
c© 2015 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Open Access

Open Journal of Web Technologies (OJWT)
Volume 2, Issue 1, 2015

http://www.ronpub.com/ojwt
ISSN 2199-188X

Context-Dependent Testing
of Applications for Mobile Devices

Tim A. Majchrzak A, Matthias Schulte B

A University of Agder, Gimlemoen 25, 4630 Kristiansand, Norway, tima@ercis.de
B viadee Unternehmensberatung GmbH, Anton-Bruchausen-Straße 8, 48147 Münster, Germany,

Matthias.Schulte@viadee.de

ABSTRACT

Applications propel the versatility of mobile devices. Apps enable the realization of new ideas and greatly contribute
to the proliferation of mobile computing. Unfortunately, software quality of apps often is low. This at least partly
can be attributed to problems with testing them. However, it is not a lack of techniques or tools that make app
testing cumbersome. Rather, frequent context changes have to be dealt with. Mobile devices most notably move:
network parameters such as latency and usable bandwidth change, along with data read from sensors such as GPS
coordinates. Additionally, usage patterns vary. To address context changes in testing, we propose a novel concept.
It is based on identifying blocks of code between which context changes are possible. It helps to greatly reduce
complexity. Besides introducing our concept, we present a use case, show its application and benefits, and discuss
challenges.

TYPE OF PAPER AND KEYWORDS

Short Communications: App, mobile, mobile app, mobile device, test, testing, context

1 INTRODUCTION

It is hard to believe that the first iPhone was introduced
only a few years ago (in 2007 [31], to be precise). Con-
trasting former approaches such as personal digital assis-
tants (PDAs) and feature-phones, smartphones and tablet
computers have become devices used by nearly every-
one. Their popularity among consumers and enterprises
is still rising [16, 17]. Unsurprisingly, companies em-
brace the new possibilities for a variety of activities [33].

Modern mobile devices challenge the performance
offered by personal computers shipped few years ago.
Moreover, they are equipped with special hardware such
as cameras and a multitude of sensors. However, their
versatility is propelled by the software they use – or
rather that make use of them. Mobile applications – apps
– nowadays form an ecosystem of their own. They draw

greatly from the possibilities offered by the devices, for
example by using an integrated camera or making use of
localization via GPS.

Developing apps is a relatively new practice with lit-
tle experience and even less tradition. While there are
already many textbooks, scientific literature is limited to
articles from conference proceedings and – to a smaller
extent – journals. Work typically tackles specific issues
rather than giving a bigger picture. While app devel-
opment is not too different from developing rich-client
applications or Web applications for PCs [23], there are
particularities.

Among others, software testing is one of these. Test-
ing software is a cumbersome task [32]. Many tech-
niques require sophistication. Effective and efficient
software testing remains a challenge despite decades of
research. At the same time, proper testing greatly con-

27

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agder University Research Archive

https://core.ac.uk/display/225892168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/ojwt

Open Journal of Web Technologies (OJWT), Volume 2, Issue 1, 2015

tributes to an application’s value. Insights from software
engineering including testing strategies and techniques
can be applied to apps. However, testing differs in a
number of ways: Firstly, apps are not developed on the
platform they run (mobile device) but on a PC. Testing
on emulators will not yield the same results as testing
natively. Moreover, it can be inefficient. Secondly, test-
ing on mobile devices is laborious and very hard to au-
tomate. Additionally, it is tough to ensure uniform con-
ditions during testing. Thirdly, tool support currently is
limited. Not all PC tools have mobile device counter-
parts. Fourthly, many apps combine various technologies
and even programming paradigms and languages. Most
apps contain some mixture of native programming and
Web technology.

The most profound difference, however, is context.
Mobile devices are subject to many different contexts;
the simplest one is location, since mobility typically
means (very) frequent slight changes of position. There
are many further context changes such as network condi-
tion, availability of data from sensors, and even social is-
sues such as alternating users on one device. Therefore,
devices need not only be tested as they are but taking
context into considerations. Our experience is that test-
ing results greatly differ in dependence of the context.

We present a novel approach for software testing of
apps that takes into account the context changes inherent
to mobile devices. Our article makes a number of con-
tributions. Firstly, we explain the background of context
as an influencing factor of apps – it has implications be-
yond the realm of testing. Secondly, we introduce our
unique approach for handling context in testing. Thirdly,
we facilitate employing our approach by showing a real-
life scenario. And fourthly, we generalize our findings
and discuss the next steps.

This paper is structured as follows. Section 2 high-
lights the relevance of context changes for mobile device
usage. In Section 3 we distinguish our work from other
mobile testing approaches. Section 4 explains our ap-
proach in detail, first with a focus on theory and then
by presenting a scenario. Application, Limitations and
Challenges are discussed in Section 5. Finally, we draw
a conclusion in Section 6.

This article is an greatly extended and revised version
of paper [34]. It extends the concepts proposed by us
in [47].

2 MOBILE DEVICES AND CONTEXT

2.1 Context in General

The usage paradigm of apps contrasts that of applications
on PCs and that of Web sites (i.e. Webapps with no op-
timization). The main difference is mobility. Even if an

app not explicitly takes notice of mobility (say, a com-
mon game) it is influenced by it: mobility might lead to
changing conditions such as varying connectivity. More-
over, app lifecycle models differ from that of applica-
tions for PCs in that they might be halted on external
events such as incoming phone calls.1 Apps are built to
be used in different situations and in a changing environ-
ment. Various kinds of devices are employed. Besides
smartphones and tablets, there are hybrids such as the so
called phablets [48] and devices such as smart TVs [21].

The above considerations lead to an insight: Apps are
heavily influenced by the context they reside in. At the
same time, apps are capable of making use of contextual
factors. To give an example: when you drive out of town
your smartphone might need to switch to a cellular sys-
tem providing less bandwidth (adapting to context) but
help you find a nearby swimming lake by matching ge-
olocation information with map data (utilization of con-
text).

In the following, we propose a categorization scheme
for app context that distinguishes five core contexts. It is
also sketched in Figures 1a-1e (see p. 29).

Our proposal is not to be seen as (another) formal
model for context. In fact, it is a framework of context
on mobile devices. Moreover, as presented here it is in-
stantiated for current Android platforms. Since some as-
pects are device-dependent, minor adaptions are needed
for other platforms. Future changes to the ecosystem of
mobile apps might lead to the need for additional adjust-
ments. While our concept might be extended to a formal-
concept at some point, this would be a topic for a article
of its own.

2.2 Hardware Context

The market for mobile devices is greatly fragmented
[17]. Apps nowadays run on a multitude of devices,
ranging from watches (smartwatches) to TVs. While
these devices typically are utilized via touch interfaces,
they greatly differ in the components they are built from
(Figure 1a). Screen size, resolution, screen brightness,
contrast and refresh rate, device size, sensors, device
extensions, and input means besides touch (e.g. a re-
mote control) vary. Particularly the level of mobility, the
screen size and the sensor equipment make some devices
hardly comparable besides being based on silicon chips
and enabled to run apps. An app might require a cam-
era, thereby limiting the number of devices it can be run
on by some degree. If, however, the app requires a spe-
cific minimum resolution, the number of excluded de-
vices rises sharply.

1App lifecycle models are not further discussed here. More details
are given by [43].

28

T. A. Majchrzak, M. Schulte: Context-Dependent Testing of Applications for Mobile Devices

hardware
 context

dynamic

battery status

static

screen size
and resolution processing power

disk spacememory

component
configuration

variation of
available

space

currently
available
memory

(a) Hardware

software context operating system

vendor specific
adjustments

Android version

application
system

application
 lifecycle

3rd party
system apps

(b) Software

physical context devices / objects
around

geolocation
technologies

availability accuracy

sensor data

motion position environment

partly
measured

by

(c) Physical

com. context
cellular
network
status

unavailable

roaming

available

data
network
status

latency

bandwidth

connectivity
direct com-
munication

NFCUSBBluetooth etc.

(d) Communication

social context time

… of day

… of week

level of
attention

situation

in meetingprivatebusiness etc.

Influ-
ences

has
effects on

(e) Social

Figure 1: Contexts

29

Open Journal of Web Technologies (OJWT), Volume 2, Issue 1, 2015

Besides the particularities of mobile devices, also con-
textual factors already known from PCs and servers have
to be considered. This includes available memory and
disk space. Battery capacity is another factor.

The rate of technology advances in mobile device
hardware is still very high. This dynamic is accompa-
nied by the strive to make devices “app enabled” – smart
TVs most likely are only a beginning. It is impossible
for developers to forecast the upcoming changes, thereby
becoming able to design apps perfectly responsively (cf.
[40]). Thus, the hardware context can be problematic.

Different hardware can be handled by a strategy of
seeking for a kind of “greatest common divisor” among
devices. Think of an app that lets you scan barcodes on
goods in order to compare prices with products listed in
a Web database. There is no reason to consider hard-
ware that is not mobile, such as TV sets. The app should
notify users if no camera can be utilized (instead of mal-
functioning). Context testing should include reaction to
cameras below the quality deemed to be the minimum
threshold, at the threshold, and above it – similarly to
equivalence partitioning testing [32, p. 28].

2.3 Software Context

Fragmentation in terms of hardware goes along with
software fragmentation. Thus, software forms a context
of its own (Figure 1b is an example for the Android plat-
form). With at least the four popular platforms (Android,
Blackberry, iOS, and Windows Phone) [17], each exist-
ing in a variety of versions, app development is problem-
atic. Some versions greatly differ and application pro-
gramming interfaces (APIs) employed by older, still fre-
quently used devices might be deprecated by now. More-
over, vendors tend to amend official releases with addi-
tions of their own. This worsens the situation particularly
in the market of Android devices.

It is unlikely that soon a middleware layer [1] or a
cross-platform approach [22] will alleviate the problem.
In fact, apps existing both in a native version and as a
mobile Webapp even complicate testing. Additionally,
device-specific software components contribute to com-
plexity.

Context-related problems might also arise from the
combination of contextual factors of hardware and soft-
ware. Apps could behave very similarly using two differ-
ent versions of a mobile platform, e.g. having a similar
performance. This may be different when running on
slow devices (which would be a changing hardware con-
text). Data formats might be suited in one place but not
in the other.

2.4 Physical Context

Mobility means that the physical context (Figure 1c) is
continuously changing [45]. Location determines other
contextual factors such as connectivity [46]. Most de-
vices have one or more means to determine their location
(more or less accurate, depending on the method and,
again, context).

The physical context also comprises other devices that
can be contacted with technology such as Bluetooth,
Near Field Communication (NFC) and wireless LANs.
Moreover, devices are usually equipped with a number
of sensors such as gyroscopes, accelerometers, fixtures
for temperature measurement and similar units. Their
feedback is depending on the physical context. It has to
be particularly noted that not all physical contexts can be
simulated with today’s means – this specifically applies
to sensors. Even when using actual devices, testing the
physical context can become tremendously hard.

2.5 Communication Context

Depending on the location, connection parameters vary,
which influences communication (Figure 1d). The main
parameters are availability, bandwidth and latency, along
with minor parameters such as jitter. These are deter-
mined by the service provider used, the cellular ser-
vices supported by the device, the current location, and
to some extent external circumstances (i.e. the physical
context). For example, connection quality might be im-
paired by weather or by many people using the network
cell (e.g. in a sports stadium).

Location typically determines whether only “slow”
systems like GPRS or EDGE are available, or technolo-
gies such as UMTS, HSPA or LTE can be used. More-
over, devices might connect to wireless LANs, circum-
passing the need for a mobile data connection via a ser-
vice provider.

The communication context gradually changes contin-
uously. The pace of change usually aligns with the rate
of mobility. Apps ought to be robust. They should also
maintain functionality in offline scenarios. Ideally, they
should adjust to the context. For example, an app might
load low resolution images instead of full pictures if the
available bandwidth drops below a threshold.

The communication context is more complex than it
appears. For example, a high-bandwidth cellular service
might be readily available but not used by the phone be-
cause it is located abroad and thus in roaming mode with
disabled data services. A test that checks whether band-
width is available, attempts to perform an operation and
then fails (being unable to send data) might be very hard
to interpret and, thus, confusing.

Testing includes simulations of small bandwidths,

30

T. A. Majchrzak, M. Schulte: Context-Dependent Testing of Applications for Mobile Devices

high latencies, constant changes in connection quality,
and abrupt unavailability of service as well as resum-
ing service. Unfortunately, which bandwidth, latencies
etc. are acceptable is highly depending on the app be-
ing tested as well as on the user’s expectations and usage
patterns – and on context.

2.6 Social Context

The social context (Figure 1e) is harder to grasp than the
other context categories. It comprises of user-specific
ways using an app and of usage particularities.

Firstly, an increasing number of mobile devices are
used both for work and for private purposes. Bring your
own device (BYOD) [12] policies allow private smart-
phones within a companies’ premises (and probably to
use its network). However, some apps are used for work
while others are used for personal reasons. Some might
be used for both but not necessarily in the same way.
Due to security reasons, apps might even need to rely on
different data sources and make sure that company and
private data is not intermingled.

Secondly, while most apps are tailored to single-
person use, some mobile devices are used by more than
one person. Imagine a child playing a game on a parent’s
smartphone or a customer viewing material on a (e.g. in-
surance) sales person’s tablet. However, different people
use apps uniquely and an app’s capabilities might need
to be adjusted. For example, customers should see their
material but must not see materials prepared in the same
app for other customers (e.g. an estimate of insurance
premiums).

Thirdly, users’ attention span will not be the same
in all situations. Typical app usage is characterized by
changing attention. This can be explained with the mo-
bile nature: the simplest example is people that send
short messages while walking. Naturally, they cannot
keep staring on the smartphone screens, or they risk
bumping into a street light. Moreover, it has been found
in a study that even the time of usage influences which
apps are used [50].

The social context is very challenging for testing.
While most other context changes might be hard to sim-
ulate, it is rather straightforward to describe and to mea-
sure them. Social contextual factors, though, are fuzzy
to some degree, hard to estimate and in many cases im-
possible to exhaustively simulate and measure.

2.7 Consequences

Apps have to cope with a variety of contexts that are hard
to be assessed and to be kept track of. For several con-
textual factors, frequent changes have to be expected and
patterns of change not necessarily are predictable. Mak-

ing sure that apps behave as expected has to be added on
top of the regular testing activities. Due to a multiplica-
tive relationship, this makes testing much more compli-
cated, requires considerable more time, and can be ex-
hausting. The described challenges call for support in ef-
fective testing, and for automation to increase efficiency.

3 RELATED WORK

There is not much scientific literature on app develop-
ment that goes beyond case studies or applying existing
methods. In combination with the novelty of our ap-
proach this explains why not much closely related work
could be identified.

The literature on testing is vast (cf. [32, Chap. 2] for
an overview). App development is too new to be given
special attention in textbooks on testing. Nevertheless,
standard literature is a valuable source since testing of
Web-based applications is typically covered (e.g. [44,
Chap. 22]). Moreover, techniques for testing of graphical
user interfaces (GUI) can typically be applied to apps.
Security testing of Web applications [4] is different in
concept to our approach, despite some context changes
also posing security risks.

Mobility is sometimes covered in textbooks, typically
along with Web application [41, Chap. 6]. Some recom-
mendations are already outdated; in general, there is little
sophisticated advice. Nevertheless, without mentioning
context directly, some discussions relate to our ideas. For
example [41, pp. 166] highlights different connection
speeds of mobile phone services – even though changes
during connection time are not mentioned.

Most textbooks on app development do not address
testing; exception handling and other app-specific error
processing concepts are rather discussed (cf. e.g. [29,
Chap. 4]). It has to be kept in mind that most titles are
not academic and address beginners, though. At least an
e-book on Android testing could be identified [36]. Nev-
ertheless, the small attention given to quality aspects – let
alone testing – in app development books is disappoint-
ing. At the same time, some authors try to disillusion
hobbyist programmers about the ease of making money
by implementing apps [51].

There is a high number of papers that present work
on app testing, often in an research-in-progress state.
Typical directions of research are test automation [14],
user-centered testing [20], tools [18, 24], testing ap-
proaches [3, 37], and specifically user interface testing
[53, 54, 9, 10]. All these papers – and quite a few more
that deal with similar issues – only roughly relate for
they tackle testing of apps but are conceptually different.
In general, the research papers suggest that app testing
will mature. Some authors even contrive next-generation

31

Open Journal of Web Technologies (OJWT), Volume 2, Issue 1, 2015

business models such as offering Mobile Testing-as-a-
Service [15]. Testing (or rather the level of support for
it) also is a criterion when assessing mobile device plat-
forms [35].

Strictly speaking, even random testing of apps [30] is
related to our work. Rather than comparing concepts it
will, however, be a task of future work to compare the ef-
ficacy of sophisticated app testing methods (such as the
one presented in this article) to simple ones (such as ran-
dom testing).

The sole more closely related work we identified is
presented by Amalfitano et al. [2]. They consider con-
text as the result from events that can be triggered by the
user, the phone, or external activities. To consider events
in testing, they propose to identify patters. These are
used for manual, mutation-based and exploration-based
testing. Our work is not competing with theirs but com-
plementary.

The relevance of context in mobile computing has
been discussed as early as in 2001 [42]. In most cases
context is used in connection with awareness, i.e. the
ability of mobile devices to perceive context changes and
react accordingly [7]. Context is used to recommend
apps [39, 27], adapt automatically [19], and to predict
usage patterns [52]. While these works contribute to our
understanding of contexts, they only support testing by
explaining what can cause context changes.

Finally, there is general work on testing that keeps
context in mind. Papers deal with context awareness (e.g.
in autonomous systems [49] or focusing sensors [8]),
model checking [13], multithreading [38], and Web ser-
vices [6]. The notion of context differs; the term is em-
ployed in various fields of computer science. Neverthe-
less, several of the cited articles have a similar under-
standing of context as we do and underline the impor-
tance of being sensitive to context changes.

Summing up, there is a plethora of roughly related
work that elaborate the importance of context changes
and describe different contexts. However, there is merely
one other approach that combines context changes with
testing so far.

4 CONTEXT-SENSITIVE TESTING

4.1 General Considerations

To combine context changes with app testing, it has to
be possible to automatically change context parameters
whilst test cases are executed. With block-based context-
sensitive testing we focus on context elements that are
dynamic, i.e. possibly changing during apps usage. Do-
ing so, the changing contexts that are induced by a user
being mobile can be simulated.

The naive approach would be to specify the context

for each test case a priori. While being beneficial for
unit tests, asserting that a single code unit produces an
expected output in a certain context would not be help-
ful for testing business processes with integration tests.
As many influencing contextual factors are not static but
change constantly during usage, a more dynamic ap-
proach is needed.

Providing the possibility (e.g. by an API) to specify
context changes within test cases would allow to sim-
ulate changing contexts. However, this approach is still
static. Context changes have to be explicitly stated within
test cases. Thus, when testing scenarios including differ-
ent variations of context, many test cases are required.
Each test case would contain the same test code; only
statements for changing contexts would vary. This mul-
tiplication is not desirable. Test cases would be costly
to develop and execute, and hard to maintain let alone to
reuse. Moreover, the right sequence of context changes
has to be anticipated beforehand.

4.2 Blocks, Assertions and Context Changes

To provide a solution that fosters dynamic changes of
context, we use modularization. Test cases are split into
blocks; between each block a change of context is pos-
sible. Blocks are reused and combined with different
context changes. Therefore, testing multiple scenarios
is possible without duplication of test code. It is even
possible to generate scenarios without user-interaction.
As blocks are the foundation of our concept, we call it
block-based context-sensitive testing.

A given test case may result in a number of blocks that
form the structure of a context-sensitive test. Each block
contains operations and assertions. Similar to unit test-
ing frameworks, operations are needed to simulate user
interaction and assertions are used to verify expected be-
havior. Our idea is to derive blocks from existing test
cases, such as the so called happy path – a basic test
case without extraordinary context changes. Doing so,
a single test case may be transformed into a structure of
blocks that can be used to generate context-dependent
test cases. To preserve the intention of test cases, blocks
have to be ordered and executed consecutively.

Listing 1 illustrates in a schematic way how a test case
looks like. If the test code itself would be divided into
blocks, this schematic test case contains two of them:
one from lines 3 to 7 (block A) and one from lines 10 to
12 (block B). The scope of each block has to be atomic
w.r.t. changing contexts. In other words, during execu-
tion of test operations belonging to one single block, the
context remains stable. Only between blocks changes of
context are possible (lines 2 and 9). To realize different
scenarios, test operations do not need to be repeated but
only the context changes in between have to be altered.

32

T. A. Majchrzak, M. Schulte: Context-Dependent Testing of Applications for Mobile Devices

Listing 1: Schematic test case with context changes
1 p u b l i c vo id t e s t E x a m p l e () {
2 contextChange (c o n t e x t A) ;
3 c l i ckSomewhere () ;
4 e n t e r T e x t () ;
5 c l i c k B u t t o n () ;
6 . . .
7 a s s e r t T h a t () ;
8

9 contextChange (c o n t e x t B) ;
10 doSomeOtherThings () ;
11 . . .
12 a s s e r t T h a t () ;
13 }

The solution is expected to be most beneficial uti-
lizing a generator that automatically creates test cases
from blocks. Manual effort for writing context-sensitive
test cases is reduced and redundant test code minimized.
Moreover, there is a separation of concerns: Operations
within blocks are only used to address an app’s function-
ality; together with context changes in between they are
used to assess the behavior under changing contexts.

As many apps may behave differently in certain situ-
ations (e.g. display error messages when no connection
is available), assertions have to be extracted from blocks
due to their potential dependency on a context. For each
block at least one default assertion has to be assigned.
This assertion is used to verify the app’s standard behav-
ior. For each known context, a specific assertion may
be defined that is used to assess context-dependent be-
havior. The blocks shown in the schematic test case in
Listing 1 therefore have to be tailored smaller. Strictly
spoken, assertions in lines 7 (Block A) and 12 (Block B)
are not part of the blocks but have to be treated as another
building block of our concept. Depending on the app’s
expected behavior, assertions may be default or context-
sensitive.

The building blocks of the concept of block-based
context-sensitive testing are shown in Figure 2. The
structure of a test case is depicted by an ordered list of
blocks. Each of them has at least one default assertion.
Further assertions for different contexts may be added.

4.3 Context-Dependent Test Case Execution

A possible test execution is illustrated in Figure 3. The
beginning of the test case is denoted as the empty set ∅.
Before the first block is executed, Context1 is estab-
lished. Next, an assertion fitting to the current context
is searched. Since this block has a specific assertion for
Context1, this one is used. As the assertion holds,
execution continues. Between Block1 and Block2
the context is changed again. This time, Context2 is
established and kept for the remaining execution.

C
on

te
xt

 C
ha

ng
es

Context 1 Context 2
Default

Assertions

Block 4 A d.4 A 2.4

Block 3 A d.3

Block 2 A d.2 A 1.2 A 2.2

Block 1 A d.1 A 1.1

∅

Figure 2: Concept of block-based context-sensitive
testing

The second block is executed similarly to the first one;
a context-specific assertion part is used as well. This
changes when reaching Block3. As can be seen in Fig-
ure 2, this block does not have any specific assertions.
Consequently, the expected behavior is invariant be-
tween various contexts. Therefore, the default assertion
that verifies this behavior is evaluated. Finally, Block4
is executed together with assertion A2.4, which is the
assigned assertion for Context2.

As the matrix in Figure 2 shows, there are numerous
execution paths considering the fact that prior to each
block the context is changeable and alternative assertions
can be defined. The matrix grows with the number of
contexts but will be sparse when not defining specific
assertion parts for all blocks.

Using the concept of block-based context sensitive
testing, the structure of the test remains static as the list
of blocks in the sample shows. However, the context
in between is changing and also the used assertions can
vary.

4.4 Sample Scenario

To illustrate practical benefits, we implemented a proof-
of-concept tool and evaluated the approach in coopera-
tion with an industry partner. We use a simple app to
explain how it works: a client for the micro blogging
service Twitter. The app contains two screens, one for
logging in to the service and another for posting mes-
sages. Error messages are shown when communication
with the service is impossible due to missing connectiv-
ity.

33

Open Journal of Web Technologies (OJWT), Volume 2, Issue 1, 2015

Context
Change∅

Context 1

Block 1

A 1.1

Context 2

Block 2

A 2.2

Block 3

A d.3

Block 4

A 2.4

Context
Change

Figure 3: Example of test execution using block-based context-sensitive testing

To prepare the setting, a jar archive containing our
proof-of-concept has to be added to the classpath of the
app’s Android testing project. Moreover, as the Internet
connectivity has to be changed to test the app in various
contexts, the permissions shown in Listing 2 have to be
added to the AndroidManifest.xml of the app if
not already contained.

Listing 2: Required Android permissions
1 <uses−p e r m i s s i o n a n d r o i d : n a m e =” ←↩

a n d r o i d . p e r m i s s i o n . ←↩
ACCESS NETWORK STATE” />

2 <uses−p e r m i s s i o n a n d r o i d : n a m e =” ←↩
a n d r o i d . p e r m i s s i o n . ←↩
CHANGE NETWORK STATE” />

The following sample test is conducted in form of an
integration test, testing the app in conjunction with the
real system environment. The high level process steps
are: logging in with invalid credentials, logging in with
correct credentials, and posting a message. These three
steps form the blocks that are used to test the Twitter app.
Each step can later be conducted in a different context.

Listing 3 (see next page) shows the first block imple-
mented with our solution. The test operations, namely
filling in user name and password and clicking the login
button afterwards, are implemented in the operation-part
of the block (lines 4 to 9). The credentials used in that
block are invalid; therefore, the app is expected to show
a corresponding message. This is checked by the default
assertion (lines 10 to 12). However, if the app is in dis-
connected context, it is expected to show an error mes-
sage. In order to verify this context-dependent behav-
ior, an alternative assertion is added for the disconnected
context (lines 15 to 20).

For each of the above stated process steps a block with
context-specific assertions is implemented and added to
a list of blocks. Using a generator that creates differ-
ent mutations in terms of context changes from that list,
test cases are generated. Figure 4 shows one possible
test case. The first two blocks are executed in connected

context and their default assertions are used for veri-
fying. Before executing the third block, the context is
changed. The context dependent assertion for that block
checks whether in the disconnected context the message
“No network connection” is shown. It becomes clear that
even in a small scenario as illustrated here a lot of differ-
ent execution paths are possible, which underlines why
testing without our approach would be burdensome.

Listing 3: Sample block implementation
1 C o n t e x t d i s c C o n t e x t = new C o n t e x t (←↩

C o n n e c t i o n S t a t u s . DISCONNECTED) ;
2

3 Block l o g i n I n c o r r e c t B l o c k = new Block () {
4 p u b l i c vo id o p e r a t i o n () {
5 e n t e r T e x t (usrName , ”dummy@user . de ”) ;
6 e n t e r T e x t (pwd , ” 1234 ”) ;
7 c l i c k O n B u t t o n (0) ;
8 }
9

10 p u b l i c vo id d e f a u l t A s s e r t i o n () {
11 a s s e r t T r u e (w a i t F o r T e x t (” ←↩

A u t h e n t i c a t i o n f a i l e d ! ”)) ;
12 }
13 } ;
14

15 l o g i n I n c o r r e c t B l o c k . ←↩
a d d A l t e r n a t i v e A s s e r t i o n (d i s c C o n t e x t , ←↩
new A s s e r t i o n () {

16 p u b l i c vo id a s s e r t i o n () {
17 a s s e r t T r u e (w a i t F o r T e x t (
18 ” Could n o t l o g i n : No ne twork ←↩

c o n n e c t i o n . ”
19)) ;
20 }
21 }) ;

We used two sample generators to create test cases
from the blocks explained above. One alternates the con-
text between each block. Another generates n+1 test
cases where n is the number of blocks contained. In each
test case the generator changes the context at different
steps in the process. For the first test case the context
is changed before the first block is executed. In the sec-
ond test case it is changed after the first block has been
executed, and so on.

34

T. A. Majchrzak, M. Schulte: Context-Dependent Testing of Applications for Mobile Devices

Figure 5: Example JUnit result

Login incorrect Login correct Lost connection

Figure 4: Example process steps for test case execu-
tion for various conditions

Finally, test cases are executed by means of JUnit.
Like any other test for the Android platform, they are
running on the device or emulator itself. Figure 5 shows
test results for one execution of the above stated exam-
ple.

5 DISCUSSION

5.1 Exemplary Tool, Application and Merits

To demonstrate the producibility of our concept, we have
implemented an exemplary Android tool. It is written in
Java and can be checked out from GitHub [11]. Release
under the Apache License allows free usage and modifi-
cation. It can be inspected and used in other projects. In
particular, studying the source code will allow rapid de-
velopment of similar tools for platforms such as Apple
iOS and Microsoft Windows Phone.

While the tool is not a core contribution of our work,
it demonstrates the feasibility of our approach. In par-
ticular, it allows to retrace our concept and to check its
practicability for own scenarios. Moreover, the imple-
mentation can be seen as a first step towards powerful
context-based testing tools.

Together with an industry partner2, we exemplarily

2The industry partner is the employer of one of us (Schulte) at the
same time.

tested a few apps and evaluated our approach of block-
based context-sensitive testing. By conducting inter-
views and doing tests as shown in Section 4.4 we identi-
fied the core contributions.

We found that by using our proof-of-concept imple-
mentation it is possible to test apps in various contexts
effectively. Blocks of test code are reusable and thus
the effort in writing tests is reduced. This reduction also
holds true for the amount of duplicated test code which,
in practice, would be hard to maintain.

By using generators the concept even gets more ef-
fective in terms of finding context-related issues in
apps. Testers only have to implement blocks and de-
fine context-specific assertions once, but many test cases
are generated automatically. When writing manual tests,
the context changes may only be inserted at parts where
context-related issues are anticipated. However, using
our approach helps to find errors in code units where they
are not expected beforehand.

Manually conducting field tests, i.e. practical tests
in various contexts, is often expensive in terms of time
and budget. Thus, they are neglected frequently. Our
concept offers an alternative to conduct at least some of
these tests in laboratory conditions. Doing so, context-
related issues may be identified before release of an app,
which could reduce costs for fixing them and increases
the app’s quality.

However, our concept cannot (yet) be a panacea when
dealing with context during development and testing of
apps. We deem it a supportive mean for testing parts of
apps which are heavily influenced by context.

5.2 Limitations

Due to the novelty of our approach, a number of limita-
tions have to be mentioned.

Firstly, there are conceptual limitations. Having an or-
dered linear list of blocks allows for only one way of
execution. However, changes of context may also induce
different business processes to be executed. Thus, the

35

Open Journal of Web Technologies (OJWT), Volume 2, Issue 1, 2015

order of blocks and the decision if a block is executed
may also depend on the context used. For instance, if in
our above sample test (see Section 4.4) the login block
would be executed in disconnected context, the test has
to be stopped because the other process steps cannot be
reached. We introduced a method for aborting test case
execution in our proof-of-concept to cope with this. That
method has to be included in assertion parts correspond-
ing with contexts causing the business process to stop.
Anyhow, our concept is not able to deal with process
steps that only have to be executed in certain contexts.
Closely related, assertion parts are only dependent on the
current context but not on the prior execution path of the
test. In practice, the expected behaviour of process step
may change according to the context the prior steps are
executed in. Overcoming this limitation requires a re-
finement.

Secondly, the case study is a first example of feasibil-
ity, yet not exhausting. Effectiveness has to be proven in
industrial settings, both qualitatively and quantitatively.
We got very positive feedback from an industry partner
and approval from the practitioners’ testing community
(see Section 5.1). Feedback has to be assessed scientifi-
cally to become a valid evidence, though.

Thirdly, our tool is a prototype and, thus, poses lim-
itations. In particular, it is scarcely commented and it
is not yet very user friendly. Due to employing testing
best practices such as relying on a common unit testing
tool like JUnit [26] it is easy to use for programmers and
technical testers. For domain experts, hobbyist program-
mers, and to a lesser extent for pure Web developers it
will, however, be cumbersome due to a missing graphi-
cal user interface.

These limitations have to be kept in mind yet none
of them question the general feasibility of our approach.
They also lead to future work.

5.3 Challenges and Future Work

One major practical challenge in using our approach is to
find the right size of blocks in order to balance the effort
of slicing test cases into blocks with various assertions
against the probability of finding additional faults by do-
ing so. “Best practices”, or guidelines of how context de-
pendent test cases may look like, need to be developed.

For future work, an extension of our tool could prove
beneficial. One idea is to enable graphical modelling,
which would ease test case creation. Ideally, models e.g.
describing business processes could be reused. More-
over, better support for test case generation w.r.t. context
selection is desirable. For example, the tool could keep
track of assertions and contexts and provide testers with
reasonable suggestions. Additionally, it could track cov-
erage and advise on finding minimal sets of test cases

that cover all possible paths.
To make the approach more versatile, we also intend

to learn from other works that deal with scaling up com-
puter science concepts. Certainly, for larger programs
means will be needed to cope with an ever-increasing
number of concepts and possibilities. An example of
approaches that could be worth a look is the work on
AHEAD by Batory, Sarvela and Rauschmayer [5]. Also,
we will try to relate even stronger to existing concepts
to overcome the remaining challenges. For example, in-
sights from aspect-oriented programming (AOP) regard-
ing assertion handling [25] and even-driven testing tech-
niques [28] might be applicable.

Best practices for context-sensitive testing would
complement the work with our approach. Compil-
ing them requires a base of regular users and a lot of
time. Nevertheless, increased awareness of context is-
sues would facilitate progress.

A challenge is to become able to cope with ample con-
texts. While our approach theoretically is capable of
dealing with arbitrary context changes, actually simu-
lating these changes for testing is very hard. Problems
particularly arise from parallel (or rather quasi-parallel)
changes of contexts. As a consequence, future work
needs to refine our concept and investigate into the con-
sequences of context changes (some might e.g. be harm-
less). Research could lead to better tools for simulation,
making our approach even more useful.

6 CONCLUSION

In this paper we presented a novel approach for testing
apps. We coined it block-based context-sensitive testing
since we address context changes while defining blocks
between which they can take place. The approach en-
ables much more versatile and effective testing, while
the overhead is small due to the relatively low level of
complexity. Our concept of context changes extends the
literature of context-sensitivity in mobile computing. We
have shown the viability of our approach in a case study
and by presenting a prototype.

Testing of apps is far from being hassle-free. We ex-
pect new challenges to arise due to the extended capa-
bilities of devices and platforms, e.g. w.r.t. sensors and
parallel execution. The proliferation of the Internet of
Things (IoT) will likely contribute to the complexity that
needs to be coped with. Our work on context-sensitive
testing will continue.

ACKNOWLEDGMENTS

We would like to thank viadee Unternehmensberatung
GmbH for their support.

36

T. A. Majchrzak, M. Schulte: Context-Dependent Testing of Applications for Mobile Devices

REFERENCES

[1] V. Agarwal, S. Goyal, S. Mittal, and S. Mukher-
jea, “Mobivine: A middleware layer to handle frag-
mentation of platform interfaces for mobile appli-
cations,” in Proc. of the 10th ACM/IFIP/USENIX
Int. Conf. on Middleware. New York, NY, USA:
Springer, 2009, pp. 24:1–24:10.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, and
N. Amatucci, “Considering context events in event-
based testing of mobile applications,” in Proc. 2013
IEEE Sixth Int. Conf. on Software Testing, Verifica-
tion and Validation Workshops (ICSTW). Wash-
ington, DC, USA: IEEE Computer Society, 2013,
pp. 126–133.

[3] S. Anand, M. Naik, M. J. Harrold, and H. Yang,
“Automated concolic testing of smartphone apps,”
in Proc. ACM SIGSOFT 20th Int. Symp. on the
Foundations of Software Engineering (FSE). New
York, NY, USA: ACM, 2012, pp. 59:1–59:11.

[4] M. Andrews and J. A. Whittaker, How to Break
Web Software: Functional and Security Testing of
Web Applications and Web Services. Addison-
Wesley, 2006.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer,
“Scaling step-wise refinement,” IEEE Transactions
on Software Engineering, vol. 30, no. 6, pp. 355–
371, 2004.

[6] F. Belli and M. Linschulte, “Testing composite web
services–an event-based approach,” in Proc. IEEE
Int. Conf. on Software Testing, Verification, and
Validation Workshops (ICSTW). Washington, DC,
USA: IEEE Computer Society, 2009, pp. 307–310.

[7] M. Böhmer, C. Lander, and A. Krüger, “What’s in
the apps for context?” in Proc. 2013 ACM Conf. on
Pervasive and Ubiquitous Computing Adjunct Pub-
lication (UbiComp). New York, NY, USA: ACM,
2013, pp. 1423–1426.

[8] P. Campillo-Sanchez, E. Serrano, and J. A. Botı́a,
“Testing context-aware services based on smart-
phones by agent based social simulation,” J. Am-
bient Intell. Smart Environ., vol. 5, no. 3, pp. 311–
330, 2013.

[9] W. Choi, “Automated testing of graphical user in-
terfaces: A new algorithm and challenges,” in Proc.
2013 ACM Workshop on Mobile Development Life-
cycle (MobileDeLi). New York, NY, USA: ACM,
2013, pp. 27–28.

[10] W. Choi, G. Necula, and K. Sen, “Guided GUI
testing of Android apps with minimal restart and

approximate learning,” SIGPLAN Not., vol. 48,
no. 10, pp. 623–640, Oct. 2013.

[11] “contextTesting @GitHub,” 2015,
https://github.com/viadee/contextTesting.

[12] G. Disterer and C. Kleiner, “Using mobile devices
with BYOD,” Int. J. Web Portals, vol. 5, no. 4, pp.
33–45, 2013.

[13] L. Duan and J. Chen, “An approach to testing
with embedded context using model checker,” in
Proc. 10th Int. Conf. on Formal Methods and Soft-
ware Engineering (ICFEM). Berlin, Heidelberg:
Springer, 2008, pp. 66–85.

[14] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile
application testing: A tutorial,” Computer, vol. 47,
no. 2, pp. 46–55, 2014.

[15] J. Gao, W.-T. Tsai, R. Paul, X. Bai, and T. Uehara,
“Mobile testing-as-a-service (MTaaS),” in Proc.
2014 IEEE 15th Int. Symp. on High-Assurance Sys-
tems Engineering (HASE). IEEE CS, 2014, pp.
158–167.

[16] “Gartner Press Release,” 2012,
http://www.gartner.com/it/page.jsp?id=1924314.

[17] “Gartner Press Release,” 2014,
http://www.gartner.com/newsroom/id/2944819.

[18] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein,
“Reran: Timing- and touch-sensitive record and re-
play for android,” in Proc. 2013 Int. Conf. on Soft-
ware Engineering (ICSE). Piscataway, NJ, USA:
IEEE Press, 2013, pp. 72–81.

[19] T.-M. Gronli, J. Hansen, G. Ghinea, and
M. Younas, “Context-aware and cloud based adap-
tation of the user experience,” in Proc. 2013 IEEE
27th Int. Conf. on Advanced Information Network-
ing and Applications (AINA). Washington, DC,
USA: IEEE Computer Society, 2013, pp. 885–891.

[20] K. Haller, “Mobile testing,” SIGSOFT Softw. Eng.
Notes, vol. 38, no. 6, pp. 1–8, Nov. 2013.

[21] T. Hanna, Apps on TV. Berkely: Apress, 2012.

[22] H. Heitkötter, S. Hanschke, and T. A. Ma-
jchrzak, “Evaluating cross-platform development
approaches for mobile applications,” in Proc.
8th WEBIST, Revised Selected Papers, ser. Lec-
ture Notes in Business Information Processing
(LNBIP). Springer, 2013, vol. 140, pp. 120–138.

[23] H. Heitkötter, T. A. Majchrzak, U. Wolffgang,
and H. Kuchen, Business Apps: Grundlagen und
Status quo, ser. Working Papers. Förderkreis
der Angewandten Informatik an der Westfälischen
Wilhelms-Universität Münster e.V., 2012, no. 4.

37

Open Journal of Web Technologies (OJWT), Volume 2, Issue 1, 2015

[24] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently,
effectively detecting mobile app bugs with appdoc-
tor,” in Proc. Ninth European Conf. on Computer
Systems (EuroSys). New York, NY, USA: ACM,
2014, pp. 18:1–18:15.

[25] U. Juárez-Martı́nez, G. Alor-Hernández,
R. Posada-Gomez, J. Santos-Luna, J. Gomez,
and A. Gonzalez, “An aspect-oriented approach
for assertion verification,” in First International
Conference on Advances in System Testing and
Validation Lifecycle (VALID), 2009, pp. 74–79.

[26] “JUnit,” 2015, http://www.junit.org/.

[27] A. Karatzoglou, L. Baltrunas, K. Church, and
M. Böhmer, “Climbing the app wall,” in Proc.
21st ACM Int. Conf. on Information and Knowl-
edge Management (CIKM). New York, NY, USA:
ACM, 2012, pp. 2527–2530.

[28] A. Kumar and R. Goel, “Event driven test case
selection for regression testing web applications,”
in International Conference on Advances in En-
gineering, Science and Management (ICAESM),
2012, pp. 121–127.

[29] H. Lee and E. Chuvyrov, Beginning Windows
Phone App Development. Apress, 2012.

[30] Z. Liu, X. Gao, and X. Long, “Adaptive random
testing of mobile application,” in 2nd International
Conference on Computer Engineering and Tech-
nology (ICCET), vol. 2, 2010, pp. V2–297–V2–
301.

[31] M. Macedonia, “iPhones Target the Tech Elite,”
Computer, vol. 40, pp. 94–95, 2007.

[32] T. A. Majchrzak, Improving Software Testing:
Technical and Organizational Developments. Hei-
delberg: Springer, 2012.

[33] T. A. Majchrzak and H. Heitkötter, “Develop-
ment of mobile applications in regional companies:
Status quo and best practices,” in Proc. 9th Int.
Conf. on Web Information Systems and Technolo-
gies (WEBIST), 2013.

[34] T. A. Majchrzak and M. Schulte, “Context-
Dependent App Testing,” in Proc. of the 27th Con-
ference on Advanced Information Systems Engi-
neering (CAiSE) Forum. CEUR, 2015, pp. 73–80.

[35] T. A. Majchrzak, S. Wolf, and P. Abbassi,
“Comparing the capabilities of mobile platforms
for business app development,” in Proc. of the
8th SIGSAND/PLAIS EuroSymposium on Systems
Analysis and Design Information Systems: De-
velopment, Applications, Education, ser. Lec-
ture Notes in Business Information Processing
(LNBIP), S. Wrycza, Ed. Springer, 2015.

[36] D. T. Milano, Android application testing guide.
Packt Publishing, 2011.

[37] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani,
and R. Mahmood, “Testing android apps through
symbolic execution,” SIGSOFT Softw. Eng. Notes,
vol. 37, no. 6, pp. 1–5, 2012.

[38] M. Musuvathi and S. Qadeer, “Iterative context
bounding for systematic testing of multithreaded
programs,” SIGPLAN Not., vol. 42, no. 6, pp. 446–
455, Jun. 2007.

[39] N. Natarajan, D. Shin, and I. S. Dhillon, “Which
app will you use next?: Collaborative filtering with
interactional context,” in Proc. 7th ACM Conf. on
Recommender Systems (RecSys). New York, NY,
USA: ACM, 2013, pp. 201–208.

[40] M. Nebeling and M. C. Norrie, “Responsive design
and development: Methods, technologies and cur-
rent issues,” in Proc. of the 13th International Con-
ference on Web Engineering (ICWE). Berlin, Hei-
delberg: Springer, 2013, pp. 510–513.

[41] H. Q. Nguyen, Testing Applications on the Web.
Wiley, 2003.

[42] L. E. Nugroho, “A context-based approach for mo-
bile application development,” Ph.D. dissertation,
Monash University, 2001.

[43] E. Payet and F. Spoto, “An operational semantics
for android activities,” in Proc.of the ACM SIG-
PLAN 2014 Workshop on Partial Evaluation and
Program Manipulation (PEPM). New York, NY,
USA: ACM, 2014, pp. 121–132.

[44] W. Perry, Effective methods for software testing,
3rd ed. New York, NY, USA: Wiley, 2006.

[45] B. Schilit, N. Adams, and R. Want, “Context-aware
computing applications,” in Proc. of the 1994 First
Workshop on Mobile Computing Systems and Ap-
plications (WMCSA). Washington, DC, USA:
IEEE Computer Society, 1994, pp. 85–90.

[46] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There
is more to context than location,” Computers &
Graphics, vol. 23, no. 6, pp. 893–901, 1999.

[47] M. Schulte and T. A. Majchrzak, “Kon-
textabhängiges Testen von Apps,” Testing Ex-
perience de, pp. 8–13, Oktober 2013.

[48] S. Segan, “Phablet History,” 2012,
http://www.pcmag.com/slideshow/story/294004/
enter-the-phablet-a-history-of-phone-tablet-
hybrids.

[49] S. Taranu and J. Tiemann, “General method for
testing context aware applications,” in Proc. 6th Int.

38

T. A. Majchrzak, M. Schulte: Context-Dependent Testing of Applications for Mobile Devices

Workshop on Managing Ubiquitous Communica-
tions and Services (MUCS). New York, NY, USA:
ACM, 2009, pp. 3–8.

[50] H. Verkasalo, “Propensity to use smartphone appli-
cations,” in Proc. 5th UBICOMM, 2012.

[51] J. Williamson, App Idiots. self-published (e-
book), 2014.

[52] Y. Xu, M. Lin, H. Lu, G. Cardone, N. Lane,
Z. Chen, A. Campbell, and T. Choudhury, “Pref-
erence, context and communities: A multi-faceted
approach to predicting smartphone app usage pat-
terns,” in Proc. 2013 Int. Symp. on Wearable Com-
puters (ISWC). New York, NY, USA: ACM, 2013,
pp. 69–76.

[53] W. Yang, M. R. Prasad, and T. Xie, “A grey-box
approach for automated GUI-model generation of
mobile applications,” in Proc. 16th Int. Conf. on
Fundamental Approaches to Software Engineering
(FASE). Berlin, Heidelberg: Springer, 2013, pp.
250–265.

[54] C.-C. Yeh, S.-K. Huang, and S.-Y. Chang, “A
black-box based android GUI testing system,” in
Proc. 11th Annual Int. Conf. on Mobile Systems,
Applications, and Services (MobiSys). New York,
NY, USA: ACM, 2013, pp. 529–530.

AUTHOR BIOGRAPHIES

Tim A. Majchrzak is an as-
sociate professor at the Depart-
ment of Information Systems at
the University of Agder in Kris-
tiansand, Norway. He received
BSc and MSc degrees in Infor-
mation Systems and a PhD in
economics (Dr. rer. pol.) from
the University of Münster. His
research comprises both techni-
cal and organizational aspects of
software engineering, often in

the context of Web technologies and Mobile Computing.
He has also published work on several interdisciplinary
Information Systems topics. Tim’s research projects typ-
ically have an interface to industry.

Matthias Schulte is an IT
Consultant at viadee Un-
ternehmensberatung GmbH.
He was awarded BSc and MSc
degrees in Information Systems
by the University of Münster.
During his studies, he focused
on software engineering and,
in particular, on concepts for
software testing as well as
business process management.
His professional work also

focuses on the area of quality management and software
engineering. Mobile application development recently
attracted Matthias’ attention.

39

	Introduction
	Mobile Devices and Context
	Context in General
	Hardware Context
	Software Context
	Physical Context
	Communication Context
	Social Context
	Consequences

	Related Work
	Context-Sensitive Testing
	General Considerations
	Blocks, Assertions and Context Changes
	Context-Dependent Test Case Execution
	Sample Scenario

	Discussion
	Exemplary Tool, Application and Merits
	Limitations
	Challenges and Future Work

	Conclusion

