results and to identify trends. ES in non-parametric 

data was calculated as r = Z
N

, where N is the total number of cases. We used the criteria from 

Cohen (1988) for ES: 0.1= small effect, 0.3=medium effect, 0.5 = large effect. When medium or 

large ES was observed, results are discussed as trends if comparisons are non-significant.  
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4. Method discussion 

4.1.  Design 
A cross-sectional design tries to describe a phenomenon or different phenomena at a fixed point in 

time, and it is one of the most frequently used study designs for examining relationships between 

exercise and health variables (Polit & Beck, 2014; Thomas, Nelson, & Silverman, 2011). 

Accordingly, this type of study design seems to be a suitable method for investigating the aim of this 

thesis (see section 1.1).  

 

A cross-sectional design is limited in that it only measures outcome and exposure at the given time 

of the study. As a result, it is not possible for this study to identify whether EI, EA or physical 

activity is responsible for the observed effects. This type of design is therefore not suited for drawing 

any conclusions about cause-and-effect since the timing of the relationship between outcome and 

exposure is unknown (Thomas et al., 2011). Another limitation using this type of study design is not 

knowing the longitudinal effects of diet and exercise on the variables assessed in this study. For 

example, we may find that reduced EA correlates with low BMD over a given time point, but the 

longitudinal effects are unknown. 

4.2.  Study sample 
This study recruited 41 well-trained male endurance athletes from the regional area, active within 

either cycling or running. The subjects were a homogeneous group (see Table 1 in the article), and 

represented well-trained athletes as defined by Jeukendrup et al. (2000). Despite having to eliminate 

14 of our study participants from the final analysis, we still have a relatively high study sample 

compared to other studies of EA among male athletes, where the numbers of participants often is 10 

or less (Koehler et al., 2016; Viner et al., 2015). However, despite the relative high number of 

participants compared to other studies, the different numbers in each group (reduced EA, n=18 and 

optimal EA, n=9), make it difficult to gain statistical power and detect true differences (Thomas et 

al., 2011). As a result, one question is whether our results can be generalized. All subjects were in 

good shape and health, and the inclusion criteria ruled out participants with injuries. The subjects in 

our study could therefore be a representative sample of other well-trained cyclists and runners at the 

same age, and could be generalized as other studies have done (Melin et al., 2015). However, due to 

the low numbers of studies published, different sub-group sizes in our study and the fact that we 

have no control group, we find it difficult to generalize our findings. More studies are needed and a 

higher N is probably required to find true statistical differences.  
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4.3.  Measurements 

It can be asserted that testing in sport science is an essential tool for assessing different effects of 

both exercise and lifestyle interventions or for measuring the prevalence of a phenomenon. Testing is 

an “objective” way to assess such variables, but can be difficult. Several factors are important for 

testing and essential to verify; 1) the equipment measurement must be accurate; 2) it is essential to 

control the lab conditions; 3) it is essential to have the same standard protocols for all testing and the 

most important 4) the test must be both reliable and valid (Thomas et al., 2011).  

 

In this study, every effort was made to increase both the reliability and validity of all measurements 

such as using gold-standard methods wherever possible (food weighing and DXA), and to use the 

same procedure and protocol on both cyclists and runners. When not using gold-standard methods, 

calibration, measurements and methods were carried out according to both instructions from 

manufacturers and best-practice scientific papers. Furthermore, we used the same test leader in both 

phases of testing. We also set up the procedure of measurements in an attempt to eliminate any 

possible influencing elements that could potentially affect the tested variables. Clear instructions 

prior to tests, supervision of subjects, well-established contacts between subjects and researchers and 

best-practice methods were used to try to control such elements. In the following, a more in-depth 

discussion of the different measurements is presented. 

4.3.1. Resting metabolic rate 

Due to the complicated structure of RED-S, energy expenditure is an important factor for the 

determination of EA in athletes. Energy expenditure can be both measured and estimated using 

mathematical formulas. However, measurements should be more accurate than estimations (based on 

mathematics), but only if the measurements are performed correctly (Compher et al., 2006). In order 

to measure RMR we chose indirect calorimetry using a canopy hood, due to the proven validity if 

calibrated correctly and low costs of measurements (Westerterp, 2015). To minimize error when 

measuring RMR in our subjects, we carefully followed the instructions from both the manufacturer 

of the Oxycon and the systematic review of best practice methods for RMR by Compher et al. 

(2006). We further extended the total time of active measurement from 10 minutes to 30 minutes, 

and used the last 25 minutes to calculate RMR, instead of 5 minutes as proposed by Compher et al. 

(2006). The Oxycon was calibrated before each measurement according to instructions. Subjects 

were furthermore instructed in how to behave (eating habits and exercise) on the days before and 

during the test, all according to the best-practice method (Compher et al., 2006). In order to calculate 

RMR based on the measurements, we used the Weir (1990) equation, since this equation is widely 

used in studies assessing EA in athletes (De Souza, Hontscharuk, Olmsted, Kerr, & Williams, 2007; 

Melin et al., 2015).  



 25 

When assessing the predicted RMR for use in the calculations of the RMR ratio, several methods 

exist. In the literature both the Harris-Benedict equation (Harris & Benedict, 1918) and the 

Cunningham equation (Cunningham, 1980) are widely used for studying athletes (De Souza et al., 

2007; Kim, Kim, Kim, Park, & Kim, 2015; Melin et al., 2015). Since this study looks at well-trained 

endurance athletes, we used the Cunningham equation, as it is assumed to be the most accurate for 

predicting RMR in athletes (Kim et al., 2015). 

4.3.2. Energy intake 

In general, a reliable and valid assessment of EI is an important factor in sport science and for 

athletes striving to perform (Hill & Davies, 2001). Different forms of food registration, spanning 

from a recall of food eaten, retrospective questionnaire, and diet records exist. Diet records where 

subjects weigh and register their food over a given period are largely considered the most precise and 

accurate method of food registration compared to the cost (Barrett-Connor, 1991). However, 

weighing and registration of food intake over several days has proven to be time consuming and 

boring, and is associated with poor agreement and/or changes of eating habits during the registration 

periods (Barrett-Connor, 1991). The doubly labelled water (DLW) method has proven that subjects 

in many different groups under-report their dietary intake, but the reason is to some extent still 

unknown (Hill & Davies, 2001). The DLW method is furthermore a difficult and expensive method 

for assessing EI, and was not available for use in this present study. Researchers have proposed that 

elements such as poor body-image and weight consciousness may play a significant role in under-

reporting of dietary intake (Lafay et al., 1997). However, despite such challenges in diet recording, it 

is still one of the most widely used methods in studies on both males and females athletes (Melin et 

al., 2015; Muia et al., 2015; Viner et al., 2015; Vogt et al., 2005). To try to overcome the problem of 

under-reporting and to avoid drawing false conclusions, we identified data of poor validity using the 

Goldberg cut-off described by Black (2000) and removed a total of eight subjects from the analysis. 

When reviewing the literature, few studies eliminate under-reporters (Melin et al., 2015), and it is 

therefore believed that the validity of EI in this study is higher compared to other studies. The 

consequences of not eliminating under-reporters could be an over-reporting of the prevalence of 

reduced EA. To this author’s knowledge, however, no formal, well-recognized standard for how to 

evaluate and exclude possible under-reporters exists.  

4.3.3. Physical activity and exercise tracking 

To assess physical activity, the use of accelerometers has become a standard method when using 

field-based research (Welk, Schaben, & Morrow, 2004). Furthermore, activity trackers have become 

more readily available through different manufacturers and provide the consumer with different 

options for self-monitoring of physical activity. In order to use such activity trackers in research they 
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should be reliable and valid. Some validation studies on different types of activity trackers compared 

to both whole-room indirect calorimeter and portable metabolic analysers, which analyses oxygen 

consumption under free-living conditions exists (Adam Noah, Spierer, Gu, & Bronner, 2013; 

Dannecker, Sazonova, Melanson, Sazonov, & Browning, 2013). Studies of validity show that 

activity trackers are useful for estimating both activity and energy expenditure, although all of them 

underestimate physical activity levels and energy expenditure to some extend (Adam Noah et al., 

2013; Lee, Kim, & Welk, 2014). Activities such as cycling and upper body movement are also 

harder to detect for activity trackers due to the motion pattern of the exercise (Lee et al., 2014). 

Furthermore, most commercial activity trackers do not allow researchers direct access to raw data or 

minute-by-minute data, so estimations and calculations must be obtained directly from the software 

provided by the manufacturers (Lee et al., 2014).  

 

However, despite the underestimation by the commercially available activity trackers, they are 

inexpensive, easy to wear (incorporated into a watch), easy to use, non-invasive and small and they 

are objective indicators of physical activity during the period of use (Lee et al., 2014). Our subjects 

were also already very familiar with the use of heart rate monitor. The fact that the Polar V800 and 

M400 were easy to use and accessible at a low cost played an important role in the selection of 

activity tracker to be used in the present study, although this exact type of activity tracker is not yet 

validated. To address this lack of validation, we fitted the runners in phase 2 with a Sensewear 

armband (BodyMedia, Inc., Pittsburgh, PA, USA) paralleling their use of the M400. This was done 

to get an indication of how well Polar and Sensewear correlated at different intensities and activities. 

Our unpublished data show some of the same patterns as other activity trackers do, highlighted by 

Lee et al. (2014), where low-intense activities seem to be the hardest to detect by the Polar 

V800/M400, but overall, the performance of the Polar V800/M400 compared to Sensewear is good. 

Another reason for choosing Polar accelerometer was its ability to get direct access to heart-rate 

monitoring during exercise, which is especially important during activities such as cycling (where 

activity trackers perform poorly). By quantifying heart-rate data during exercise, we were able to 

calculate EEE more directly compared to Sensewear which estimates based on the accelerometer, 

sweat and heat-flux. Due to lack of access to raw data or minute-by-minute data by Polar, we chose a 

metabolic equivalent (MET) value for both sitting, low and medium intensity categories, and we 

chose to base this on the median of each category defined by Polar (Virtanen, 2014). This is difficult 

to interpret, and difficult to control for correctness, but we deemed it the best-suited method of 

assessment. It should be noted, however, that there is a risk of both underestimating and 

overestimating of energy expenditure in these categories.  
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Different methods for quantifying DEE and EEE exist, where heart-rate data, oxygen consumption, 

DLW, accelerometers and self-reported exercise are useful, but all methods have both strengths and 

limitations (Lamonte & Ainsworth, 2001). The DLW method is a very precise method of assessing 

energy expenditure, but is expensive and not readily available (Lamonte & Ainsworth, 2001). 

Assessing EEE in cycling based on accelerometers has proven difficult due to the limited movement 

of the body’s centre of gravity (Lee et al., 2014; Virtanen, 2014). Measuring oxygen consumption 

during exercise in free living conditions has demonstrated good accuracy, but has limitations due to 

cost issues, obtrusive instrumentations, changes in exercise patterns and being resources-intensive 

(Lamonte & Ainsworth, 2001). Although energy expenditure in general has a strong linear relation 

between heart-rate and VO2, there are issues concerning energy expenditure during low and very 

high intensities (Lamonte & Ainsworth, 2001). There are also different factors affecting heart-rate, 

such as stress, body temperature and medication (Lamonte & Ainsworth, 2001). On the other hand, 

heart-rate monitoring is a low-cost method of quantifying the time spent in different intensity zones, 

and all our subjects were experienced in the use of heart-rate monitors during training. During the 

incremental test to exhaustion we determined the HRpeak and the different intensity zones as 

mentioned in section 3.3. As we quantified the time spent in these zones and compared the different 

activity levels based on Ainsworth et al. (2000) and Ainsworth et al. (2011), we believe we have a 

well-reasoned method for estimating EEE in relation to the cost and accessibility of methods. 

4.3.4. Body composition including bone health 

DXA is currently reported to be the gold standard for assessing bone health and diagnosing 

osteoporosis (Kleerekoper, 1998) and is widely used at different hospitals in Norway. To minimize 

the possibility of error, the same technician performed the scans among the groups of cyclists and 

runners on the same DXA machine. Looking at the validity of DXA, we should observe at the 

difference in the estimation between lean and fat-mass measured by DXA compared to true lean and 

fat mass in dead animals (Clarys et al., 2010). However, studies of humans concerning the validity 

and reliability of DXA have only been done using the four-compartment model, which is currently 

regarded as the gold standard to assess body composition (Toombs, Ducher, Shepherd, & De Souza, 

2012). The four-compartment model is a time consuming and expensive method, however, and was 

not available for this study. Several studies have also reported reliable and valid assessments of body 

composition using DXA (Brodowicz, Mansfield, McClung, & Althoff, 1994; Prior et al., 1997), and 

this method was used in the present study instead of bio-impedance (Inbody 720) available at the 

university. Different studies have looked at the precision of DXA, where the aim is to see results 

with little variation, when tests are repeatedly performed under identical conditions. In order to 

quantify the precision, coefficient of variation and correlation coefficients have been used in the 

studies. The CV has been reported to be between 1.7 - 3.6%, depending on the site of measurement, 
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and correlation coefficients have been reported up to 1.0 (Lohman, Tallroth, Kettunen, & Marttinen, 

2009; Phillipov, Seaborn, & Phillips, 2001). We also instructed the participants to follow the 

guidelines prescribed by the hospital and used best-practice articles for subjects in order to obtain as 

precise results as possible (Nana, Slater, Hopkins, & Burke, 2012, 2013).  

4.4.  Calculations 
The predicted RMR (RMRp) can be calculated using several methods such as the Cunningham 

equation or the Harris Benedict equation (see Appendix 1). Studies have shown that the Harris 

Benedict equation in both lean athletes and recreationally active females might underestimate RMRp 

and using it leads to a risk of overestimating the RMR ratio (Kim et al., 2015). Studies have reported 

the Cunningham equation to be the most precise (Gibbs et al., 2013; Kim et al., 2015). Low RMR is 

often defined as an RMR ratio below 0.90, but this definition is mostly used for female athletes (De 

Souza et al., 2008). Since the reproductive function of males probably has lower energy costs as 

described earlier (see section 3.4.2), we chose therefore not to use the 0.90 cut-off point as a 

reference for low RMR, since this may not be the correct reference for males. 

 

When calculating DEE and EEE, we used predefined MET values in different activity and intensity 

zones as described earlier (see Appendix 1). The MET values for normal activity were already 

defined by Polar. Since we had no access to any raw data or minute-by-minute data, we chose to use 

the median MET of each predefined activity zone. When estimating EEE in their daily training, we 

used the time spent in each heart-rate zone (defined by their maximal achieved HR during the 

incremental test), and calculated energy expenditure in each zone by average MET values at different 

intensities for each group of subjects, as defined by Ainsworth et al. (2000). This method has some 

limitations, however. By using the median MET of all activity zones, it is difficult to assess the 

precision of the calculation, due to choosing and locking our calculations based on one specific value 

instead of a range of values when analysing minute-by-minute data. When defining EEE, a study by 

Tomten and Hostmark (2006) used a more extensive protocol, where running economy and heart-

rate at different intensities were analysed and used to calculate EEE during training. This method 

was not used by us, due to a lack of time and funding. This method is deemed more precise, 

however, and is preferable for future studies. On the other hand, to strengthen our calculation for EA, 

we used the same formula as described by Melin (2015), where we subtracted both RMR and NEAT 

from the EEE, thereby giving a more precise estimate of true EEE and thereby eliminating a risk of 

over-reporting reduced EA.  
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4.5.  Strengths and limitations 

The main strengths of the present study are the fact that it involves research into a new and not well-

studied area, where in general, a limited number of studies of male athletes with few participants 

exist. This study is a comprehensive study performed with a high number of participants compared 

to other studies investigating the same subjects (Koehler et al., 2016; Viner et al., 2015). We further 

increased the strength of this study by using the same equipment, test leader and technician in both 

periods of data collection. The study used several well-established and objective measuring methods, 

where DXA is the gold standard in assessing bone health. Although self-reported EI has some 

challenges, the method is currently best suited for assessing EI (Hill & Davies, 2001). Furthermore 

using the Goldberg cut-off is a strength in trying to exclude under-reporters from analysis, which 

may otherwise lead to false conclusions.  

 

There are however several limitations in this study. For instance, the design precludes the 

establishment of a causal relationship between the various variables measured in relation to EA, and 

only examines the prevalence of reduced EA. Also, this study has a duration time, which only looks 

at EA over a few days and may therefore not be able to identify subjects with a genuinely reduced 

EA over time. The absence of a control group in this study makes it hard to compare our findings to 

other populations of athletes or non-athletes. When divided into groups and analysed, this study has a 

lopsided sample size (9 vs. 18), with perhaps not enough statistical power to detect differences 

between groups.  

 

As a result of such a lopsided sample size, lack of statistical power and exclusion of subjects in the 

analysis, a potential of making a type II error exists, where researchers wrongly accepts the null 

hypothesis based on false assumptions and premises. However, due to the large numbers of statistical 

tests performed, we chose to set the α-level at 0.01 to avoid making a type I error, which is to reject 

the null-hypothesis even if it is true, and thereby stating a false negative, but this could further lead 

to an increased risk of a type II error (Thomas et al., 2011). Lastly, due to a lack of funding, we did 

not investigate hormonal biomarkers such as ghrelin and leptin, which are involved in regulating 

hunger and body weight (Melin, 2015), and these could have provided interesting results. A 

limitation in this study was that other markers such as illness, injuries, gastrointestinal function, 

disordered eating and performance effects were not analysed due to the vast method of this study 

combined with limited time to analyse, interpret and write the thesis.  
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5. Ethics 
This project was performed on healthy individuals and examined variables such as body 

composition, nutrition, exercise, hormonal biomarkers and BMD. Both the University of Agder 

Faculty’s Ethical Committee (FEK) and the Norwegian Centre for Research Data (NSD) approved 

this study. The participants in this study received written information before the study began, 

explaining that the study involved testing to exhaustion, fasting before testing, measurement of body 

composition, BP and blood sampling, all of which could cause some discomfort. Furthermore, all 

participants were told that they could withdraw from the study without giving any reason. All 

participants submitted a written consent form. All information about the participants was 

anonymised using a person-specific code, and the key paper that linked the participants name to the 

code was stored in a safe-deposit box. All the available information about the participants (including 

test results) was stored both as hard copy and digitally (USB flash drive). These data were stored in a 

safe-deposit box. All subjects received individual, formal and detailed feedback on variables 

measured, to minimize any possible misinterpretation of the results by the subjects themselves. If 

some of the findings were either lower or higher than population-based reference values, the subjects 

were advised to contact their physician for a follow up. No adverse events of the testing/data 

collections were reported. 
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Abstract 
 
Relative Energy Deficiency in Sport (RED-S) links low and reduced energy availability (EA) with 

negative health and performance consequences. However, this is not well investigated in male 

athletes. The aim of this study was to investigate the prevalence of RED-S and associated health 

consequences in well-trained male endurance athletes.  

 

Forty-one subjects, cyclists (n=21) and runners (n=20) [age: 40 (31-45) years; BMI: 23.5 (21.4-24.0) 

kg/m2; body-fat: 14.0% (10.0-16.5%); exercise: 12 (9-16) h/week presented as median + interquartile 

range] were recruited. Protocol included assessment of bone health, body composition, resting 

metabolic rate (RMR), blood pressure, energy intake, energy expenditure, hormonal biomarkers, 

blood glucose and lipids. 27 subjects were included in the final analysis. 

 

Eighteen subjects had reduced EA (<40kcal/kgFFM/day) and showed a trend of lower RMR ratio 

compared to the optimal EA group (0.83 vs. 0.86, P=0.026). Six subjects had low bone mineral 

density (BMD), however, this was not related to EA status. The reduced EA group showed a trend of 

higher BMD in femur (P=0.037), hip (P=0.057), lumbar spine (P=0.01) and total body (P=0.035). 

No associations between groups were observed in hormonal biomarkers, blood glucose or blood 

lipids. 

 

We found high prevalence of reduced EA accompanied by metabolic alterations in this group of 

well-trained athletes. However, no differences were observed between EA groups in either 

anthropometric, hormonal biomarkers, blood glucose, blood lipids or BMD. This may indicate that 

well-trained male endurance athletes are better protected against associations to negative health 

consequences in combination with reduced EA, compared to female endurance athletes. 

 

Keywords 

Athlete health, bone health, energy availability, hormonal biomarkers, male endurance athletes, 

resting metabolic rate 
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Introduction 
Controlling body weight and body composition are crucial elements of performance in different sport 

disciplines and athletes’ ways of maintaining body composition vary from healthy methods to 

extreme methods in order to reduce body mass quickly and/or to gain competitive advantages 

(Sundgot-Borgen et al., 2013). Athletes experiencing an energy deficiency in order to loose weight is 

not a new phenomenon, but a controlled energy deficit is recommended to safely reduce weight as an 

athlete if needed (Donnelly et al., 2009).  

 

Female athletes with low energy availability (EA) have been observed with a normal body weight, 

and body weight seems to be preserved during long-term low EA. EA is defined as “dietary energy 

intake minus exercise energy expenditure, energy availability is the amount of dietary energy 

remaining for other body functions after exercise training.” (Nattiv et al., 2007, p. 1868), and has 

traditionally been categorized in females as follows: low EA (<30 kcal/kg fat-free mass (FFM)/day), 

reduced EA (30-44kcal/kgFFM/day) and optimal EA (≥45 kcal/kgFFM/day) (Loucks, 2004). Low 

EA and reduced EA can be sustained either by lowering energy intake or exercising excessively or a 

combination of both (Koehler et al., 2016). Studies of female athletes undergoing EA of 

<30kcal/kgFFM/day have shown a reduction in blood glucose, triiodothyronine (T3), luteinizing 

hormone, insulin, leptin and insulin-like growth factor-1 (IGF-1) (Loucks & Thuma, 2003; Loucks et 

al., 1998). Other factors observed are metabolic alterations, such as a reduction in resting metabolic 

rate (RMR) and non-exercise activity thermogenesis (NEAT) (Redman et al., 2009). The prevalence 

of low EA in females has not been investigated properly, however, but it is widely recognized that 

the prevalence of one or more of the severe components (low/reduced EA, menstrual dysfunctions or 

low bone mineral density (BMD)) of what is known as the female athlete triad (Triad) is quite high 

(Nattiv et al., 2007; Torstveit & Sundgot-Borgen, 2005). Furthermore, females participating in 

endurance sports, aesthetic sports, and weight-class sports seem to have the greatest risk of 

developing some of the Triad components compared to athletes competing in other types of sport 

(Nattiv et al., 2007).  

 

Until 2014, the Triad was only related to female athletes, despite increasing support that male 

athletes could also be at risk (Mountjoy et al., 2014). This changed, however, when the International 

Olympic Committee (IOC) released a revised and expanded version, including the Triad, named 

“Relative Energy Deficiency in Sport” (RED-S), where EA is still the main and essential part, but 

now includes male athletes (Mountjoy et al., 2014). It seems that low EA occurs in some of the same 

sports for male athletes as for females, such as weight-sensitive sports, where leanness and/or a low 
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weight are important factors for performance (gymnastics, long-distance running, road cycling, etc.) 

and weight-category sports disciplines like boxing and wrestling (Sundgot-Borgen et al., 2013). Only 

a few studies have investigated male endurance athletes and defined categories of EA, in comparison 

to females. Viner et al. (2015) used the same EA criteria for males as females, whereas Koehler et al. 

(2016) used 40 kcal/kgFFM/day as a cut-off for males between optimal and reduced EA. Severe 

energy deficit has been observed in elite male world-class cyclists at a training camp, where EA as 

low as 8 kcal/kgFFM/day has been reported (Vogt et al., 2005). Furthermore, studies of male soldiers 

undergoing extreme energy deficiency during military exercises have found a severe reduction in 

testosterone, T3 and IGF-1 during four weeks of exercise (Friedl et al., 2000). Another study of male 

soldiers by Kyrolainen et al. (2008) found an increase in cortisol and growth hormone, whereas a 

reduction in insulin and testosterone was observed during energy restriction. A recent controlled 

experimental study of male athletes with EA of 15kcal/kgFFM/day for four days led to a suppression 

of leptin and insulin, but no alterations in IGF-1, T3 or testosterone (Koehler et al., 2016).  

 

The prevalence of low and reduced EA and possible associations with selected health variables in 

well-trained male endurance athletes has not been well investigated. Therefore, we  performed an 

observational study aimed at investigating the prevalence of reduced EA and possible associated 

health variables such as bone health and hormonal- and metabolic variables in a group of well-

trained male endurance athletes.  
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Materials and methods 
Subjects 

Twenty-one well-trained male cyclists and 20 well-trained male long-distance runners were recruited 

to the study through local clubs in two phases (Figure 1). All subjects competed at a regional level, 

and a few of the runners also competed at national level as well. Inclusion criteria were: 18-50 years 

old, absence of disease or injury, maximal oxygen uptake (VO2max) ≥60 mL·kg-1·min-1 or ≥4.0 L·min-

1, training frequency last year ≥5 sessions/week and active at regional level. For exclusion and drop-

outs, see Figure 1. A total of 27 subjects (out of 41) were included in the final analysis in this study. 

All subjects received information regarding the background of the study and test-procedures and 

signed an informed consent document. Permission to undertake the study was granted by the 

University Faculty Ethics Committee (FEK) and the Norwegian Centre for Research Data (NSD – 

project no.: 46706).  

Insert Figure 1 here 

Methods 

Data collection was performed over four non-consecutive days, followed by three or four 

consecutive days of food and exercise registration (Figure 2). On day one subjects performed a test 

to determine VO2max and measurements of anthropometry. On day two, the subjects was assessed for 

RMR, blood pressure (BP) and resting heart rate (HR), in addition to instructions in how to record 

their energy intake and energy expenditure and filled out a questionnaire. On day three, blood 

samples were drawn and during day four, bone health was assessed. All subjects were told to arrive 

in a fasted state on days two, three and four and refrain from using products containing tobacco and 

caffeine and not to engage in more than one hour of mild exercise the day before. Cyclists registered 

their consumption of food and beverage and their activity and exercise sessions for three consecutive 

days (two weekdays and one weekend day) and runners registered the same for four consecutive 

days (two weekdays and two weekend days). All registration was done in the subjects normal 

environment.  

Insert Figure 2 here 

Anthropometry  

Height was measured to the nearest 0.1 cm using a centimetre scale affixed to the wall (Seca Optima, 

Seca, UK), and was done without shoes. Body weight was measured in light clothing to the nearest 

0.01 kg using an Inbody 720 bioelectrical impedance analyzer (InBody 720, Biospace, Seoul, 

Korea). Body mass index (BMI) was calculated as weight in kilos divided by height squared in m2. 
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Maximal oxygen uptake 

VO2max was determined performing an incremental test to exhaustion: cyclists on a stationary bike 

(Velotron Dynafit Pro) and runners on a treadmill (Lode Katana Sport). Cyclists began with one 

minute of cycling at a power output corresponding to 3 W/kg, and increased by 25 W/min until 

voluntary exhaustion or failure to maintain a cadence ≥ 70 RPM. Runners began at 12 km/h on a 

constant positive incline of 3 degrees. Speed was increased by 1 km/h/min until voluntary 

exhaustion. VO2 was measured using Oxycon Pro™ with mixing chamber and 30 seconds sampling 

time (Oxycon, Jaeger GmbH, Hoechberg, Germany), using a two-way T-shape non-rebreathing 

valve and a reusable nose clip series 9015 (Hans Rudolph, Kansas, MO, USA). All systems were 

calibrated according to standards. 

 

Resting metabolic rate, blood pressure and resting heart rate. 

Subjects arrived at the lab by motorized transport, in a fasted state between six and nine a.m. to 

assess RMR. Indirect calorimetry using a canopy hood system was used (Oxycon Pro, Eric Jeager, 

Germany), and systems were calibrated before each test according to standards. Subjects rested lying 

down for 15 minutes before the measurements began. Oxygen consumption (VO2) and carbon 

dioxide production (VCO2) were assessed over a 30-minute period. The last 20 minutes of 

measurement were used to assess RMR according to protocol (Compher et al., 2006). Measured 

RMR was assessed using the Weir (1990) equation: (3.94 (VO2) + 1.1 (VCO2)) × 1.44. To calculate 

the ratio between measured RMR and predicted RMR we used the Cunningham (1980) equation to 

predict what the subjects individual RMR should be: 500 + (22 × FFM [kg]). The lowest obtained 

heart rate during the measurement of RMR was registered using a Polar V800 heart rate monitor. 
 
BP was obtained using an electronic sphygmomanometer (Microlife BP A100, Widnau, Switzerland) 

immediately after measuring RMR. Systolic BP was measured three times in a resting supine 

position and orthostatic BP was measured three times in an upright position (the mean of the last two 

measures was used). Hypertension was defined as a systolic BP of >140mmHG and/or a diastolic BP 

of >90mmHG (Legemiddelhåndbok, 2013). 

 

Blood sampling 

After the subjects had fasted overnight, blood samples were drawn by a qualified nurse. Blood was 

drawn from a cephalic vein of the subjects in a sitting position, between seven and nine a.m. One 10 

mL BD Vacutainer CAT (BD, Plymouth, United Kingdom) was filled and centrifuged after 30 

minutes. Two 1.8 mL Cryotube Vials (Termo Fischer Science, Roskilde, Denmark) were filled with 

serum and frozen to -18 degrees Celsius. Blood from the cyclists was analysed at Hormonlabor 
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C831, Bern, Switzerland and blood from the runners was analysed at Sørlandets Hospital Arendal 

and Aker Hormonlab in Oslo. The blood was analysed for its content of glucose, cortisol, 

testosterone, T3, IGF-1, total cholesterol (TC), high density-lipoprotein (HDL), low density-

lipoprotein (LDL), triglycerides and insulin. Reference values of hormones and blood glucose was 

defined as follows (Laboratorium, 2016; Universitetssykehus, 2016): cortisol (138-690mmol/L); 

testosterone (18-40 y, 7.2-24 nmol/L; >41 y, 4.6-24 nmol/L); T3 (1.2-2.7 nmol/L); IGF-1 (19-30 y, 

17-63 nmol/L; 31-54 y, 11-40 nmol/L); TC (<5.0 mmol/L); HDL (0.8-2.1 mmol/L); LDL (<3.0 

mmol/L); LDL/HCL ratio (<3.0); Triglycerides (<2.6 mmol/L); insulin (<160 pmol/L); glucose (4-6 

mmol/L).   
 

Bone health and body composition 

BMD and body composition were obtained using Dual-energy X-ray absorptiometry (DXA) (GE-

Lunar Prodigy, Madison, WI, USA) at Sørlandet Hospital. BMD was assessed in femur neck, total 

hip, lumbar spine (L1-L4) and total body, and the assessment was performed between 7 and 9 a.m. 

on fasting subjects who were in a resting position. The same technician performed all tests on the 

same scanner on all subjects. Normal BMD was classified as a z-score of higher than -1, low BMD 

was classified as a z-score of -1 to -2 in at least one of the measured sites and osteoporosis was 

classified as a z-score of -2 or lower (Nattiv et al., 2007). 

 

Energy availability, energy intake and energy expenditure  

Subjects registered energy intake (EI) during a three to four days period mirroring their typical food 

patterns and training regime. EI, daily energy expenditure (DEE) and exercise energy expenditure 

(EEE) were recorded and calculated to assess EA. Subjects weighed their food intake using a digital 

kitchen scale (Exido 246030 Kitchen Scale, Gothenburg, Sweden; OBH Nordica 9843 Kitchen Scale 

Color, Taastrup, Denmark). Subjects further logged their food records using software from Dietist 

Net (Dietist Net, Kost och Näringsdata, Bromma, Sweden) with access to the Norwegian food table 

and an open Norwegian nutritional information database. In-depth oral and written instructions were 

given to the subjects explaining how to weigh and register consumed food and beverages, and they 

were told to maintain a normal eating pattern during the registration period. The Goldberg cut-off 

(Black, 2000) was used to identify subjects who delivered food records of poor validity and to 

identify who would be excluded in the analysis.  

 

EA was calculated by subtracting EEE from DEE and further calculated relative to FFM (Nattiv et 

al., 2007). In order not to overestimate EA, EEE only represented the energy attributable to training. 

RMR and NEAT were therefore subtracted from EEE before being used in the equation for EA. 
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To record DEE and EEE, subjects were told to use a combined HR monitor and activity tracker from 

Polar (V800/M400) during their registration period. The subjects wore the activity tracker from 

00.00 a.m. on the first day to 00.00 p.m. on the last day in order to record activities such as sleeping, 

sitting and low, medium and high-intense activity as defined by Polar. To record EEE, the subjects 

were told to record all training using the HR sensor in combination with the HR monitor. EEE was 

calculated as the sum of the time spent in each HR zone described by Seiler and Tønnessen (2009) 

multiplied by metabolic equivalent (MET) value for the subjects’ main type of activity based on 

Ainsworth et al. (2000). This was verified against their electronic training diary of Polar. DEE was 

calculated as the sum of the time spent in each classification zone defined by their activity monitor 

from Polar (resting, sitting, and low, medium and high activity). Resting was defined as 1 MET, 

sitting as 1.5 MET, low activity as 2.7 MET, medium activity as 4.7 MET and high activity as 6 

MET. The values are the median of each zone defined by Polar. NEAT was calculated by the data 

from the activity tracker using the formula described by Levine (2004). 
 
Statistics 

All data were analysed using Statistical Package for the Social Sciences (SPSS) for Macintosh (v. 22; 

SPSS Inc., Chicago, IL, USA) and graphs using GraphPad Prism 7 for Macintosh (Graph Pad 

Software, Inc., 7825 Fay Avenue, La Jolla, CA 92037, USA). The dataset was controlled for missing 

data and signs of non-normality using histograms as reference. All data were non-normal distributed 

and are presented as median and interquartile range (25-75). Subjects were divided into two groups 

based on their current EA status: reduced EA <40 kcal/kgFFM/day and optimal EA ≥ 40 

kcal/kgFFM/day based on Koehler et al. (2016). Mann-Whitney U-test was used to compare groups 

and correlation between variables was calculated using Spearman’s rho (ρ). To identify possible 

associations, not predict, we used logistic regression between EA groups and selected health 

variables. Odds-ratio (with 95% confidence interval), P-value and Nagelkerke R Square were used to 

assess whether there was an association between reduced EA and the variable tested. An alpha-level 

of 0.01 was used, due to high numbers of tests performed. Effect size (ES) was calculated to interpret 

the meaningfulness of results and to identify trends, defined as a medium or large ES if comparisons 

are non-significant. Cohen (1988) criteria for ES were used (0.1 = small effect, 0.3 = medium effect, 

0.5 = large effect).  
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Results 
Overall, the participants in this study were a well-trained homogeneous group, with all 

anthropometric data within reference values, but three subjects had a fat-percentage in the lower 

reference value range (6-7%). 

 

Energy availability 

A total of nine subjects (33%) had optimal EA and 18 subjects (67%) had reduced EA. One subject 

with reduced EA had hypertension. Descriptive statistics for all subjects and classified according to 

current EA-status, are presented in Table 1. No differences between the groups were observed in 

terms of age, anthropometric data or aerobic capacity (VO2max, L·min-1 or mL·kg-1 ·min-1). Subjects 

with optimal EA tended to have competed in their sport for a longer period compared to subjects 

with reduced EA, but this was not statistically significant (P=0.07, ES=0.35). The reduced EA group 

had lower EI (16%) compared with the optimal EA group (P<0.001). Subjects with reduced EA had 

28% lower EA compared to subjects with optimal EA (P<0.001). No difference was observed 

between the reduced EA group and the optimal EA group in DEE, NEAT or EEE (see Table 2).  

 

Insert Table 1 here 

Insert Table 2 here 

 

Resting metabolic rate 

There was no difference in mean RMR (kcal/day, kcal/kgFFM/day) between the groups, but we 

found a positive correlation between EA and RMR ratio (ρ=0.426, P=0.027). Subjects with reduced 

EA showed a trend of having a lower RMR ratio (P=0.026, ES=0.43) compared to subjects with 

optimal EA (see Figure 3).  

 

A subgroup analysis show that seven subjects (26%), six with reduced EA and one with optimal EA, 

had a RMR ratio of ≤0.80. An additional six subjects (22%), three with reduced EA and three with 

optimal EA had a RMR ratio of ≥0.87. An analysis of subjects with a RMR ratio of ≤0.80 and a 

RMR ratio of ≥0.87 revealed no differences in hormonal biomarkers or anthropometric data between 

the groups. Subjects with a RMR ratio of  ≥0.87 showed a trend of higher EI [3787 kcal (3414-4627) 

vs. 2734 kcal (2356-3000), P=0.015, ES=0.67] and DEE [4067kcal (3902-4338) vs. 3333 kcal 

(3077-3790), P=0.015, ES=0.67] compared to subjects with a RMR ratio of ≤0.80. 

 

Insert Figure 3 here 
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Bone health and body composition 

A total of six subjects (22%) had low BMD, where two of the subjects were close to being diagnosed 

with osteoporosis. The reduced EA group had higher BMD compared to the optimal EA group in 

femur neck (P=0.037, ES=0.40), total hip (P=0.057 ES=0.37), L1-L4 (P=0.10, ES=0.49) and total 

body (P=0.035, ES=0.41), but none of these was statistically significant (see Figure 4). Only BMD in 

L1-L4  was close to being statistically significant. In addition, we found a negative correlation 

between EA and BMD in L1-L4 (ρ=-0.553, P=0.003) and in total body (ρ=-0.405, P=0.036). No 

differences in body composition such as body fat or FFM between the EA-groups were found, nor 

any associations between reduced EA and body composition. 

 

Subgroup analysis showed three subjects with optimal EA had low BMD, two subjects in L1-L4 and 

one subject in both L1-L4 and femur neck. Three subjects with reduced EA had low BMD, one 

subject in L1-L4, one subject in total hip and one subject in femur neck. No associations was found 

between reduced EA and bone health.  

 

Insert Figure 4 here 

 

Biomarkers for energy deficit 

There were no statistically significant differences in hormonal biomarkers between subjects with 

reduced EA and subjects with optimal EA (see Table 3). Overall, subjects with reduced EA had 14% 

non-significant (P=0.094, ES=0.32) higher cortisol levels compared to subjects with optimal EA. 

Two subjects with reduced EA had elevated cortisol, where one approached levels of 900mmol/L. 

Subjects with reduced EA had a non-significant 16% higher IGF-1 levels compared to optimal EA, 

(P=0.076, ES=0.34), and all levels were within normal range. Nine subjects (33%), three with 

optimal EA and six with reduced EA had elevated TC levels. Twelve subjects (44%), three with 

optimal EA and nine with reduced EA, had elevated levels of LDL. There were no statistically 

significant associations between reduced EA and hormonal biomarkers (see Table 4, supporting 

information) 

 

Insert Table 3 here 

 

 

 



Prevalence of RED-S among male endurance athletes 

 11  

Discussion 
To the best of the author’s knowledge, this study is one of the first studies to examine the prevalence 

of reduced EA in well-trained male endurance athletes and its associations between reduced EA and 

selected health variables during a single week. The main findings of this study were that 67% of our 

subjects had reduced EA. This group showed signs of metabolic alterations such as lower RMR ratio 

compared to the optimal EA group, where six of the subjects in the reduced group had an RMR ratio 

of ≤0.80. Independent of EA status we observed elevated TC (n=9) and elevated LDL (n=12), 

despite subjects having a normal BMI, body composition and a generally active lifestyle with lots of 

exercise and movement on a daily basis (exercising on average 12 hours/week). We further found 

that 22% of the subjects (n=6) had low BMD, where two subjects were close to a state of 

osteoporosis. Finally no differences or associations between EA groups were observed in relation to 

biomarkers for energy deficit. 

 

Energy availability 

Methodological challenges in assessing EA exists. There are currently no recommended cut-off 

points for optimal, reduced or low EA among male endurance athletes, compared to female athletes 

for whom some recommendations exist (Mountjoy et al., 2014; Nattiv et al., 2007). For male athletes 

competing in team sports and ball games, however, research proposes that an EA of 40-60 

kcal/kgFFM/day is adequate to maintain the health of the athletes (Tenforde et al., 2015). Only a few 

studies have looked at male athletes competing in endurance sports, where the use of different cut-off 

points regarding EA classifications occurs (Koehler et al., 2016; Viner et al., 2015). In this study, we 

chose to use a cut-off point of <40 kcal/kgFFM/day for reduced EA, based on the clinical study by 

Koehler et al. (2016), who reported that participants felt pressured to eat, had weight concerns and 

experienced bloating when controlling them for EA of ≥45 kcal/kgFFM/day. This was our rationale 

for using this cut-off, in combination with research suggesting that male reproductive costs are less 

compared to females (Bronson, 1985; Koehler et al., 2016) which, when combined with data from 

Loucks (2007) indicates that a habitual EA of exercising males is closer to 40 than 45 

kcal/kgFFM/day. However, we did not chose a third category of low EA, as others have (Koehler et 

al., 2016; Viner et al., 2015), due to lack of scientific support for such cut-offs. We are aware, 

however, that we present data with only one cut-off, and are thereby putting all participants with an 

EA of <40kcal/kgFFM/day in the same group (ranging from 15 to 40 kcal/kgFFM/day) and have a 

low number of subjects participating in the study which may result in not being able to observe 

differences and associations between the tested variables and the groups. We have, however, 
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analysed subgroups in order to describe such and, to look for differences between high/low values in 

different variables. 

 

One of the biggest challenges is the reporting of EI, where a change of eating habits, disordered 

eating and under-reporting of EI are vital and important issues to detect and address. Eight subjects 

in our study were identified reporting EI with low validity (under-reporting), and were therefore 

removed from the analysis. Few studies have tried to monitor under-reporting, but the study by 

Melin et al. (2015), showed some of the same trends in relation to under-reporting, but chose not to 

remove under-reporters from the analysis due to physiological symptoms of energy deficit. Other 

methodological factors are the assessment of DEE and EEE using a commercial product with no 

access to minute-by-minute data and are not validated. Unpublished data from our research group 

indicates, however, that the accelerometers used in this study are generally as good as other 

commercially available accelerometers. 

 

The prevalence of reduced EA among male endurance athletes in our study seem to be high (67%). 

Few studies have investigated the prevalence of reduced EA in male athletes, but our findings are 

supported by the study of Viner et al. (2015), who also found a high prevalence (>70%) of low EA 

among male cyclists and Vogt et al. (2005), who found that male cyclists reported an EA as low as 

8kcal/kgFFM/day. However, these studies reported much lower EA status (from 8 kcal/kgFFM/day 

to 27 kcal/kgFFM/day), compared to our study, which may be due to subjects being recruited came 

from different performance levels or data collection was performed during different periods of the 

competition season. Our findings also match other studies of female athletes, were Melin et al. 

(2015) found a prevalence of low and reduced EA of 63% in female endurance athletes and Hoch et 

al. (2009) found a prevalence of low EA of 36% in female athletes and 39% in sedentary controls. 

These findings indicate that reduced and low EA are present in both male and female athletes, but, it 

is still not known to the full extension how high and especially not the consequences of such in male 

endurance athletes. We found no difference between EA-groups in BMI or body composition, which 

may be caused by us measuring EA over a relative short period, thereby not reflecting a true long-

term energy deficit. It could, however, also reflect energy preserving alterations, such as a reduced 

RMR: six subjects from the reduced EA group had an RMR ratio of ≤0.80, despite normal BMI and 

body composition (see Table 1). Other studies of female athletes have reported some of the same 

findings regarding RMR ratio, normal BMI and body composition (De Souza et al., 2008; Melin et 

al., 2015), which could indicate that our subjects are able to adapt to negative changes in energy 

status, thereby enhancing survival (Nattiv et al., 2007).  
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It is also debatable whether athletes or coaches have the right knowledge for understanding, dealing 

with and treating the potentially serious consequences of reduced EA. In our study we experienced a 

lack of such knowledge when several subjects (of which some had reduced EA) expressed that they 

believed having a normal and stable body weight equalized their energy balance, which explained 

why they were not worried about their energy status or possible health and performance 

consequences.  

 

Resting metabolic rate 

The optimal EA group had as expected a non-significant higher RMR compared to the reduced EA 

group, however, since RMR (kcal/day) are affected of both body size and body composition, such a 

value is difficult to compare between subjects. RMR ratio, however, which is the ratio between 

predicted and measured RMR is a better way of assessing how RMR potentially have changed in 

each subject (De Souza et al., 2008). RMR ratio is based on a theoretically calculated RMR, which is 

well investigated in athletes (Kim et al., 2015), and an objective measure of true RMR. In general, 

we found a positive correlation between EA and RMR ratio (ρ=0.426, P=0.027). Between EA groups 

a trend was observed (P=0.026, ES=0.43) of RMR ratio being lower in subjects with reduced EA 

compared to subjects with optimal EA, which could indicate that male endurance athletes are at risk 

of alterations in their RMR when exposed to reduced EA.  

 

Uncertainty exist, at which cut-off low RMR ratio should be classified in male athletes, but the 

literature indicates that there is a probability of it being lower than the <0.90 cut-off for females 

(Bronson, 1985; Koehler et al., 2016). Our trend could therefore also be linked to the assumption that 

males have less reproductive costs compared to females, thereby requiring less energy (Bronson, 

1985), and indicates that males theoretically should have a lower cut-off for RMR ratio compared to 

females. This however, would require more extensive research. An agreement on cut-off values 

could, on the other hand, offer a more practical and easy way of assessing EA and compare studies, 

due to the accuracy of RMR ratio compared to the problems of subjects providing data on poor 

validity on EI.  RMR ratio could therefore potentially help researchers identify athletes with reduced 

or low EA. This will, however, require more and extensive research. Our findings might therefore 

indicate that energy deficit potentially can affect the RMR ratio of athletes, thereby to some extend 

indicating that metabolic alterations also occur in male athletes. 
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Bone health and body composition 

In general, studies investigating the prevalence of low BMD in endurance athletes have reported 

much higher numbers than we found. Hind et al. (2006) found that 39% of their tested endurance 

runners had low BMD in L1-L4. Nichols and Rauh (2011) reported an alarmingly high prevalence of 

osteopenia or osteoporosis, by up to 90% of master cyclists, and Barry and Kohrt (2008) found that 

BMD decreased during a cycling season, and it was not possible to recover the lost BMD after the 

end of the season. 

 

In our study, 22% of the subjects had low BMD. However this did not seem to be affected by their 

EA status, as other studies have shown (Ihle & Loucks, 2004; Loucks, 2007; Tenforde et al., 2015). 

Subjects in our study were cyclists and runners, sports that have shown no and even in some cases 

negative osteogenic effects on bones (Olmedillas et al., 2012). Athletes in this type of sport therefore 

cannot be expected to experience the same osteogenic effects as in other sports, such as gymnastics 

and soccer (Tenforde & Fredericson, 2011). This may be due to weight-bearing exercise benefitting 

from and accumulating and maintaining higher BMD of up to 15% and in addition higher peak bone 

mass (Tenforde & Fredericson, 2011). Studies of adolescent female runners (Barrack et al., 2010), 

male runners (Hind et al., 2006) and cyclists (Smathers et al., 2009) have implied that such athletes 

might have a greater risk of low BMD compared to untrained controls. Another study by Rector et al. 

(2008) has proposed that cyclists are more exposed to low BMD, particularly in L1-L4 than other 

low-impact sports such as long-distance running. In our study, we did not, on the other hand, find 

that cyclists were more exposed to low BMD in the lumbar spine compared to runners (two cyclists 

and two runners had low BMD in L1–L4).  

 

Confounding factors that will affect bone health of athletes exist. Such factors are genetics, 

malnutrition and youth activities (Khan, 2001). For instance, Tveit et al. (2012) have shown in a 39-

year prospective controlled study that males who are active in sports that emphasize a high BMD as 

a child will have higher BMD decades later, showing the importance of maintaining peak bone mass 

at an early stage. Our results on BMD seems therefore to be more affected of cycling being a non-

weight bearing activity and running a low-impact activity than by the effect of EA status, and we can 

only speculate if our subjects with higher BMD most likely had a high peak bone mass as a child. 

Our subjects with optimal EA, who generally had lower BMD compared with the reduced EA group 

(see Figure 3), had all been active for a longer period (8.0 years vs. 2.8 years, P=0.07, ES=0.35) in a 

low-impact and non weight-bearing sport. In this short-term observational study, we did not find, 

that male athletes with reduced EA therefore are in a greater risk of deteriorating bone health such as 

other studies on females have shown (Melin et al., 2015; Tenforde & Fredericson, 2011). 
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Biomarkers for energy deficit 

It has been proposed earlier that validated biomarkers, e.g. hormonal status obtained from a blood 

sample, could be used as an easier and less time-consuming way of assessing energy deficiency 

compared to weighing, register and analysing energy intake (Melin et al., 2015; Mountjoy et al., 

2014). Such biomarkers proposed for being linked to both the Triad in females and RED-S are for 

example leptin, T3, growth-hormone, IGF-1 and cortisol (De Souza et al., 2008; Mountjoy et al., 

2014) It should be noted, however, that most of this research is currently based on studies on 

females.        

 

Almost all subjects in both groups had within reference values of hormonal biomarkers and we found 

no associations between reduced EA and hormonal biomarkers. Two of the subjects with reduced EA 

had, however, elevated levels of cortisol (<690 mmol/L) which can be an indication of more stress 

(McArdle et al., 2015). We found no difference between the EA-groups in levels of testosterone, T3 

and IGF-1. Such findings are supported by a recent study by Koehler et al. (2016), who investigated 

changes in metabolic hormones when male athletes were exposed to an EA status of 15 

kcal/kgFFM/day and found no change in testosterone, T3 or IGF-1. On the other hand, our findings 

are not directly supported in a study of male soldiers undergoing extreme energy deficit over a period 

of four weeks (Friedl et al., 2000). The researchers instead found a dramatic reduction in 

testosterone, T3 and IGF-1, but almost all levels returned to normal after refeeding the soldiers. 

Another study of male soldiers by Kyrolainen et al. (2008) found that extreme energy deficit reduced 

insulin and testosterone levels in the short term, but these slowly recovered to normal levels when a 

deficit of <1000kcal/day was sustained. The soldiers’ EA status was not reported in either study, 

however. In terms of biomarkers such as insulin and fasting glucose, we found no difference between 

our groups, which could indicate no serious disruption of energy and substrate homeostasis as 

otherwise reported (Koehler et al., 2016; Loucks & Thuma, 2003). 

 

A further 33% of our subjects (n=9) had elevated TC (>5mmol/L), where 66% of the affected 

subjects had reduced EA. Several factors can affect high cholesterol, where genetics is the strongest 

but also food containing saturated fat and high levels of cholesterol influences TC (Mensink et al., 

2003), such data, however, were unavailable for this project. An additional 44% of our subjects 

(n=12), where the majority (75%) had reduced EA, also had elevated levels of LDL (>3mmol/L), yet 

all subjects had within reference values of LDL/HDL ratio, due to the concurrently high HDL levels. 

No subjects reported having high levels of triglycerides. Despite such prevalence of both elevated 

TC and elevated LDL, we did not find associations between the groups on these two variables. It has 

been reported, however, that patients with anorexia nervosa can have high levels of TC, and negative 
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lipid profiles have been found in females with menstrual dysfunction (Rickenlund et al., 2005), 

however, such data was not available to this study. Causes of such negative lipid profile are 

reportedly due to an increase in inflammatory markers combined with menstrual dysfunction and 

oestrogen deficiency, but studies of the lipid profile of male athletes are few (Rickenlund et al., 

2005). It is noteworthy, however, that such a high number of our subjects, who all lead a physically 

active lifestyle, which normally decreases the risk of cardiovascular disease, have such numbers of 

elevated TC and LDL. 

 

Our findings could point in the direction, that a habitual EA of 15-40kcal/kgFFM/day is not 

sufficient to experience unhealthy changes in either the reproductive function or to experience 

changes in hormonal biomarkers over a short period. It could also point in the direction that the 

reproductive function or hormonal biomarkers may recover when a mild energy deficiency are 

sustained over time, such as Kyrolainen et al. (2008) found. This will require further research.  

 

In conclusion we found a high prevalence of reduced EA accompanied by signs of metabolic 

alterations in this group of well-trained male endurance athletes. Contrary to our expectations we did 

not find that subjects with reduced EA had low BMD or any significant associations in hormonal 

biomarkers compared to subjects with optimal EA.  

 

This could possibly be explained by the fact that 40 kcal/kgFFM/day is too high a cut-off for reduced 

EA, which may point in the direction that male athletes are more protected against alterations and 

negative associations in our tested health variable compared to females, such as Papageorgiou et al. 

(2015) also found. The fact however, that we found a high prevalence of reduced EA with signs of 

alterations in RMR, but otherwise no associations with hormonal biomarkers and bone health 

emphasizes the need for more research to fully understand EA implications on both health and 

performance variables in male endurance athletes. Longitudinal studies following different subjects 

at different levels (untrained, well-trained and elite) over a longer period than just three or four days 

are wanted to understand the long-term effect of reduced or low EA. Other variables such as ghrelin 

and leptin should also be included in future analysis, due to their role in regulating and suppressing 

appetite and body weight.  
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Strengths and limitations 

This study involves research in a new area, where few studies have examined the prevalence of 

reduced EA and consequences for health variables. A strength of this study is, that we used objective 

measurements of bone health, resting metabolic rate, blood pressure, daily physical activity, exercise 

expenditure, energy intake and biomarkers for energy deficiency. This study is also one of the few to 

address the problem of under-reporting energy intake and eliminating this from the analysis, thus 

reducing the risk of a type-I error. A limitation of this study is its cross-sectional design, which is not 

able to detect or describe the outcome of reduced EA in male athletes in our tested health variables. 

When testing for such a large number of variables as we did, we are at risk of making a type I error. 

However we chose to set an alpha level at 0.01 to avoid such an error. By excluding as many 

participants as we did, our sample size, and the lopsided group size, make it difficult to gain enough 

statistical power, thereby increasing the risk of a type II error. In addition, we had no control group, 

thereby making it difficult to assess whether the prevalence of reduced EA is greater among well-

trained endurance male cyclists and runners in Norway compared to a reference population. 

 

Perspectives 
This study is one of the first to assess the prevalence of reduced EA in well-trained male endurance 

cyclists and runners. The high numbers of athletes with reduced EA and that no alterations were 

observed in anthropometrical data, bone health and biomarkers for energy deficiency, emphasizes the 

need to conduct more research among this group of athletes, and to do further and more in-depth 

testing. The research should also include larger sample sizes along with the testing of health and 

performance variables, as outlined by Mountjoy et al. (2014). More research is also needed on the 

cut-offs for both reduced EA and low EA in order to assess whether males have the same risk as 

females or are at a lower risk of developing negative health and performance consequences as a 

result of their EA status. The findings in this study further emphasize and confirm the complexity of 

RED-S. 
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Tables 
Table 1. Descriptive statistics of whole group and by groups according to energy availability (EA) status.  
  All (n=27)  Optimal EA (n=9) Reduced EA (n=18) P-value Effect Size 
Age (year) 40.0 (31.0-45.0) 45.0 (34.5-46.0) 37.0 (29.8-43.3) 0.135 0.29 

Height (cm) 182.0 (175.0-185.0) 180.0 (178.5-182.8) 182.5 (175.0-188.0) 0.624 0.09 

Weight (kg) †76.5 (73.1-82.7) †77.5 (75.2-82.0) †76.5 (71.3-82.8) 0.700 0.07 

BMI (kg/m2) 23.5 (21.4-24.0) 23.5 (21.3-24.4) 23.4 (21.4-24.1) 0.738 0.06 

Body fat (kg) †10.7 (7.5-12.0) †9.4 (7.5-12.2) †10.8 (6.6-11.6) 1.000 0 

Body fat (%) †14.0 (10.0-16.5) †11.8 (9.9-17.9) †14.0 (9.8-16.6) 1.000 0 

FFM (kg) †64.7 (60.9-68.8) †65.6 (60.9-69.9) †63.4 (60.9-68.4) 0.440 0.15 

Resting heart rate (beats/min) 43.0 (37.0-47.0) 45.0 (40.0-49.0) 42.0 (36.0-46.5) 0.303 0.20 

BP systolic lying (mmHG) 118.5 (114.0-128.0) 118.5 (116.0-126.8) 119.3 (113.5-129.8) 0.719 0.07 

BP diastolic lying (mmHG) 70.0 (65.0-77.0) 70.5 (65.8-78.8) 69.8 (64.8-77.8) 0.797 0.05 

BP systolic standing (mmHG) 120.5 (116.5-132.0) 117.0 (113.0-131.0) 121.8 (118.9-133.6) 0.328 0.19 

BP diastolic standing (mmHG) 80.5 (73.5-84.5) 80.5 (77.0-86.3) 80.8 (73.4-85.0) 0.699 0.07 
Exercise (h/week) 12.0 (9.0-16.0) 11.0 (7.0-19.3) 13.5 (9.8-18.3) 0.246 0.22 

Active in sport (years) 4.0 (2.0-10.0) 8.0 (4.5-10.0) 2.8 (1.8-6.3) 0.070 0.35 

VO2max (mL·kg-1 ·min-1) 64.3 (60.2-67.6) 62.6 (60.1-66.0) 65.1 (60.2-68.6) 0.437 0.15 
VO2max (L·min-1) 4.95 (4.54-5.14) 4.89 (4.49-5.37) 4.98 (4.54-5.14) 0.849 0.04 

Data are presented as median and interquartile range (25-75).  
†=measured by DXA 

BMI, body mass index; FFM, fat free mass; BP, blood pressure; VO2max, maximal oxygen uptake 
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Table 2. Energy intake, energy availability, energy expenditure and resting metabolic rate results of the whole group and by 
groups according to energy availability (EA) status. 

  All (n=27)  Optimal EA (n=9) Reduced EA (n=18) P-value Effect Size 

Energy intake (kcal/day) 3252 (3000-3599) 3665 (3471-4328) 3066 (2726-3263)** <0.001 0.75 

EA (kcal/kgFFM/day) 37.2 (32.6-42.6) 48.6 (42.5-49.4) 35.0 (31.0-37.3)** <0.001 0.80 

Energy balance (%) 88.6 (82.1-97.5) 99.1 (96.2-111.1) 84.7 (74.8-89.2)** <0.001 0.80 

Daily EE (kcal/day) 3807 (3456-4021) 3813 (3374-4090) 3799 (3425-4024) 0.797 0.05 

NEAT (kcal/day) 1419 (1143-1582) 1415 (1234-1641) 1423 (1113-1541) 0.643 0.09 

EEE (kcal/day) 990 (781-1226) 990 (312-1380) 1011 (823-1144) 0.758 0.06 

RMR (kcal/day) 1681 (1597-1740) 1695 (1608-1821) 1647 (1522-1725) 0.237 0.23 

RMR (kcal/kgFFM/day) 25.9 (25.2-26.6) 26.2 (25.8-26.8) 25.7 (24.5-26.6) 0.217 0.24 

RMRratio 0.84 (0.80-0.86) 0.86 (0.84-0.90) 0.83 (0.80-0.86) 0.026 0.43 
Data are presented  median and interquartile range (25-75).  

EA, energy availability; energy balance, (energy intake/daily energy expenditure × 100); daily EE, daily energy expenditure; 
NEAT, non-exercise activity thermogenesis; EEE, exercise energy expenditure; RMR, resting metabolic rate; RMRratio, the 

ration between the predicted and measured RMR; FFM, fat-free mass. 
 **P<0.001 
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Table 3. Blood sample results of whole group and by groups according to energy availability (EA) status. 

  
All (n=27)  Optimal EA (n=9) Reduced EA (n=18) Normal range  P-value Effect 

Size 

Cortisol (mmol/L) 514 (440-587) 475 (375-574) 542 (462-610) 138-690  0.094 0.32 

Testosterone (nmol/L) 22.0 (17.0-30.0) 22.0 (16.7-29.6) 22.6 (17.8-31.4)  4.6-24 0.625 0.09 

T3 (nmol/L) 1.77 (1.61-1.95) 1.75 (1.59-1.96) 1.78 (1.65-1.96) 1.2-2.7 0.746 0.06 

IGF-1 (nmol/L) 21.2 (18.5-24.7) 18.6 (16.1-21.8) 21.6 (19.5-25.6)  11-63  0.076 0.34 

TC (mmol/L) 4.71 (4.35-5.24) 4.57 (4.32-5.25) 4.85 (4.37-5.39) <5.0 0.487 0.15 

HDL (mmol/L) 1.69 (1.46-1.87) 1.67 (1.47-1.83) 1.71 (1.46-1.96) 0.8-2.1 0.877 0.03 

LDL (mmol/L) 2.68 (2.51-3.35) 2.64 (2.48-3.36) 3.00 (2.57-3.39) <3.0 0.537 0.12 

LDL/HDL cholesterol ratio 1.81 (1.31-2.07) 1.71 (1.35-2.02) 1.83 (1.30-2.17) <3.0 0.837 0.04 

Triglyceride (mmol/L) 0.78 (0.62-1.07) 0.73 (0.59-1.06) 0.81 (0.61-1.11) <2.6 0.520 0.12 

Insulin (pmol/L) 30.9 (23.7-41.6) 30.9 (21.6-40.6) 29.5 (22.8-42.3) <160 1.000 0 

Fasting glucose (mmol/L) 4.95 (4.74-5.29) 4.86 (4.66-5.12) 4.97 (4.80-5.36)  4-6 0.607 0.10 
Data are presented as median and interquartile range (25-75).  

T3, triiodothyronine; IGF-1, insulin like growth factor-1; TC, total cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein. 
Normal range provided by analytic laboratory. 

 



Stenqvist - Prevalence of RED-S among male athletes 

 24 

Figures 

 
Figure 1. Flowchart recruitment and inclusion. The figure illustrate the recruiting process in two phases. 41 subjects participated. 1 cyclist dropped out 
for personal reasons. 5 subjects were excluded due to faulty measures (activity or energy intake issues) and 8 subjects were excluded for submitting 
poor-validity data on energy intake. A total of 27 subjects were included in the analysis.  
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Figure 2. Protocol. This figure illustrates the protocol used during data collection. Collection on days 1–3 took place at the university campus, on day 4 
at Sørlandets Hospital and on days 5–8 in their home environment. The subjects arrived in fasting state on days 2–4. RMR; resting metabolic rate, 
measured using a ventilated hood; DXA, dual x-ray absorptiometry. 
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Figure 3. RMR ratio between groups. Data are presented as median and interquartile range (25-75). The reduced EA group shows a trend (P=0.026, 
ES=0.43) of a lower RMR ratio compared to the optimal EA group. 
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Figure 4. Measurement of BMD at different sites using dual x-ray absorptiometry. Data are presented as median and interquartile range (25-75). The 
reduced EA group show a trend of higher BMD in femur neck (P=0.037, ES=0.40), total hip (P=0.057, ES=0.37), L1-L4 (P=0.01, ES=0.49) and total 
body (P=0.035, ES=0.41)   
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Supporting information 
 

Table 4. Possible associations between reduced EA and selected health-variables using logistic regression 

  
Variable Odds ratio (95% CI) P-

value 
Nagelkerke  

R square 

Performance data 
Exercise (h/week) 1.05 (0.93-1.18) 0.426 0.04 
Active in sport (years) 0.92 (0.79-1.07) 0.282 0.06 
VO2max (L/min) 1.14 (0.18-7.14) 0.892 0.00 

Biomarkers for energy 
deficit 

Cortisol (mmol/L) 1.01 (1.00-1.02) 0.118 0.15 
Testosterone (nmol/L) 1.01 (0.90-1.14) 0.848 0.00 
T3 (nmol/L) 0.98 (0.03-34.89) 0.991 0.00 
IGF-1 (nmol/L) 1.20 (0.98-1.48) 0.084 0.18 
HDL (mmol/L) 1.33 (0.13-13.69) 0.812 0.00 
LDL (mmol/L) 1.24 (0.35-4.32) 0.740 0.01 
LDL/HDL cholesterol ratio 1.18 (0.24-5.74) 0.842 0.02 
Triglyceride (mmol/L) 2.32 (0.11-48.73) 0.589 0.02 
Insulin (pmol/L) 1.00 (0.94-1.01) 0.884 0.00 
Fasting glucose (mmol/L) 1.78 (0.19-16.61) 0.615 0.01 

Energy expenditure 

Daily EE (kcal/day) 1.00 (0.99-1.00) 0.784 0.00 
NEAT (kcal/day) 1.00 (0.99-1.00) 0.680 0.01 
EEE (kcal/day) 1.00 (0.99-1.00) 0.336 0.05 
RMR (kcal/day) 1.00 (0.99-1.00) 0.354 0.05 

Bone health  
(Age-related Z-scores) 

Femur neck mean 2.75 (0.81-9.36) 0.107 0.16 
Hip total mean  2.37 (0.71-7.88) 0.159 0.11 
Lumbar spine L1-L4 2.47 (0.97-6.29) 0.058  0.21 
Total body 2.84 (0.87-9.28) 0.084  0.17 

Data are presented as an Odds ratio with a 95% confidence interval (CI), significance level and the 
Nagelkerke R squared model (indicating the amount of variation in the dependent variable) 
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Appendix 1 
Estimating energy output 

Subjects were equipped with a combined heart rate monitor and activity tracker, Polar V800/M400 

(Polar Electro Oy, Finland) in order to record and analyse daily activity including training sessions 

and normal everyday activity and movement. The V800/M400 was at the time, Polar´s newest and 

most advanced training and activity trackers and uses a heart rate soft strap and a heart rate sensor 

(Polar Bluetooth Smart H7) to detect the heart rate during training. The sensor is strapped around the 

chest of the athlete, just below the chest muscles (Polar-Electro, 2015). One of the features of the 

V800/M400 is measurement of acceleration, where acceleration signals are filtered and classified to 

varies activity modes, calculated to metabolic equivalent (MET), kilocalories (Kcal) and steps 

(Virtanen, 2014). The V800/M400 uses a 3D digital acceleration sensor, register acceleration at 50 

Hertz frequencies, and reported to be accurately calibrated to measure acceleration.  The polar 

method uses frequency, intensity and regularity of movements as a key element (Virtanen, 2014). 

The V800/M400 uses MET to assess daily activity level. Polar expresses MET as an expression of 

energy expenditure and it´s multiples of resting metabolic rate (1 MET = BMR (app. 1kcal/kg/h)). 

When transforming this into energy expenditure the V800/M400 uses parameters as age, gender and 

weight. The V800/M400 analyses the MET data in 30 seconds periods using 1-5 minute’s time 

window. The activity detected by the V800/M400 is divided into 6 categories; low activity, medium 

activity, high activity, sitting, rest/sleep and non-wear (Virtanen, 2014). The METs for acquiring 

activity is as following; Low: 1.8-3.5 MET, Medium: 3.5-6 MET, High: >6 MET (also see Figure 1), 

but the limits within these categories will vary according to personal data as mentioned above 

(Virtanen, 2014).  

 



 

 

 
Figure 1. Polar V800/M400 method of categorizing and calculating energy expenditure within each sub-
classification of activity. Due to lack of minute-by-minute data, it is not known to the researchers how and 
when the activity tracker classifies different activities and at which MET. 

 

To calculate one MET, Polar uses the Schofield algorithm, including age, height and weight, which 

allow the V800/M400 to adjust the resting metabolic rate (RMR) according to the age of the person, 

wearing it. Polar furthermore developed their calorie calculation using indirect calorimetric 

(cardiopulmonary gas exchange analysis) in short performances less than two hours. For longer 

performances Polar used the doubly labeled water (DLW) method for the measurement of energy 

expenditure as a reference for measuring. Polar refers to a correlation coefficient of 0.86-0.89 

regarding daily energy expenditure (DEE) (Virtanen, 2014). 

 

Our calculations of daily energy expenditure using Polars activity tracker 

Based on the measurements by the activity tracker, the daily activity and exercise of the athletes 

were divided into three main categories: “Daily activity”, “exercise” and “not in use”. The daily 

activity was furthermore divided into five predefined sub classifications as described earlier by Polar 

(see Table 1). We defined “Rest” as 1 MET based on Ainsworth et al. (2000) and Virtanen (2014). 

The 1.5-MET definition for “sitting” was chosen by us based on Mansoubi et al. (2015). When the 

activity tracker for some reason was “not in use”, we defined this as 1.5 MET, in order not to 

overestimate DEE if for some reason the athletes did anything else than sitting while not wearing the 

activity tracker. The MET in the predefined classifications (“low” and “medium) were furthermore 



 

 

defined by us as the median of the predefined MET range by Polar (low=1.8-3.5 MET´s 

(median=2.7); Medium 3.5-6 MET (median=4.7); high >6 MET (6). This estimate was done since 

there is no access to the raw data file from the activity tracker, and it is therefore difficult to quantify 

the activity into various MET classifications. Since Polar defines “high” activity as activity >6 MET, 

this study uses 6 MET as a reference to this activity level, and furthermore calculated exercise at 

various intensity zones into this activity level and subtracting the exercise time from the “high” time. 

By recording all exercise using the heart rate monitor, the exact time spent in the different intensity 

zones during exercise was obtained (see Table 2 for complete calculation of DEE). The values 

chosen for the exercise levels at the different intensity zones was defined with the use of Ainsworth 

et al. (2000) for both cycling and running. 

 

Table 1. Different classifications and sub-classifications of activity and corresponding MET values 

Activity classification Activity type MET used to calculate 

energy expenditure 

Daily activity Rest 1 

Sitting 1.5 

Low 2.7 

Medium 4.7 

High 6 

Exercise < Intensity zone 1 6 

Intensity zone 1 7 

Intensity zone 2 10.5 

> Intensity zone 3 14 

Activity tracker not in use 1.5 

´The athletes were told to wear their activity tracker 24 hours/day for either three or four days  

 

In order to calculate individual intensity zones and thereby estimating the exercise energy 

expenditures (EEE), the calculations of intensity zones were based on the HRpeak the athletes 

achieved during the incremental maximal oxygen uptake VO2max test in the lab. The zones where 

based on the “five zone intensity scale” used to assess training of well-trained endurance athletes 

(Seiler & Tønnessen, 2009) developed by the Norwegian Olympic Federation.  

 



 

 

Based on these HR-zones and intensity zones, the MET´s at different intensity zones where defined 

using Ainsworth et al. (2000) as reference for both runners and cyclists. The bodyweight in kg (BW) 

of the athlete was used to calculate the DEE in each sub-category using the formula: 

DEE = (BW *MET
60

)*min  

Where “MET” is the selected MET value for intensity and “min” is the time (in minutes) in each 

zone. We further evaluated the difference in the measured RMR and estimated RMR and adjusted 

the energy expenditure according to this difference using the Schofield algorithm (Kim, Kim, Kim, 

Park, & Kim, 2015) 

 

Table 2. Example of calculation of daily energy expenditure 

Day 1 
Bodyweight: 76.2 MET Minutes Minutes correction Kcal 

Daily act Rest 1 440   558,8 
  Sitting 1,5 506   963,9 

Training <Z1 6 32,68   249 
  Zone 1 7 90,25   802,3 
  Zone 2 10,5 46,53   620,5 
  >Zone 3 14 1,53   27,3 
  Total   171     

Daily act Low 2,7 262   898,4 
  Medium 4,7 69 60.00 (69-9) 358,1 
  High 6 162 -9.00 (162-171)   

Not in use   1,5 1   1,9 
RMR adjustment; measured RMR minus Schofield  -148,5 

Daily EE     4331,8 
  

V800 EE         4039 
Difference         -292,8 

The table outlines how daily energy expenditure is calculated in each category, added up and adjusted for the 

measured resting metabolic rate. This person has a DEE of 4331.8 kcal, after we adjusted the RMR values 

based on the measured RMR. In this case the V800 underestimated DEE by 293kcal. 

 



 

 

The DEE for this day (see Table 2) was estimated to be 4431.8 kcal, which was 292.8 kcal higher 

than the activity tracker estimated. The activity tracker in this case is therefor underestimating with 

about 7% compared to our calculations.  

 

Calculation of RMR and RMR-ratio 

Measured RMR in the laboratory was calculated as a mean of the last 20 minutes of the 

measurement, using VO2 and VCO2 minute by minute. These values and the Weir (1990) equation: 

RMR = 3.94 *(V
⋅

O2 )+1.1*(V
⋅

CO2 )*1.44was used to calculate the measured RMR of the athletes. 

The Cunningham (1980) equation calculates the predicted RMR as following:  

where as RMR-ratio is calculated as following:  

 

Calculation of Goldberg cut-off for underreporting energy intake 

The Goldberg-cut-off for underreporting of energy intake was calculates as described by Black 

(2000). Our calculation in short term is listed below, and was further confirmed by a mathematician. 

Lower bound: "#$%&: ()* > 1,87×1
23×

44,56
788
96 = 1,73 PAL 

Upper bound: "#$%&: ()* > 1,87×1
3×

44,56
788
96 = 2,01 PAL 
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Appendix 2 
 

Vi søker deltakere til et spennende 

forskningsprosjekt på prestasjonsutvikling! 

  
  

Vi er interesserte i Sørlandets 20 beste mannlige 

langdistanseløpere – er du en av dem? 
 

Vi gjennomførte våren 2015 testing av 20 mannlige godt trente syklister og er nå på jakt etter 

langdistanseløpere på samme nivå. Forskningsprosjektet heter Energitilgjengelighet, helse og 

prestasjon hvor hensikten er å kartlegge energitilgjengelighet, helsevariabler og prestasjonsvariabler 

blant godt trente langdistanseløpere. Som deltaker vil du bli bedt om å gjennomføre en maksimal 

oksygenopptakstest, en spensttest og en helsekartlegging, samt registrere dine kostholds- og 

aktivitetsvaner. Du vil selvsagt få alle dine resultater inkludert måling av kroppssammensetning 

kostnadsfritt. Vi ønsker å inkludere mannlige langdistanseløpere i alderen 18-50 år som har drevet 

aktivt med løping i minst 3 år og som per i dag trener 5 økter per uke eller mer. 

Er du interessert? Send en mail, sms eller ring snarest og senest innen 15. oktober til 

testansvarlig Thomas Stenqvist; thoms14@uia.no tlf: xxx xx xxx. Aktuelle deltakere vil få tilbud om 

en maksimal oksygenopptakstest på arbeidsfysiologisk laboratorium på UIA i uke 44. Deretter vil 

det gjøres en vurdering hvem som får bli med videre i prosjektet. Vi ser frem til å høre fra deg!! 

 

www.warrnamboolathletics.com 
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Appendix 4 
 

Informasjon og forespørsel om deltakelse i forskningsstudien 

«Energitilgjengelighet, helse og prestasjon» 

  
Informasjon til forsøkspersoner  
Vi vil med dette skriv informere og spørre om du vil delta i et forskningsprosjekt kalt Energitilgjengelighet, helse og 

prestasjon hvor hensikten er å kartlegge energitilgjengelighet, helsevariabler og beinmasse blant godt trente 

langdistanseløpere. Som deltaker vil du bli bedt om å gjennomføre noen prestasjonstester og en helsekartlegging, samt 

registrere dine kostholdsvaner. I det følgende gis mer detaljert informasjon.  

 
Bakgrunn og hensikt 
Tilstrekkelig energitilgjengelighet (samsvar mellom energiinntak og energiforbruk) er viktig både for god helse og god prestasjon 

for idrettsutøvere. Lav energitilgjengelighet (for lite energiinntak/mat i forhold til energiforbruket/trening) innebærer at den mengde 

energi som er tilgjengelig for kroppens fysiologiske funksjoner blir utilstrekkelig. Dette er vist å ha sammenheng med 

lavt energistoffskifte, lav kroppstemperatur, mage- og tarm problemer, reduserte nivåer av kjønnshormoner, økt risiko for 

skader og sykdom samt redusert beinmasse i skjelettet blant kvinnelige utøvere. Det er noen funn som tyder på at 

liknende sammenhenger også er tilstede blant mannlige utøvere, men dette er mindre undersøkt sammenlignet med 

kvinnelige utøvere. Utøvere i krevende utholdenhetsidretter (som langdistanseløpere, triatleter og syklister) er vist å være 

i ekstra risiko for lav energitilgjengelighet, lave testosteronverdier og lav beinmasse. Våren 2015 undersøkte vi de nevnte 

variabler blant mannlige godt trente syklister og i høst ønsker vi å undersøke tilsvarende blant mannlige godt trente 

langdistanseløpere. Hovedhensikten er å undersøke grad av energitilgjengelighet og faktorer som kan assosieres med 

dette.  

Målinger 
Ved å takke ja til deltakelse i denne studien vil du bli bedt om å møte i laboriatoriet for å måle maksimalt oksygenopptak 

og spenst, kroppssammensetning (fordeling av fettvev og muskelvev), hvilestoffskiftet, blodtrykk, utvalgte 

blodparametre (som stresshormoner, kjønnshormoner, lipidprofil), samt besvare et spørreskjema. Du vil også bli bedt om 

å måle kroppssammensetningen din med en gullstandard målemetode på sykehuset (DXA) hvor detaljer knyttet til 

beinhelsen din blir målt (styrken på ulike deler av skjelettet ditt) (se detaljer om målingene i vedlegget). Videre vil du bli 

bedt om å registrere kostholdet og aktivitetsnivået ditt i 4 dager. All kostregistrering gjøres elektronisk via PC eller Mac 

med et kostholdsprogram som også benyttes av Olympiatoppen. Du vil få låne en vekt hvor du skal veie all mat du inntar 

disse 4 dagene. Oppsummert består testbatteriet av følgende: 

1. Møte på laboratoriet for måling av maksimalt oksygenopptak og spenst (ca. 45 minutter) (gjerne kveldstid) 

2. Møte fastende på laboratoriet for måling av hvilestoffskifte og helseparametre (ca. 75 min) (tidlig morgen) 

3. Møte fastende på sykehuset for DXA måling (ca. 15 min) (tidlig morgen) 



 

 

4. Registrere kostholdet ditt i 4 dager og bruke puls/aktivitetsmåler samme 4 dager 

 

Fordeler og ulemper ved å delta 

Som deltaker i studien bidrar du til å skaffe kunnskap for å utvikle toppidretten i samarbeid med Olympiatoppen. Du vil 

få kartlagt din energitilgjengelighet med muligheter for tilbakemelding på kostholdet ditt og utvalgte helsevariabler. Du 

vil også få målt ditt hvilestoffskifte som sier noe om din forbrenning i hvile. Videre vil du få måle din 

kroppssammensetning med gullstandard målemetode (DXA) med detaljerte opplysninger om din fett-, muskel- og 

beinmasse. Alle målinger er kostnadsfrie for deg. Eventuelle ulemper er at du må kartlegge kostholdet ditt i 4 dager og ha 

på aktivitetsmåler (pulsklokke) samme 4 dager, møte på laboratoriet til testing av maksimalt oksygenopptak/spenst en 

gang og til helseprofilvurdering en gang, samt måle kroppssammensetningen din på Sørlandet sykehus 1 gang (tar ca. 15 

min). 

 

Hva skjer med testresultater, prøver og informasjonen om deg?  

Alle testresultater, prøver og informasjon som registreres på deg skal kun brukes slik som beskrevet i hensikten med 

studien. Alle opplysningene og prøvene vil bli behandlet anonymt. En kode knytter deg til dine opplysninger og 

testresultater gjennom en navneliste. Det er kun autorisert personell knyttet til prosjektet som har adgang til navnelisten 

og som kan finne tilbake til deg. Det vil ikke være mulig å identifisere deg i resultatene av studien når disse publiseres. 

 

Frivillig deltakelse 

Det er frivillig å delta i denne forskningsstudien. Du kan når som helst og uten å oppgi noen grunn trekke ditt samtykke 

til å delta i studien. Dersom du ønsker å delta, undertegner du samtykkeerklæringen på siste side. Om du nå sier ja til å 

delta, kan du senere trekke tilbake ditt samtykke uten at det påvirker din øvrige deltakelse. Dersom du senere ønsker å 

trekke deg eller har spørsmål til studien, kan du kontakte ansvarlige for studien (se info nederst på arket). 

Prosjektleder for studien er Monica Klungland Torstveit, førsteamanuensis i idrettsvitenskap ved fakultet for helse- og 

idrettsvitenskap, Universitetet i Agder. Testleder i laboratoriet er Thomas Stenqvist, vitenskapelig assistent og 

masterstudent i idrettsvitenskap. Du samtykker til deltakelse ved å fylle ut samtykkeskjemaet på siste siden i dette 

informasjonsbrevet. Dette leveres til en av testlederne når du ankommer til første test.  

 



 

 

VEDLEGG: Ytterligere informasjon om målemetodene 
Dag 1 i laboratoriet: Måling av maksimalt oksygenopptak og spenst (ca 40 minutter totalt) 

Det vil gjennomføres en standardisert test av maksimalt oksygenopptak (VO2max test) på tredemølle i laboratoriet. Etter 

en kontrollert oppvarming på ca 10 minutter vil nødvendig målingsutstyr ble tatt på og selve testen til utmattelse bli 

gjennomført. Arbeidets varighet ligger normalt i området 4 til 10 minutter. Oksygenopptak og hjertefrekvens samt andre 

variabler måles kontinuerlig gjennom hele testen. 

Du vil også bli bedt om å gjennomføre en enkel spensttest på kraftplatform (counter movement jump og squat jump).  

 

Retningslinjer før måling 

• De siste 48 timer før testdagen må du ikke utføre intensiv eller utmattende trening/konkurranser eller drikke 
alkohol.  

• De siste tre timer før testene må du ikke drikke te, kaffe eller annen koffeinholdig drikke.  
• Du har ikke tillatelse til å spise den siste time før testene. 

 

Dag 2 i laboratoriet: Måling av kroppssammensetning, hvilestoffskiftet, blodtrykk og 

blodparametere (fastende)  (ca. 75 minutter totalt):  

Ved ankomst i laboratoriet ønsker vi aller først å måle kroppssammensetningen ved en Inbody test (estimerer mengden 

kroppsfett, fettfri masse og beinvev, se bilde). Vi måler høyden deres og selve testen tar omtrent 1 minutt. Målingen medfører 

ingen smerte eller ubehag.  

 
Energitilgjengelighet er den mengden av energi som er igjen til alle andre funksjoner i kroppen etter at energikostnaden 

ved trening er trukket fra. For å kunne måle energitilgjengelighet må vi estimere energiforbruk ved trening og fysisk 

aktivitet (som dere gjør ved hjelp av pulsklokkene og treningsdagbøkene), energiinntak (som dere estimerer via kostholdsregistreringen), fettfri 

masse (som vi måler ved hjelp av Inbody 720) og til slutt måling av hvilestoffskiftet. Vi vet at det kan være store forskjeller i 

hvilestoffskiftet mellom individer og de aller færreste vet hvor mye energi de bruker i hvile da målemetodene sjelden er 

tilgjengelig.  

 
Som forsøksperson skal du ligge på en benk i ca 30 minutter med en «hette» (som vist på bildet). Målingen medfører 

ingen smerte eller ubehag. Hvilepulsen vil bli registrert og vi vil se til at du ikke sovner underveis i målingen.  



 

 

Mens dere ligger på benken vil vi også måle blodtrykket liggende og deretter i stående posisjon. Dere vil så bli bedt om å 

ta en blodprøve for å analysere enkelte hormoner og kostfaktorer. Dette vil kun ta få minutter. Avslutningsvis bes dere 

besvare noen få spørsmål på et spørreskjema før dere kan reise hjem.  

Retningslinjer før måling 

• Dagen før måling må du trene maksimalt 60 minutter med lav eller moderat intensitet (dette inkluderer både 
kondisjons- og styrketrening) og ingen trening siste 12 timer før måling 

• Du må ikke spise eller drikke (annet enn vann) siste 12 timer før måling. Målingen skal altså utføres om 
morgenen før frokost («fastende») 

• Det er ikke tillatt å røyke, snuse eller innta alkohol de siste 12 timene før målingen 
• Vi ber deg om å anstrenge deg så lite som mulig på morgenen. Det er derfor ønskelig at du kjører eller reiser 

kollektivt, ikke sykler eller går til Spicheren (hvis dette er umulig vil vi forsøke å hente deg). Du må heller ikke 
bære tungt eller anstrenge deg på annet vis før målingen.  

 
Dag 3 på SSHF: Måling av beinmineraltetthet (ca. 15 minutter) 

DXA (dobbel rønten absorpsjonsmetri) er gullstandard måling for vurdering av din kroppssammensetning. Ved DXA 

måling vil du foruten å få målt muskelmasse og fettmasse også få målt din beinmineraltetthet (indikator på hvor sterkt 

skjelettet ditt er). Du vil få resultater både totalt for hele kroppen, men også i spesielt interessante områder som rygg og 

hofter. Selve målingen er helt smertefri og gjennomføres fullt påkledd ved å ligge på en benk/seng. Det vil kun ta ca. 15 

minutter å gjennomføre målingen. 

Retningslinjer før måling 

• Du må være fastende. Det vil si at du kan drikke vann om morgenen,  
men ikke kaffe/te eller spise frokost 

• Du må ikke trene om morgenen før målingen 
• Unngå hvis mulig å ha metall på deg, som smykker, piercing og knapper  (må taes av i forbindelse med DXA 

målingen) 
 



 

 

 
Gjøres «hjemme»: Registrering av kostholds- og aktivitetsvaner 

Prinsippet i kostregistreringen er å beskrive når, hva og hvor mye du spiser og drikker så presist som mulig. Vi benytter 

et kostanalyseprogram som også benyttes av Olympiatoppen hvor vi kan få detaljerte opplysninger om eksempelvis 

hvilke næringsstoffer du inntar tilstrekkelig av og om du har eventuelle mangler knyttet til kostholdet ditt. Du vil få låne 

en kjøkkenvekt slik at du kan veie matvarene. På denne måten får vi nøyaktige data til å beregne blant annet 

energitilgjengelighet. Du vil måtte registrere kostholdet ditt to helgedager og to hverdager, aller helst en lørdag, søndag, 

mandag og tirsdag. Nødvendig veiledning vil bli gitt i forkant. Samme dager som du registrerer kostholdet ditt må du 

også ha på deg en aktivitetsmåler (eks Polar V 800 pulsklokke). Pulsbeltet må benyttes på alle treningsøkter disse fire 

dagene og du må føre treningsdagbok. Dette gjøres for at vi så nøyaktig som mulig skal kunne kartlegge energiforbruket 

til deltakerne. Dersom du ikke selv har egnet pulsklokke vil du kunne låne dette i de fire dagene registreringen foregår. 

 
 

 

 

Laboratoriemålingene dag 1 og dag 2 gjennomføres i 2. etasje på Spicheren (arbeidsfysiologisk testlab) (fortell i 

resepsjonen at du skal testes i prosjektet og de vil vise deg vei). Er det noe du lurer på? Kontakt Monica eller Thomas 

(kontaktinfo nederst på siden).  

Vel møtt! 



 

 

Appendix 5 
 

Samtykke til deltakelse i studien 

«Energitilgjengelighet, helse og prestasjon» 
Ved å si ja til å delta i studien, har du rett til å få innsyn i hvilke opplysninger som er registrert på 
deg. Du har videre rett til å få korrigert eventuelle feil i de opplysningene vi har registrert. Dersom 
du trekker deg fra studien, kan du kreve å få slettet innsamlede opplysninger, med mindre 
opplysningene allerede er inngått i analyser eller brukt i vitenskapelige publikasjoner.  
 
Ved å signere samtykkeerklæringen bekrefter du også at du ikke har kjent hjertesykdom eller andre 
lidelser/sykdom som medfører at din fastlege har frarådet deg å trene intensivt. Alle deltakere i 
studien er for øvrig forsikret via UIAs egen forsikringsordning for forskningsprosjekter.  
 
 

 

 

Jeg er villig til å delta i studien  
 

 

---------------------------------------------------------------------------------------------------------------- 

(Signert av prosjektdeltaker, dato) 

 

 

 

Jeg bekrefter å ha gitt informasjon om studien 

 

 

---------------------------------------------------------------------------------------------------------------- 

(Signert, rolle i studien, dato) 

 

 

 
 

 



 

 

Appendix 6 
 

 
 

KOSTHOLDSREGISTRERING  
Prinsippet med kostholdsregistreringen er at du så nøyaktig som mulig 

skal beskrive når, hva og hvor mye du spiser og drikker. 

    
  
Ved hjelp av et elektronisk registreringsprogram kan alle disse opplysninger legges inn via din PC 
eller MAC (dessverre ennå ikke tilgjengelig på nettbrett eller smartphone).  
Du vil få opplæring i bruk av programmet og det er pedagogisk fint oppbygget. For at informasjonen 
skal bli nøyaktig nok til bruk i forskning ber vi deg om å veie all mat/drikke du inntar. Du vil få 
utlevert en egen elektronisk kjøkkenvekt som du kan låne i registreringsperioden. Vi anbefaler å ha 
vekten tilgjengelig i løpet av dagen. For å gjøre det lettere for deg selv er det imidlertid en mulighet å 
veie mat/drikke du skal ha med ut av huset om morgenen, før du drar avgårde (eks. matpakke, 
mellommåltider som frukt, grønnsaker etc).  
Som et hjelpemiddel i løpet av dagen kan du eventuelt notere alt ned på papirskjema og deretter føre 
informasjonen inn elektronisk ved anledning. Det er viktig at du har skjemaet/PC/Mac tilgjengelig 
ved hvert måltid slik at registreringen blir mest mulig reell.  
På skjemaene skal du notere alt hva du spiser og drikker (også vann fra kranen) for hvert måltid 
eller mellommåltid eller ”snacksing”. Begynn hver dag med et nytt skjema. Notér kun én mat- eller 
drikkevare på hver linje. Det er svært viktig at du spiser og drikker, som du pleier og registrerer 
alt. Husk derfor å få med alle mellommåltider, snop og drikkevarer (som vann fra kranen, vann fra 
flaske, kaffe og te, vin, øl og sprit, juice, saft og mineralvann). 



 

 

 
Slik fyller du ut registreringsskjemaet i papirform dersom du ønsker å bruke dette som et 
hjelpemiddel: 
 
Kolonne 1: Noter tidspunktet hver gang du spiser og drikker noe. 
Kolonne 2: Noter så nøyaktig som mulig hva du spiser og drikker. 
Kolonne 3: Noter hvordan maten er tilberedt R=rå, K=kokt, S=stekt, B=bakt 
Kolonne 4: Notere så nøyaktig som mulig, hvor mye du spiser og drikker. Angi mengdene i gram. 
Benytt den utleverte kjøkkenvekt og husk å nullstille den før veiing. Har du ikke mulighet for å veie, 
angi mengden i kopper, skjeer og i porsjonsstørrelser som liten, stor, tykk eller tynn skive etc. 
Dessuten skal du notere hvor mye du spiser av retten (se eksemplet på neste side). 
Ved hjemmelaget mat skal du helst registrere oppskriften med mengdene av de forskjellige ingredienser som 
inngår i oppskriften. Husk å veie hver enkelt ingredisens på vekten og noter resultatet.  
 
VEILEDNING TIL KJØKKENVEKT 
Når du kostregistrerer, er det viktig at du får veid all mat og drikke du inntar (inkludert vann!).  
Du bruker vekten på følgende måte: 

- Sett vekten på et flatt/hardt underlag 
- Start vekten ved å trykke på knappen ON/TARE 
- Vent til displayet viser 0 

 
Hvis du vil veie flere ting etterhverandre: 

- Skal du veie matvarene f.eks i en skål, nullstill så vekten på ON/TARE etter at du har satt den 
tomme skålen på vekten 

- Etter hver enkelt matvare nullstiller du så vekten hvor du deretter legger neste matvare på  
- Apparatet slår seg av på egen hånd etter ca 2 minutter 

 
 
 
 



 

 

 
Eksempel på en kostregistrering på papir som en hjelp til å huske det du skal legge inn elektronisk 
Navn:   LISA  SØRENSEN                                        
Kostregistrering:   LØR dag, d.: 6-2-2014   
Kl. ANGIVELSER AV MAT OG 

DRIKKEVARER 
TILBERED
N. 

MENGDE 

7.00 VANN FRA SPRINGEN    300 G 

  KELLOGG’S, CORN FLAKES         20 G 

  KAFFE    600 G 

  SUKKER      10 G 

  MELK, LETT    100 G 

11.30 BRØD, GROVT 75%    100 G 

  SMØR – SOFT FLORA      20 G 

  LEVERPOSTEI, VITA MAGER      35 G 

  GUL OST, 45+      25 G 

  SALAMI, GULLSALAMI, GILDE      20 G 

15.00 MARS – SJOKOLADEBAR      60 G 

  BANAN U/SKALL    150 G 

16.30 ENERGIBAR (MAXIM)    75 G 

18.00       

OPP-
SKRIF
T: 

  KYLLING I KARRY       

     - KYLLING R 1200 G 

     - BULJONG (FRA TORO)     500 G 

     - HVETEMEL       30 G 

     - LETTMELK    100 G 

     - KARRI      5 G 

     - LØK, GUL, MELLOM 
STØRRELSE  

R 50 G 

SPIST RIS VEID ETTER KOKING  K  150 G 

21.00 HAVREGRYN, LETTKOKTE  100 G 

 BIOLA, BLÅBÆR  150 G 

 VALNØTTER  20 G 

 GRØNN TE UTEN SUKKER  150 G 

 



 

 

 

Hvordan registrere elektronisk? 
Gå inn på www.kostdata.se 

• Klikk på det norske flagget dersom det ikke automatisk kommer opp norsk 
språk 

• Klikk på Dietist Net 

 

 



 

 

 
• klikk på Dietist Net Gruppe 

 
• Klikk på Universitetet i Agder – Fakultet for helse- og idrettsvitenskap 

 

 
 
 

• Velg hvilken datamaskin du har (PC eller Mac) og installer programmet 



 

 

• For både PC og Mac finnes det to alternativer. Dersom du ikke vet om du 
har Java på din datamaskin er det enkelst å velge det første alternativet (da 
får du Java inkludert i installasjonen) 

 

 

Første alternativ inkludert 
Java 

Andre alternativ ikke 
inkludert Java (hvis du har det fra 

før) 

Første alternativ inkludert 
Java 

Andre alternativ ikke 
inkludert Java (hvis du har det fra 

før) 



 

 

 

 
 

• Du skal så finne dette ikonet på ditt skrivebord 

 
• Trykk på ikonet og muligheter for å logge inn kommer opp 

 

 
 

PASSORD: XXXXXX 
 
 



 

 

 

Begynne å bruke programmet 
• Så kommer du inn på forsiden i selve registreringsprogrammet 
• Det er en liten blå knapp med et spørsmålstegn for hver funksjon i 

programmet . Hvis du klikker på disse det vil åpne opp et hjelp vindu 
hvor funksjonen er forklart.  

 

 



 

 

 

Grunnleggende innstillinger for en ernæringsberegning 

I utgangspunktet er det flere komponenter som styrer ernæringsberegninger, men du skal kun justere 

på en komponent og det er ”norm”. 

Sette opp normen: 

Klikk på “Normer” og deretter “Velg standardnorm”. 

 

Velg normen i samsvar med den personen som beregningen utføres for (eks. mann 31-60 år, aktiv), 

og klikk deretter på “Lagre”. Du bør beholde samme norm for alle dager i registreringsperioden. 

 

 



 

 

 
 

Legge til næringsmidler til ernæringsberegningen 
Velge måltid og dag 

1. Velg dag og legg inn dato og fyll evt inn opplysninger av relevans for kostholdet (eks. syk, 

på reise eller annet). Du legger inn informasjon om dagen ved å klikke på knappen merket 

“Dag”. 

 

 
 

2. Velge måltid: Når programmet starter er frokost dag 1 valgt. Endre måltid ved å klikke på 

måltidsknapper og rullegardinmenyen litt lengre til høyre for dager (dag 1, 2 eller 3). 

3. Når det gjelder måltider er hovedmåltider som frokost, lunsj og middag presisert via egne 

knapper. Kveldsmåltid/mat må registreres under mellommåltid (Mm). Det samme gjelder for 

andre mat/drikke inntak som regnes som mindre måltider/snacksing.  

 
 

 
4. Husk å legge inn klokkeslett for hvert måltid. 

 



 

 

 

Søk etter næringsmidler 

Du søker etter matvarer ved å skrive inn noen bokstaver i navnet på mat, for eksempel melk. 

Programmet viser alle matvarer som inneholder ordet melk. Først er mat som begynner med melk, 

fulgt, i alfabetisk rekkefølge, matvarer med ordet melk i deres navn, som for eksempel helmelk. Du 

kan begrense antall alternativer ved å skrive inn to ord, f.eks “app ju” for å få akkurat de matvarene 

som inneholder begge bokstavkombinasjoner, for eksempel appelsinjuice. 

 

 

Når du har funnet den matvaren du leter etter så dobbeltklikk på den for å sende den til måltidet. Du 

kan også markere de ønskede næringsmidler og trykk på “Enter”-tasten, dra maten til måltidet, eller 

trykk på knappen “Legg til”. 

 



 

 

 

Kvantitet, enheter, gram  

Du kan enten bruke pilene eller skrive inn antall enheter av næringsmiddel. 

 

Velg enhet. 

 

Du kan enten bruke pilene eller skrive inn antall gram av næringsmiddel. 

 



 

 

 

Lagre, åpne og sende beregninger 

Lagre beregninger 

Du lagrer en beregning ved å klikke Beregninger -> Lagre 

 

Hvis beregningen tidligere ikke er lagret, vil programmet ønske å lagre beregning med ditt navn.  

 



 

 

 

Åpne beregninger 

Å åpne en tidligere lagret beregning klikk Beregninger -> Åpne. 

 

Send beregninger 

For å sende en beregning, klikk på Beregninger -> Send beregninger. For å sende en beregning, 

sender du til  

 

 

Du merker beregningen skal sendes, fyll i mottakerens brukernavn (eller kode), og din 

kontaktinformasjon. 

 

 



 

 

PAPIRSKJEMA TIL BRUK SOM HJELPEMIDDEL FØR ELEKTRONISK 
REGISTRERING (frivillig; starte evt. hver dag på nytt skjema) 

DAG 1; dato:______________________________ 
Kl. ANGIVELSER AV MAT OG 

DRIKKEVARER 
TILBERED
N. 

MENGDE 

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 

 

 

PAPIRSKJEMA TIL BRUK SOM HJELPEMIDDEL FØR ELEKTRONISK 
REGISTRERING (frivillig; starte evt. hver dag på nytt skjema) 

DAG 2; dato:______________________________ 



 

 

Kl. ANGIVELSER AV MAT OG 
DRIKKEVARER 

TILBERED
N. 

MENGDE 

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 

 

 

 

 

 



 

 

PAPIRSKJEMA TIL BRUK SOM HJELPEMIDDEL FØR ELEKTRONISK 
REGISTRERING (frivillig; starte evt. hver dag på nytt skjema) 

DAG 3; dato:______________________________ 
Kl. ANGIVELSER AV MAT OG 

DRIKKEVARER 
TILBERED
N. 

MENGDE 

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 



 

 

Appendix 7 
Kort veiledning i bruk av Polar M400 aktivitetsmåler og 

pulsklokke 
 
 
Klokken og ladning av batteri: 
Klokken har oppladbart batteri som lades via USB-porten på en datamaskin. Hvis klokken ikke 
brukes til trening m. Puls og GPS, vil batteritiden vare ca. 14 dager. Brukes puls og GPS vil 
batteritiden være ca. 24 timer. 
Det kan derfor godt skje at du må lade klokken ila de 4 dager du skal gå med den. Viktig at du lader 
klokken når du sitter ned over en lengre periode (typisk kveldstid, foran TV´en osv). 
Klokken lades med det medfølgende USB kabel og lades på baksiden av klokken (Se 
instruksjonsbok i esken). 
 

 
 
Aktivitetsregistrering:  
Inni klokken finnes en aktivitetsmåler, som måler akselerasjon. Det er derfor VIKTIG at du har 
klokken på deg 24 timer i døgnet når du registrerer kost (også når du sover). Klokken må derfor kun 
tas av hvis dere skal lade den! Alle aktivitetsmålere sliter med å registrere og ”skjønne” når en 
sykler, men mindre en har på seg pulsbelte og lagrer dette som en økt. Skal du derfor levere barna i 
barnehage, sykle til jobb/skole, sykle ned å handle mat osv. SKAL du registrere dette med puls og 
som en treningsøkt! Regelen er: sykler du, registrerer du puls, uansett om du skal sykle 1,5km eller 
150km. Klokken vil gi anmerkning når du har sittet for lenge i ro, og gi tilbakemelding på, hvor mye 
av dagens ”anbefalte” aktivitet du har gjort. Ikke tenkt på hvor mange % av dagens aktivitet du har 
oppnådd. Dette er et fiktivt tall som Polar fremsetter og som ikke er relevant i denne sammenhengen!  
 
Trening: 
Når du trener SKAL du bruke det medfølgende pulsbelte og ta opp og lagre treningen som en økt på 
klokken. Klokken har predefinert 5 økt-typer. Disse er følgende: 
Løping på tredemølle: Bruk KUN denne hvis du trener inne på tredemølle 
Løping: Denne brukes på al type løping ute (langturer, intervaller, konkurranser, orientering osv.) 
Sykling: Denne brukes til al type sykling ute. 
Annen utendørs: Bruk denne om du skal en tur i skogen eller gå en fjelltur. 
Annen innendørs: Brukes til al annen trening som gjøres inne. (styrketrening, spinning, 
sirkeltrening osv.) 
 



 

 

Har du egen pulsmåler du benytter under trening, må du i tillegg til denne bruke vår Polar M400 – da 
må du altså ha på deg 2 klokker og 2 pulsbelter under trening. Helst ser vi at du kun benytter vår 
måler under trening. 
 
Starte en treningsøkt: 

 
 
Når du er ferdig med treningsøkten, trykker du en gang på ”tilbakeknappen” for å sette treningen 
på pause. Når treningen er i pause-modus trykker du og holder ”tilbakeknappen” inne i min. 3 
sekunder. Treningsøkten er lagret og du vil få en tilbakemelding på treningen. Trykke tilbake igjen 
for å gå i klokkemodus. 
 
Synkronisering: 



 

 

Klokken har begrenset lagringsplass for treningsøkter – Dette skal ifølge Polar være 24 timers 
trening. Det er derfor ikke sikkert du trenger å synkronisere klokken med Polar. Skulle dette likevel 
skje, synkroniserer du øktene med Polar flow tjenesten på internettet. Dette gjøres på følgende måte: 

1. Gå inn på https://flow.polar.com/ 
2. Logg inn med brukernavn og passord (står på esken + det ligger lapp i esken) 
3. Trykk på navnet (Testperson UIAXX) oppe i høyre hjørne. 
4. Trykk på ”produkter” 
5. Trykk på ”nedlastning” v. Flow-sync. 
6. Innstaller programmet Polar Flow Sync. 
7. Kople M400 til dataen med det medfølgende USB kabel. 
8. Start flow-sync. 
9. Synkroniseringen skal nå gå automatisk! Dette kan ta litt tid! Du må være på internettet for at 

dette skal fungere!  
 

 
 
Går det hele opp i fisk, ring Thomas for eksperthjelp! 
NB: Det er viktig at du IKKE retter eller stiller om på innstillingene på klokkene! Dette vil føre 
til feil tolkning av resultatene og gi et feil bilde av energiforbruk!!! 
 
Manual finnes her: 
http://www.polar.com/e_manuals/M400/Polar_M400_user_manual_Norsk/manual.pdf 

 

 
 
 
 
 
 
 



 

 

 

Appendix 8 

 


