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Abstract: For high precision positioning systems a fast and accurate settling to the reference
state is most significant and, at the same time, challenging from the control point of view.
Traditional use of an integral coaction in feedback can attain a desired reference tracking
at steady-state motion, but can fail in case of precise positioning. Most crucial is that this
is independent on how accurate the integral control part is tuned. This paper addresses the
feedback control action in precise positioning systems with friction. Analyzing the closed-
loop control dynamics with nonlinear friction in feedback it is shown why the integral action
cannot efficiently cope with Coulomb friction which becomes time-varying at motion onsets and
reversals. The latter leads to the reduced control performance expressed in desired immediate
stop at the reference position. The nature of presliding friction as functional of positioning
control error, in vicinity to the reference position, and not as function of the time argument,
is postulated as main disturbing factor that limits efficiency of the integral control coaction.
The conclusions drawn in performed analysis are also reinforced by the demonstrated numerical
examples of a controlled motion with nonlinear friction.
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1. INTRODUCTION

Nonlinear friction in presliding can limit the performance
of feedback control system when high-precision positioning
is required. High precision motion control systems should
mostly comply with a set of requirements concerning the
response/settling times and trajectory/settling accuracies,
see Iwasaki et al. [2012]. While a short response time,
i.e. fast transients, can be achieved by a model-based
feed-forwarding and other two-degrees-of-freedom control
techniques, see e.g. Umeno and Hori [1991], Araki and
Taguchi [2003], the settling time and accuracy appear
as most crucial in view of the continually increasing
requirements posed on the precise positioning systems.

Fast settling response is mostly suffering from nonlinear-
ities, such as friction, in the mechanical systems, see e.g.
Armstrong et al. [1994], Al-Bender and Swevers [2008].
Well known, the nonlinear friction in positioning control
can lead to the stick-slip motion and so-called hunting
limit cycles, see Hensen et al. [2003]. An undercompen-
sated and overcompensated friction in 1DOF mechanical
systems have been analyzed e.g. in Putra et al. [2007],
while considering PD position control with an additional
model-based friction compensation. The focus has been
put on the static friction and its transition to the gross
sliding, the so-called Stribeck effect. It has been shown
that either stable limit cycles or a final stop with non-zero
steady-state errors occur in case of an overcompensated
correspondingly undercompensated friction. An analysis of
PID control performance in presence of static friction also
leads back to the former work by Armstrong and Amin
[1996]. The settling performance of precise positioning

control have been recently addressed e.g. in Maeda et al.
[2013], Ruderman and Iwasaki [2015, 2016b].

Either directly associated with frictional phenomena or
not, but almost all studies on the settling behavior in
positioning control recognize the importance and difficul-
ties related to the integral control part and its tuning
for improvement of settling time with a required steady-
state accuracy. Recently, the synthesis of variable gain
integral controllers for linear motion systems has been
addressed in Hunnekens et al. [2015], while exposing the
real-world settling behavior in a micrometer range when
using the integral control action. Another explicit study
by Ruderman and Iwasaki [2016b] demonstrated a slow
(creeping) settling response at micro-positioning, that can-
not be efficiently handled by integral control coaction and,
apparently, represents a signature of nonlinear friction in
vicinity to the controlled motion stop. Even thought the
PID based motion control systems are widely accepted
and the analytic methods and heuristics for theirs control
gains tuning are well developed, see Åström and Hägglund
[2001], Ang et al. [2005], the high precision positioning sys-
tems appear to be not quite satisfactory with the existing
solutions. The achievable and above all well-deterministic
settling times, for the required steady-state accuracies,
demand for alternative control strategies. These should be
able to cope with disturbing nonlinearities on a micro-
positioning scale and that in a robust manner.

The goal of this paper is to analyze the action of an
integral feedback control part in motion control systems
with nonlinear Coulomb friction in presliding. The pres-
liding distance is considered in a close vicinity to the
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reference position. While an exactly controlled stop of
relative motion is required, certain transient overshoots
and oscillations (even if infinitesimally small) occur as
practically unavoidable around the reference position. This
leads to an initially large, even going towards infinity, and
then highly-varying stiffness at each motion reversal. That
appears to be weakly manageable and independently on
how accurate the feedback control gains are tuned. In the
following, we analyze the closed control loop dynamics
with standard PID feedback regulator and general first-
order motion system with nonlinear friction. We demon-
strate weak convergence of the controlled position towards
the reference value, when being within presliding distance,
and draw some assumptions about reachability of an exact
reference state. Finally, we reinforce our analysis by two
numerical examples which argue on non-efficiency of the
feedback control action in precise positioning.

2. PROBLEM STATEMENT

Independent of type of motion control system the posi-
tioning problem can be scaled down to the moving mass
(or generally inertia) as schematically illustrated in Fig.
1. The homogenous mass block is on a contact surface

F

,x x
u

rx

z

Fig. 1. Motion system with reference position and friction

and the generalized actuation force u is counteracted by
friction force F . The shown 1DOF motion system can
approximate both rotational and translational motion so
that the generalized coordinates x are assumed. Further
we assume a constant normal load so that the frictional
coefficient remains constant, or at least independent of the
motion state. For the sake of simplicity, and without loss
of generality, we will consider a unity mass so that the
motion dynamics can be easily described by

ẍ(t) + F (ẋ, t) = u(t). (1)

The kinetic friction is generally assumed as a nonlinear
function of relative velocity and time. Here, the time-
variance can incorporate all transient effects of dynamic
friction and varying conditions parameters as well. Thus
we do not need to mapped in correspondingly restricted
our consideration a particular friction phenomena at this
stage. Further on we will, however, focus on the presliding
friction phenomenon for which the time-variance of friction
force manifests itself in the varying Coulomb friction
coefficient at motion onsets and motion reversals. This
nonlinear friction behavior occurs within the so-called
presliding distance denoted in relative coordinates by
z. The presliding distance characterizes a motion range
between the last motion reversal (or stop) and the so-called
gross sliding where the friction amplitude can be assumed
constant for a constant instantaneous relative velocity. In
light of high precision positioning systems and advanced
resolution of the sensors used for feedback, the presliding
distance comes into the foreground of analysis and design.

A standard positioning task is in attaining the given
reference xr (see Fig. 1) within a possibly short time
after starting deceleration from the steady-state motion.
Here we can note that a transient overshoot or even short
transient oscillations at settling are not as crucial as the
residual positioning error and associated settling time.
Therefore, the problem is to find a stable and realizable
control u(t) which could guarantee attaining x = xr within
an acceptable settling time ts. It is well known that the
PD controlled mechanical systems can successfully cope
with this in case of a linear (viscous) friction only, i.e.
F = Dẋ. That case the design procedure is straightforward
and the control loop response can be arbitrary shaped by
the proportional and derivative control gains, assuming
the mass and viscous damping parameters are known.
To cope with unknown constant disturbances the integral
control action can be further included which results in
a standard PID control, that is widely accepted in an
uncountable number of applications, including positioning
systems and precise machinery. Often, the integral control
part is attempted to be tuned for compensating also for the
nonlinear Coulomb friction. This can succeed for reference
tracking at steady-state motion, i.e. motion without stops
and reversals, but can fail in case of precise positioning.

In the following, we will assume a standard PID control,
as a common solution integrated in most systems of
the control engineering practice. We then analyze the
performance of integral control part when compensating
for kinetic friction at the precise positioning.

3. PID CONTROL OF MOTION WITH FRICTION

We consider the PID position control with proportional,
integral, and derivative feedback gains Kp, Ki, Kd cor-
respondingly. The initial integrator state is set to zero.
Substituting the control law into eq. (1) and taking the
time derivative results in the closed control loop dynamics
...
x+Kdẍ+Kpẋ+Kix+Ḟ (ẋ, t) = Kdẍr+Kpẋr+Kixr. (2)

One can easily see that for steady-state motion, i.e. motion
with a constant velocity for which Ḟ = 0 can be assumed,
eq. (2) reduces to

...
x +Kdẍ+Kpẋ+Kix = Kpẋr +Kixr. (3)

For that one, the control loop response can be arbitrary
shaped by determining the control gains, for which com-
putation various methods of the linear control theory are
available, see e.g. Franklin et al. [2009]. However, once a

positioning control task is assumed and Ḟ = 0 is not longer
valid in vicinity to the final reference position, the con-
trol system dynamics from eq. (2) should be reconsidered
again, while its r.h.s. (right-hand side) can be replaced by
Kixr only. Next, we are to analyze the linear (viscous) fric-
tion case often assumed in the control practice, following
by the general nonlinear friction case which inherently lead
to degradation of the controlled positioning performance.

3.1 Linear viscous friction

As mentioned in Section 2, the linear (viscous) friction
can be represented by F (ẋ, t) = Dẋ where D is a positive
viscous friction coefficient. Correspondingly, the friction
time derivative results in

d

dt
F (ẋ, t) = Dẍ,
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and the closed-loop dynamics from eq. (2) results in
...
x + (Kd +D)ẍ+Kpẋ+Kix = Kixr. (4)

It is evident that the viscous friction additionally increases
the system damping, otherwise achieved by an appropriate
Kd selection. Therefore the final positioning accuracy
x(t)|t>ts = xr can be ensured by tuning the control gains.

3.2 Nonlinear Coulomb friction in presliding

In case of the nonlinear Coulomb friction in presliding, the
friction force is F (ẋ, t) = F (ẋ, z), where ż = ẋ according
to presliding friction and distance map, as schematically
shown in Fig. 2. Taking the total friction derivative with
respect to the time results in

Ḟ (ẋ, z) =
∂F

∂ẋ
ẍ+

∂F

∂z
ẋ. (5)

Since the nonlinear Coulomb friction does not depend on
the velocity amplitude, the first r.h.s. term in eq. (5) can be
further neglected. Also note that the linear viscous friction
contribution is already captured as described before in
Section 3.1, so that ∂F/∂ẋ = D becomes less relevant
for our consideration further on.

F presliding

x

presliding

z

z

rx

 
 

 
 
 
 

Fig. 2. Presliding friction with motion onset and reversal

Substituting Ḟ = ∂F/∂z ẋ into eq. (2) results in the closed-
loop control system dynamics

...
x +Kdẍ+

(
Kp +

∂F

∂z

)
ẋ+Kix = Kixr. (6)

Here one can see that the characteristic polynomial on the
l.h.s. (left-hand side) of eq. (6) becomes state-dependent

s3 + a1s
2 + a2(z)s+ a3 = 0, (7)

where

a1 = Kd, a2 = Kp +
∂F

∂z
, a3 = Ki.

For analyzing stability of the closed-loop control system
one can apply the Routh’s criterion to eq. (7) by requiring
all element in the first column[

1, Kd, Kp +
∂F

∂z
− Ki

Kd
, Ki

]T
(8)

of the Routh array to be positive. Since ∂F/∂z ≥ 0, which
is apparent from Fig. 2, the Routh’s criterion can be easily
fulfilled by requiring solely

Kp − Ki

Kd
> 0, (9)

provided all feedback control gains are positive. Even
thought this way the stability of the closed-loop control
system with nonlinear friction can be shown, an open
issue remains the transient dynamics towards the final

positioning x(t) = xr for t < ts. Important to note is
that two boundary cases occur in relation to the transient
friction dynamics Ḟ = ∂F/∂z ẋ. The first one ∂F/∂z → ∞
characterizes the initial presliding stiffness at each mo-
tion onset and motion reversal. Note that this is equally
a boundary case for discontinuous Coulomb friction ap-
proach F = Fcsign(ẋ), which is still widely used up to
date in the system and control theory, see e.g. Ruderman
[2015], Ruderman and Iwasaki [2016a] for recent analysis.
An initial stiffness towards infinity in presliding constitutes
one of the main challenges for the high precision position-
ing control, where an acceptable error band lies far below
than the average presliding distance. The second boundary
case ∂F/∂z = 0 characterizes the gross sliding, in which
the Coulomb friction is saturated at the constant level.
In this case, the closed-loop dynamics in eq. (6) reduces
to the linear one, and no frictional impact occurs on the
controlled motion system. However, a positioning process
generally assumes at least one motion reversal or onset in
vicinity to the reference position (compare with Fig. 2), so
that ∂F/∂z → ∞ inherently reenters the dynamics of the
closed control loop.

For demonstrating the impact of a2(z) we consider the
system given by eq. (7) and linearized about several
operation points K = ∂F/∂z when applying the root locus
of Evans. For doing this, rewrite eq. (7) as

1 +K
b(s)

a(s)
= 0, (10)

where b(s) = s, and the polynomial coefficients of

a(s) = s3 + a∗1s
2 + a∗2s+ a∗3

are
a∗1 = Kd, a

∗
2 = Kp, a

∗
3 = Ki.

As an illustrative numerical example assume the poles of
the closed-loop control system λ1,2,3 = [−20, −30, −40]
which result in a∗1,2,3 = [90, 2600, 24000]. Note that the
poles configuration of characteristic polynomial a(s) is
fully controllable by the design parameters Kp, Ki, Kd.
The root locus diagram is shown in Fig. 3. The poles

0K

Im

900K

9000K

Re

Fig. 3. Root locus diagram for K = ∂F/∂z

migration is indicated in dependency on K = ∂F/∂z,
and that starting from ∂F/∂z = 0 and going towards
∂F/∂z → ∞. The step responses of the linearized system
at ∂F/∂z = [0; 1, 000; 1, 000, 000] are shown in Fig. 4 (a)-
(c) correspondingly. One can see that higher the presliding
stiffness ∂F/∂z is, slower is the transient response of the
closed-loop control towards the unity reference step. From
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Fig. 4. Step responses of linearized systems for ∂F/∂z = 0
(a), ∂F/∂z = 1, 000 (b), ∂F/∂z = 1, 000, 000 (c)

the root locus diagram and step responses, shown in Figs.
3, 4 correspondingly, it can be seen that the slower domi-
nant pole, which migrates towards zero, mainly affects the
settling time of the controlled position response. Therefore,
neglecting the higher-order dynamics a simplified system
can be derived from eq. (6), while explicitly taking into
account ∂F/∂z as the main factor which influences the
positioning response. When the bidirectional relative dis-
placements, i.e. transient overshoots/oscillations in vicin-
ity to the reference position, remain within presliding
distance, the overall first-order coefficient on the l.h.s. of
eq. (6) can be assumed as a positive nonlinear function

ε(|xr − x|−1)

of the inverse absolute positioning error. This results in
the first-order nonlinear dynamic system

ε
(|xr − x|−1

)
ẋ+ x = xr. (11)

with a state varying inertia 0 < ε < ∞. Note that Kp

and Ki control gains from eq. (6) are equally incorporated
into ε approximation, in particular due to the fact that
within presliding distance ∂F/∂z � Kp. The nonlinear
differential equation (11) can be hardly solvable in a
closed analytic form. Therefore, the following general
assumptions only can be made which, however, guarantee
existence of an approximative solution. The latter can be
afterwards determined numerically.

(i) The system given by eq. (11) is stable since ε > 0 for
all positioning errors xr − x.

(ii) For |xr−x| → 0 the system inertia ε → ∞ so that the
convergence x(t) → xr can appear in time ts → ∞.

Assumption (ii) states that, theoretically, no final state
x = xr can be reached within finite time, independently
on how the selection of feedback control gains is made.

3.3 Numerical example

To demonstrate the convergence of the controlled posi-
tion response developed in Section 3.2, and in particu-
lar to prove the Assumption (ii) made above, consider
two numerical examples. Both are implemented in Mat-
lab/Simulink using the third-order discrete time solver
with a sampling time set to 0.001 sec. The first example
simulates the step response of the system given by eq. (11)
with assumed

ε =
1

Ki

(
Kp +

B

|xr − x|
)
, (12)

where B is the scaling factor characterizing the progress of
variable stiffness in presliding. The second example simu-

lates the step response of the system given by eq. (6) while
∂F/∂z is computed by an implemented presliding friction
model. The latter assumes that the area of presliding
hysteresis loops increases proportionally to the 2nd power
of presliding distance, so that

F ∼ z (1− ln(z)) .

For more details on this modeling approach see Ruderman
and Iwasaki [2014], while the relationship between n-th
power of presliding distance and hysteresis area built by
presliding friction loops has been originally established in
Koizumi and Shibazaki [1984]. Most important here is that
∂F/∂z → ∞ at z → 0. The model is parameterized by
the Coulomb friction constant assumed to be Fc = 1 and
scaling factor S which determines the length of presliding
distance z until the Coulomb friction saturates at ±Fc. In
both numerical examples the feedback control gains are
selected so that the linearized systems from by eq. (6)
and eqs. (11,12), i.e. these without variables stiffness that
means with B = 0 and ∂F/∂z = 0, provide similar step
responses as demonstrated in Fig. 5 (a) and (b).

0 1 2 3 4
0

1

0.5

time (s)

x
(a)

0 1 2 3 4
time (s)

(b)

Fig. 5. Step responses of the linearized systems from eq.
(12) with B = 0 (a), and eq. (6) with ∂F/∂z = 0 (b)

For the first numerical example, various scaling factors
associated with a variable, presliding-related stiffness are
assumed B = [0.01, 1, 100]. The convergence of the step
error xr − x is shown logarithmically in Fig. 6 over the
relatively large (comparing to zero steady-state error at
step response shown in Fig. 5 (a)) time of 200 sec. The
convergence shapes are similar for all considered B values
and neither reach zero final state.

0 60 120 180
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10
0
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(x
r−

x)

 

 
B=0.01 B=1 B=100

Fig. 6. Convergence of the step error xr − x (logarithmic)
of the system (12) for various scaling factors B

For the second numerical example, various scaling factor of
presliding distance are assumed S = [1000; 10000; 100000].
Here also the convergence of the step errors is shown
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logarithmically in Fig. 7 over the same runtime of 200
sec (compare with Fig. 5 (b)). One can see that while for
S = 1, 000 the position error is continuously decreasing,
even thought without reaching zero in a reasonable time,
the higher S values result in an aperiodic error pattern
around some average value. Note that due to a logarithmic
representation the absolute error value |xr − x| is taken.
Recall that higher scaling factor S means shorter preslid-
ing distance until the Coulomb friction saturates at the
constant level ±Fc.
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time (s)

lo
g 

|x
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x|

 

 
S=1,000 S=10,000 S=100,000

Fig. 7. Convergence of the step error xr − x (logarithmic)
of the system (6) for various scaling factors S

Both numerical examples, i.e. an approximation given by
eqs. (11-12) and the full-order closed-loop control system
given by eq. (6) with the modeled friction, argue in
favor of the analysis accomplished above and enforce the
Assumption (ii) derived from that.

4. CONCLUSIONS

This paper has addressed the issue of integral control
coaction used in the feedback control systems for precise
positioning in presence of the nonlinear presliding friction.
The standard PID feedback control has been assumed
and the closed-loop control dynamics has been derived
with respect to the varying Coulomb friction at motion
onsets and reversals. It has been analyzed and shown
with numerical examples that a final zero steady-state
positioning error can be hardly reachable, independent
on how accurate the feedback control gains are tuned.
The main conclusions which can be deduced from the
recent study are: (i) the variable presliding stiffness, and
in particularly those going towards infinity when the
velocity sign changes, is the principal challenge for fast
and accurate precise positioning control; (ii) when using
any arbitrary determinable PID feedback control gains
the settling time of reaching an exact reference position
can go towards infinity. The demonstrated analysis should
motivate to seeking for the alternative and robust control
strategies. These should be able to improve the control
performance when applied to the real-world positioning
mechanisms with inherent nonlinear frictional phenomena.
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