
Model-Driven Cross-Platform Apps:
Towards Business Practicability

Tim A. Majchrzak1, Jan Ernsting2, and Herbert Kuchen2

1 ERCIS, University of Agder, Kristiansand, Norway
2 ERCIS, University of Münster, Münster, Germany

{tima,jan.ernsting,kuchen}@ercis.de

Abstract. Due to the incompatibility of mobile device platforms such
as Android and iOS, apps have to be developed separately for each
target platform. Cross-platform development approaches based on Web
technology have significantly improved over the last years. However, since
they do not provide native apps, these frameworks are not feasible for
all kinds of business apps. Moreover, the way apps are developed is
cumbersome. Advanced cross-platform approaches such as MD2, which is
based on model-driven development (MDSD) techniques, are a much more
powerful yet less mature choice. We introduce MD2 as one solution to fulfill
typical requirements of business apps. Moreover, we highlight a business-
oriented enhancement that further increases its business practicability.

Keywords: Cross-platform, MDSD, app, business app, mobile

1 Introduction

Businesses increasingly embrace mobile computing. Applications for mobile
devices (apps) such as smartphones and tablets are not only developed for sale or
to directly earn money with them (e.g. by placing advertisements in them). Rather,
enterprises have identified usage scenarios in internal utilization by employees,
field service, sales, and customer relationship management (CRM) [20]. Besides
some other topics such as security [9] and testing [24], cross-platform development
is a major concern [14].

The need for cross-platform development approaches arises from the incom-
patibility of today’s platforms for mobile devices. With Apple’s iOS, Google’s
Android, Microsoft’s Windows Phone, and RIM’s Blackberry (cf. e.g. [12]) there
are at least four major platforms that need to be supported in order to reach most
potential users of an app. Each platform has an ecosystem of its own and differs
with regard to programming language, libraries, and usage of device-specific
hardware – to name just a few factors. Developing separately for each platform
currently is the choice; it is an error-prone and extremely inefficient procedure
which becomes particularly frustrating when updating existing apps.

Based on the proliferation of adequate frameworks [17], mobile Webapps have
become very popular. Cross-platform approaches based on Web technology such

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agder University Research Archive

https://core.ac.uk/display/225892164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


as Apache Cordova [1] (a.k.a. PhoneGap [22]) are suitable for many app projects.
They are rather easy to learn, offer good community support and rich literature,
and – most notably – can be deployed as real apps. This also allows offering
them in app stores and to virtually use them in any way native apps could be
used. However, apps based on Web technology are not feasible in all cases [6].

When working with Web apps, their origin in Web technology cannot be fully
neglected. This has been called an uncanny valley [10]: a typical Webapps’ look
& feel is almost real but the app is slightly less responsive. Moreover, even with
HTML5 [18] not all device-specific features are supported. Connecting to server-
backends, as required for most business apps [16], is cumbersome and typically
inefficient. Finally, apps are developed with a very low level of abstraction.
Domain-specific knowledge has to be communicated to developers instead of
being built directly into an app; existing models e.g. of business processes or
information systems cannot be used even if they would be applicable to the
scenario that an app is intended for.

To close the above sketched gap, we have compiled requirements for typical
apps used by businesses for purposes different to sales of these apps. To enable
effective cross-platform development of business apps, our group has developed a
prototype for model-driven development (MDSD [25] of apps).

This paper is structured as follows. Section 2 discusses different approaches
that can be used for cross-platform development. MD2, our approach to develop
cross-platform apps, is introduced in Section 3. Section 4 characterizes the
particularities of a business-oriented enhancement for MD2. In Section 5, we
draw a conclusion and sketch the path for MD2.

2 Existing Approaches

Cross-platform app development approaches have been discussed as early as 2009.
Miravet et al. present their framework DIMAG, which is based on State Chart
eXtensible Markup Language (SCXML) [21]. Even what is considered a cross-
platform approach might vary – practitioners sometimes employ loser definitions
(cf. the comparison by [7]). Apache Cordova [1] utilizes Web technology but also
supports accessing native device features. Yet, its Web foundations negatively
impact aspects such as app responsiveness. Other approaches build upon a self-
contained runtime operating on custom scripting languages such as Titanium [2].

Cabana [8], AXIOM [19], and applause [3] are generative approaches. Cabana
focuses on app development in the context of higher education. It utilizes a GUI
to manipulate graphic models of app representations and allows to implement
customized code. However, interactions with backends are neglected and using
other platforms for achieving this is advised (cf. [8, p. 533f.]). Cabana apparently
has been discontinued [26]. AXIOM takes a technical stance as it features aspects
of UML and uses the programming language Groovy [13]. Moreover, it does
not fully automate intermediate steps of code generation [15]. applause is most
similar to MD2: it provides a DSL, too. Yet, it is mostly restricted to displaying
information and does not provide a DSL tailored to describing business apps.



3 Cross-Platform Development with MD2

3.1 Introductory Example

A corporation has a customer relationship management (CRM) system that
it wants to provide access to its sales representatives so that they can record
prospective customers as part of their acquisition process through their mobile
devices. However, the CRM does not support mobile devices but offers an
application programming interface (API) for third party applications. In addition,
the corporation has no prior knowledge of mobile app development and wants
to use MD2 to integrate its CRM and the mobile apps that are to be created.
The scope of the example is limited to keep it brief: it will exclusively focus on
recording prospective customers through mobile apps.

We now successively introduce MD2’s architecture, features, and domain
specific language.

3.2 Architecture and Features of MD2

Using the textual MD2-DSL the corporation defines a model. From that MD2

model the artifacts in the shaded area of Figure 1 are generated. In fact, these
generated artifacts represent executable code for the mobile apps as well as the
backend and expose the following properties:

– Mobile apps are automatically linked to the backend.
– Generated MD2 backend already constitutes a fully Java Enterprise Edition

(JEE) compliant application container including an entity model that can be
persisted through Java’s Persistence API (JPA).

– Developers only implement the “glue code” in the generated MD2 backend
to link it to the corporation’s CRM API (corresponds to the link from MD2

to the CRM in Figure 1). This typically is a straightforward task.

MD2 backend

Android app iOS app

CRM system
MD2 model

Fig. 1. Basic Architecture

3.3 MD2-DSL

A MD2-DSL model is structured according to the well-known model-view-
controller pattern [5]. Thus, it consists of three parts specifying the model,
view, and controller component of an app. In our example, the model (see List-
ing 1.1) defines just a single entity type Contact (with first name, surname, etc.)
and an enumeration type AcquisitionState.



1 entity Contact {
2 f i r s tname : string
3 surname : string
4 phone : integer ( optional )
5 emai l : string ( optional )
6 s t a t e : Acquis it ionState
7 }
8

9 enum Acquis it ionState {
10 ”Prospect ive ” , ”Acquiring” , ”Acquired” , ”Rejected”
11 }

Listing 1.1. MD2 model

As depicted in Listing 1.2, the corresponding view first fixes a layout. Here,
FlowLayout has been chosen, which displays the different widgets from top to
bottom and from left to right on the screen. The view component addContactView
displays a contact and a button Add. Here, the layout of a contact is automatically
inferred from the structure of the results provided by a content provider, namely
contactContentProvider. This content provider is defined in the controller part
of the model (see Listing 1.3 – package definitions in this and all following listings
have been stripped for brevity). As can be guessed from its name, this content
provider will provide a contact. Thus, text fields for first name, surname, and so
on as well as corresponding labels will be displayed. The semantics of the button
Add will be determined in the controller component explained below. In Figure 2,
the view that is generated from the view definition is shown.

1 FlowLayoutPane addContactView ( vertical ) {
2 AutoGenerator autoGenerator {
3 contentProvider contactContentProvider
4 }
5 Button addButton (”Add” )
6 }

Listing 1.2. MD2 view definition

Fig. 2. Generated Android view



The corresponding controller component (see Listing 1.3) first specifies some
meta-information (such as appVersion and modelVersion). Moreover, it deter-
mines the initial view component of the app (here: addContactView) and the
action, which should be executed when the app is started (here: startUpAction).
Then, it defines content providers and actions, which are executed when certain
events are observed. A content provider can be e.g. located on a server. In our
example, the content provider contactContentProvider is located on the server
with URI http://md2.crm.corp.com/. Moreover, the initial startUpAction

binds addAction to the onTouch event of the button addButton occurring in the
addContactView described above. Thus, if this button on the screen is touched,
the addAction will be executed. As shown in Listing 1.3, the addAction will
cause the content of the text fields corresponding to the displayed contact to be
stored by the content provider contactContentProvider. Thus, the inputs will
be synchronized with the contents of the corresponding contact entity.

1 main {
2 appName ”CRM contact manager”
3 appVersion ”1.0”
4 modelVersion ”1.0”
5 startView addContactView
6 onInit ial ized startUpAction
7 }
8

9 contentProvider Contact contactContentProvider {
10 providerType crmSystem
11 }
12

13 remoteConnection crmSystem {
14 uri ” ht tp ://md2. crm . corp .com/”
15 }
16

17 action CustomAction startUpAction {
18 bind action addAction on addContactView . addButton . onTouch
19 }
20

21 action CustomAction addAction {
22 ca l l DataAction ( save contactContentProvider )
23 }

Listing 1.3. MD2 controller definition

3.4 Current Limitations

MD2 is an academic prototype despite the cooperation with practitioners and
its application in first practical projects. Thus, it poses some limitations. Some
of these are inherent to the approach of using MDSD. Most, however, can be
considered as work-in-progress boundaries that can be overcome in the future.

A detailed evaluation of MD2 has not yet been done. Our approach has been
refined and internally evaluated several times but no field study, detailed analysis,
or competitive analysis has been conducted.

MD2 is no “one-size-fits-all” approach. MDSD for apps most likely will never
be suitable in some scenarios (e.g. apps that render their graphics on-the-fly).
Nevertheless, you could consider MD2 as “one-DSL-fits-most-cases”.

While it might be undesirable to add custom code on the frontend (i.e. the app
– the MDSD approach would become blurred), it would be helpful to have improved



support for backend customizations. Possibly suitable approaches discussed in
the literature are the generation gap pattern [11, pp. 571ff.], protected regions
[25, p. 29], and dependency injection [23].

Testing (and checking) MD2 should be significantly easier and at the same
time very powerful since a model can be used as the basis of testing (cf. [4]).
Nevertheless, we have not yet addressed testing explicitly.

As a final remark, there are no specific security features built into MD2. Due
to the DSL, it is hardly possible to use MD2 maliciously anyway and business
logic typically resides on the backend. With an extended evaluation by businesses,
scenarios might arise that require additional security features that we did not
yet consider. However, extending MD2 in such cases should be hassle-free.

4 Business-oriented Enhancement

While the core of MD2 has been described above, our framework offers additional
features. In the following, support of multi-valued elements is described with
special focus on their business-orientation.

When considering relationships between entities, two maximum cardinalities
come to mind: single and multiple. Relationships with at most a single entity
on the referenced side can already be defined through MD2 models (e.g. one
customer → one address). This did, so far, not hold true for relationships with
multiple entities on the referenced side (e.g. one customer → many addresses). At
first, multi-valued elements in MD2 were implemented only to a certain degree.
In fact, they were supported by the content providers but not on the view or
controller level. Our recent work on MD2 tackled this shortcoming and refined it
to provide support for multi-valued elements.

Regarding our previous example, sales representatives need to get access
to customer records as well as previous interactions. For that, the entity type
Contact in Listing 1.4 is augmented with a list of interactions as denoted by
the array-like syntax. In addition, the model is extended with a new entity type
Interaction (with interaction date, occasion, etc.).

To display customer details and interactions, view and controller definitions
require changes, too. Within the contactDetailView a List element is used to
define a list view of customer interactions (see Listing 1.5). As defined by the
itemtext value, the list view displays the occasion for each associated customer
interaction. The controller definition is omitted here but is augmented to bind
actions and data accordingly.

1 entity Contact {
2 . . .
3 i n t e r a c t i o n s : Interaction [ ]
4 }
5

6 entity Interaction {
7 i n t e r a c t i o nda t e : date
8 occas i on : string
9 . . .

10 }
Listing 1.4. Augmented MD2 model



1 FlowLayoutPane contactDetailView ( vertical ) {
2 . . .
3 List i n t e r a c t i o n s L i s t {
4 itemtype Interaction
5 itemtext Interaction . ˆ occa s i on
6 l i sttype plain
7 }
8 }

Listing 1.5. Augmented MD2 view definition

Summing up, multi-valued elements might be omitted at first but are needed
to address functional requirements typically found in business apps. We have
made a suggestion how to cope with multi-valued elements in domain-specific
languages for app development such as the one of MD2.

As an interesting remark, the implementation of multi-valued elements in the
generators for Android and iOS showed significant differences. While details are
not within the scope of this paper, it is a good example for differences between
the platforms that approaches, which provide native code, must overcome. At the
same time, developers are relieved from understanding how (and why) similar
concepts are treated different on distinct platforms.

5 Conclusion

MD2-DSL was developed using a prototype based approach (from reference
prototypes to a DSL). Beginning with a proof of concept, some design decisions
regarding the language were not carried out in a consistent fashion. For example,
we observed varying levels of abstraction regarding UI widgets. Considering the
development of a DSL not as a serial but as a continuous process, these variations
are to be aligned to offer more consistent DSL semantics. Thus, the DSL is a
main concern of future work.

Due to the complex nature of MDSD, testing of MD2’s components (pre-
processors, generators, etc.) was neglected so far. On a more user-centric level,
testing of MD2 apps could also be relevant for companies but also for a broader
non-MD2 related audience as well. Improving testability for MD2 also allows
providing stable artifacts (i.e. development tools, plugins, etc.) and thus improving
accessibility of the framework for novices. Given a test suite, reproducible builds
of the artifacts would further improve accessibility to MD2. As a consequence,
testing is the second we will address.

Even though native code for the two most common platforms is generated,
industry partners expressed interest in generating code for other platforms, be it
their own or another one (also cf. with the preceding section). To support custom
generators, MD2 needs to be modified in certain aspects. These modifications
and the provision of additional generators are the third topic of future work.

Despite the merits of MDSD in app development, it is impossible to forecast
whether it will become a dominating technology and the base of future app devel-
opment. There is plenty of future work. Mobile computing and app development
in particular will remain a challenging yet very exiting field of research.



References

1. Apache Cordova (2014), http://cordova.apache.org/
2. Appcelerator (2014), http://www.appcelerator.com/
3. applause (2014), https://github.com/applause/
4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented

Software Architecture: A System of Patterns. Wiley, New York, NY, USA (1996)
6. Charland, A., Leroux, B.: Mobile application development: web vs. native. Commun.

ACM 54, 49–53 (2011)
7. Cowart, J.: “Pros and cons of the top 5 cross-platform tools”,

http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/
8. Dickson, P.E.: Cabana: a cross-platform mobile development system. In: Proc. 43rd

SIGCSE. pp. 529–534. ACM (2012)
9. Dye, S.M., Scarfone, K.: A standard for developing secure mobile applications.

Comput. Stand. Interfaces 36(3), 524–530 (Mar 2014)
10. Fowler, M.: CrossPlatformMobile (2011), http://

martinfowler.com/bliki/CrossPlatformMobile.html
11. Fowler, M.: Domain-Specific Languages. Addison-Wesley Pearson Education (2011)
12. Gartner Press Release (2012), http://www.gartner.com/it/page.jsp?id=1924314
13. Groovy (2014), http://groovy.codehaus.org/
14. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform develop-

ment approaches for mobile applications. In: LNBIP, vol. 140, pp. 120–138. Springer
(2013)

15. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-

opment of mobile applications with MD2. In: Proc. SAC ’13. pp. 526–533. ACM
(2013)

16. Heitkötter, H., Majchrzak, T.A., Wolffgang, U., Kuchen, H.: Business Apps: Grund-
lagen und Status quo. No. 4 in Working Papers, Förderkreis der Angewandten
Informatik an der WWU Münster e.V. (2012)

17. Heitkötter, H., Majchrzak, T.A., Ruland, B., Weber, T.: Evaluating frameworks for
creating mobile Web apps. In: Proc. 9th WEBIST 2013. pp. 209–221. SciTePress
(2013)

18. HTML5 (2014), http://www.w3.org/TR/html5/
19. Jia, X., Jones, C.: AXIOM: A model-driven approach to cross-platform application

development. In: Proc. 7th ICSOFT (2012)
20. Majchrzak, T.A., Heitkötter, H.: Development of mobile applications in regional

companies: Status quo and best practices. In: Proc. 9th WEBIST. pp. 335–346.
SciTePress (2013)

21. Miravet, P., Maŕın, I., Ort́ın, F., Rionda, A.: DIMAG: A framework for automatic
generation of mobile applications for multiple platforms. In: Proc. Mobility ’09. pp.
23:1–23:8. ACM, New York, NY, USA (2009)

22. PhoneGap (2014), http://phonegap.com/
23. Prasanna, D.: Dependency Injection. Manning Pub (2009)
24. Schulte, M., Majchrzak, T.A.: Context-dependent testing of apps. Testing Experi-

ence pp. 66–70 (September 2012)
25. Stahl, T., Völter, M.: Model-driven software development. Wiley (2006)
26. “Twitter acquires team behind visual app creation tool cabana”, http://tnw.to/e67X


