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Abstract

There are many paradigms for pattern classification such as the optimal Bayesian, kernel-based methods,inter-class
border identification,nearest neighbor methods, nearest centroid methods, amongothers. As opposed to these, this
paper introducesour NearestBorder (NB) paradigm(a paradigm that has not been reported in the literature earlier,
which we shall refer to as the NearestBorder (NB) paradigm). The philosophy for developing such a NB strategy
is as follows: Given the training data set for each class, we shall attempt to create borders for each individual class.
However, unlike the traditional Border Identification (BI)methods, we do not undertake this by usinginter-class
criteria; rather, we attempt to obtain the border for a specific class in thed-dimensional hyper-space by invokingonly
the properties of the sampleswithin that class. Once these borders have been obtained, we advocate that testing is
accomplished by assigning the test sample to the classwhose border it lies closest to. This claim appears counter-
intuitive, because unlike the centroid or the median, theseborder samples are often “outliers” and are, really, the
points that represent the class the least.Moreover, inter-class border identification methods intuitively outperform
within-class ones.However, we have formally proven this claim, and the theoretical results (for the hyperplane and
hypersphere-based one-class classifiers) have been verified by rigorous experimental testing on artificial and real-life
data sets. While the solution we propose is distantly related to the reported solutions involving Prototype Reduction
Schemes (PRSs) and BI algorithms, it is, most importantly, akin to the recently proposed “anti-Bayesian” methods of
classification.

Keywords: pattern classification, “anti-Bayesian” classification, border identification algorithms, classification using
borders, applications of SVMs

∗Corresponding author. A very preliminary and brief versionof
this paper was presented at AI’13, the 2013 Australasian Conference
on Artificial Intelligence, in Dunedin, NZ, in December 2013. The
latter version, intended to serve as a claim of the result, did not con-
tain the formal proofs of the assertions, and also included only a brief
summary ofsomeof the experimental results. The content of this
present version is, thus, significantly enhanced.

1. Introduction

1.1. Overview and Related Fields

The goal of this paper is to present a new paradigm
in Pattern Recognition (PR), which we shall refer to
as the NearestBorder (NB) paradigm. This archetype
possesses similarities to many of the well-established
methodologies in PR, and can also be seen to include
many oftheir salient facets/traits. In order for the reader
to capture the intricacies of our contribution, and be
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able to perceive it in the context of the existing state
of the art, in this introductory section, we briefly de-
scribe some of these methodologies from aconceptual
perspective.

The problem of classification in machine learning can
be quite simply described as follows: If we are given
a limited number of training samples, and if the class-
conditional distributions are unknown, the task at hand
is to predict the class label of a new sample with mini-
mum risk. Within the generative model of computation,
one resorts to modelling the prior and class-conditional
distributions, and then computing thea posterioridistri-
bution after the testing sample arrives. The strength of
this strategy is that one obtains an optimal performance
if the assumed distribution approximates the actual dis-
tribution very well. The limitation, of course, is that it
is often difficult, if not impossible, to compute the pos-
terior distribution. The alternative is to work with meth-
ods that directly model the latter posterior distribution
itself. These methods differ in the approximation of the
posterior, such as the Nearest Neighbor (NN) or thek-
Nearest Neighbors (k-NN), the Support Vector Machine
(SVM) etc. This papers advocates such a philosophy.

The most common challenges that all these tech-
niques encounter are (i) the curse of dimensionality,
which is encountered when the dimensionality of the
feature space is large, (ii) thesmall sample sizescenario
encountered when one attempts to obtain a significant
performance even though the size of the training set is
small, (iii) the large sample sizescenario, in which the
computational resources used are large because of the
high cardinality of the training set.

For decades, the NN ork-NN classifiers have been
widely-used classification rules. Each class is described
using a set of sample prototypes, and the class-identity
of an unknown vector is decided based on the identity
of the closest neighbor(s), which are found among all
the prototypes [? ]. This rule is simple, and yet it is
one of the most efficient classification rules in practice.
The application of the classifier, however, often suffers
from the higher order of the computational complexity
caused by the large number of distance computations,
especially as the size of the training set increases in high
dimensional problems [? ], [? ]. Strategies that have
been proposed to solve this dilemma can be summarized
into the following categories: (i) reducing the size of the
design set without sacrificing the performance, (ii) ac-
celerating the computation by eliminating the necessity
of calculating superfluous distances, and (iii) increasing
the accuracy of the classifiers designed with the set of
limited samples.

A simple strategy for affecting this is, for example,

that of: (i) using the mean of the training samples of
a class in nearest centroid-like method, (ii) resorting to
vector quantization (VQ), and (iii) invoking the Non-
Negative Matrix Factorization (NMF) scheme, among
others. The strengths of these are that the accuracy may
not deteriorate by using only a fewer number of samples
or meta-samples, and this can be useful when the data
is noisy and/or redundant. One must observe that the
testing algorithm is, by definition, faster. The weakness
of using a simple parametric strategy, (e.g., the nearest
centroid scheme) is that the sample mean merely can
not summarize the distribution very well.

The four families of algorithms, which are most
closely related to the NB paradigm that we propose, are
briefly surveyed below.

Prototype Reduction Schemes: The first of the so-
lutions mentioned above, i.e., of reducing the size of
the design set without sacrificing the performance, is
the basis for the family of Prototype Reduction Schemes
(PRSs), which is central to this paper. The goal here is
to reduce the number of training vectors while simulta-
neously insisting that the classifiers built on the reduced
design set perform as well, or nearly as well, as the clas-
sifiers built on the original design set. Thus, instead of
considering all the training patterns for the classifica-
tion, a subset of the whole set is selected based on cer-
tain criteria. The learning (or training) is then performed
on this reduced training set, also called the “reference”
set. This idea has been explored for various purposes,
and has resulted in the development of many algorithms
surveyed in [? ? ? ]. It is interesting to note that Bezdek
et al. [? ], who have composed an excellent survey of
the field, report that there are “zillions!” of methods1

for finding prototypes (see page 1,459 of [? ]). There
are also manyfamiliesof PRSs. In certain families, this
reference set not only contains the patterns which are
closer to the true discriminant’s boundary, but also the
patterns from the other regions of the space that can ad-
equately represent the entire training set.While most
prototype selection methods use criteria based on the

1One of the first of its kind is the Condensed Nearest Neighbor
(CNN) rule [? ]. The CNN, however, includes “interior” samples
which can be eliminated completely without changes in the perfor-
mance. Accordingly, other methods have been proposed successively,
such as the Reduced Nearest Neighbor (RNN) rule [? ], the Proto-
types for Nearest Neighbor (PNN) classifiers [? ], the Selective Near-
est Neighbor (SNN) rule [? ], two modifications of the CNN [? ],
the Edited Nearest Neighbor (ENN) rule [? ], and the non-parametric
data reduction method [? ]. Additionally, in [? ], the Vector Quantiza-
tion (VQ) technique [? ] was also reported as an extremely effective
approach to data reduction. It has also been shown that the SVM can
be used as a mean of selecting initial prototype vectors, which are
subsequently operated on by LVQ3-type methods [? ].
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full training data, Prototypes can also be selected lo-
cally. The clustering-based method proposed in [? ] is
an example of such philosophy.

Border Identification Algorithms : Border Identi-
fication (BI) algorithms, which are a subset of PRSs,
work with a reference set that contains only “border”
points. To enable the reader to perceive the difference
between general PRSs and BI algorithms, we present
some typical data points in Figure??. Consider Figure
?? in which the circles belong to classω1 and rectangles
belong to classω2. A PRS would attempt to determine
the relevant samples in both the classes which are ca-
pable of achieving near-optimal classification. Observe
that some samples which fall strictlywithin the collec-
tion of points in each class, such as A and B in Fig-
ure ??, could bePrototypes, because the testing sam-
ples that fall close to them will be correctly classified.
As opposed to this, in a BI algorithm, one usesonly
those samples that lie close to theboundariesof the two
classes, as shown in Figure??. In all brevity, we men-
tion that recent research [? ] has shown that for over-
seeing the task of achieving the classification, the sam-
ples extracted by a BI scheme, and which lieclose to
the discriminant function’s boundaries, have significant
information when it concerns the power of the classi-
fier. Duch [? ] and Foody [? ] proposed algorithms to
achieve this. But as the patterns of the reference set de-
scribed in [? ] and [? ] are only the “near” borders, they
do not have the potential to represent the entire training
set, and hence do not perform well. In order to compete
with other classification strategies, it has been shown
that we need to also include the set of “far” borders to
the reference set [? ]. A detailed description of tradi-
tional BI algorithms namely Duch’s approach, Foody’s
algorithm and the Border Identification in Two Stages
can be found in [? ]. Border identification are often
combined with other classification methods, as alterna-
tives to the nearest neighbors. While pairs of border
points are used to define class boundaries in [? ], bor-
ders points identified by various methods have also been
used to define class centroid, as proposed in [? ].

SVM-type Algorithms : Representative of a com-
pletely distinct family of algorithms is the acclaimed
SVM which is known as being quite suitable from a
theoretical point of view as well as in practical appli-
cations. From the basic theory of the SVM (explained
in the Appendix) we know that it makes use of the so-
called “sparse” representation, and has the capability of
extracting vectors which support the boundary between
the two classes, and they can satisfactorily represent
the global distribution structure. Also the learning al-
gorithm can be easily expanded to nonlinear problems

by employing a technique akin to that of kernel func-
tions. As we shall demonstrate in a subsequent section,
our NB paradigm can be implemented by invoking the
properties of one-class SVMs.

“Anti-Bayesian” PR Algorithms : A relatively new
and distinct paradigm, which works in a counter-
intuitive manner, is the recently introduced “anti-
Bayesian” philosophy. As a backdrop to this, we men-
tion that when expressions for thea posteriori distri-
bution are simplified, the classification criterion that at-
tains the Bayesian optimal lower bound often reduces
to testing the sample point using the corresponding dis-
tances/norms to themeansor the “central points” of the
distributions. In [? ? ? ], the authors demonstrated that
they can obtain optimal results by operating in a diamet-
rically opposite way, i.e., a so-called “anti-Bayesian”
manner. They showed that by working with afewpoints
distantfrom the mean, one can obtain remarkable clas-
sification accuracies. The number of points referred
to can be as small astwo in the uni-dimensional case.
Further, if these points are determined by thequan-
tiles of the distributions, the accuracy attains the opti-
mal Bayes’ bound. They demonstrated that one could
work with the symmetric quantiles of the features rather
than the distributions of the features themselves [? ?
? ]. It turns out, though, that this process is compu-
tationally not any more complex than working with the
latter distributions.Alternatively, different from the tra-
ditional definition of borders, a new definition of border
is proposed in the “Anti-Bayesian” Border Identifica-
tion (ABBI) method [? ]. For each class, this method
selects a small number of data points that lies neither
on the discriminant function’s boundary nor too close
to the central part of a class distribution.

The state-of-the-art of “Anti-Bayesian” classification
is summarized below2. Initially, in [? ], the au-
thors worked with thequantilesfor the data distribu-
tions, and showed how it could achieve near-optimal
classification for various uni-dimensional distributions.
For uni-dimensional quantile-based PR, their method-
ology is based on comparing the testing sample with
the (n−k+1

n+1 )th percentile of the first distribution and the
( k

n+1)th percentile of the second distribution. These re-
sults were shown to be applicable for the distributions

2In all these papers, the authors haderroneouslyassociated the
n−k+1
n+1 and k

n+1 percentiles with then-order Order Statistics (OS), and
in particular, with then − kth OS of the first distribution and thekth

OS of the second. Thus, although the PR schemes reported in [? ], [?
] and [? ] are accurate, they are rather based on thequantilesof the
distributions and not on the OS. The theoretical results arealso true if
one views them from the perspectives of thequantilesinstead of the
OSs.
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(a) Training Set

A B

(b) Prototypes (c) Border Patterns

Figure 1: A schematic view which shows the difference betweenBorderpatterns andPrototypes.

that are members of the symmetric exponential family.
By considering the entire spectrum of the possible val-
ues ofk, the results in [? ] and [? ] showed that the spe-
cific value ofk is usually not so crucial. Subsequently,
in [? ], they proved that these results can also be ex-
tended for multi-dimensional distributions.

The challenge involved in using quantile-based crite-
ria is that one needs many training samples to estimate
these quantiles. Thus, the question of resolving this for
the small sample set is still open.

This brings us to the question of why one needs a new
paradigm and what this paradigm entails.

1.2. Problem Formulation

In this paper, we would like to explicitly formulate
a paradigm for PR that only uses the “border” points.
First of all, the goal is that this process should be in-
dependent of the number of dimensions, thus overcom-
ing a handicap inherent in the above-mentioned “Anti-
Bayesian” schemes. This would, thus, permit us to ap-
ply the BI principle for high-dimensional data. The
method that we propose should encapsulate a method-
ology that is universal for any distribution and should,
hopefully, simultaneously crystallize the concept of the
border in the multivariate case.

What then does this new paradigm entail? Essen-
tially, we would like it to possess all the salient char-
acteristics of all the four families of methods described
above. First and foremost, it should be able to learn
the border for each class. To achieve this, unlike the
traditional BI methods, we do not resort to usinginter-
class criteria. Rather, we shall compute the border for
a specific class in thed-dimensional hyper-space by in-
voking only the properties of the sampleswithin that
class. Once these borders have been obtained, we ad-
vocate that testing is accomplished by assigning the test
sample to the class whose border it lies closest to. We
claim that this distance is an approximation to the value

of the a posterioridistribution, which justifies the rule
of assigning the testing samples to the nearest border.
This claim, appears counter-intuitive, because unlike
the centroid or the median, these border samples are of-
ten “outliers” and are, indeed, the points that represent
the class the least;the inter-class border identification
methods are supposed to work better than within-class
methods, because the border points are selected in a su-
pervised way in the former methods. The within-class
border identification methods are essentially unsuper-
vised; while the inter-class methods are supervised. Us-
ing the within-class information only, we do not need
to resort to one-versus-one or one-versus-rest scheme
for supervised hunting, This is one computational ad-
vantage of within-class methods over inter-class ones,
especially for many-class data. Furthermore, we also
claim that inter-class methods are not necessarily better
than within-class ones in terms of accuracy. Of course,
being not stereotypic, the integration of both informa-
tion should improves the performance.

Proposed Solution: Although we state and formalize
the nearest-border paradigm from a conceptual perspec-
tive, we currently realize it here by applying theSupport
Vector Domain Description(SVDD) for the multi-class
problems for which the authors of [? ] earlier proposed
a Bayesian method. First of all, a SVDD representa-
tion is learnt for each class. Thereafter, a pseudo-class-
conditional-density function is constructed for each
class. Finally, the decision is made using the esti-
mated pseudo-posterior probabilities. In this regard,
the authors of [? ] proposed a multi-class classifier
by an ensemble of one-class classifiers. First of all, a
SVDD or Kernel Principal Component Analysis-based
Kernel Whitening(KW-KPCA) is applied to each class,
where we can see that the SVDD approximates the class
boundary by hyper-spheres in the feature space, while
the KW-KPCA uses hyper-ellipses. Thereafter, the nor-
malized distance from the prototype of each class is
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computed, whence the testing sample is assigned to
the class which minimizes this distance.Local SVDD
is proposed in [? ] which locally applies SVDD to
describe overlapping regions. These existing methods
make use of within-class information only, but do not
explicitly crystallize a learning paradigm.

1.3. Contributions of this Paper

The novel contributions of this paper are the follow-
ing:

• We explicitly and formally propose a new PR
paradigm, the NearestBorderparadigm, in which
we create borders for each individual class, and
where testing is accomplished by assigning the test
sample to the class whose border it lies closest to.

• Our paradigm falls within the family of PRSs, be-
cause it yields a reference set which is a small
subset of original training patterns. The testing is
achieved byonlyutilizing the latter.

• Our paradigm falls within the family of BI meth-
ods, except that unlike traditional BI methods, the
borders we obtain do not useinter-class criteria;
rather, theyonly utilize the properties of the sam-
pleswithin that class.

• The NearestBorderparadigm is essentially “anti-
Bayesian” in its salient characteristics. This is be-
cause the testing is not done based on central con-
cepts such as the centroid or the median, but by
comparisons using these border samples, which are
often “outliers” and which, in one sense, represent
the class the least.

• The NearestBorderparadigm is closely related to
the family of SVMs, because the paradigm can
be implemented byapplyingone-SVMs to identify
the class borders.

• To justify all these claims, we submit a formal
analysis and the results of various experiments
which have been performed for many distributions
and for many real-life data sets, and the results are
clearly conclusive.

We conclude by mentioning that, as far as we know,
such a paradigm has not been reported in the PR litera-
ture.

1.4. Paper Organization

The rest of the paper is organized as follows. First
of all, in Section??, we present a fairly comprehensive
overview of the NB philosophy. Rather than distract
the readers with details, we refer the readers to Appen-
dices??and??for the brief overview of the foundations
of the two-class SVMs, and to a more-detailed study
of one-class SVMs that incorporate the hypersphere or
hyperplane borders. The paper then continues to the
exegesis on NB classifiers in Section??. Section??
details the experimental results obtained by testing our
schemes and comparing it with a set of benchmark al-
gorithms. Section??concludes the paper.

In the next section, we shall formalize the general the-
ory of the NB classification paradigm.

2. The Theory of NB Classifiers

We assume that we are dealing with a PR problem in-
volving g classes:{ω1, · · · , ωg}. For any specific class
ωi , we define a regionRi that is described by the func-
tion fi(x) = 0 (which we shall refer to as its “border”),
whereRi = {x| fi(x) > 0}. We describeRi in this manner
so that it is able to capture the main mass of the prob-
ability distribution pi(x) = p(x|ωi). All points that lie
outside ofRi , are said to fall in its “outer” region,̄Ri ,
whereR̄i = {x| fi(x) < 0}. These points are treated as
outliers as far as classωi is concerned.

The functionfi(x) is crucial to our technique because
it explicitly defines the regionRi . Formally, the function
fi(x) must be defined in such a way that:

1. fi(x) is thesigned distancefrom the pointx to the
border such thatfi(x) > 0 if x ∈ Ri , and fi(x) < 0
if x ∈ R̄i ;

2. If fi(x1) > fi(x2), thenpi(x1) > pi(x2);
3. If fi(x) > f j(x), thenp(wi |x) > p(w j |x).

In order to predict the class label of a new testing
samplex, we calculate its signed distance from each
class, and thereafter assign it to the class with the min-
imum distance. In other words, we invoke the softmax
rule:

j = arg
g

max
i=1

fi(x). (1)

This idea is illustrated in Figure??, where there are
three classes: the sun class, moon class, and star class.
The training is to learn the border of each class. A new
sample, represented by a cloud, is predicted to the star
class as its distance to this class is smaller than the other
two classes.
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The main challenge that we face in formulating, de-
signing and implementing such a NB theory lies in
the complexity of conveniently and accurately procur-
ing such borders. The reader will easily see that this
is equivalent to the problem of identifying functions
{ fi(x)} that satisfy the above constraints. Although a
host of methods to do this are possible, in this paper,
we propose one that identifies the boundaries using the
one-class SVM3 described below.

3. Nearest Border Classifiers

Before presenting the rationale and details of the NB
classifiers, we feel that it is imperative for the reader to
view it from the perspective of two-class and one-class
SVMs. In this regard, as mentioned earlier, we present
in Appendix?? and??, a brief overview of thefoun-
dationsof the hyperplane and hypersphere-based one-
class SVMs. Using the appendices as a backdrop, we
now discuss how they can be used to formulate the fam-
ily of NB classifiers. To do this, we shall first affirm that
the two-class SVM actually consists of two hyperplane-
based one-class SVMs. Thereafter, we shall present
the implementation of the NB paradigm based on the
hypersphere-based SVDD.

3.1. One-Class SVM-based Schemes

We shall first state and prove the relationship between
the family of hyperplane-based one-class SVMs and the
corresponding two-class SVM. This result is given by
the following proposition.

Theorem 1. For two-class data, the task of learning a
single two-class SVM is equivalent to that of learning
two one-class SVMs under the condition that the hyper-
planes of both the one-class SVMs are parallel.

3We are currently investigating an alternate method that involves
theα-pruning of the densities. The results that we have are quiteex-
citing, but are rather preliminary.

Proof. Without loss of generality, in our proof, we shall
assume that we are considering the case of obtaining the
two-classν-SVM .

Let us suppose that the parallel hyperplanes for the
positive and negative classes are:

f+(x) = wTx − b+ = 0, and
f−(x) = (−w)Tx + b− = 0,

where the biasesb+, b− > 0.
With regard to the signs of the respective functions,

we mention that:

• f+(x) > 0 if x is on the positive side (the sidew
pointing to) of f+(x) = 0.

• f−(x) > 0 if x is on the positive side (the side−w
pointing to) of f−(x) = 0.

The idea of utilizing one-class classifiers for clas-
sification is to maximize the absolute margin between
f+(x) = 0 and the origin, as well as the margin between
f−(x) = 0 and the origin. In other words, the goal is to
maximizeboth b+

‖w‖ 2
and b−

‖w‖2 .
Now consider the optimization associated with learn-

ing of two one-class SVMs with parallel hyperplanes.
One can see that this can be formulated as below:

min
w,b+,b−,ξ+ ,ξ−

1
2
‖w‖22 + CT(ξ+ + ξ−) − ν

b+ + b−
2

(2)

s.t.φ(X+)Tw − b+1+ ξ+ ≥ 0

φ(X−)Tw − b−1+ ξ− ≥ 0

ξ+ ≥ 0

ξ− ≥ 0

b+ > 0

b− > 0.

After obtaining the parameters of the model, the hy-
perplane between the two parallel hyperplanes isf (x) =
wTx + −b1+b2

2 = 0. If we now re-visit the formulation of
the two-classν-SVM formulation (as given in the previ-
ous section), we see that this is:

min
w,b,ρ,ξ

1
2
‖w‖22 − νρ + CTξ (3)

s.t.φ(X+)Tw + b1− ρ1+ ξ+ ≥ 0

− φ(X−)Tw − b1− ρ1+ ξ− ≥ 0

ξ+ ≥ 0

ξ− ≥ 0

ρ ≥ 0.

By a careful examination of the two formulations, one
can confirm that we can obtain theexact sameformu-
lation as in Equation (??) by settingb = −b++b−

2 and
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ρ =
b++b−

2 , whereb+ > 0 andb− > 0. This concludes
the proof.

Remark: From the above proposition, we can further
infer that the two-class SVM is, in fact, an implementa-
tion of what we have referred to as theNearest Border
paradigm! This is because, whenever we want to assign
a new sample,x, to a specific class, the SVM decision
function:

d(x) = sign[f (x)], (4)

is equivalent to:

j = arg max
i=+/−

fi(x) = arg max
i=+/−

fi(x)
‖w‖ . (5)

Further, from the Bayesian learning theory, this formu-
lation is precisely a discriminative model that directly
models thea posterioriprobability distribution.

3.2. The Hypersphere-basedNearest BorderMethod

The nearest centroid approach only uses the means
of the class-conditional distribution, and this is the rea-
son why it is not effective for the scenario when the
variances of the various classes are very different. As
shown above, the two-class SVM can find the boundary
of each class, but the solution to this problem cannot
be easily and naturally extended to the multi-class prob-
lem. The difficulty of extending any linear model from
its two-class formulation to its corresponding multi-
class formulation, lies in the fact that a hyperplane al-
ways partitions the feature space into two “open” sub-
spaces, implying that this can lead to ambiguous regions
that may be generated by some extensions of the two-
class regions for the multi-class case. The most popular
schemes to resolve this are the one-against-rest (using a
softmax function) and the one-against-one solutions.

As a one-class model, Tax and Duin’s SVDD [? ]
aims to find a closed hypersphere in the feature space
that captures the main part of the distribution. By ex-
amining the corresponding SVM, we see that the hy-
persphere obtained by the SVDD is the estimate of fea-
ture’sHighest Density Region(HDR). In particular, for
the univariate distribution, the estimation of theHighest
Density Interval(HDI) is to search for the thresholdp∗

that satisfies:
∫

x:p(x|D)>p∗
p(x|D)dx= 1− α. (6)

The (1− α)% HDI is defined asCα(p∗) = {x : p(x|D) ≥
p∗}. If we now define theCentral Interval(CI) by the

interval:

Cα(l, u) = {x ∈ (l, u)|P(l ≤ x ≤ u|D)

= 1− α,P(x ≤ l) =
α

2
,P(x ≥ u) =

α

2
}, (7)

one will see that, for symmetric unimodal univariate dis-
tribution, HDI coincides with the CI. However, for non-
symmetric univariate distributions, the HDI is smaller
than the CI.

For known distributions, the CI can be estimated by
the corresponding quantile. However, for unknown dis-
tributions, the CI can be estimated by Monte Carlo ap-
proximation. However, in the context of this paper we
remark that by virtue of Vapnik’s principle, it is not
necessary to estimate the density by invoking a non-
parametric method.

For multivariate distributions, we can estimate the
(1− α)% HDRCα( f ) by using the equality:

min
f

∫

f (x)≥0
1dx, s.t.

∫

x: f (x)≥0
p(x|D)dx= 1− α. (8)

We shall refer to this optimal contourf ∗(x) = 0 as the
(1− α)-border/contour.

Our idea for classification is in the following: We can
learn a hypersphere for each class in the feature space in
order to describe the border of this class. We then cal-
culate the distance from a unknown sample to the bor-
der of each class and assign it into the class with the
minimum distance. The training phase of our approach
is to learn the hyperspherefi(x) = 0 parameterized by
(ci ,Ri) for each class as specified by Equation (??). The
prediction phase then involving assigning the unknown
samplex using the following rule:

j = arg
g

max
i=1

fi(x), (9)

where fi(x) is defined as in Equation (??). In particular,
we note that:

• fi(x) ∈ R is the signed distance ofx from the cor-
responding boundary;

• For points inside thei-th hypersphere,fi(x) > 0;

• For points outside the hypersphere,fi(x) < 0. Fur-
ther, the largerfi(x) is, the closer it is to class
ωi , and the higher the value ofp(wi |x) is. From
the parameters offi(x), we can see thatfi(x) con-
siders both mean and variance of the distribution.
It can be further enhanced by thenormalized dis-
tancethrough the operation of dividing it byRi .
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This, quite simply, leads us to the following decision
rule:

j = arg
g

max
i=1

fi(x)
Ri
. (10)

We refer to this approach above as theNearest Border
approach based on HyperSphere(NB-HS).

In an analogous manner, the two-class SVM can also
be called theNearest Border approach based on Hy-
perPlane(NB-HP). The advantage of using the (nor-
malized) distance from the border instead of the mean
as in nearest centroid approach is that the former takes
into account both the means and the variances, while the
later only considers the mean. The advantage of the NB-
HS over the SVM is that, due to the closure property of
the hypersphere, the borders obtained in the NB-HS can
be estimated one-by-one which, is more computation-
ally efficient than by invoking a one-against-rest SVM.
Hereafter, the hypersphere based NB using the decision
rule specified by Equation (??) will be denoted byν-NB,
and the one that utilizes the normalized distance, as in
in Equation (??) will be denoted byν-NBN.

As mentioned in Section??, ν is the upper bound
of the fraction of outliers and the lower bound of the
fraction of the support vectors4. As the number training
samples increases to infinity, these two bounds converge
to ν. However, in practice, we usually have a very lim-
ited number of training samples. In order to obtainν
which corresponds to theα fraction of outliers, firstly,
we need to letν = α, and then reduceν gradually until
theα fraction of outliers are obtained. This variant of
NB will be named theα-NB in the subsequent sections.

The dual form of one-class SVM, formulated in
Equation (??), is a constrained quadratic programming.
Its computational complexity depends on the number
of training samples in a class, rather than the number
of features. It thus makes the classification of high-
dimensional data (for example text and image data) very
efficient. Through the last decade, various methods have
been proposed to solving such large-scale quadratic pro-
gramming. For example the SMO algorithm mentioned
above takes linear steps to until convergence. In the situ-
ation of a huge number of classes, a computational ben-
efit of using merely within-class information instead of

4Elsewhere, some of the authors of this paper have succeeded
in designing aSequential Minimal Optimization(SMO) algorithm to
solve Equation (??). The SMO is an extreme case of the decomposi-
tion method [? ]. Its principle lies in the fact that: It works iteratively
until the KKT conditions are satisfied. In each iteration, two of the
set of working variables are selected by a heuristic. Thereafter, we
determine if at least one of these variables violates the KKTcondi-
tions. Then, these two working variables are updated analytically and
the rest are kept fixed.

inter-class information is that a vast number of inter-
class comparisons can be avoided, even though a gain
of classification accuracy is expected when considering
inter-class discrimination.

3.3. Relationships with Existing Paradigms

It is also prudent for us to clarify the relationship be-
tween this newly-introduced NB paradigm and the four
schemes mentioned in Section??. All these methods
endeavor to obtain a reference set of data points that can
characterize the distribution of data. The NB paradigm
belongs to the family of BI algorithms, but yields the
border points by merely utilizing the information con-
tained in the “within-class” points. Furthermore, the
way by which the NB scheme classifies a new sample
is distinct from the way the family of BI schemes does
this. In the NB, the border of each class can be esti-
mated by (but not limited to) invoking the properties of
one-class SVMs. Indeed, other alternative implementa-
tions of NB classifiers are discussed in Section??. It is
also pertinent to mention that our NB solution extends,
in one sense, the quantile-based anti-Bayesian method
in a multi-dimensional context that was not explored be-
fore.

4. Experimental Results

The NB schemes that we introduce in this paper have
been rigorously tested. In this section, we present a
summary of the experiments done and the correspond-
ing results. Our computational experiments can be di-
vided into two segments. First of all, we investigated
the performance of our method on three artificial data
sets. Subsequently, we statistically compared our ap-
proach with benchmark classifiers on 17 well-known
real-life data sets. The methods that we have used and
the benchmark methods are listed in Table??. These
methods have not been chosen randomly or haphaz-
ardly. The methods, which include the“anti-Bayesian”
border identification method that considers inter-class
information, naive Bayes5, the nearest neighbor, near-
est centroid, nearest subspace and the SVM, are all pro-
totypes of well-established classical pattern recognition
paradigms, and are also philosophically related, in one
sense, to to our NB paradigm.

Before we explain the experimental results we would
like to emphasize the fact that we are not attempting to

5The naive Bayes classifier “crashed” on some real-life data sets,
and thus, in the interest of fairness, its results on real-life data sets
have not been included.
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demonstrate that our new technique is the “best avail-
able” scheme. Rather, our intention is to show that such
a NB strategy is not only feasible – it is also extremely
competitive, yielding an accuracy which is close to the
best reported PR methodologies. Indeed, in some cases,
its accuracy even exceeds the accuracy of the SVM.Sur-
prisingly, the NB methods using merely within-class in-
formation to identify borders generally outperform the
inter-class methods.

4.1. Accuracy on Synthetic Data

In order to investigate the behaviour of the NB mod-
els in various situations, we tested our approaches on
three different synthetic data sets described as follows.

1. First of all, in order to compare the perfor-
mance of our NB approaches with existing ones
in the homoscedastic case, we generated four two-
dimensional normally distributed classes. These
classes had the same standard deviation in each di-
mension (σ = 1) but possessed different means.
Each class contains 100 data points. This data set
has been denoted bySameVar, and is illustrated in
Figure??.

2. Secondly, in order to compare the NB approaches
with the NC in the case when the classes had differ-
ent variances, we generated four Gaussian classes
using different variances. We denote this data set
by DiffVar, and this is shown in Figure??.

3. Thirdly, to test the performance of the classifiers
for nonlinear scenarios, we used the data set re-
ferred to asNonLinear, and is shown in Figure??.
Here we used a Laplacian noise (µ = 0, σ = 0.15),
which was added to each point.

For the artificial data sets, we compared our ap-
proaches with theABBI , Naive Bayes, NN, NC, and
SVM classifiers. The linear kernel was used for our
methods, the NC, and SVM approaches on the first two
data sets because we wanted to compare them in the in-
put space, and theRadial Basis Function(RBF) kernel
was used on the last data set because we wanted to com-
pare them in the appropriate feature space.On all three
data sets, we used our multi-class ABBI method that
were extended by a one-versus-one scheme. For each
pair of classes, the number of border points in each class
ranges from 5 to 15, and the number of nearest neigh-
bours were searched in{1, 3, 5, 7}. With regard to the
testing strategy, we ran a 3-fold cross-validation on each
data for 20 times. All the classifiers used the same train-
ing and testing splits in order to maintain a fair compar-
ison. From the 20 results, we computed the mean and
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Figure 2: Plot of theSameVardata set. In every class, the black dot
and circle are the center and the border learned by SVDD respectively.
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Figure 3: Plot of theDiffVar data set. In every class, the black dot and
circle are the center and the border learned by SVDD respectively.

standard deviation (STD) of the accuracies, and the re-
sults are illustrated in Figure??.

On the SameVardata set, firstly, we can see that
there is no significant difference between theν-NB and
ν-NBN, and α-NB. All of them yielded an almost-
equivalent accuracy as the Naive Bayes. Secondly, it
can be seen from Figure?? that the NB was able to
identify the centers of each class accurately. The bor-
ders have the same volume, which demonstrates that
the NB can identify the borders consistent with the vari-
ances. The NB approaches yielded an accuracy simi-
lar to the NC, which is reasonable because the identical
variance of all classes is of no consequence to the NB.
Thirdly, although ABBI considered inter-class informa-
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Table 1: Summary of our NB methods and the Benchmark methods used.

Category Method Description

Proposed
ν-NB ν is the lower bound of fraction of SVs and upper bound of the fraction of error. Here,

we invoke the decision rule specified by Equation (??).
ν-NBN Here,ν-NB uses the normalized distance as defined by Equation (??).
α-NB Hereα is the fraction of SVs, and we invoke the decision rule specified by Equation

(??).
Inter-class BI ABBI The “anti-Bayesian” border identification method [? ] redefines the concept of borders

and takes inter-class information into account. The Mahalanobis and Euclidean distance
metrics were employed for low and high dimensional data, respectively. For multi-class
data, ABBI was extended by a one-versus-one scheme.

Generative Naive Bayes This rule has only been used on artificial data. It may fail on real data.

Discriminative
NN This is the Nearest Neighbor rule [? ]. Here, we replace the inner product in the

Euclidean distance with the RBF kernel, since the latter does not change the NN. Thus,
we have invoked the kernelized NN rule.

NC This is the Nearest Centroid (or prototype) [? ] rule. Again, we extended it to the
kernelized version.

NS This is a Nearest Subspace method proposed in [? ] (originally called theLinear Re-
gression Classifier). Since this method only works safely under the condition that the
number of features must be greater than the class-sample-size, we again extended it into
the kernelized version in order to let it operate under all conditions.

SVM In this case, we used theν-SVM [? ], where the one-versus-rest scheme and softmax
function are used for the multi-class task.

Table 2: Results of the accuracies achieved by a 3-fold cross-validation using the new and benchmark algorithms on the artificial data sets.

Method sameVar diffVar nonlinear
ν-NB 0.8716(0.0078) 0.9170(0.0056 0.9788(0.0049)
ν-NBN 0.8751(0.0048) 0.9107(0.0057) 0.9749(0.0054)
α-NB 0.8753(0.0065) 0.9175(0.0060) 0.9791(0.0048)
ABBI 0.8515(0.0107) 0.9136(0.0075) 0.9184(0.0174)
Naive Bayes 0.8764(0.0038) 0.9314(0.0039) 0.9264(0.0165)
NN 0.8121(0.0147) 0.8929(0.0086) 0.9818(0.0037)
NC 0.8738(0.0033) 0.8959(0.0027) 0.9408(0.0118)
SVM 0.7765(0.0238) 0.8430(0.0270) 0.9881(0.0031)

tion, it only obtained medium result. Thus, we can say
that the within-class paradigm is not necessarily inferior
to the inter-class one.Finally, the NN and SVM do not
obtain comparable results. This is because the distance
measure of the NN is affected by noise, and the SVM
is not able to “disentangle” each class well using a one-
versus-rest scheme.

On theDiffVar data set, first of all, we see that the
results again confirm that the NB can identify the bor-
ders consistent with the variances (see Figure??). The
mean accuracies of all the NB approachesand ABBI
were very close to the Naive Bayes classifier. However,
the NC yielded a worse result than the NB. This is be-

cause the variance information helped the NB, while the
NC scheme did not consider it.

Finally, for theNonLineardata set, firstly, we affirm
that all our NB methods and the SVM yielded compa-
rably good results. Secondly, the Naive Bayes did not
work well this time, because the data was not Gaus-
sian. Further, the kernel NC was not competent ei-
ther, because the data in the high-dimensional feature
space may have different variances for all the classes.
The accuracy of ABBI is not comparable with the NB
methods. Since the class distributions are not convex, a
small number of border points identified by ABBI can-
not be sufficient to represent the boundaries. However,
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Figure 4: Plot of theNonLineardata set.

we think the performance of ABBI in this situation can
be improved by kernel techniques.

4.2. Accuracy on Real-Life Data

In order tofully demonstrate the performance of our
NB approaches, we also compared them with bench-
mark approaches on 17 various data sets from bioinfor-
matics,face recognition, hand digits recognition, speech
recognition, and so on. These data sets are summarized
in Table??.

Table 3: The real-life data sets used in our experiments.

Data #Class #Feature #Sample
DNA [? ] 3 180 2000
ExYaleB[? ] 38 32256 2432
Ionosphere [? ] 2 34 351
Iris [? ] 3 4 150
Letter [? ] 26 16 15000
MFEAT [? ] 10 649 2000
Minsteries [? ] 2 400 326
Pendigit [? ] 10 16 10992
Pima [? ] 2 8 768
Satimage [? ] 6 36 4435
Segment [? ] 7 19 2310
Svmguide2 [? ] 3 20 391
Svmguide4 [? ] 3 20 391
USPS [? ] 10 256 9299
Vehicle [? ] 4 18 846
Vowel [? ] 11 10 990
Wave2 [? ] 3 40 5000

Methods and Parameters: In this set of experi-
ments, we included theν-NB and theν-NBN in the

competition. However, we did not involve theα-NB
on the real-life data sets, because it would have yielded
the same performance as theν-NB when the parame-
ter (ν in ν-NB or α in the α-NB) is selected by inner
3-fold cross-validation on the training set. The bench-
mark methods included theABBI , NN, NC, NS, and the
SVM. In this set of tests involving real-life data, we did
not include the Naive Bayes classifier because it failed
on some of them. Again, we used the RBF kernel in
our schemes and in all the benchmark classifiersexcept
ABBI which applied the recommended Mahalanobis or
Euclidean distance. All the parameters in each method
were selected by a grid or a line-search based on the in-
ner 3-fold cross-validation accuracy of the training set.
For ν-NB andν-NBN, the range ofν was tested from
the range max(0.025, 1

2
3 s

) to 0.95 by using a step-size of

0.025, wheres was the mean class-sample-size of the
training set. For theν-SVM, the range ofν was from
max(0.025, 1

2
3 s

) to min(f , 0.95), wheref was the maxi-

mum feasible value ofν defined in [? ]. For NC, NS
and SVM, the parameterσ was searched for from 2d−2

to 2d+2 by involving a step-size 0.5 in the power, where
d = log2(

√
m) (wherem is the number of features). This

was inspired by LIBSVM [? ] which sets the default
value ofσ to be 2d. The parametric setting of ABBI
was the same as on the synthetic data.

The results of the accuracies of achieving a 3-fold
cross-validation using the new and benchmark algo-
rithms on the real-life data sets are given in Table??
and plotted in Figure??. The results that we achieved in
this case, seem to categorically demonstrate the power
of the scheme. All the three NB algorithms are almost
always better that all the other benchmark algorithms,
except the SVM. This is not too difficult to understand
because the SVM utilizes the information gleaned by
invoking the borders from both the classes. As opposed
to this, the NB border merely concentrates on the bor-
der that the testing sample is nearest to. The crucial
issue that these results communicate is the fact that the
NB strategy that we have proposed is a viable and com-
petitive solution, and lends credibility to the fact that the
new concept that one can use “borders” (or outliers) to
achieve very accurate and almost-optimal PR.

Interpretation of the Results: With regard to the in-
terpretation of the results, we state:

• First of all, as can be seen from the results, the dif-
ference between theν-NB and theν-NBN is neg-
ligible. However,ν-NB has a marginally higher
rank than theν-NBN. Therefore, we can state that
using an enhanced distance measure, as defined in
Equation (??), is beneficial.
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Figure 5: Mean accuracy and STD on the three synthetic data sets.

Table 4: Results of the accuracies achieved by a 3-fold cross-validation using the new and benchmark algorithms on the real-life data sets.

Data ν-NB ν-NBN ABBI NN NC NS SVM
DNA 0.7955 0.7635 0.6075 0.6990 0.8915 0.4525 0.9385
EYaleB 0.7430 0.7364 0.5831 0.7455 0.0259 0.0263 0.9239
Ionosphere 0.8632 0.8746 0.7236 0.8604 0.7920 0.8063 0.9402
Iris 0.9267 0.9067 0.9400 0.9333 0.8733 0.7000 0.9467
Letter 0.9248 0.9245 0.7743 0.9352 0.7209 0.0517 0.9157
MFEAT 0.9640 0.9640 0.8505 0.9800 0.9455 0.5200 0.9745
Minsteries 0.6258 0.6595 0.6472 0.6043 0.4509 0.6472 0.7454
Pendigits 0.9829 0.9823 0.9385 0.9929 0.8686 0.9925 0.9944
Pima 0.7227 0.7240 0.6484 0.6810 0.7344 0.7005 0.7578
Satimage 0.8638 0.8634 0.8408 0.8970 0.7932 0.9042 0.8992
Segment 0.9065 0.9065 0.8892 0.9558 0.8476 0.2069 0.9468
Svmguide2 0.7877 0.7852 0.7596 0.7161 0.7903 0.7212 0.8031
Svmguide4 0.6601 0.6405 0.3137 0.6618 0.5376 0.3644 0.7598
USPS 0.8635 0.8621 0.8334 0.9525 0.1167 0.6698 0.9505
Vehicle 0.7139 0.7128 0.5236 0.6950 0.5816 0.2388 0.8002
Vowel 0.9434 0.9434 0.9071 0.9646 0.8182 0.9697 0.9455
Wave2 0.8492 0.8484 0.6998 0.7222 0.8086 0.6712 0.8538

• Secondly, the SVM obtained the highest rank.
However, by using Friedman test [? ], there is
no significant difference among between the SVM,
the NN, and theν-NB under the significant level of
0.05. This is quite a remarkable conclusion.

• Thirdly, the ABBI method generally had an infe-
rior performance than our new methods. It is ap-
parently surprising, because the ABBI considers
the inter-class information, but the NB not. How-
ever, we should understand that, working in the in-
put space, ABBI may not be able to select good

border points for distorted class distributions. The
kernel extension of ABBI, which we are working
on, may improve the accuracy.

• Furthermore, the underperformed results of NC
and NS are very close to each other.

• Lastly, if we examine the accuracies of the classi-
fiers, we can clearly identify two distinct groups:
{SVM, NN, ν-NB, ν-NBN}, and {ABBI, NC,
NS}, demonstrating that our newly-introduced NB
schemes are competitive to the best reported algo-
rithms in the literature.
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Figure 6: The accuracies achieved on 3-fold cross-validation for the 17 real-life data sets.

5. Conclusions and Future Work

We have introduced a new paradigm for Pattern
Recognition (PR) which has not been formally or ex-
plicitly investigated in the literature earlier, which we
shall refer to as the NearestBorder(NB) paradigm. This
paradigm can be contrasted with the reported and exist-
ing PR paradigms such as the optimal Bayesian, kernel-
based methods,inter-class border identification,near-
est neighbor methods, nearest centroid methods, among
others. The philosophy for developing such a NB strat-
egy is also quite distinct fromthe above methods(what
has been used in the existing literature), because we
shall attempt to create borders for each individual class
only from the training data sets ofthat class. Indeed,
unlike the traditional Border Identification (BI) meth-
ods, we have not achieved this by usinginter-class cri-
teria, but by searching for the border for a specific class
in the d-dimensional hyper-space by invokingonly the
properties of the sampleswithin that class. This has
been, in turn, achieved, using the corresponding one-
class SVM-based classifers. Once these borders have
been obtained, we advocate that testing is accomplished
by assigning the test sample to the class whose border
it lies closest to. We emphasize that our methodology
is actually counter-intuitive, because unlike the centroid
or the median, these border samples are often “outliers”
and are, indeed, the points that represent the class the
least.

We implemented the NB methods, ABBI algorithm,
two-class and one-class SVMs in MATLAB. The source
code is publicly available our the Regularized Linear
Models and Kernels Toolbox [? ].

The paper has rigorously derived the one-class
classifiers for the hyperplane and hypersphere-based
schemes, and the theoretical results have been verified
by rigorous experimental testing on artificial and 17

real-life data sets. While the solution we propose is
distantly related to the reported solutions involving Pro-
totype Reduction Schemes (PRSs) and BI algorithms,
it is, most importantly, akin to the recently proposed
“anti-Bayesian” method that involve the quantiles of the
various distributions.

Even though we, in this paper, apply one-class SVMs
to identify the borders of the classes, we believe there
are many other alternatives. For example, we can iden-
tify the contours of a distribution by “taking off” the
largest convex hulls constructed from the training data
points. Another possibility would be that of using the
data points that are furthest from the centers of the
masses, to estimate the borders. While the concept
of the NB paradigm is broad, we also admit that our
current implementation of relying on one-class SVMs
can be improved, because the success of the one-class
SVM is based on the assumption of dealing with uni-
modal distributions. We believe, though that we can ad-
dress this limitation for multi-modal distributions by in-
voking a good clustering method (for example, NMF
[? ]) to partition any given class into a set of sub-
classes, and thereafter utilizing a BI method for each
subclass. Also, while our current implementations and
the above alternatives are unsupervised when learning
the border of each class, we believe that we can im-
prove it by integrating the within-class and inter-class
information, where the challenge is how to deal with
the inter-class information without using a one-versus-
one or one-versus-rest scheme. This challenge is more
crucial for many-class data.
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Appendix A. Two-Class SVMs

Since the formulation and analysis of the SVM is fun-
damental to our technique, a brief overview of its math-
ematical foundations is not out of place, because with-
out it the process of formulating the specific one-class
boundaries is not easily understood.

The linear model for the classification of two-class
data is to learn the parameters of the following model:

f (x) = wTx + b, (A.1)

wherew is normal vector to the hyperplane, andb is the
bias. The decision function is the indicator:

d(x) = sign[f (x|w∗, b∗)], (A.2)

where{w∗, b∗} is the optimal parameter with respect to
some criteria. Maximum-margin linear models can be
generally expressed by the following formula:

min
w,b

n
∑

i

l(wTxi + b, yi) +
λ

2
‖w‖22, (A.3)

wherel(wTxi+b, yi) is a loss function, andλ controls the
trade-off between the approximation error and model
complexity.

The standard SVM applies the so-called “Hinge”
loss: l(wTxi + b, yi) = max(0, 1 − yi(wTxi + b)). The
geometric interpretation of the standard SVM is that the
margin between two classes is maximized while keep-
ing the samples of the same class at one side of the mar-
gin. It is also equivalent to find two closest points of
the (reduced) convex hulls, where each class defines a
convex hull, and the two closest points determine the
separating hyperplane [? ]. For notational convenience,
we define the margin border close to the positive class to
bepositive margin border, and the one close to the neg-
ative class to benegative margin border. We can also
represent the final solution in the form of inner prod-
ucts, so that their corresponding kernel extensions can
be easily reached.

In the following, we shall first introduce the C-SVM
and the equivalentν-SVM. With regard to notation,
we shall represent the training data set by the matrix
X ∈ R

m×n where each column corresponds to a train-
ing sample. The class labels are in the column vector
y ∈ {−1,+1}n.

Appendix A.1. C-SVM

The soft-margin SVM attempts to maximize the mar-
gin and simultaneously minimize the relaxation. Conse-
quently, the optimization task of the soft-margin SVM
can be expressed by the equation:

min
w,b,ξ

1
2
‖w‖22 + CTξ (A.4)

s.t. ZTw + by ≥ 1− ξ
ξ ≥ 0,

whereZ is sign-changed training samples with itsi-th
column defined as the element-wise multiplication of
the class label and the input vector of thei-th training
sample, that iszi = yi ∗ xi . ξ is a vector of slack vari-
ables. C = {C}n is a parameter balancing the model
complexity and loss.

By considering the Lagrangian function for this op-
timization, theKarush-Kuhn-Tucker(KKT) conditions,
we can have the dual form of the optimization:

min
µ

g(µ) =
1
2
µTZTZµ − µT1 (A.5)

s.t.µTy = 0

0 ≤ µ ≤ C.

One can show that the normal vector is a non-negative
linear combination of the training samples, that is:

w = Zµ = X(µ ∗ y) = XS(µS ∗ yS), (A.6)

whereS is the set of indices of non-zero multipliers:
S = {i|µi > 0, i = 1, · · · , n}. The training sam-
ples corresponding toS are called theSupport Vec-
tors (SVs), as they are either on the correct margin
border or at the wrong side of the correct margin bor-
der. In order to compute the biasb, we need to find
some points on the boundary, denoted byXB, where
B = {i|0 < µi < C, i = 1, · · · , n}. By solving this we

obtainb =
yB−XT

Bw
|B| =

yB−XT
BXS(µS∗yS)
|B| .

After obtaining the optimalw andb, the linear func-
tion used by the decision function can be computed as
follows:

f (x) = wTx + b

= xTXS(µS ∗ yS) +
yB − XT

BXS(µS ∗ yS)

|B| . (A.7)

As per the KKT conditions, we can obtain the follow-
ing important geometric interpretations from the opti-
mal multipliers. (1) Ifµi > 0, the training pointxi re-
sides either on or outside its correct margin border. (2)
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If 0 < µi < C, xi is on the margin border. (3) Ifxi

is on the wrong side of the corresponding margin bor-
der,µi = C. However, the reverse is not always true.
If µi = C, xi is either on or outside the correct margin
border.

Appendix A.2.ν-SVM
Suppose thatx is a point located on its correct bor-

der of the margin. Its corresponding value off (x) can
be written asyρ (whereρ ≥ 0 andy ∈ {−1,+1} is the
class label ofx). In this case, the margin between the
positive and negative margin borders becomes2ρ

‖w‖2 . In
theC-SVM, ρ is fixed as the value unity, and the margin
specified in theC-SVM is controlled by the parameter,
C. Alternatively, it can be controlled by adjusting the
coefficient ofρ as in theν-SVM proposed by the authors
of [? ]. The primal form of the optimization involved
for theν-SVM can be formulated as:

min
w,b,ρ,ξ

1
2
‖w‖22 −C0νρ + CTξ (A.8)

s.t. ZTw + by ≥ ρ1− ξ
ξ ≥ 0

ρ ≥ 0,

whereC0 andν are pre-specified parameters, andC is a
column vector that takes instant valueC = C0

n (we shall
later show thatC0 can be simply set to unity later).Z is
the sign-changed training set as inC-SVM.

As in the case of the C-SVM, by considering the La-
grangian function for this optimization and the KKT
conditions, we can obtain the dual form of the optimiza-
tion:

min
µ

g(µ) =
1
2
µTZTZµ (A.9)

s.t. yTµ = 0

1Tµ ≥ C0ν

0 ≤ µ ≤ C.

One can show that the optimal solution tow of the pri-
mal form as per the KKT condition:w = ZSµS, where
S is the set of indices of nonzero multipliers. If we first
determines positive points, denoted byX+, which are
on the positive border, andsnegative points, denoted by
X−, which are on the negative border, we have:

XT
+w + b1 = ρ = −XT

−w − b1, (A.10)

whence we can obtain the optimal bias as:

b = −1
2

mean((X+ + X−)Tw)

= −1
2

mean((X+ + X−)TXS(yS ∗ µS)). (A.11)

Consequently, the linear function in the decision func-
tion is

f (x) = wTx + b (A.12)

= xTXS(yS ∗ µS) −
1
2

mean((X+ + X−)TXS(yS ∗ µS)).

From the KKT conditions, theν-SVM has the follow-
ing properties:

1. From the dual form, we can see that the objec-
tive function is homogeneous. Thus, scaling the
variableµ would not change the decision function.
Therefore, we can simply setC0 = 1. The last two
constraints are now1Tµ ≥ ν and0 ≤ µ ≤ 1

n.
2. An error is defined as the training sample that re-

sides on the wrong side of its margin border. If
ρ > 0, thenν is an upper bound on the fraction of
errors, which means thatν ≥ ne

n , wherene is the
number of errors.

3. A support vector is defined as the training samples
corresponding to the non-zero multipliers which
correspond to the active constraintsρ1−ξS−ZT

Sw−
byS = 0, implying thatZT

Sw + byS ≤ ρ1. There-
fore, the SVs are a subset of the training samples
that lie either on the correct margin border or at the
wrong side of the correct margin border. Ifρ > 0,
thenν is a lower bound on the fraction of SVs, or
in other words,ν ≤ nS

n .
4. The range ofν in the ν-SVM is (0, 1), while the

range ofC in the C-SVM is (0,+∞). Therefore,
in practice, it is more convenient to use theν-SVM
rather than theC-SVM when it concerns model se-
lection.

5. The conclusions that we reported with regard to the
C-SVM concerning the relation between multiplier
and the corresponding point positions apply to the
ν-SVM as well.

Appendix B. One-Class SVMs

The one-class classification problem involves identi-
fying outliers or novelties when we are merely given a
limited number of training points. The one-class SVM
is an implementation of Vapnik’s principle stating that
we need to avoid solving a more general problem than
what is actually needed [? ]. Instead of estimating the
distribution of the data, the one-class SVM simply es-
timates the boundary of the distribution which captures
the main mass of the data. By virtue of this, the one-
class SVM is also referred to as theSupport Vector Do-
main Description(SVDD) [? ].
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The border of the domain is defined by a non-negative
linear combination of the outliers. The SVDD deter-
mines the “support” of a multivariate distribution, where
the support means the set of SVs lying on the bound. In-
deed, the various models differ in terms of the shapes of
the border. While Tax and Duin treated this boundary as
a hypersphere [? ], Schölkopfet al. merely considered
a hyperplane [? ] representation. Although both appear
quite different in their primal forms, they can be seen to
be equivalent under weak conditions, which can be ob-
served in dual form. As our NB schemes utilizes them,
both of these methods are introduced and described in
fair detail below.

Appendix B.1. Hypersphere-based One-Class SVM

The main idea of the hypersphere-based SVDD, pro-
posed by Tax and Duin [? ], is the following. The
original data points are implicitly mapped to a higher-
dimensional feature space, where a hypersphere is
learned in such a way that its volume is as small as pos-
sible, while the core mass of the data is simultaneously
kept as small as possible. An indicator function is also
learned by which the data points inside are marked to
be positive (core data points), and the data points out-
side are marked to be negative (i.e., asoutliers).

This optimization problem associated with the
hypersphere-based SVDD can be formulated, in its pri-
mal form, as follows:

min
R,ξ,ν

CTξ + νR (B.1)

s.t. ‖φ(xi) − c‖22 ≤ R+ ξi
ξi ≥ 0

R> 0,

wherec is the center of the hypersphere,R is its squared
radius,ξi is a slack variable representing the error, and
vectorC is constant withCi =

1
n.

Working now with the dual of the optimization, we
see that the dual has the form:

min
µ

1
2
µTKµ − ν

2
kTµ (B.2)

s.t. 1Tµ = ν

0 ≤ µ ≤ C,

whereK = φ(X)Tφ(X), andk = diag(K).
We now denoteS = {i|µi > 0, i = 1, · · · , n} as the

set of indices of nonzero multipliers that correspond
to points that lie on or outside the border. From the
KKT conditions, we know that the centroid of the hy-
persphere is a sparse non-negative linear combination

of the training data points, that isc = 1
sφ(X)µ =

1
ν
φ(X)SµS. We defineB = {i|0 < µi < C, i = 1, · · · , n}

as the subset of indices of points on the hypersphere.
Then, we can obtainR, the squared radius, as follows:

R=
1
|B|
∑

b∈B
‖φ(x)b − c‖22 (B.3)

=
1
|B|
(

trace(KB) − 2
ν

sum(φ(X)T
Bφ(X)SµS)

)

+
1
ν2
µT
SKSµS.

Consequently, the decision function is the following in-
dicator function:

d(x) = sign[f (x)], (B.4)

where f (x) is defined as below:

f (x) = R− ‖φ(x) − c‖22 (B.5)

= R− (φT(x)φ(x) − 2
ν
φT(x)φ(X)SµS +

1
ν2
µT
SKSµS

)

.

From the KKT conditions, we have the following im-
portant properties:

1. If µi > 0, the data pointxi resides on or outside
of the hypersphere. Such anxi , which possesses
a correspondingµi > 0, is called asupport vec-
tor. Observe that we only refer to the points whose
corresponding multipliers arenonzeroas support
vectors. This is because, from point itemized be-
low, we know that ifxi is on the hypersphere, it is
possible thatµi = 0.

2. If 0 < µi < C, then the data pointxi is on the
hypersphere. However, the reverse is not true. We
can only affirm that if the data pointxi is on the
hypersphere, then 0≤ µi ≤ C.

3. If xi resides outside of the hypersphere, thenµi =

C. In that case,xi is called anoutlier. However,
from the above, we can see that the reverse is not
true.

4. As in the case of the two-classν-SVM, ν is a lower
bound on the fraction of SVs, and an upper bound
on the fraction of outliers. That isne

n ≤ ν ≤
nS
n .

Appendix B.2. Hyperplane Based One-Class SVM

Since a hyperplane is a less complex hypersurface,
Schölkopfet al. proposed, rather, to work towards de-
termining a one-class hyperplane rather than a hyper-
sphere in the higher-dimensional feature space [? ].
We know that a hyperplane is defined by the function
f (x) = wTφ(x) − b, whereb ≥ 0. In this case, the in-
dicator functiong(x) = sign[f (x)] takes the value+1
for a small region that captures most of the data, and
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−1 elsewhere. Because the distance from the origin to
the hyperplane is−b

‖w‖2 , the task of minimizing the neg-
ative distance is equivalent to maximizing the absolute
distance, which, in turn, is equivalent to maximizing the
corresponding margin. The objective task is therefore to
minimize 1

2‖w‖
2
2 − b, as well as the loss.

The corresponding optimization problem associated
with the hyperplane-based SVDD can be formulated, in
its primal form, as follows:

min
w,b,ξ

1
2
‖w‖22 + CTξ − νb (B.6)

s.t.φ(X)Tw − b1+ ξ ≥ 0

ξ ≥ 0

b > 0,

whereC is a constant vector with elements equal to1
n .

If we now consider the dual of the optimization, we
see that it has the form:

min
µ

1
2
µTKµ (B.7)

s.t. 1Tµ = ν

0 ≤ µ ≤ C.

This leads us to the conclusion that the decision function
is:

f (φ(x)) = sign[wTφ(x) − b]

= sign[µT
Sφ(XS)Tφ(x) − b], (B.8)

whereS is the set of indices of nonzero multipliers. In
order to computeb, we need to determine the data points
on the boundary. If 0< µi < C, it implies that the data
point xi is on the boundary and thusf (xi) = 0. We
can, therefore, find a setB that includes some points
satisfying 0< µi < C, using which we can computeb
as:

b = mean(XT
BXSµS). (B.9)

The hyperplane based one-class SVM has the follow-
ing important characteristics:

1. The relationship between the multiplier and the po-
sition in the hypersphere-based SVDD also applies
to such a hyperplane-based SVDD.

2. As in the case of the two-class SVM, it can be
proven thatν can lead to an upper bound of the
fraction of outliers, and a lower bound of the frac-
tion of the support vectors, i.e.,ne

n ≤ ν ≤
nS
n .

3. ν equalsne
n and nS

n asymptotically with probability
1.

4. From the dual forms of both the hypersphere and
hyperplane formulations, we can see that the hy-
persphere formulation is equivalent to the hyper-
plane formulation in the case when we use a con-
stantK(x, x), because, in this case, the linear term
in the objective becomes constant.
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