
Towards Detecting Textual Plagiarism Using
Machine Learning Methods

by

Rune Borge Kalleberg

Supervisors
Associate Professor, Morten Goodwin, Ph.D.

Professor, Ole-Christoffer Granmo, Ph.D.

This master’s thesis is carried out as a part of the education at the University of

Agder and is therefore approved as a part of this education. However, this does

not imply that the University answers for the methods that are used or the

conclusions that are drawn.

The University of Agder
Faculty of Engineering and Science

Department of Information and Communication Technology

Grimstad, May 23, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agder University Research Archive

https://core.ac.uk/display/225891469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Textual plagiarism is passing off someone else’s text as your own. The current
state of the art in plagiarism detection performs well, but often uses a series of
manually determined thresholds of metrics in order to determine whether an au-
thor is guilty of performing plagiarism or not. These thresholds are optimized for
a single data set and are not optimal for all situations or forms of plagiarism. The
detection methodologies also require a professional familiar with the algorithms
in order to be properly adjusted, due to their complexity. Using a pre-classified
data set, machine learning methods allow teachers and censors without knowl-
edge of the methodology to use a plagiarism detection tool specifically designed
for their needs.

This thesis demonstrates that a methodology using machine learning, without
the need to set thresholds, can match, and in some cases surpass, the top method-
ologies in the current state of the art. With more work, future methodologies may
possibly outperform both the best commercial and freely available methodologies.

Acknowledgements

I would like to take this opportunity to thank my supervisors associate profes-
sor Morten Goodwin, and professor Ole-Christoffer Granmo for invaluable advice
and guidance when I got stuck technically or had questions about thesis writing. I
would also like to thank supporting supervisor assistant professor Christian Auby
for rewarding meetings in earlier projects and discussion of ideas leading up to
this thesis.

In times when motivation has been greatly lacking, the wonderful world of
progressive rock music, especially the works of Transatlantic(which has been
used for a few examples in this thesis) and Spock’s Beard(Thanks Marcus!) have
pulled me through.

I’d also like to thank my wonderful girlfriend Linn for keeping me level and
motivated these last few weeks, and for her grammatical first-aid. I can’t wait to
see what the future brings!

Last but certainly not least I’d like to thank my wonderful parents Laila Jo-
hanne Borge and Ragnar Braar Kalleberg for their never-ending support when
needed the most as well as their limitless faith in me. Without your invaluable
support and fantastic parenting I would not be who, or where I am today! You
are the best parents any kid could hope for! Dad: Don’t trust the salesman, and
always read the manual!

Now, witness the power of this fully operational battle sta.... I mean thesis!

Preface

This Master’s thesis is submitted in partial fulfillment of the requirements for the
degree Master of Science in Information and Communication Technology at the
University of Agder, Faculty of Engineering and Science.

This work was carried out under the supervision of associate professor Morten
Goodwin and professor Ole-Christoffer Granmo at the University of Agder, Nor-
way.

i

Contents

Preface i

Contents ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Thesis Definition . 5
1.3 Claims . 6
1.4 Contribution . 6
1.5 Target Audience . 7
1.6 Report Outline . 7

2 State of the Art 8
2.1 PAN Workshop and Competition 9

2.1.1 Text Alignment . 9
2.1.2 Data Sets . 11
2.1.3 Results and Comparisons 13

2.2 Plagiarism detection . 20
2.2.1 Pre-processing . 20

ii

CONTENTS

2.2.2 Seeding . 25
2.2.3 Extension . 28
2.2.4 Filtering . 30
2.2.5 Summary . 30

3 Plagiarism Detector Design 33
3.1 Overview . 34
3.2 Pre-processing . 34

3.2.1 Stemming . 35
3.2.2 Tokenization . 36
3.2.3 Bag of Words . 36
3.2.4 Labeling . 36

3.3 Feature Extraction and Seed Classification 37
3.4 Passage Generation and Extension Classification 49
3.5 Filtering . 53
3.6 Output . 56
3.7 Comparison and Performance Analysis 57

3.7.1 Character Performance Comparison 58
3.7.2 Case Performance Comparison 59
3.7.3 Document Performance Comparison 59

4 Experiments and Results 61
4.1 Pre-processing . 62
4.2 Seed Classification . 64

4.2.1 Naı̈ve Bayes . 65
4.2.2 Decision Tree . 67
4.2.3 Random Forest . 68

4.3 Extension Classification . 70
4.3.1 Naı̈ve Bayes . 71
4.3.2 Decision Tree . 72
4.3.3 Random Forest . 74

iii

CONTENTS

4.4 Sliding Window Filtering . 75
4.5 Optimal Detector . 78
4.6 PAN Comparison . 80

5 Conclusion and Future Work 84
5.1 Conclusion . 84
5.2 Future Work . 86

5.2.1 Seeding and Filtering . 86
5.2.2 Suggestions to PAN . 86
5.2.3 Future Publications and PAN Entry 87

Bibliography 88

iv

List of Figures

2.1 XML example from PAN data set (suspicious-document00016-
source-document01836.xml). 13

2.2 Word 3-gram example . 22
2.3 Bag-of-Words example . 25
2.4 Overview and parameters of the Sanchez-Perez algorithm[1] . . . 28

3.1 Overview of the plagiarism detection methodology 35
3.2 Cos(x) - Dice(y) plot over a set of fragments from multiple doc-

uments. Seeds within plagiarised passages in black, fragments
outside in pink. 38

3.3 Randomized plagiarism example 39
3.4 Summary plagiarism example 41
3.5 Graphical demonstration of sliding window filtering mechanism . 55
3.6 XML output ready for comparison with PAN data sets (suspicious-

document00016-source-document01836.xml). 57

4.1 Active modules during pre-processing tests 62
4.2 Active modules during seeding classification tests 65
4.3 Active modules during extension tests 70
4.4 Active modules during filtering tests 76

v

List of Tables

2.1 Top 16 out of 29 2012-2014 PAN entrants with respects to, and
sorted by, PlagDet [2] . 15

2.2 Top 16 out of 29 2012-2014 PAN entrants with respects to, and
sorted by, recall [2] . 17

2.3 Top 16 out of 29 2012-2014 PAN entrants with respects to, and
sorted by, precision [2] . 18

2.4 Top 16 out of 29 2012-2014 PAN entrants with respects to case
and document performance, sorted by PlagDet [2] 19

3.1 Overview of features extracted from fragments before seeding
classification . 48

3.2 Overview of features extracted from fragments before extension
classification . 53

4.1 Pre-processing PAN performance metrics 63
4.2 Naı̈ve Bayes seed performance on seeds 65
4.3 Naı̈ve Bayes character performance 66
4.4 Naı̈ve Bayes case and document performance 66
4.5 Decision tree seed performance on seeds 67
4.6 Decision tree seed character performance 67
4.7 Decision tree seed case and document performance 68
4.8 Random forest seed performance on seeds 68
4.9 Random forest seed character performance 69

vi

LIST OF TABLES

4.10 Random forest seed case and document performance 69
4.11 Naı̈ve Bayes extension performance 71
4.12 Naı̈ve Bayes extension character performance 71
4.13 Naı̈ve Bayes extension case and document performance 72
4.14 Decision tree extension performance 72
4.15 Decision tree extension character performance 73
4.16 Decision tree extension case and document performance 73
4.17 Random forest extension performance 74
4.18 Random forest extension character performance 74
4.19 Random forest extension case and document performance 75
4.20 Random forest seeding, decision tree extension with filtering char-

acter performance . 76
4.21 Random forest seeding, decision tree extension with filtering case

and document performance . 77
4.22 Thesis methodology comparisons with respect to PlagDet. Col-

umn winners in bold . 78
4.23 Thesis methodology comparisons with respect to case and docu-

ment performance. Column winners in bold 78
4.24 Thesis comparison against top 16 PAN entrants with respect to

PlagDet. Top obfuscation scores in bold 80
4.25 Thesis comparison against top 16 PAN entrants with respect to

character recall. Top obfuscation scores in bold 81
4.26 Thesis comparison against top 16 PAN entrants with respect to

case and document performance. Top column scores in bold . . . 83

vii

Chapter 1

Introduction

This chapter introduces the problem domain of automated plagiarism detection
and the motivation for this thesis. Section 1 presents the problem at hand and the
motivation for this thesis. Section 2 presents the thesis definition and what was
done. Section 3 contains the claims made by the discoveries and results of this
thesis. Section 4 present the contributions made to the relevant fields and the state
of the art. Section 5 explains who this thesis is meant for and what prerequisites a
reader should have before continuing. Section 6 provides an outline of this thesis.

1.1 Background and Motivation

Plagiarism means taking the work or ideas of someone else and passing them off
as your own. The most common and well known form being textual plagiarism.
For the purpose of this thesis, all references to plagiarism will be to textual pla-
giarism; copying the text from a source text and presenting it as your own work.
Plagiarism comes in many forms. One can directly copy a text, but detecting pure
verbatim plagiarism is a fairly easy task, and plagiarists are quickly caught doing
this with current tools. In order to mask an act of plagiarism, the text is often

1

CHAPTER 1. INTRODUCTION

rewritten, words in a sentence rearranged, replaced with synonyms, or the text
may be summarized. This makes it harder for automated systems to detect the
plagiarised text. Detecting semantic meaning in a text is especially challenging
to do with a computer algorithm. They are however very adept at lexical analy-
sis. Most plagiarism detection tools use the structural and lexical similarities of
documents.

In a world where the Internet has become a part of every day life and an in-
tegral part of education with its massive amount of freely available information,
it has become easier than ever to steal text and pass it as your own without being
detected. Students seldom use books when researching and writing text. It is far
more common to use the Internet for these purposes. Plagiarists can simply copy
the text from some unknown source from the Internet to save themselves hours of
work, and in many cases this goes undetected.

Detecting textual plagiarism is a tedious and almost impossible process when
done manually. With millions of possible sources online, this entire process ben-
efits from being automated. A long line of commercial, automatic plagiarism
detection tools have been made available to both academic institutions and indi-
viduals. The inner workings of these are seldom public due to the commercial
nature of the products.

This is an active field of research, but the accuracy of these tools falters as
the plagiarism becomes more complex. Verbatim copies are easy to detect, but
as words are replaced with synonyms and shuffled around, detecting plagiarism
becomes harder. Many different approaches have been designed attempting to
handle these challenges, but few have yet to reach a very high level of accuracy in
complex plagiarism methods.

Different levels in the education system require different amounts of your own
work in order to be legitimate hand-ins. Children in high school or lower grades
could potentially have more lenient plagiarism detection systems. These could
allow for summaries and simple rewrites of passages as long as it is shown that

2

CHAPTER 1. INTRODUCTION

some work has been done on the text, and it is not a simple verbatim copy, their
text should be passable as their own. Some classes may focus on purely the re-
search and not the writing, while others may be vice versa, and should be very
strict. In higher levels of education even summaries are often not acceptable, but
a level of verbatim copying should perhaps be without triggering an alarm to al-
low for quotes. Finding the perfect settings for each of these scenarios is tedious
and seldom produce optimal results. Tuning it also requires knowledge of the
algorithm, which few users have.

Machine learning allows users to find optimal settings automatically based on
statistics from a data set made up of pre-classified plagiarism and non-plagiarism
cases. By defining passages, documents or sentences in a data set as plagiarism,
or even the kind of plagiarism methods used on each passage, a system could po-
tentially be tailored to each institution , or even teacher preference. An examiner
or teacher can sit down with a data set of text to classify themselves what they
consider to be examples of plagiarism and end up with a data set which can be
used to train a detector for only the classes they teach.

These methods are not commonly seen in the plagiarism detection fields of
research. As the review of the state of the art will show, many rely on thresholds
tailored manually to a specific data set and will not work as well in real settings
with different data. These are hard to adjust properly for anyone not familiar with
the science behind the methodologies. By allowing users to say what they would
label as plagiarism and what isn’t, anyone could end up with their own tailored
detector.

Creating a data set for the purpose of this Master’s thesis would take far too
long. However, a fairly suitable data set already exists allowing the methodology
to be compared to the current state of the art.

In the last couple of years a workshop known as PAN Workshop and Com-

petition: Uncovering Plagiarism, Authorship and Social Software Misuse(PAN)1

1http://pan.webis.de/

3

CHAPTER 1. INTRODUCTION

has held competitions in plagiarism detection and other related fields of research.
They benchmark multiple contestants against each other using a standardised data
set. This provides a good understanding of the performance level of the current
state of the art. The entrants also provide papers explaining their methods and
presenting their results. Overview papers are also provided. The published papers
for the PAN workshop are all good representatives of the current state of the art. A
freely available data set allows any new method to be easily benchmarked against
the leading plagiarism detection techniques.

The literature shows examples of very good ideas designed mostly by aca-
demics in the field of linguistics. It is, however, apparent that many of these pa-
pers do not explore the possibilities opened up by machine learning as only a few
make use of any form of machine learning methods. This is somewhat strange
as the field has adopted methodologies from bio informatics. More specifically
gene sequencing. Bioinformatics is a field that has embraced machine learning
far more[3].

Many approaches make use of empirically found thresholds and only a cou-
ple of self-designed features for each approach. This can make each tool very
specialized and give very good performance for a single or a few types of plagia-
rism in researched data sets, but they are not versatile enough to be applied to a
real world scenario. Machine learning methods allow for joining several of these
state-of-the-art approaches and for creating novel features based on existing ideas.

In contrast to plagiarism detection, the neighbouring research field of author
profiling has adopted machine learning to a far greater extent. All entrants in the
author profiling competition in the PAN 2014 workshop made use of a wide range
of machine learning algorithms[4].

This thesis shows that a machine learning system that makes use of ideas from
several of the top state of the art methodologies as well as some novel methods
based on these methodologies is able to closely match the performance of the
simpler methods in the current state of the art without the need for parameter

4

CHAPTER 1. INTRODUCTION

tweaking for each new data set.

1.2 Thesis Definition

In this thesis I will join techniques from some of the best approaches in the state
of the art in plagiarism detection. These will be implemented as features in a
machine learning pipeline. Alongside these, novel techniques based on their ideas
will also be used as features or processing techniques.

The thesis research assumes that a given set of potential source documents
is already available. Source retrieval is not a part of this research project but is
an active field of research and an important part of any future research for this
project.

Each part of the thesis methodology will be tested and all classification algo-
rithm candidates compared to each other in an attempt to expose strengths and
weaknesses throughout the pipeline. The feature set and classification algorithms
producing the best overall result when trained and tested on a freely available pla-
giarism corpus will be chosen for implementation in a final system which will be
benchmarked against the PAN contestants from 2012-2014 using their supplied
data set.

The benchmarking results will confirm or disprove the following hypothesis:

“Machine learning algorithms are capable of similar or better performance

in terms of plagiarism detection than the current, manually optimized, state of the

art methodologies in PAN 2012-2014”

5

CHAPTER 1. INTRODUCTION

1.3 Claims

In this thesis I show that the current state of the art methods can be successfully
combined using machine learning for a more powerful and versatile plagiarism
detection tool. I also demonstrate that features can be constructed from similar
fields of research and that these can aid in classifying plagiarism.

This method can take any suitable, pre-classified data set and produce results
matching manually optimized state of the art methodologies without the need for
threshold tailoring. The thesis shows that this method matches, and in some cases
exceeds, the performance of the current state of the art in both simple and more
complex forms of plagiarism.

1.4 Contribution

This thesis evaluates the use of some common machine learning techniques for
use with plagiarism detection on a freely available data set to allow for accurate
benchmarking against the current state of the art.

The work makes use of common techniques and joins them as features in a
plagiarism detector. Some new ideas based on these techniques are also added.
The machine learning algorithms used will give an indication as to which features
and methodologies are most useful when classifying plagiarism or different types
of plagiarism.

This thesis demonstrates that machine learning has a potential in plagiarism
detection as it is capable of detecting more complex forms of plagiarism and
match the current state of the art in terms of performance. Hopefully this will
motivate future projects to further explore the possibilities of machine learning in
the field of plagiarism detection.

6

CHAPTER 1. INTRODUCTION

1.5 Target Audience

The target audience for this thesis is anyone interested in either plagiarism de-
tection or machine learning. Some knowledge of the aforementioned fields is
required when reading this thesis, though most terms and techniques are either ex-
plained or an explanation is cited allowing anyone with a background in computer
science to read and understand the contents. Basic understanding of probability
theory and commonly used performance metrics is highly recommended.

1.6 Report Outline

Chapter 1 introduces the problem and provides a thesis definition as well as an
explanation as to what this thesis adds to the field of plagiarism detection. It also
explains who this thesis is meant for and what prerequisites are recommended
prior to reading it. Chapter 2 explains the current state of the art and discusses
the methodologies of the leading entrants in a conference workshop that focuses
on plagiarism detection. Chapter 3 explains the methodology developed for this
thesis. Chapter 4 presents the results from the methodology and compares it to
entrants of the conference. Chapter 5 presents the conclusion for this thesis and
suggests what should be done in the future both for this thesis and in the field of
plagiarism detection in general.

7

Chapter 2

State of the Art

This chapter presents the current state of the art within plagiarism detection. It fo-
cuses mainly on entrants to a conference workshop including plagiarism detection
as one of the tasks. The reasoning behind this focus was a freely available data set
to allow for benchmarking and comparison.

Section 1 introduces the conference workshop. More specifically: the relevant
subtask for this thesis. It also provides an overview of its entrants as well as dis-
cussing the data set used. Section 2 explains in detail many of the methodologies
implemented by the leading entrants of the workshop.

There has been a fair bit of previous research on the topic of plagiarism de-
tection and the surrounding areas of interest. Plagiarism detection, more specif-
ically: text alignment, is a field of research where very few methodologies make
use of any machine learning techniques. The main motivation for this thesis is
to discover if machine learning techniques may be beneficial to accurately detect
cases of plagiarism on a similar level to the current state of the art. Algorithms
developed by these scientists use very promising methodologies, but often find
the detector thresholds through empirical research. This may lead to sub-optimal
thresholds when used with other data sets and real life data. They are also often

8

CHAPTER 2. STATE OF THE ART

limited in the number of methods used to detect plagiarism. A few new ideas for
each paper are tested and return fairly good, but at times specialized results.

2.1 PAN Workshop and Competition

The PAN Workshop and Competition: Uncovering Plagiarism, Authorship and

Social Software Misuse(PAN)1 proved to be a large source of information on the
current state of the art in multiple branches of text analysis, including text align-
ment. This workshop provides a series of tasks and competitions covering text
alignment, author profiling, and author identification. All of which may hold in-
teresting methodologies that could be used in a machine learning based plagiarism
detection tool. The workshop also provides freely available data sets in order to
benchmark the methodology developed in this thesis.

None of the entrants in the text alignment task make use of machine learning
with the exception of some clustering. However, all of the entrants in the author
profiling task in 2014 utilized machine learning[4]. This may be due to a more
suitable data set and very different methodologies.

2.1.1 Text Alignment

Text alignment is one of the tasks in the PAN contest. PAN defines this task as:

In text alignment, given a pair of documents, the task is to identify all
contiguous passages of reused text between them[2].

This pair consists of a potential source and a suspicious document. The source
document contains the text that may have been plagiarised while the suspicious
document is the one that will be scanned for acts of plagiarism.

1http://pan.webis.de

9

CHAPTER 2. STATE OF THE ART

Text alignment means that not only should plagiarism be classified on a doc-
ument level, but that each passage of plagiarised text should also be located in
both the source, and the suspicious document. In a use-case setting this would
ease the task of manually confirming or discarding a document pair that has been
classified as plagiarism, as the passages could be highlighted for easy comparison.
Due to the current accuracy level of the state of the art, a user should not trust the
detection system without doing a manual verification of the candidate passages.

Alongside the text alignment task was also a source retrieval task where the
goal is to get all sources from a cached database of websites from which text has
been reused in a suspicious document. This would be a first step in a plagia-
rism detection tool when there is a possibility that text from the Internet has been
reused. No focus has been given to this task in this thesis as it is not directly re-
lated to the problem of text alignment, which is the main focus of this thesis. It
is worth noting that more research is needed in this field as even the best results
on an even smaller, cached database(Webis-TRC-2012 and 2013) still yield an F1

score lower than 0.5[2].

The task overview papers and the papers on the entrants in this task was the
main source of information when researching plagiarism detection. Many of these
methodologies have influenced the approach in this thesis and provided ideas for
improvement. The idea behind this research approach was to pick the best ideas
from the best methodologies, extract features from these metrics and methodolo-
gies and apply a machine learning algorithm to them. Additional metrics would
also be added to further aid the algorithm in discovering a potential pattern.

The text alignment subtask in PAN provides a varied corpus that tests the
entrants in detection of “ . . . verbatim copies and quotations to paraphrases and

translations to summaries” [2].

10

CHAPTER 2. STATE OF THE ART

2.1.2 Data Sets

It is important to discuss the data sets were were used in this thesis when bench-
marking it against other contestants. It proved a valuable tool and also posed a
series of challenges.

PAN makes use of a single large corpus that is withheld from the public. The
first year the corpus was used a subset of this corpus was released as training
data prior to the workshop. The entrants were benchmarked against each other
with a smaller, withheld test set drawn from the large corpus. After the workshop
the test data was released publically and could be used for future training. Each
year PAN releases a smaller data set that is used for testing. The corpus was
first used in 2012, with the latest conference being held in 2014, meaning all
entrants since 2012 have been benchmarked using this data set. In order to keep
the older entrants benchmarked against the newest entrants, all entrants since 2012
are tested with the latest test set each year.

The corpus is based on Webis-TRC-13[5]. Plagiarised passages are generated
by creating a repository of source and suspicious documents from Webis-TRC-13.
Document pairs are then generated. The suspicious documents from each of these
pairs may receive one or more automatically generated plagiarised passages from
the source document inserted into them. These passages use one of four different
obfuscation strategies.

No obfuscation This is the simplest form of plagiarism. Verbatim copy without
any alterations.

Random obfuscation This method shuffles both words and sentences around
within the borders of a passage. This is done automatically and is not in
any way guaranteed to be grammatically or semantically correct after ob-
fuscation.

Translation-chain This method sends a passage through a series of translations

11

CHAPTER 2. STATE OF THE ART

using various online translation tools such as Google Translate, Bing Trans-
lator, or other similar tools. All texts in the corpus are English. They are
passed through these translators applying a series of translations to different
languages before returning to English. The purpose of this is to attempt to
preserve the semantic meaning while rewriting the text.

Summary This is a summary written from a part of the source document.

Comparing the documents in the data sets is not as simple as Dcomp = Dplag×
Dsrc. A pairs file lists which documents that should be compared against each
other. The reason for this is that many of the source and suspicious documents
are generated from one another to increase the size of the data set without having
to create new text. When doing exhaustive comparison of all document pairs this
would yield a lot of false positives, which, is in fact, plagiarism. It could be said
that the data set even plagiarises itself.

Figure 2.1 shows how plagiarism is described for a document pair. An XML
file named after the document pair it is describing contains plagiarism data. All
pairs have an XML file containing the document tag, denoting the suspicious
document it describes. In the event of plagiarism, a feature tag describes the
plagiarism locations and document, as well as type and in some cases the level of
obfuscation. Figure 2.1 shows a plagiarism case with no obfuscation. The plagia-
rised passage is 579 characters long and starts at character 6765 in the suspicious
document and at character 7259 in the source document.

12

CHAPTER 2. STATE OF THE ART

<document reference="suspicious-document00016.txt">

<feature name="plagiarism" obfuscation="none"

source_length="579" source_offset="7259"

source_reference="source-document01836.txt"

this_length="579" this_offset="6765"

type="artificial" />

</document>

Figure 2.1: XML example from PAN data set (suspicious-document00016-
source-document01836.xml).

2.1.3 Results and Comparisons

Before discussing the methodologies in detail, an overview of how they are evalu-
ated, as well as their performance should aid in understanding their strengths and
weaknesses individually.

PAN uses a custom performance metric, PlagDet, which balances recall, preci-
sion, and granularity. The granularity metric is designed to measure any overlaps
and multiple detections of cases. A case is classified correctly if over half of the
detected characters are within a plagiarised passage, and over half of the plagia-
rised passage has been detected. The formal definitions are shown and explained
in detail in section 3.7.

Let S denote the set of plagiarism cases in the corpus. R denotes the set of
plagiarism detections by a detector. Granularity is defined as:

gran(S,R) =
1

SR

∑
s∈SR

|RS|

13

CHAPTER 2. STATE OF THE ART

SR ⊆ S are detected cases in R while RS ⊆ R are detections in S

Along with recall and precision, these metrics make up the performance score
designed for PAN. PlagDet is defined as:

plagdet(S,R) =
F1(S,R)

log2(1 + gran(S,R))

F1(S,R) is the harmonic mean of precision and recall and is defined as:

F1(S,R) = 2
Prec(S,R) ·Rec(S,R)
Prec(S,R) +Rec(S,R)

The exact formulas for precision and recall are described later in section 3.7
and in further detail [6, 2]. They do not differ from normal precision and recall
measures, but are designed to calculate these measures on a character level.

PlagDet can be considered an F1 measure on a character level, which also
considers granularity.

In general, the top entrants have a very solid performance on simpler forms
of plagiarism such as no obfuscation and random obfuscation. They are found to
struggle more with translation chain and summary.

14

CHAPTER 2. STATE OF THE ART

Obfuscation Strategies
Submission Year None Random Translation Summary Overall Corpus

Sanchez-Perez 2014 0.900 0.884 0.887 0.561 0.878
Oberreuter 2014 0.920 0.868 0.881 0.368 0.869
Palkovskii 2014 0.960 0.865 0.858 0.276 0.868
Glinos 2014 0.962 0.806 0.847 0.624 0.859
Shresta 2014 0.892 0.866 0.844 0.156 0.844
Kong 2012 0.872 0.832 0.852 0.436 0.837
Torrejón 2014 0.932 0.754 0.859 0.353 0.830
Oberreuter 2012 0.942 0.750 0.846 0.132 0.827
Gross 2014 0.900 0.803 0.838 0.319 0.826
Torrejón 2013 0.926 0.747 0.851 0.341 0.822
Kong 2014 0.838 0.823 0.852 0.431 0.822
Kong 2013 0.827 0.823 0.852 0.434 0.819
Palkovskii 2012 0.882 0.797 0.740 0.275 0.792
Torrejón 2012 0.882 0.702 0.801 0.442 0.788
Suchomel 2013 0.818 0.753 0.675 0.610 0.745
Suchomel 2012 0.898 0.652 0.631 0.501 0.732

Table 2.1: Top 16 out of 29 2012-2014 PAN entrants with respects to, and sorted
by, PlagDet [2]

As visible in table 2.1, the entrants are very adept at detecting the simpler
forms of plagiarism, but struggle greatly with the summary type. Especially the
verbatim, no obfuscation form of plagiarism seems to be easy to detect. Even
further down the extended PlagDet table in the PAN overview paper [2], most of
the entrants have a PlagDet score over 0.80. This form of plagiarism is the easiest
to detect. With a PlagDet score of 0.88 overall, Sanchez-Perez holds a small lead
over the other entrants. What is interesting is that this methodology is not the
best on verbatim plagiarism. It is, however, quite adept overall and is second best
in summary out of the top 10 entrants and third best overall with 0.56, following

15

CHAPTER 2. STATE OF THE ART

Glinos 2014 at 0.62 and Suchomel 2013 at 0.61. This suggests that this method
holds some features that work very well across all kinds of plagiarism.

Glinos 2014 is the best in the entire field in terms of both summary and no ob-

fuscation, but struggles somewhat in both random and translation. The method-
ology here may definitely be of interest to enhance any performance of a detector
in both of Glinos’ strong obfuscation strategies. Studying why it struggles in the
weak strategies may provide valuable insight which could lead to a stronger de-
tector.

Palkovskii 2014 also has a high performance level in the 3 simplest forms of
plagiarism but struggles in summary. The same can be said for Shresta 2014 and
Oberreuter 2014 who both greatly improved their previous methodology entries.
It is interesting is that Sanchez-Perez leads the state of the art as a first time entrant
in PAN.

16

CHAPTER 2. STATE OF THE ART

Obfuscation Strategies
Submission Year None Random Translation Summary Overall Corpus

Sanchez-Perez 2014 0.979 0.861 0.890 0.413 0.879
Oberreuter 2014 0.999 0.833 0.863 0.245 0.858
Shresta 2014 0.974 0.832 0.853 0.089 0.838
Palkovskii 2014 0.964 0.822 0.820 0.177 0.826
Kong 2012 0.948 0.780 0.850 0.299 0.824
Kong 2013 0.907 0.787 0.846 0.300 0.843
Kong 2014 0.895 0.781 0.845 0.296 0.807
Glinos 2014 0.960 0.725 0.762 0.486 0.793
Saremi 2013 0.954 0.689 0.804 0.102 0.771
Torrejón 2014 0.967 0.630 0.821 0.231 0.769
Oberreuter 2012 0.999 0.653 0.796 0.071 0.769
Gross 2014 0.907 0.719 0.784 0.206 0.766
Suchomel 2013 0.996 0.689 0.666 0.563 0.766
Torrejón 2013 0.953 0.634 0.811 0.216 0.762
Palkovskii 2012 0.994 0.751 0.667 0.169 0.762
Torrejón 2012 0.964 0.623 0.791 0.290 0.753

Table 2.2: Top 16 out of 29 2012-2014 PAN entrants with respects to, and sorted
by, recall [2]

Table 2.2 shows that all entrants have a very high recall in no obfuscation

plagiarism. This continues on beyond this table, with only 3 entrants below 0.8[2].
The random and translation obfuscation strategies are often quite similar to each
other in terms of recall, but everyone seems to struggle greatly with summary, with
the greatest recall is Suchomel as far down as 0.56. This number is interesting
even though Suchomel struggles with the other obfuscation strategies compared
to the other entrants.

17

CHAPTER 2. STATE OF THE ART

Obfuscation Strategies
Submission Year None Random Translation Summary Overall Corpus

Glinos 2014 0.964 0.970 0.962 0.965 0.963
Nourian 2013 0.929 0.963 0.959 0.999 0.947
Jayapal 2012 0.985 0.960 0.896 0.833 0.945
Alvi 2014 0.919 0.948 0.960 0.880 0.934
Gross 2014 0.918 0.960 0.921 0.949 0.933
Palkovskii 2014 0.956 0.915 0.899 0.913 0.922
Torrejón 2014 0.899 0.938 0.900 0.898 0.904
Torrejón 2013 0.900 0.910 0.895 0.908 0.895
Oberreuter 2012 0.890 0.879 0.903 0.990 0.894
Gilliam 2014 0.881 0.952 1.000 0.000 0.886
Oberreuter 2014 0.852 0.906 0.900 0.936 0.886
Gilliam 2012 0.881 0.956 0.972 0.996 0.885
Gilliam 2013 0.881 0.960 0.973 0.996 0.885
Sanchez-Perez 2014 0.834 0.910 0.885 0.999 0.882
Jayapal 2013 0.920 0.923 0.857 0.688 0.879
Shresta 2013 0.809 0.923 0.880 0.905 0.875

Table 2.3: Top 16 out of 29 2012-2014 PAN entrants with respects to, and sorted
by, precision [2]

Table 2.3 shows that in terms of precision, all of the entrants are mostly ranged
from 0.8-1.0, with Glinos 2014 as overall best with 0.96 for all obfuscation strate-
gies. Note that some entrants in table 2.3 were previously not visible in table 2.2
or 2.1. This is because of their very low recall. Jayapal 2013 has a corpus recall as
low as 0.38 as well as a granularity of 2.9, resulting in a very poor PlagDet score
of 0.271. Alvi has an overall PlagDet score of 0.65. High precision is useful to
avoid insults to those falsely accused of plagiarism, but if very few plagiarists are
caught, the algorithm provides little value. PlagDet is effectively the harmonic
mean between precision and recall, while also considering granularity.

18

CHAPTER 2. STATE OF THE ART

Case Level Document Level

Entrant Year PlagDet Prec Rec F1 Prec Rec F1

Sanchez-Perez 2014 0.88 0.90 0.91 0.90 0.92 0.91 0.91
Oberreuter 2014 0.87 0.84 0.89 0.87 0.89 0.89 0.89
Palkovskii 2014 0.87 0.90 0.85 0.87 0.90 0.84 0.87
Glinos 2014 0.86 0.90 0.83 0.87 0.93 0.88 0.91
Kong 2012 0.84 0.86 0.85 0.85 0.89 0.85 0.87
Shresta 2014 0.84 0.91 0.85 0.88 0.94 0.85 0.89
Gross 2013 0.83 0.90 0.86 0.88 0.93 0.85 0.89
Oberreuter 2012 0.83 0.81 0.79 0.80 0.83 0.80 0.81
Torrejón 2014 0.83 0.84 0.83 0.83 0.89 0.84 0.86
Torrejón 2013 0.83 0.83 0.83 0.83 0.87 0.84 0.85
Kong 2013 0.82 0.85 0.86 0.85 0.89 0.86 0.87
Kong 2014 0.82 0.86 0.85 0.85 0.89 0.85 0.87
Palkovskii 2012 0.79 0.80 0.80 0.80 0.82 0.80 0.81
Torrejón 2012 0.79 0.65 0.79 0.72 0.65 0.78 0.71
Suchomel 2013 0.74 0.66 0.83 0.73 0.67 0.82 0.74
Suchomel 2012 0.73 0.76 0.70 0.73 0.77 0.69 0.73

Table 2.4: Top 16 out of 29 2012-2014 PAN entrants with respects to case and
document performance, sorted by PlagDet [2]

Due to the high character precision seen in table 2.3, the entrants have a very
close link between their PlagDet score, and case/document F1 scores, as seen in
table 2.4. The case level is with most entrants equal or higher than their PlagDet
score.

19

CHAPTER 2. STATE OF THE ART

2.2 Plagiarism detection

Below follows a survey of the best performing and promising methodologies in
the current state of the art, all of which are entrants from the PAN Text Alignment
task from 2012 to 2014. These years were picked because they were all tested
on the same data set in the 2014 competition. This corpus was made freely avail-
able and was used to benchmark the methodology in this thesis against the PAN
entrants. The entrants mainly use a 3-step approach borrowed from the field of
bioinformatics when doing sequence alignment[7, 2]. These steps form the basis
for most methodologies.

2.2.1 Pre-processing

Before detection and the 3-step process begins, the texts are often pre-processed
in some way in order to increase the chances of detecting similarities. The most
common is simply converting the text to lower case. One reason for this is that
if words within a sentence are shifted around, the first word in a sentence that
is capitalized will not match if it appears in the middle of a sentence, and isn’t
a capitalized noun. The same holds true for a word that has been moved to the
first word position in a sentence. Lowering the case allows both these words
to match if they exist in the original and plagiarised sentence. However, some
entrants attempt to detect named entities and must therefore also use text where
the original text has not been converted to lower case[8].

Sanchez-Perez uses two forms of pre-processing prior to the seeding stage[1].
All words are converted to lower case, and stemming is applied. Stemming is
the process of removing endings from words in order to reduce variations of a
word to a single unambiguous term: the stem. The purpose of using a stemmer in
plagiarism detection is to increase the possibility of detecting rewrites of a given
word. Words like “fish”, “fishing”, “fisher”, “fishes” will all be reduced to the

20

CHAPTER 2. STATE OF THE ART

stem of the word: “fish”.

Using a simple set of rules based on the language of the text that is to be
stemmed, it strips all words where applicable. The simplest stemming rule in
English is perhaps the common plural suffix “-s”. Some words are not stripped of
a suffix but are altered to transition to the root form of the word. “Conditional”
will be rewritten to “condition” but “relational” will be rewritten “relate”. The
latter example has the suffix “-ational” while the former simply has “-tional”,
leading to different rules although the end of the suffixes are similar.

There are a range of different stemmers using different rules designed specif-
ically for different languages. Sanchez-Perez uses a Python port of the Porter-
stemmer algorithm[9] designed for English, as the entire data set is written in this
language. This pre-processing technique is also seen in other entrants [10, 11] but
which stemmer that has been applied has not been specified.

Some entrants also remove stop words[10, 12, 11] while others use the stop
words specifically in part of their classification methodology[8]. Stop words are
short filler words that add color and meaning semantically, but often add noise in
natural language processing. Examples in English include, but are not limited to:
the, in, at, that, which. No common stop word dictionary exists and is implemen-
tation specific.

Tokenization is the process of splitting a text up into certain some predeter-
mined chunks, hereby referred to as tokens, fragments, or seed candidates. The
entrants used a wide range of tokenization methods ranging from sentences to n-
grams. This is tightly connected to the first step in the detection process and the
line between the two is often blurry in some methodologies. Sanchez-Perez splits
their seeds into sentences using the Natural Language Toolkit for Python, which
has a tokenizer for english(usable as tokenizers/punkt/english.pickle). Kong also
uses sentences when tokenizing[10, 12].

Sanchez-Perez also joined small sentences(3 words or shorter) with the next

21

CHAPTER 2. STATE OF THE ART

sentence when generating seeds. The reasoning behind this was not shown, but
it may have been an attempt to remove false positives in the seeding step when
sentence similarity is measured. The statistical chance of a false similarity match
increases as the sentences get shorter. Sanchez-Perez has released the source code
for their methodology, thus allowing a finer study in the output of their algorithm.
Studying the tokenization algorithm and comparing to the correct plagiarism cases
in the data set, it seems that in some cases, the passages are too long; The split-
ting algorithm doesn’t split up the fragments enough. This apparent minor over-
estimation of seed size seems to reduce the precision of the plagiarism detector
somewhat. This may be because sentences are usually long enough to withstand
the added three words and thus can still be classified as seeds. The similarity re-
duction that comes from the adding of short sentences is usually not big enough
to get below the similarity metric threshold. However, if the similarity is low to
begin with such as in translation or summary type plagiarism, the entire seed may
be dropped and the recall will be affected.

Palkovskii also makes use of sentence splitting, although the details of their
custom sentence splitting are not published[8].

Catch your breath as you watch your step.

(a) Phrase from [13]

catch your breath as you watch your step

(b) Converting to lower case and removing punctuation

catch your breath, your breath as, breath as you, as you watch

you watch your, watch your step

(c) 3-grams of the phrase, split by comma

Figure 2.2: Word 3-gram example

Palkovskii does, however, mainly make use of a different kind of token. N-

22

CHAPTER 2. STATE OF THE ART

grams are chunks of size N . N can represent characters or words or any other
means of splitting the text. Figure 2.2 shows a word 3-gram example where the
sentence is split into all sequential phrases of 3 words. Entrants in PAN use both
simple character and word n-grams of various N sizes as well as named entity
n-grams, stop word n-grams, frequent word n-grams, odd even skip n-grams and
contextual n-grams. When doing character n-grams spaces are often trimmed be-
fore generating the fragments. The text in figure 2.2 would be reduced to “catchy-

ourbreathasyouwatchyourstep” before extracting all sequencesN characters long.
GivenN = 5 the set (catch, atchy,tchyo,chyou,hyour, . . .) would be generated. N
varies greatly between methodologies and is an important setting when adjusting
for optimal performance. Increasing the length of N will lower false positives,
but also lower the recall when plagiarism becomes more complex. Lowering the
length will increase overall recall but may include a lot of false positives, thus
lowering precision. The optimal N will likely differ between plagiarism types.
Palkovskii makes use of a wide range of n-gram forms in their detector [8]. Which
N values that were used by Palkovskii is not stated.

The promising Glinos methodology uses word 1-grams as well as a frequent
word supplement[14]. The tokenization is closely matched to the pre-processing.
Besides a conversion to lower case, little is done to the text. Splitting is done using
a custom tokenizer which preserves punctuation in numerical values and does
not alter the possessive suffix ’s nor the n’t contraction. It separates all words,
numbers, special characters and textual punctuation[14]. The lack of stemming
may explain the precision of 0.96 on all forms of plagiarism[2], but may have
affected the recall to some extent. One of their seeding methods excludes certain
stop words when building the seeding model.

The use of n-gram tokens in Palkovskii may explain the very good PlagDet
score in the simpler plagiarism forms, in particular the high no obfuscation score
, as well as the low summary score. In the simpler forms of plagiarism, phrases
and words may appear in the same order as they do in the source text. This is
obviously the case in verbatim plagiarism, but also in the other two simple forms.

23

CHAPTER 2. STATE OF THE ART

Consider the text used in figure 2.2: “Catch your breath as you watch your step”
could for example be rewritten to “Watch your step while you catch your breath”.
In the event of a regular word 3-gram model, “catch your breath”, and “watch
your step” are common 3-grams between the two sentences. Passing this phrase
through Google Translate in the chain English → Spanish → French → English
resulted in the following phrase: “Breath while watching your step”. Work is
still needed in the world of automated translation as seen here, but some of the
semantic meaning still remains. With word stemming watching would be reduced
to watch, causing the 3-gram “watch your step” to be common with the original
phrase. Some stemmers also reduce your to you, but the stemming is in this case
irrelevant as the words are identical in both phrases.

Several of the other leading methodologies use skip-n grams, such as Palkovskii,
Gross and Torrejón[8, 15, 16]. Skip-grams are most likely used in these method-
ologies to solve the more complex forms of plagiarism. These work by simply
skipping over a given length of words. The phrase “Catch your breath as you

watch your step” can be used to explain this concept. Skip-grams use two param-
eters. How many words to skip, and the regular N in length of the gram to be
produced. Skip-1 3-grams for the mentioned phrase would look like this: (catch,
breath, you), (your, as, watch), (breath, you,step). This would allow for some
words to be shifted around and still detect seeds.

It is worth noting that Torrejón uses a special version of skip-grams they call
surrounding context n-grams. The algorithm generates n-grams within sentences
and shifts them around to create various permutations based on a set of rules[11].
This should increase the chance of picking up similarities within rewritten sen-
tences and specifically target the random and translation obfuscation strategies.
With a PlagDet score of approximately 0.75 for random and 0.86 for translation

in their 2013 and 2014 entries, there are algorithms that produce better results
specifically for these obfuscation strategies[2].

The same type of skip-grams were also seen in Suchomel [17], which bases

24

CHAPTER 2. STATE OF THE ART

their contextual n-grams on CoReMo 1.9, the 2012 Torrejón entry[18], along with
several other common types, such as 4-word n-grams and stop word 8-grams.

2.2.2 Seeding

Seeding is the process of detecting short plagiarism candidates. This can be as
short as a couple of words or even a given number of characters up to a sentence,
depending on the tokenization described in the previous section. Prior to seed
classification the these candidates are referred to as fragments, passages, or seed
candidates. After classification they are referred to as seeds.

Sanchez-Perez generates Bag-of-Words models(BoW) and calculate similarity
metrics between these models. A BoW-model is a dictionary giving the number of
occurrences of a word in a given sentence. Consider the example sentence: “Day

after day, so many fall away.” This produces the BoW-model seen in figure 2.3.
The word day is the only word occurring more than once.

day after so many fall away
2 1 1 1 1 1

Figure 2.3: Bag-of-Words example

BoW models are created for both the suspicious and source document. Seed-
ing is then performed by doing an exhaustive comparison of similarity between
all pairs of fragments in a suspicious, and a source document. This similarity is
calculated by getting a tf-idf(term frequency - inverse document frequency). In
this case the idf is called an isf(inverse sentence frequency) to clarify the sentence
focus over document focus. The seeding metrics are calculated as follows:

tf(t, s)

where tf is the term frequency, or simply the number of times term t appears in

25

CHAPTER 2. STATE OF THE ART

document s.

isf(t,D) = log(
|D|

|{s ∈ D : t ∈ s}|
)

isf is the inverse sentence frequency, D is the set of sentences in both documents.

w(t, s) = tf(t, s)× isf(t,D)

w(t, s) is the t-th coordinate of sentence s.

A sentence pair (suspi, srcj) is considered a seed if the Cosine and Dice-
coefficients are both over 0.33

Cos(suspi, srcj) =
suspi · srcj
|suspi||srcj|

, Cos(suspi, srcj) ≤ 0.33

Dice(suspi, srcj) =
2|δ(suspi) · δ(srcj)|
|δ(suspi)|2+|δ(srcj)|2

, Dice(suspi, srcj) ≤ 0.33

with δ(x) = 1 if x 6= 0, 0- otherwise[1].

Using the BoW example seen in table 2.3, we can compare this with a similar
BoW-model, where day is only mentioned once. From the following sentence
from [19] and a sentence modified from this:

A = Day after day, so many fall away

B = Day after, so many fall away

we can calculate the following metrics: Cos(A,B) = 0.95, Dice(A,B) =

1.0. The reason for this is that Dice does not look at the frequency of terms, just
occurrences. If all words, regardless of frequency, in A are represented in B,
then Dice(A,B) = 1.0. Cosine takes the frequency in to account as well as the
occurrence of words. This yields different kinds of information that may be useful

26

CHAPTER 2. STATE OF THE ART

in determining different forms of plagiarism. A fragment pair within a summary
passage may yield a very different Dice value than the Cos value for the same
fragment pair.

Some entrants also make use of the Jaccard similarity in various parts of their
detector methodologies [14, 12] which is similar in behavior to the Dice metric.

Jaccard(suspi, srcj) =
|suspi ∩ srcj|
|suspi ∪ srcj|

Glinos [7] stands out from many of the entrants as they use a slightly dif-
ferent approach. By using a modified version of the Smith-Waterman dynamic
programming algorithm[20, 21], seeds were generated from the word 1-grams.
This algorithm is capable of recursively detecting multiple alignments and join
adjacent subsequences. This method therefore also integrates the next step: exten-

sion. A notable downside to this algorithm is that it requires some programming
parameters that need to be manually set. The use of dynamic programming also
makes this method challenging to implement in a machine learning pipeline.

In addition to the dynamic programming approach, Glinos also uses multiple
clustering algorithms on the most frequent words in the suspicious and source
document. However, their method uses a long series of various thresholds, mean-
ing that it is not clustering in the sense that is used in machine learning. They
do cluster the n-grams, but by using predefined heuristics [7]. It does suggest that
using a machine learning clustering algorithm could aid in the generation of seeds.

Seeding when using n-grams is often very simple. If identical n-grams are
discovered in both the source, and suspicious document, then the n-gram pair is
passed on to the extension stage as a valid seed along with its offset information.
No similarity measurements are needed for this.

27

CHAPTER 2. STATE OF THE ART

2.2.3 Extension

Seed matches are joined in this step using certain algorithms and parameters in
order to generate a single passage instead of the many fragments that the seeds
make up.

Figure 2.4: Overview and parameters of the Sanchez-Perez algorithm[1]

Some strategies among the entrants share a common idea; Attempt to identify
different forms of plagiarism using different methods or parameters. This is visi-
ble in figure 2.4, which shows an overview of the entire Sanchez-Perez algorithm.
After seeding, the extension is performed twice with different parameters in an
attempt to identify plagiarism more correctly. Variant A focuses on the 3 simplest
forms of obfuscation while variant B attempts to detect summary obfuscation.
Both variant A and B can return passages but only one is selected and used per

28

CHAPTER 2. STATE OF THE ART

case based on the threshold heuristic source length > 3 · suspicious length[1].
The algorithm runs a similarity test using the Cosine metric described in section
2.2.2 on a passage generated by seeds within a given threshold of each other in
terms of distance in character offset. Cosine must be above a given threshold(th4
in figure 2.4) in order to be classified as plagiarism.

Also visible in figure 2.4 are the 10 unique parameters used(14 adjustable).
All of these may be highly data set dependent. Using a threshold like the one
determining the extension variant may not work very well in a real setting. There
are no guarantees that a summary will be a third of the length of the plagiarised
source passage. This would indicate that a parameter-free method is desirable.

Shreshta uses two different approaches when classifying plagiarism. One they
call a strict method and one more lenient. The strict method uses a machine trans-
lation evaluation metric called TER-p[22] to find an edit distance between two
translations. This can of course be used to measure text similarity, as it is done
here. The TER-p method is sentence-based, whereas the more lenient method is
n-gram based. They combine passages where similarity is high in both TER-p
score and occurrence n-grams within the same passage. Using an empirically dis-
covered thresholds for merging and short-passage removal, they end up with very
promising results.

The idea of mixing both N-grams and sentences is intriguing, but may not be
necessary if the features used are good. Shreshta uses two different approaches
based on a heuristic. It would be possible to split and use two different classifiers
and two different feature sets based on BoW and n-grams respectively. These
could be calculated into offsets/length combinations and merged for a final set of
XML outputs as the PAN performance tool requires. However, with the right set of
features, this approach should not be necessary. Similar results could potentially
be produced using multiple classifiers, bagging or boosting.

29

CHAPTER 2. STATE OF THE ART

2.2.4 Filtering

Filtering is the process of reducing granularity, and in some cases improve pre-
cision using some algorithm. Passages overlapping one another are joined into
single passages in an attempt to remove any granularity. Passages shorter than a
given threshold may also be removed. Overlap resolutions and short passage re-
moval was done in Sanchez-Perez using a minimum passage length threshold and
an overlap removal algorithm[1]. Minimum passage length threshold is also seen
as a common filtering mechanism in other entrants. One example is Gross [16]
who used a minimum of 15 words.

Kong 2013 uses an interesting approach in filtering that was not seen in other
entrants. A sliding window is applied on a passage in order to maximise the Jac-
card coefficient value[12]. The exact algorithm and parameters are not published,
but the idea is interesting. This can also easily be applied to other similarity met-
rics such as Cosine or Dice used in Sanchez-Perez [1].

2.2.5 Summary

Selecting a pre-processing strategy is highly dependant on the tokenization, but
conversion to lower case and stemming seems promising in an attempt to increase
the accuracy in random and translation obfuscation.

In terms of seeding there are two major strategies that stand out. N-grams
and sentence tokenization. The N -value is a parameter value which greatly can
affect the result and which types of parameters a seeding mechanism is capable
of detecting proficiently. As a goal of this thesis is to remove dependencies on
manual parameters, using sentences as a basis for tokenization seems more natural
and can easily be defended as the top methodology uses it[1, 2].

The extension algorithms differ greatly but they often use some form of al-
lowed gap between seeds and can create new passages from these. The method

30

CHAPTER 2. STATE OF THE ART

used in Sanchez-Perez is interesting and possible to implement in a machine learn-
ing pipeline. The similarity metrics are reused and a new threshold decides if the
extension will be passed on to filtering for further processing[1].

In terms of filtering, the method used by Kong 2013 [12] which implements
a sliding window seems very promising and can be easily modified to use other
similarity measurements. Overlaps should also be resolved. Looking at minimum
passage length is also of interest. This can be easily added in the extension stage
by extracting a passage length feature to pass on to the classification algorithm.

Palkovskii attacks the task at hand with a somewhat similar approach overall
as this thesis. Combine the known methods into an algorithm in an attempt to out-
perform each method separately. With an overall PlagDet score of 0.87, precision
of 0.92 and a recall of 0.83[2], this method shows very good results.

The algorithm generates a range of n-grams, including regular, stop-words,
named entities, frequent words as well as some expansion methods before calcu-
lating metrics similar to Sanchez-Perez[1] on these n-grams. After this, the data is
clustered using an angled ellipse based graphical clustering method. This is done
in an attempt to predict the type of plagiarism that is being performed. This allows
them to tweak the parameters for the final detection.

Clustering seems like a good idea for this data set, but their method is param-
eter dependent, making it less useful in a more general scenario. It would require
a lot of work for each new training data set. It does suggest attempting more
automated clustering methods may be beneficial and should be looked into.

Torrejón 2014 describes how the chunk length needs to be tuned again every
year to find optimal settings based on the training data set provided. It for exam-
ple states that “[...] optimum settings for the 2012 and 2013 corpora were quite

different.”. The goal for the 2014 entry was to find a method of self-tuning the
system [15]. With the right parameter settings the 2014 entry shows good results,
although very similar to the 2013 entry. However, with poor settings, their results

31

CHAPTER 2. STATE OF THE ART

are far from optimal. The need for parameter re-tuning every year to fit the cur-
rent data set shows that the need for self-adjusting systems or systems capable of
learning may prove very useful, even when the data sets are as similar as they are
from year to year.

32

Chapter 3

Plagiarism Detector Design

This chapter presents the methodology of the plagiarism detector setups used
in later experiments. Section 1 provides an introductory overview of the entire
pipeline. Section 2 shows the details behind the pre-processing, Section 3 ex-
plains the seeding metric and classification process. Section 4 explains how seeds
are extended to passages and classified. Section 5 details the filtering mechanism
used to optimize results. Section 6 explains how output is generated. Section 7
introduces how the detector will be analysed.

As seen in chapter 2, many methodologies have borrowed a stepwise approach
of seeding, extension and filtering from the field of bioinformatics. The approach
applied in this thesis does not differ from this general methodology, although it
adds extra steps to provide a full and highly modular pipeline. Most entrants in
PAN perform the entire process in a single script. A more streamlined solution
is suggested for any production ready implementation for easier usability of the
pipeline developed in this thesis.

In general, the process makes use of two tools: Python scripts and KNIME An-
alytics Platform1. KNIME is a program that allows users to create data analysis

1Available at http://www.knime.org/knime

33

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

workflows very quickly and easily. It contains a lot of machine learning algo-
rithms and other tools vital to parsing, analysing and representing various types of
data. Parts of the Python code is based on the freely available source code of the
Sanchez-Perez entry[1]. This is done for time efficiency and reducing the risk for
creating unnecessary bugs. The code has not been optimized for execution time
as this is not a vital issue in this setting. Some parts of the KNIME workspaces
also use Java for data manipulation.

3.1 Overview

Figure 3.1 shows an overview of the approach. Preliminary and intermediate
Python scripts are seen in rounded blue rectangles while the classification steps,
currently using KNIME workspaces, are seen in red rectangles. Green, rounded
rectangles are Python scripts used for metrics and cleanup. The Performance Met-

rics script is the script supplied by the PAN workshop. In order to avoid reinvent-
ing the wheel and thus introducing unnecessary bugs, some parts of the scripts,
such as pre-processing, tokenization and basic seed metrics calculations based on
PAN entrant metrics, use their source code where available.

3.2 Pre-processing

Prior to any seed generation or metric calculations, the data set in question is
prepared equal to the pre-processing performed in [1], using their available code2.
Each document pair is converted to lower case where applicable before being
stemmed and split up into lists of sentences. Sentences shorter than 3 words are
joined with the next sentence. Upon completion of these processes, BoW-models
are generated. Each step of the pre-processing methodology is explained in detail

2Source code available at: http://www.gelbukh.com/plagiarism-detection/PAN-2014/

34

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Figure 3.1: Overview of the plagiarism detection methodology

below.

3.2.1 Stemming

This project, like that of Sanchez-Perez[1], makes use of the Porter-stemmer in
the Natural Language Toolkit for Python3, an implementation of the algorithm
explained in detail in [9].

The stemming algorithm will not be able to catch synonyms with different
roots. This would require a taxonomy of synonyms. An interesting idea, but
most likely very costly to compute and it could potentially produce a lot of noise
through false similarity. There is also a potential risk of over-generalization of
words.

3http://www.nltk.org/

35

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

3.2.2 Tokenization

The Natural Language Toolkit for Python has a tokenizer for english(usable as to-

kenizers/punkt/english.pickle), which is used by Sanchez-Perez [1]. This method
is used in this detector without changes from the original source code except for
adaptation to the pipeline.

3.2.3 Bag of Words

After pre-processing, Bags of Words(BoW)-models are generated for each sen-
tence. This is done using the methodology and selected parts of the source code
from Sanchez-Perez [1], again, adapted to fit the pipeline. BoW-generation is
performed several times throughout the pipeline.

3.2.4 Labeling

In order to train the classifier, the seed candidates must be labeled as plagiarism
or non plagiarism. A seed candidate contains 4 points of data to determine its
location within the active document pair. Source offset and length as well as sus-
picious offset and length. An offset i combined with a length n creates a fragment
containing a set of characters Fdoc = {i, i+ 1, i+ 2, ..., i+ n}, from a document
doc.

Each seed candidate therefore contains a set of characters C = Fsrc × Fsusp

from sets of characters Fsrc, Fsusp from a source and suspicious document re-
spectively. C represents all character pairs within the candidate. A similar set
P = Fsrc × Fsusp is created to denote plagiarism in the active document pair
based on similar data points from the data set.

Character intersection I = C ∩ P is marked as plagiarism if I 6= ∅ ∩ |I||C| > t,
where t is a threshold. This threshold is not determined by experiments, but by

36

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

thresholds used in performance by PAN[2]. When determining cases, a case is
correctly classified when recall and precision > 0.5 in terms of character clas-
sification. This means that half of the detected characters must be within the
plagiarised passage and half of the passage must be detected for a case to be cor-
rectly classified. This resulted in t = 0.5. This provides a balanced labeling of
fragments. Detailed explanation for performance testing follows in section 3.7.
This is done here despite attempting to classify at a character level as a help to the
seed classifier by increasing precision at a possible expense of recall.

3.3 Feature Extraction and Seed Classification

After the pre-processing is finished a range of metrics are calculated on each frag-
ment pair. A fragment pair is defined as a fragment i from a set of fragments F
from a suspicious document and a fragment j from a set of fragments F from a
source document. These are compared against each other using two metrics: The
Cosine and Dice coefficient as used in [1] and described in section 2.2.2. These
metrics are applied to the BoW-models doing an exhaustive comparison of all
possible fragment pairs Eij = Fi×Fj in a given source and suspicious document.

Jaccard was also considered, but it does not give any more information than
Dice does, at it also does not take term frequency into account.

In Sanchez-Perez [1] only the raw Cosine and Dice metrics were used for
seeding, only calling it a seed if the following statement is true:

Cos(suspi, srcj) > 0.33 ∩Dice(suspi, srcj) > 0.33

i and j marks fragment or sentence indicies from suspicious and source documents
susp and src respectively.

37

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Figure 3.2: Cos(x) - Dice(y) plot over a set of fragments from multiple documents.
Seeds within plagiarised passages in black, fragments outside in pink.

Figure 3.2 also shows some of the problem. Hidden among all the non-
plagiarism seeds with Cos(suspi, srcj) < 0.33 ∩ Dice(suspi, srcj) < 0.33 are
quite a few seeds within plagiarised passages. Determining if these are plagia-
rism or not can prove difficult without more features. The graph shows that the
threshold used by Sanchez-Perez provide a very high accuracy but could exclude
plagiarism seeds.

This also shows that using clustering on these simple metrics is not possible
without a cleaner data set. It may provide some benefits in terms of accuracy, but
very little that other machine learning algorithms are unable to do.

The approach in this thesis expands on these two metrics by extracting more
features from them by utilizing statistical and seed-relational metrics to further
separate plagiarism from non-plagiarism.

38

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Figure 3.3: Randomized plagiarism example

Figure 3.3 shows the usefulness of metrics such as Cos and Dice. This 3-
part graph shows the cosine values(darker is higher, more similar) for sentence
pairs between 2 documents in blue, the maximum vertical cosine value for each
suspicious sentence in green, and the area of known plagiarism in red. The idea
of applying added metrics was conceived when it became apparent that the data
set not only randomised words within a sentence but also mixed sentence order
in most forms of plagiarism. Plagiarised fragments are not guaranteed to come in

order within a known plagiarised passage.

This proposed a challenge in terms of training machine learning algorithms
when applying it to the seeding stage. In the example in figure 3.3, the plagiarised
passage is 4 sentences long in both the suspicious and source document. A fairly
simple one to detect with the human eye using this graph, however more difficult
to train on. Saying that all seeds within the entire plagiarised area marked in red
is plagiarism is wrong and will result in very noisy training data. 4 out of 16

39

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

fragments are in this case plagiarised sentences leaving 12 that are not. As visible
in the top sub-graph, there are seed candidates with little to no similarity at all,
which would greatly confuse the machine learning algorithm.

40

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Figure 3.4: Summary plagiarism example

The challenge is even more visible in 3.4. This shows a case where part of

41

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

the suspicious document is a summary of the entire source document. The seeds
are horizontally adjacent to each other in the suspicious document but vertically
far apart in the source document. There are also a lot more seeds that should not
be classified as plagiarism when comparing it to figure 3.3. Some seeds stand out
although they are not dark blue, meaning that detecting seeds is not as easy as
checking for a high threshold along the lines of Cosi,j > 0.8. Several document
pairs contain single scattered seeds that have a higher Cos or Dice similarity than
many of the plagiarised seeds.

After conversing with the Task Chair for the Text Alignment task at PAN,
Martin Potthast, it became clear that there is no direct way of extracting the pla-
giarised seeds from the PAN corpus. No logs from the data set creation were
available. Finding a method of cleaning the data set or pointing the algorithm in
the right direction using clustering or heuristics would perhaps prove useful.

A more lenient version of the Sanchez-Perez seeding method is used to filter
out the worst cases of falsely labeled plagiarism. Using the heuristicCos(suspi, srcj) >
0.1 ∩Dice(suspi, srcj) > 0.1 as a fragment filter prior to seeding classification,
the data sent to the classifier will be less noisy. Using manual thresholds is far
from optimal but with such a noisy data set it should improve the training data.
Seeds with similarity metrics as low as 0.1 could with a low probability be sum-
maries but are unlikely to be valid cases of simpler forms of plagiarism.

The value of the threshold should affect the classifier’s performance but is not
a parameter that should be tweaked in order to increase it, and is unlikely to be
the optimal threshold. The main point is that it is substantially lower than the
seed similarity threshold used by Sanchez-Perez [1] and is not the main data point
seeds are to be classified on. The purpose of this thesis is to avoid thresholds in
order to detect plagiarism. The threshold is not used for classification but to clear
the training data set. It is so low that it should have little effect, but mitigate the
noise issue to some extent. The mean values of Cos and Dice throughout the data
set are lower than 0.02 and 0.09 respectively. Along with figure 3.2, this suggests

42

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

that the mentioned cleaning thresholds will not remove a lot of plagiarism cases,
as the data set mainly consists of non-plagiarism in terms of characters.

When first studying these graphs, it became apparent that the maximum Co-
sine, and Dice values were often the plagiarised seed, as seen in figures 3.3 and
3.4. A novel feature was created for both of the similarity metrics. The boolean
values IsMaxCos and IsMaxDice are defined as true if:

IsMaxCos(suspi, srcj) = True ⇐⇒ Cos(suspi, srcj) = argmaxCos(suspi, src0...n)

IsMaxDice(suspi, srcj) = True ⇐⇒ Dice(suspi, srcj) = argmaxDice(suspi, src0...n)

, where n denotes the number of fragments on the vertical axis(source docu-
ment). These booleans are false if their respective requirements do not hold.

Using the heuristicwithinP lagPassage(suspi, srcj)∩(isMaxCos(suspi, srcj)∪
isMaxDice(suspi, srcj)) to clean the data set to some extent without using thresh-
olds the most obvious candidates could be extracted. This would likely mean dis-
carding a great deal of valid candidates. This could especially be the case in the
summary plagiarism type, as seen in 3.4. They will not include all cases of plagia-
rism in the training data, but should provide a fair assistance in cleaning the data
and increase precision. Seeds are labeled as plagiarism if this heuristic holds true,
and is false otherwise.

In addition to the simple IsMax feature other novel features were created,
such as MaxDiff and MeanDiff for both Cosine and Dice. These are based
on the maximum values for metrics generated along the vertical axis, and the
document pair mean of these maximum values. Distances to these values are
calculated for all source/suspicious sentence pairs.

43

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

MaxCosDiff(suspi, srcj) = argmaxCos(suspi, 0 . . . n)− Cos(suspi, srcj)

MaxDiceDiff(suspi, srcj) = argmaxDice(suspi, 0 . . . n)−Dice(suspi, srcj)

MeanCosDiff(suspi, srcj) =

m∑
k

argmaxCos(suspk, src0...n)

m
−Cos(suspi, srcj)

MeanDiceDiff(suspi, srcj) =

m∑
k

argmaxDice(suspk, src0...n)

m
−Dice(suspi, srcj)

m and n note the last sentence index of the suspicious and source documents
containing sentence indicies i and j from documents susp and src respectively.

As visible in figure 3.4, the length of the plagiarised passage is much longer
in the source document than in the suspicious document, as is often the case of
a textual summary. This means that given just the isMax method, all seeds can
not be found. A maximum of two seed candidates can be produced for each
suspicious sentence given that the same sentence pair is not the maximum value
for both Cosine and Dice. In many cases they are the same, and will produce only
one.

Even though a seed may not be the best candidate for plagiarism, the nearby
neighbours should be considered. Especially in cases seen in figure 3.4 where
nearby seeds to the most obvious plagiarism have increased metric similarities.
Features that indicate neighbouring plagiarism may increase the likelihood of
classifying nearby seeds with lower, but still significantly high metrics as rele-
vant seeds.

Different novel features were designed both horizontally(between suspicious

44

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

seeds) and vertically(source seeds), even though they differ in order to solve dif-
ferent challenges. Selected features are extracted from each of the base metrics
to represent the maximum Cos/Dice values for the immediate neighbour in either
horizontal direction.

MaxCosNeigbour(suspi, src)
= argmax(argmaxCos(suspi−1src0...n), argmaxCos(suspi+1, src0...n)), i
> 0, i
< m

MaxCosNeigbour(suspi, src)
= argmax(argmaxDice(suspi−1, src0...n), argmaxDice(suspi+1, src0...n)), i
> 0, i
< m

, where m and n again denote the last sentence indicies of suspicious and source
document sentences respectively. In the event that i = 0 or i = m, the only avail-
able neighbour is used to calculate these values, using i+ 1 or i− 1 as neighbour
index, so that this index is guaranteed to exist in the fragment pair array.

Using where(x, S) = y as a function that returns the location y of x in an
ordered set S.

V erticalCosMaxDist(suspi, src)
= |where(argmaxCos(suspi, src0...n), Cos(suspi, src0...n))− i|

V erticalDiceMaxDist(suspi, src)
= |where(argmaxDice(suspi, src0...n), Dice(suspi, src0 . . . n))− i|

The vertical distance features return the distance from the maximum metric
value in terms of sentence index difference. This is always an absolute, positive
value. The interest lies in the vertical distance from the maximum metric value.

45

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Whether it is above or below is of little interest to a classifier. These features
are designed in an attempt to fill out the plagiarism rectangle and classify more
relevant seeds that may not necessarily be plagiarism. It adds information as to
the relative location of the most likely seed. This may also help segregate non-
plagiarism seeds with fairly high metric values from plagiarism seeds with similar
values. A seed which is near a high metric value should be more likely to be
a plagiarism seed than a fragment pair 50 sentences away with a similar metric
value.

This is designed with the summary plagiarism type in mind. Figure 3.4 demon-
strates the need for this. The number of seeds that confuse the classifier are nu-
merous and the line between plagiarism and non-plagiarism within the plagiarised
passage is very fine, as seen in the top sub-graph.

In an attempt to further aid the classifier to detect summary plagiarism, a ra-
tio feature describing the ratio between the length of the suspicious and source
passage was created.

SrcSuspLenRatio(suspi, srcj) =
|suspi|
|srcj|

The output from the extension is passed on to a workspace in KNIME for
further processing and classification. This workspace is set up to be capable of
using multiple classifiers in order to find the optimal algorithm for this task.

The classifiers are trained using the complete data set available after PAN 13,
which is the same the PAN 14 entrants used for their optimizations. The classifiers
are then tested on the PAN 14 test set. Both data sets are from a larger corpus
where some data is withheld from the general public. A new subset from the large
corpus is released each year for testing. The corpus is discussed in detail in section
2.1.2. The training/testing data split described here is done for all classifiers in all
classification steps of the methodology in this thesis. The reason for this is to
avoid training on any data that it is tested against.

46

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Bayesian spam filtering is a common method of classifying e-mail spam [23]
and is a classifier that takes both little time to train and run. With history in a
linguistic field, naı̈ve Bayes [24] is an obvious candidate to be tested. It will
however be used differently in this thesis as it here works on numerical features
instead of word occurrence probabilities. This classifier has seen use in a similar
field to this thesis, in an attempt to detect source code plagiarism[25]. This is
however a different problem as the features used here are very different due to the
differences in human languages and programming languages.

A challenge with naı̈ve Bayes is that it requires some form of feature selection
for optimal performance. Passing all features through this algorithm may cause
noise and confuse the classifier. The available subsets of features should be tested.
With the number of available features and a large training data set, testing for the
optimal feature set takes a series of runs. Development testing also showed that it
had a tendency to return a large number of false positives.

Decision trees [24] often strike a good balance between recall and precision.
Development testing showed a decrease in recall when compared to naı̈ve Bayes,
but a higher precision. An advantage with decision trees is that they by nature
perform a form of feature selection. All features are not always used, and they
attempt to use the features that separate the data the best way possible.

An extension to decision trees are random forests. These consist of sets of
decision trees using randomised sets of features. Majority voting among the gen-
erated decision trees decide how the data should be classified.

An overview of all seeding features with a brief explanation is shown in table
3.1.

47

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Feature Value Description

Cosine Float
BoW similarity measurement.
Frequency dependent

Dice Coefficient Float
BoW similarity measurement.
Frequency invariant

IsMax(Cos/Dice) Boolean
Returns TRUE if it is source
fragment with the highest Cos/Dice
value for that suspicous fragment

MaxDiff(Cos/Dice) Float

Difference between the current source
fragment and the source fragment
with the highest maximum similarity
value of the same type for that suspicious
fragment.

MeanDiff(Cos/Dice) Float
Difference between the current source
fragment and the document mean maximum values of the
same type for that suspicious fragment.

MaxNeighbour(Cos/Dice) Float
The highest value of the given similarity
type for immediate suspicious fragment
neighbours.

VerticalMaxDist(Cos/Dice) Integer

Distance in fragments between the
current source fragment and the fragment
with the highest similarity value of the
given type.

SrcSuspLenRatio Float
The length ratio between the source and
suspicious passages.

Table 3.1: Overview of features extracted from fragments before seeding classifi-
cation

48

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

3.4 Passage Generation and Extension Classification

In the state of the art and this thesis, extension is the process of joining seeds to
form a passage and evaluating this as a whole to determine a case of plagiarism.
The process here is fairly simple. For a document pair, create lists of seeds that
are horizontally adjacent to each other in the suspicious document, or share the
same offset in the suspicious document.

A seed S(i, j) is added to the ordered set G ordered by i if: S(i, x) ∈ G,
or S(i − 1, x) ∈ G, where x can hold any value. G is referred to as a group of
horizontally adjacent seeds.

A passage may contain several groups if a seed somewhere within the plagia-
rised passage has been falsely classified as non-plagiarism. To solve this problem,
a novel approach is suggested:

All detected groups within a document pair are paired in order to generate
all possible pairs of groups so that multiple candidate passages can be generated.
This method ensures that all gaps are covered. Only seeds missing before the first
classified seed in the first group and after the last seed in the last group can no
longer be detected.

A set of passages P is generated by P = G × G. For all passages p ∈ P the
minimum and maximum character offsets horizontally and vertically of all groups
within p are calculated to form the total passage.

In Sanchez-Perez [1] they allow a gap below a certain threshold of characters
to still pass it off as a single passage. Allowing no gap at all horizontally may
increase granularity but could also increase precision. If seeds are missed there is
a risk of lowering recall. Not requiring adjacency would likely do the opposite.
This is another manual threshold that should be avoided to allow for flexibility
when training with new data sets. In a real life setting, having a slightly increased
granularity resulting in a split passage or false negative seeds mid-passage is not a

49

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

big issue when detected plagiarism cases are checked by teachers or other hand-in
censors.

To attack the problem of such a threshold, a novel method is created in this
thesis. Instead of using an absolute threshold, a normalized ratio based on the
length of the passage is used. A group g ∈ G holds a set of character offsets Cg

vertically (Cgsrc) and horizontally (Cgsusp). GroupLenSrc and GroupLenSusp
are defined as follows:

GroupLenSrc =
∑
g∈G

|Cgsrc |

GroupLenSusp =
∑
g∈G

|Cgsusp|

These two metrics are not used on their own as new ones, but lead to two new
features: SuspGapRatio and SrcGapRatio. These are defined as follows:

SrcGapRatio =
GroupLenSrc

|Cpsrc |

SuspGapRatio =
GroupLenSusp

|Cpsusp|

, where Cp are the set of characters in the passage p generated from joining
the two groups used to calculate GroupLenSrc and GroupLenSusp.

The passages are compared in much the same way as seeds are generated, but
using the passages instead of sentence pairs. BoW-models are created from the
passages and Cos as well as Dice are used again to measure passage similarity.
These definitions are equal to those used in section 3.3.

Three new features are generated based on these two similarity measurements.

50

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

CosDiceAvg =
Cos(suspi, srcj) +Dice(suspi, srcj)

2

CosDiceDiff = Cos(suspi, srcj)−Dice(suspi, srcj)

AbsCosDiceDiff = |Cos(suspi, srcj)−Dice(suspi, srcj)|

In addition to these, the SrcSuspLenRatio is calculated again for the passage,
as defined in section 3.3.

The state of the art often is seen to sometimes use a specified length threshold
to remove passages that are too short in the filtering stage[1, 16]. This is per-
formed in the extension classification stage in this thesis by analysing lengths of
the source and suspicious passages. These features are defined simply as:

SrcLen = |srcj|

SuspLen = |suspi|

In addition to these, the minimum length of the passage is also extracted as a
feature. MinLen is defined as:

MinLen = argmin(SrcLen, SuspLen)

The passage also now needs to be re-labeled as plagiarism or non-plagiarism
for the classifier. The same condition as for seeding applies. If the ratio of cor-
rectly classified characters is over 0.5, the passage is labeled as plagiarism.

After these features are extracted and labeling is completed, the candidate
passages are passed through the final classifier. Like the seed classifier, a KNIME
workspace has been created containing a series of machine learning algorithms in
order to find the optimal classifier. Any passage classified as plagiarism is passed
on to the filtering and output process.

51

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Because most of the seed candidates are removed in the seeding step, the
extension classifier receives fairly few true negatives to begin with, making it a
challenge to classify non-plagiarism. During test runs on low amounts of data,
some classifying algorithms returned error messages since they were unable to
run when there was only a single class to classify. The seeding stage had in some
test cases yielded a precision of 1.0, meaning that all passages were plagiarism.
Given enough model data, this is no longer a big issue.

An overview of all extension features with a brief explanation is shown in table
3.2.

The same classifiers used for seed classification were tested for extension clas-
sification using a similar data set split.

52

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Feature Value Description

Cosine Float
BoW similarity measurement.
Frequency dependent.

Dice Coefficient Float
BoW similarity measurement.
Frequency invariant.

CosDiceAvg Float Average of Cos and Dice.

CosDiceDiff Float Difference between Cos and Dice.

AbsCosDiceDiff Float
Absolute difference between Cos
and Dice.

SrcSuspLenRatio Float
Length ratio between source and
suspicious passages.

SrcGapRatio Float
Ratio of passage not covered by
seeds on the source axis.

SuspGapRatio Float
Ratio of passage not covered by
seeds on the suspicious axis.

SrcLen Integer Length of the source passage

SuspLen Integer
Length of the suspicious passage
suspicious passages.

MinLen Integer
Shortest length of the source and
suspicious passages.

Table 3.2: Overview of features extracted from fragments before extension clas-
sification

3.5 Filtering

Filtering is the process of removing any surplus or erroneous classifications of
plagiarism where possible. The goal of overlap removal is to decrease granularity.
Any other filtering steps are applied to increase precision without significantly
lowering recall.

53

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Overlaps are removed by checking for offset overlaps between any passages
within the same document pair. For all passages p ∈ P that contain the data p =<
offsetsrc, offsetsusp, lengthsrc, lengthsusp >, character sets c = {offsetsusp, . . . , offsetsusp + lengthsusp}
are generated and put in C. Any sets c in C which overlap are joined.

In the case of a seeding stage with low precision, passages are sometimes too
large, thereby classifying many seeds falsely as plagiarism. Development testing
shows that this is especially true for the vertical source document axis, perhaps due
to the vertical distance features. Finding a case of plagiarism is not too difficult.
Finding the edges of the case in both suspicious and source documents is far more
trying task. The idea is that in the event that the detected plagiarism exceeds
the boundaries of the true plagiarism case, the filtering algorithm will attempt to
remove misclassified seeds from the edges of the passage in an attempt to optimize
the location of the start and end offsets on both the horizontal and vertical axis.

Filtering in this project is inspired by the sliding window in approach used
by Kong[26]. The exact details of the algorithm are not specified, but a simple
approach based on the understanding of the concept is used to determine whether
it had a positive effect on the results.

A plagiarised passage has an offset and a length both horizontally and verti-
cally. The goal is to minimize the square generated on these two axes in order to
maximise the Cos and Dice metrics. Seeing a plagiarised passage as a square, as
shown in figure 3.5, aids in understanding the algorithm.

54

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

Figure 3.5: Graphical demonstration of sliding window filtering mechanism

More optimal approaches will most likely exist by looking for better global
maximums, or by performing exhaustive searches. Another possibility would in-
clude attempting to expand the square to determine whether it caught all seeds
near the edges, in order to improve recall. This is highly suggested for future
research.

This algorithm is greedy, meaning that it will stop immediately when the re-
sults are worse than the metrics calculated from the current best passage. As long
as the shortened candidate passage has a better Cosine or Dice metric value, it will
continue to shorten in the given direction. When both of them are worse than the
best, it moves on to the next direction in an attempt to improve the result further
here.

It shortens the vertical source axis from the front of the passage before short-
ening from the back. After this it moves on to the suspicious front, then back. The

55

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

order in which this is done may be of some significance due to the greedy nature
of the algorithm. Development testing showed that it seemed more willing to strip
seeds if the vertical source axis is minimized first.

3.6 Output

The methodology currently outputs XML that specifies the offset and length of
each plagiarised passage in both suspicious and source documents. PAN supplies
a python script that compares a standardized XML output against their own in
order to extract performance metrics on a character level.

Figure 2.1 shows the correct plagiarism for the document pair suspicious-document00016
and source-document01836. Some of these fields can not be filled. The pla-
giarism tool is not required, nor is it set up to detect the type of plagiarism, so the
obfuscation field can be omitted in the output. This simply states the obfusca-
tion type used on the document pair. The type field can also be omitted. Figure
3.6 shows an example output for the same document pair as in figure 2.1. It is
visible here that it has not hit all the seeds in the passage; It seems to be missing
a sentence or two at the beginning and at the end of the suspicious passage while
only missing seeds at the beginning of the source passage. The cases overlap with
maximum precision and some reduced recall.

56

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

<document reference="suspicious-document00016.txt">

<feature name="detected-plagiarism"

source_length="539" source_offset="7384"

source_reference="source-document01836.txt"

this_length="448" this_offset="6897"/>

</document>

Figure 3.6: XML output ready for comparison with PAN data sets (suspicious-
document00016-source-document01836.xml).

3.7 Comparison and Performance Analysis

The detector will be benchmarked against the other PAN entrants using the per-
formance metrics supplied by PAN[2].

They use mainly common performance metrics such as recall, and precision,
but also create new ones to solve problems of overlapping. Detailed information
about the design of these metrics is available in [2].

Performance is measured on three levels: Character, case and document level.
A brief explanation may be beneficial before defining these levels formally.

The character level calculates performance based on the character offsets of
a detection and plagiarism case. A character has been correctly aligned with a
plagiarism case if its offset within a source or suspicious document is within the
offsets described by the XML file in the data set.

A case has been correctly classified if more than half of the characters within
the detected passage are within the offsets of the plagiarism case, and more than
half of the plagiarism case has been covered by the detected plagiarism.

57

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

A document pair has been correctly classified if at least one case within the
document pair has been classified correctly, as stated above.

All of the formal definitions below were designed by, and for PAN[6, 2].

3.7.1 Character Performance Comparison

A plagiarism case s =< ssusp, dsusp, ssrc, dsrc >, s ∈ S is a set of references to
the characters of dsusp and dsrc, in passages ssusp and ssrc. Detected cases r ∈ R
are represented similarly. r detects s if s∩ r 6= ∅ and ssusp overlaps with rsusp and
ssrc overlaps with rsrc. Recall and precision are therefore denoted as:

Prec(S,R) =
1

|R|
∑
r∈R

|
⋃

s∈S(s ∩ r)|
|r|

Rec(S,R) =
1

|S|
∑
s∈S

|
⋃

r∈R(s ∩ r)|
|s|

For clarity, the definitions previously defined in section 2.1.3 are repeated.

Let S denote the set of plagiarism cases in the corpus. R denotes the set of
plagiarism detections by a detector. Granularity is defined as:

gran(S,R) =
1

SR

∑
s∈SR

|RS|

SR ⊆ S are detected cases in R while RS ⊆ R are detections in S

F1(S,R) is the harmonic mean of precision and recall and is defined as:

F1(S,R) = 2
Prec(S,R) ·Rec(S,R)
Prec(S,R) +Rec(S,R)

58

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

F1 is not used on its own in character level performance analysis as it does
not account for granularity. Instead, along with recall and precision, these metrics
make up the performance score designed for PAN. PlagDet is defined as:

PlagDet(S,R) =
F1(S,R)

log2(1 + gran(S,R))

3.7.2 Case Performance Comparison

Notations are reused from previous definitions where applicable. R′ represents a
subset of R where precision and recall are larger than a given threshold. S ′ de-
notes a similar subset from S which includes all plagiarism cases detected from
S with character recall and precision larger than a predetermined threshold. This
threshold has in [2] been set to 0.5 for both recall and precision to give a good
balance between fraud and insult. This means that for a case to be correctly clas-
sified, over half of the detected characters must be within the plagiarised passage,
and more than half of the plagiarised passage must be covered by the detection.
Precision and recall for cases are described as:

Preccase(S,R) =
|R′|
|R|

Reccase(S,R) =
|S ′|
|S|

F1 is used also here as defined in 3.7.1 and is used instead of PlagDet in case
level performance analysis.

3.7.3 Document Performance Comparison

A document detection occurs when at least one plagiarism case in a document
pair has been correctly detected. A set of document pairs Dpairs = Dsusp ×Dsrc

59

CHAPTER 3. PLAGIARISM DETECTOR DESIGN

provides the set of possible comparisons the detector can make. S denotes the set
of plagiarism cases in the corpus. R denotes the set of plagiarism detections.

Dpairs|S = {(dsusp, dsrc)|(dsusp, dsrc) ∈ Dpairs ∪ ∃s ∈ S : dsusp ∈ s ∪ dsrc ∈ s}
represents the subset Dpairs|S ∈ Dpairs which contains the plagiarism cases S
whileDpairs|R = {(dsusp, dsrc)|(dsusp, dsrc) ∈ Dpairs ∪ ∃r ∈ R : dsusp ∈ r ∪ dsrc ∈ r}
represents the subset Dpairs|S ∈ Dpairs which contains detected plagiarism cases
in R.

The 2014 PAN plagiarism task overview paper [2] denotes an R′ which repre-
sents a subset of R containing detections that are over a certain threshold in terms
of recall and precision, but this is not necessary in document level. Only a single
case detection is required for this, so a simplified version of precision and recall
is as follows:

Precdoc(S,R) =
|Dpairs|S ∩Dpairs|R|

|Dpairs|R

Recdoc(S,R) =
|Dpairs|S ∩Dpairs|R|

|Dpairs|S

As with case performance, F1 is defined as it is in section 3.7.1 and used
instead of PlagDet in document level performance analysis.

60

Chapter 4

Experiments and Results

This chapter presents the experiments performed and why they were designed the
way they were, as well as their results. Section 1 presents the results from pre-
processing. Section 2 shows the efficiency of the seeding stage. Section 3 presents
the performance of the extension stage. Section 4 shows the efficiency of the
sliding window filtering algorithm. Section 5 shows the most accurate algorithm
combination from the previous results and the final detector methodology. Section
6 compares the best results of this methodology to the entrants of PAN 2012-2014.

All experiments are tested using the PAN 14 test data set as described in sec-
tion 3.3. Performance metrics are calculated as described in section 3.7

The purpose of the module experiments are to test each step of the algorithm
in order to determine the effectiveness and to potentially discover any flaws or
points that can be improved upon.

The overall experiments are used to build a benchmark against the existing
state of the art, more specifically against the entrants of PAN 12-14.

61

CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.1: Active modules during pre-processing tests

4.1 Pre-processing

Certain potential issues regarding the pre-processing steps Sanchez-perez [1] were
previously mentioned in section 2.2.1. In order to establish whether these sugges-
tions are correct, experiments should be run already here, in order to determine if
this step can be improved upon.

This is done by performing the pre-processing as suggested earlier. Any seed
candidates that come from this pre-processing that overlap with known plagiarism
in the data set are labeled as plagiarism and passed on to the XML-output. Using
the PAN 2014 performance script the recall and precision on a character level are
extracted. Granularity is overlooked in order to disregard any potential bugs from
a filtering mechanism. Case and document level performance is calculated using
a script developed for this thesis as a PAN developed script for this purpose was
not discovered.

Any result here should be the absolute best any later step of the algorithm is
capable of performing in terms of recall, as this is a waterfall system. Any poor
classification in one step can easily propagate to the next step. The precision may

62

CHAPTER 4. EXPERIMENTS AND RESULTS

in some cases increase, but likely at the expense of recall.

Precision is the most interesting number in this experiment. Imperfect pre-
cision is expected due to observed issues with the sentence segmentation as ex-
plained in chapter 2.2.1.

Obfuscation method Recall Precision Granularity

No obfuscation .99 .88 1.0
Random .99 .93 1.0
Translation .98 .90 1.0
Summary .99 .99 1.0

Overall .99 .91 1.0

Table 4.1: Pre-processing PAN performance metrics

Table 4.1 displays some very interesting results. All obfuscation strategies
have imperfect recall. This is suspected to come from a series of off-by-one er-
rors in terms of passage length. It seems that it in some cases is one character
too short. Exactly how these passages are divided by PAN is unknown, but the
sentence splitting done by the pre-processing could potentially be missing end
punctuations. This is a bug of very little importance as it should not dramatically
affect the results. It should also affect the results of the top PAN entrant Sanchez-
Perez as well, since this particular piece of code is shared.

The results also show that the precision is far from optimal. After examining
the XML output from this experiment it became apparent that the pre-processing
method often overshoots the size of the plagiarism, both where it starts and where
it ends. Seeds are generated by a given rule set but this does not guarantee that pla-
giarism follows this rule set. Plagiarism does not necessarily start at the beginning
of a sentence. The seed generation that follows from pre-processing will label a
fragment as plagiarism if more than half of the characters within it intersects with
a known plagiarised passage based on the data set.

63

CHAPTER 4. EXPERIMENTS AND RESULTS

The most interesting result here is the summary form of plagiarism. The recall
is similar to the others, but the precision is notably higher and close to perfect.
This would allow later stages to have a slightly higher chance of detecting this
form of plagiarism compared to what presumably would be the simplest to detect,
no obfuscation.

4.2 Seed Classification

Testing the seeding step is a difficult test due to the nature of the data set. It is
very difficult to correctly classify all seeds due to the way the plagiarism is labeled.
Some of the seeds within the marked plagiarism area is not really plagiarism as it
is not the correct sentence pair. This means that a lot of cases of non-plagiarism
should be classified as plagiarism and causes a great deal of confusion for a ma-
chine learning algorithm, and could lead to low precision. The noise problem has
been attempted mitigated using a heuristic in combination with the labeling in
order to provide a cleaner data set for the classifier.

Classification results are interesting but do not provide a full picture seeing as
these data have been tampered with. No plagiarism fragments have been added,
but quite a few have been taken away. Some may therefore be missing from
these results. However, these numbers will however be interesting to compare to
character, case and document level performance

The interesting number in this experiment is the precision throughout the lev-
els. Passing this directly on to XML output and PAN performance tester will not
give results that shows its true efficiency. This part of the pipeline is designed
to extract the key points of plagiarism. It will not return the entire rectangle of
plagiarism, meaning that a low recall may in reality mean a far higher recall in
terms of characters.

Testing the true performance requires the seed classification to be run through

64

CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.2: Active modules during seeding classification tests

the passage generation step, and assuming that all cases passed through the ex-
tension step are plagiarism cases. Filtering will be bypassed and the result post-
extension passed directly to XML output and performance testing. This requires
a bug-free passage generation step, which of course can not be guaranteed. These
two steps are very intertwined and can not be tested efficiently independent of
each other.

The tests will be run with all classifiers showing classification, character, case
and document level performance.

4.2.1 Naı̈ve Bayes

IsPlag Recall Precision F1

False .991 .998 .994

True .950 .794 .865

Table 4.2: Naı̈ve Bayes seed performance on seeds

65

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.2 shows great promise in terms of recall but does not show an optimal
precision. Also note that this table shows the accuracy in discovering the pla-
giarised seed processed with a heuristic. This does not represent all the seeds
within the plagiarised passages. It does, however, suggest that the heuristic is eas-
ily detectable and can stand out from the non-plagiarised passages. However, it
is far from optimal and may suggest that the data set is still somewhat noisy. The
heuristic may not have been optimal.

Char Rec Char Prec Granularity PlagDet

No obfuscation .961 .564 1.0 .710
Random .919 .651 1.0 .762
Translation .938 .628 1.0 .753
Summary .552 .559 1.0 .555

Overall .917 .594 1.0 .721

Table 4.3: Naı̈ve Bayes character performance

Case Rec Case Prec F1 Doc Rec Doc Prec F1

No obfuscation .963 .963 .963 .982 .982 .982
Random .919 .971 .944 .946 .986 .966
Translation .945 .968 .957 .969 .984 .976
Summary .417 .263 .323 .667 .421 .516

Overall .912 .886 .899 .949 .915 .932

Table 4.4: Naı̈ve Bayes case and document performance

Tables 4.3 and 4.4 show that naı̈ve Bayes is quite adept at detecting plagiarism
in terms of recall with very high scores. However, the precision is lacking, result-
ing in a poor overall PlagDet score of 0.721. This is not so apparent in the case
and document scores, as seen in table 4.4, where precision is far higher, with the
exception of summary. With an F1 case score of 0.899, this is a very decent result
without any extension.

66

CHAPTER 4. EXPERIMENTS AND RESULTS

This also shows that the heuristic used to clean the data set seems fairly effi-
cient, but not optimal. The data set may not be possible to fully clean up using
heuristics. It may also be possible that the feature set for naı̈ve Bayes is not opti-
mal or that the algorithm is not the right algorithm for this task.

4.2.2 Decision Tree

IsPlag Recall Precision F1

False .998 .996 .997

True .892 .935 .913

Table 4.5: Decision tree seed performance on seeds

Table 4.5 shows that the decision tree seed classifier performs better in terms of
plagiarism seed precision than naı̈ve Bayes, at some expense of recall.

Char Rec Char Prec Granularity PlagDet

No obfuscation .957 .764 1.0 .850
Random .858 .820 1.0 .838
Translation .860 .796 1.0 .826
Summary .430 .956 1.0 .593

Overall .867 .801 1.0 .833

Table 4.6: Decision tree seed character performance

67

CHAPTER 4. EXPERIMENTS AND RESULTS

Case Rec Case Prec F1 Doc Rec Doc Prec F1

No obfuscation .949 .956 .952 .971 .978 .974
Random .829 .902 .863 .892 .952 .921
Translation .836 .915 .873 .895 .958 .925
Summary .250 .261 .255 .583 .609 .596

Overall .837 .884 .860 .901 .940 .920

Table 4.7: Decision tree seed case and document performance

The decision tree seems to have a slightly lower recall but a higher accuracy
than naı̈ve Bayes, resulting in a higher PlagDet score, as can bee seen in tables 4.6
and 4.7. However the overall case F1 score is lower than with naı̈ve Bayes. Also
note the substantial character precision jump in summary obfuscation. The case
recall is worse, resulting in naı̈ve Bayes having a higher F1 score on a case level,
with decision tree marginally beating it on a character level.

The seed classification and character, case, and document level classifications
seem to match up fairly well. This suggests that the data set may have been
cleaned up sufficiently despite previously observed low precision by naı̈ve Bayes.
Decision trees may be more suitable for this task.

4.2.3 Random Forest

IsPlag Recall Precision F1

False .997 .997 .997

True .931 .917 .924

Table 4.8: Random forest seed performance on seeds

Table 4.8 shows great promise. All scores are over 0.9. A high level of recall as
well as a high level of precision results in an F1 of 0.924 in terms of seeding.

68

CHAPTER 4. EXPERIMENTS AND RESULTS

Char Rec Char Prec Granularity PlagDet

No obfuscation .970 .741 1.0 .840
Random .905 .825 1.0 .863
Translation .912 .737 1.0 .815
Summary .528 .999 1.0 .691

Overall .907 .779 1.0 .838

Table 4.9: Random forest seed character performance

Table 4.9 tells a slightly different story. The precision here is slightly lower
than what is suggested by table 4.8. The PlagDet score on summary obfuscation
is higher than any entrant in PAN without any extension algorithm applied. The
overall PlagDet score is among the top scores.

Case Rec Case Prec F1 Doc Rec Doc Prec F1

No obfuscation .985 .993 .989 .989 .992 .989
Random .919 .962 .940 .923 .962 .942
Translation .922 .967 .944 .926 .967 .946
Summary .333 .364 .348 .333 .364 .348

Overall .907 .938 .922 .911 .938 .924

Table 4.10: Random forest seed case and document performance

The case and document performance in table 4.10 is better overall than what
has been demonstrated this far. A case F1 score of 0.922 overall is a very high
score, which already at the seeding stage is rivaling the top PAN entrants in terms
of case detection. The same is true for document detection.

Random forest seeding will be used as the seeding classification algorithm due
to the high overall accuracy on character, case and document levels.

69

CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: Active modules during extension tests

4.3 Extension Classification

Testing the extension step can be done in two ways. The first method would be
creating a confusion matrix on the input from the seeding step and calculating
recall and precision from this data as well as continuing to test with the PAN per-
formance tool. These numbers will each provide valuable data about the perfor-
mance of this step. Basing the test on the seeding data may not provide a complete
picture, but at most a best case scenario, as some seeds may be missing, resulting
in false recall and precision for this step. A second method would avoid this prob-
lem: the seeding data could be created based directly of the data set, ensuring an
absolutely correct seeding algorithm. This would result in a very poor test as well,
since the classifier would not have any non-plagiarised passages to train itself on.
It would in this case either refuse to run due to a single classification class, or
simply call all seeds plagiarism, resulting in a perfect score regardless.

The test is therefore performed on the output from the best seeding test previ-
ously performed, providing the best case scenario using real data. As with seed-
ing, classification, character, case and document performance will be listed.

70

CHAPTER 4. EXPERIMENTS AND RESULTS

4.3.1 Naı̈ve Bayes

IsPlag Recall Precision F1

False .744 .793 .768

True .911 .887 .899

Table 4.11: Naı̈ve Bayes extension performance

Do note that table 4.11 does not show true extension performance. If seeds in pla-
giarised passages have been missed in the seeding stage, they are not passed on to
the extension stage. These data are based on the passages passed to the extension
classifier after passage creation. Nevertheless it shows how the extension classi-
fier performs with the data provided from the seeding step. Naı̈ve Bayes struggles
to extract non-plagiarism. It is also not very good in terms of plagiarism passage
detection.

Char Rec Char Prec Granularity PlagDet

No obfuscation .946 .754 1.0 .840
Random .889 .829 1.0 .858
Translation .846 .763 1.0 .802
Summary .167 1.0 1.0 .286

Overall .851 .783 1.0 .816

Table 4.12: Naı̈ve Bayes extension character performance

71

CHAPTER 4. EXPERIMENTS AND RESULTS

Case Rec Case Prec F1 Doc Rec Doc Prec F1

No obfuscation .956 .985 .970 .967 .992 .980
Random .901 .962 .930 .923 .981 .951
Translation .851 .948 .897 .891 .974 .931
Summary .083 .250 .125 .208 .625 .313

Overall .855 .947 .899 .885 .972 .926

Table 4.13: Naı̈ve Bayes extension case and document performance

In terms of character, case and document performance, the results are fairly
good, as seen in tables 4.12 and 4.13. However it seems to struggle greatly with
summary detection. Very few cases have been discovered. This does, however,
lead to a very high precision for this obfuscation strategy.

4.3.2 Decision Tree

IsPlag Recall Precision F1

False .689 .912 .785

True .970 .872 .918

Table 4.14: Decision tree extension performance

Decision tree seems to be able to detect plagiarism slightly better than naı̈ve
Bayes. With an F1 score of 0.918, as seen in table 4.14, compared to naı̈ve Bayes’
0.899, this should yield better character, case and document performance.

72

CHAPTER 4. EXPERIMENTS AND RESULTS

Char Rec Char Prec Granularity PlagDet

No obfuscation .970 .741 1.0 .840
Random .905 .825 1.0 .863
Translation .920 .740 1.0 .820
Summary .528 .999 1.0 .691

Overall .909 .779 1.0 .839

Table 4.15: Decision tree extension character performance

Case Rec Case Prec F1 Doc Rec Doc Prec F1

No obfuscation .985 .993 .989 .989 .993 .990
Random .919 .962 .940 .923 .962 .943
Translation .930 .967 .948 .934 .968 .950
Summary .333 .363 .347 .333 .364 .348

Overall .909 .938 .924 .913 .938 .926

Table 4.16: Decision tree extension case and document performance

Tables 4.15 and 4.16 show a better performance than naı̈ve Bayes. Looking at
summary, the recall is far higher with precision barely affected. With a PlagDet
score of 0.839, F1 case and document score of 0.924 and 0.926 respectively, these
are very good results. The summary PlagDet score of 0.691 is higher than any of
the PAN entrants, which is demonstrated later.

A very interesting result here is that these two tables are near identical to those
of the best seeding algorithm, random forest, as seen in tables 4.9 and 4.10. It
seems that decision tree extension classification does not take away or add much
to the result. The reason for this could lie in the way the seeds are labeled and
extension passages are created. As explained in section 3.4, the passages are
labeled as plagiarism if more than half of the passage is within a plagiarised area.
After studying the output from the extension classification algorithm, it became
clear that the false positives were actually surrounding plagiarised areas but had

73

CHAPTER 4. EXPERIMENTS AND RESULTS

a plagiarism coverage of less than half of the detected passage, leading to little
change in plagiarism detection results for these cases.

In the event of false negatives, these were covered by other true positives,
causing them to often override the bad classification. True negatives tended to be
very short.

4.3.3 Random Forest

IsPlag Recall Precision F1

False .972 .446 .612

True .451 .973 .616

Table 4.17: Random forest extension performance

The results in table 4.17 are rather surprising. Random forests outperformed de-
cision trees during development testing on all stages, and as well as seeding after
development completion. With such a low recall and F1 score, character, case,
and document performance is not expected to surpass decision trees.

Char Rec Char Prec Granularity PlagDet

No obfuscation .826 .847 1.0 .837
Random .254 .978 1.0 .404
Translation .197 .933 1.0 .325
Summary .006 1.0 1.0 .013

Overall .416 .890 1.0 .567

Table 4.18: Random forest extension character performance

74

CHAPTER 4. EXPERIMENTS AND RESULTS

Case Rec Case Prec F1 Doc Rec Doc Prec F1

No obfuscation .831 .966 .893 860 .983 .918
Random .234 .839 .366 .275 .924 .424
Translation .195 .862 .318 .242 .939 .385
Summary 0 0 N/A 0 0 N/A

Overall .411 .921 .568 .449 .962 .612

Table 4.19: Random forest extension case and document performance

Tables 4.18 and 4.19 confirm the findings in table 4.17. Random forest is
not suitable for extension classification in this thesis. It was unable to detect any
summary cases and struggles greatly with all obfuscation strategies besides no

obfuscation. This results in the very low PlagDet score of 0.567.

4.4 Sliding Window Filtering

The filtering test is designed to test the efficiency of the sliding window algorithm
described in 3.5. The goal of this algorithm is to increase precision without great
cost to recall. A simple way to test this is to observe the change in recall and
precision running a complete detector test on the previous optimal setups, with
and without the filtering algorithm.

This test is run with the complete system as the filtering algorithm is designed
to work with an imperfect set of data. If the correct data was to be sent through
the filtering system, the performance results would likely be misleading. This test
is meant to see what the algorithm brings to a fully operational detector.

The best seed/extension setup prior to filtering is using random forest for seed-
ing and decision tree for extension. These classifiers will be used for this experi-
ment.

75

CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.4: Active modules during filtering tests

Char Rec Char Prec Granularity PlagDet

No obfuscation .910 .762 1.0 .829
Random .854 .833 1.0 .844
Translation .845 .751 1.0 .795
Summary .522 .999 1.0 .686

Overall .850 .793 1.0 .820

Table 4.20: Random forest seeding, decision tree extension with filtering character
performance

76

CHAPTER 4. EXPERIMENTS AND RESULTS

Case Rec Case Prec F1 Doc Rec Doc Prec F1

No obfuscation .890 .996 .893 .945 .847 .947
Random .847 .887 .866 .905 .945 .924
Translation .836 .877 .856 .902 .929 .920
Summary .333 .364 .348 .333 .364 .348

Overall .827 .855 .841 .901 .927 .914

Table 4.21: Random forest seeding, decision tree extension with filtering case and
document performance

As seen in table 4.20, the precision has increased, but at the expense of re-
call. This causes a decrease in PlagDet scores across all obfuscation strategies.
In terms of case and document precision, this is lowered overall, as seen when
comparing tables 4.21 and 4.20 to tables 4.154.16. This means that the sliding
window algorithm does not add to the algorithm and is not a part of the optimal
solution.

There may be parts of this algorithm that were misunderstood as the details
surrounding it were not published. Some parameters may also be tweaked to
improve performance. As of now it stops if the similarity metrics are lower. It
may easily hit local minimums. In addition, a sliding window that increases the
window size may also be tested in future research, as the recall seemed to lower
due to the shrinking window.

77

CHAPTER 4. EXPERIMENTS AND RESULTS

4.5 Optimal Detector

PlagDet

Detector None Random Translation Summary Overall

NB Seed .710 .762 .753 .555 .721
DT Seed .850 .838 .826 .593 .833
RF Seed .840 .863 .815 .691 .838
NB Ext .840 .858 .802 .286 .816
DT Ext .840 .863 .820 .691 .839
RF Ext .837 .404 .325 .013 .567
Sliding Window .829 .844 .795 .686 .820

Optimal .840 .863 .820 .691 .839

Table 4.22: Thesis methodology comparisons with respect to PlagDet. Column
winners in bold

Case Level Document Level

Detector Rec Prec F1 Rec Prec F1

NB Seed .912 .886 .899 .949 .915 .932
DT Seed .837 .884 .860 .901 .940 .920
RF Seed .907 .938 .922 .911 .938 .924
NB Ext .855 .947 .899 .885 .972 .926
DT Ext .909 .938 .924 .913 .938 .926
RF Ext .411 .921 .568 .449 .962 .612
Sliding Window .827 .855 .841 .901 .927 .914

Optimal .909 .938 .924 .913 .938 .926

Table 4.23: Thesis methodology comparisons with respect to case and document
performance. Column winners in bold

78

CHAPTER 4. EXPERIMENTS AND RESULTS

Tables 4.22 and 4.23 summarise and compare all the combinations of classifiers
and algorithms previously tested. The winner in terms of overall PlagDet is the
combination of random forest seeding with decision tree extension and no filter-
ing. The extension classification barely increases the PlagDet score and the case
level F1 score. Decision tree and random forest are very close in the seeding stage
but random forest struggles quite a bit with extension. It is interesting to note that
naı̈ve Bayes seeding has the best F1 score on a document level, and fairly closely
follows the optimal algorithm in terms of case level F1. The substantial difference
between case levels and PlagDet scores suggests that the methodology is capable
of detecting cases but has a difficulty finding the start and/or end points of these
cases. PAN entrants have a notably higher overall precision.

Despite a less than optimal data set, the methodology demonstrated here is
clearly able to detect plagiarism at a high level. With a data set more suited to
detecting seeds, an even higher detection level should be possible.

79

CHAPTER 4. EXPERIMENTS AND RESULTS

4.6 PAN Comparison

Obfuscation Strategies
Submission Year None Random Translation Summary Overall Corpus

Sanchez-Perez 2014 0.900 0.884 0.887 0.561 0.878
Oberreuter 2014 0.920 0.868 0.881 0.368 0.869
Palkovskii 2014 0.960 0.865 0.858 0.276 0.868
Glinos 2014 0.962 0.806 0.847 0.624 0.859
Shresta 2014 0.892 0.866 0.844 0.156 0.844

Kalleberg 2015 0.840 0.863 0.820 0.691 0.839

Kong 2012 0.872 0.832 0.852 0.436 0.837
Torrejón 2014 0.932 0.754 0.859 0.353 0.830
Oberreuter 2012 0.942 0.750 0.846 0.132 0.827
Gross 2014 0.900 0.803 0.838 0.319 0.826
Torrejón 2013 0.926 0.747 0.851 0.341 0.822
Kong 2014 0.838 0.823 0.852 0.431 0.822
Kong 2013 0.827 0.823 0.852 0.434 0.819
Palkovskii 2012 0.882 0.797 0.740 0.275 0.792
Torrejón 2012 0.882 0.702 0.801 0.442 0.788
Suchomel 2013 0.818 0.753 0.675 0.610 0.745
Suchomel 2012 0.898 0.652 0.631 0.501 0.732

Table 4.24: Thesis comparison against top 16 PAN entrants with respect to
PlagDet. Top obfuscation scores in bold

Table 4.24 shows the PlagDet score of the best methodology in this thesis against
the top 16 PAN entrants. Overall, it ranks 6th in the cross-year comparison on
the latest data set. It stands out somewhat, as the no obfuscation score is a fair
bit lower than that of the nearest neighbours in either direction. In terms of sum-

mary obfuscation it ranks first, which pulls it up a fair bit overall. The variance
in PlagDet score is lower than that of the PAN entrants. At some cost of no ob-

80

CHAPTER 4. EXPERIMENTS AND RESULTS

fuscation detection, the summary detection is noticeably higher than the average
and a few points ahead of the runner up in summary, Glinos at 0.624. A 10%
improvement over the top entrant in the obfuscation strategy that is most difficult
to detect is a very good result.

Obfuscation Strategies
Submission Year None Random Translation Summary Overall Corpus

Kalleberg 2015 0.970 0.905 0.920 0.528 0.909
Sanchez-Perez 2014 0.979 0.861 0.890 0.413 0.879
Oberreuter 2014 0.999 0.833 0.863 0.245 0.858
Shresta 2014 0.974 0.832 0.853 0.089 0.838
Palkovskii 2014 0.964 0.822 0.820 0.177 0.826
Kong 2012 0.948 0.780 0.850 0.299 0.824
Kong 2013 0.907 0.787 0.846 0.300 0.843
Kong 2014 0.895 0.781 0.845 0.296 0.807
Glinos 2014 0.960 0.725 0.762 0.486 0.793
Saremi 2013 0.954 0.689 0.804 0.102 0.771
Torrejón 2014 0.967 0.630 0.821 0.231 0.769
Oberreuter 2012 0.999 0.653 0.796 0.071 0.769
Gross 2014 0.907 0.719 0.784 0.206 0.766
Suchomel 2013 0.996 0.689 0.666 0.563 0.766
Torrejón 2013 0.953 0.634 0.811 0.216 0.762
Palkovskii 2012 0.994 0.751 0.667 0.169 0.762
Torrejón 2012 0.964 0.623 0.791 0.290 0.753

Table 4.25: Thesis comparison against top 16 PAN entrants with respect to char-
acter recall. Top obfuscation scores in bold

By a small margin, the methodology of this thesis has the highest overall re-
call, as seen in table 4.25. Even though the PlagDet score was the highest in
summary, it does not lead this obfuscation strategy in recall. Suchomel 2013 has a

81

CHAPTER 4. EXPERIMENTS AND RESULTS

slightly higher recall. However, with a precision of 0.874 in summary, Suchomel
has a lower PlagDet score for this obfuscation strategy, as table 4.24 shows.

In terms of character precision, the methodology is 3rd last out of the 29 en-
trants. Far below any of the top entrants. This is what caused the 6th place in
PlagDet, despite a higher recall. Pre-processing showed a problem with precision
and could be a potential culprit to the lowered precision. However, since Sanchez-
Perez used the same methodology, this may not be the case. Their methodology
may have focused more on precision when executing their extension algorithm.
The labeling of the data set may also be a culprit due to the noise potentially
still present in the corpus. If these two issues are addressed, the precision may
increase.

82

CHAPTER 4. EXPERIMENTS AND RESULTS

Case Level Document Level

Entrant Year PlagDet Prec Rec F1 Prec Rec F1

Sanchez-Perez 2014 0.88 0.90 0.91 0.90 0.92 0.91 0.91
Oberreuter 2014 0.87 0.84 0.89 0.87 0.89 0.89 0.89
Palkovskii 2014 0.87 0.90 0.85 0.87 0.90 0.84 0.87
Glinos 2014 0.86 0.90 0.83 0.87 0.93 0.88 0.91
Shresta 2014 0.84 0.91 0.85 0.88 0.94 0.85 0.89

Kalleberg 2015 0.84 0.94 0.91 0.92 0.94 0.91 0.93
Kong 2012 0.84 0.86 0.85 0.85 0.89 0.85 0.87
Gross 2013 0.83 0.90 0.86 0.88 0.93 0.85 0.89
Oberreuter 2012 0.83 0.81 0.79 0.80 0.83 0.80 0.81
Torrejón 2014 0.83 0.84 0.83 0.83 0.89 0.84 0.86
Torrejón 2013 0.83 0.83 0.83 0.83 0.87 0.84 0.85
Kong 2013 0.82 0.85 0.86 0.85 0.89 0.86 0.87
Kong 2014 0.82 0.86 0.85 0.85 0.89 0.85 0.87
Palkovskii 2012 0.79 0.80 0.80 0.80 0.82 0.80 0.81
Torrejón 2012 0.79 0.65 0.79 0.72 0.65 0.78 0.71
Suchomel 2013 0.74 0.66 0.83 0.73 0.67 0.82 0.74
Suchomel 2012 0.73 0.76 0.70 0.73 0.77 0.69 0.73

Table 4.26: Thesis comparison against top 16 PAN entrants with respect to case
and document performance. Top column scores in bold

Table 4.26 shows something very interesting. The methodology of this the-
sis matches or surpasses the best entrants in all columns despite a lower PlagDet
score. This indicates that the methodology is quite adept at catching plagiarism
cases, but with its low precision, this suggests that too many neighbouring char-
acters are plagiarism as well. Further work is suggested to remove this problem.
Only 6% of the cases detected as plagiarism are not. 9% of the cases in the data
set were not detected.

83

Chapter 5

Conclusion and Future Work

Section 1 provides a conclusion based on the previously shown results. Section 2
suggests what work that may follow from this thesis or what work that should be
done in the field in general.

5.1 Conclusion

In this thesis a textual plagiarism detector has been designed using machine learn-
ing techniques. It has been compared with the current state of the art using a freely
available data set and results from the PAN Workshop and Competition: Uncover-

ing Plagiarism, Authorship and Social Software Misuse(PAN)[2]. The goal was to
match the performance level of the entrants of PAN without the need to set man-
ual thresholds based on empirical data set dependent research. By researching the
leading PAN entrants’ methodologies, a pipeline based on common approaches
and techniques used in the current state of the art was developed. Novel features
and processing methods were developed in addition to using or modifying known
techniques in order to further enhance the performance of the methodology. After
analysis of the state of the art, weaknesses of leading methodologies were ex-

84

CHAPTER 5. CONCLUSION AND FUTURE WORK

posed and attempted corrected by adding these novel features. The data set used
by PAN was shown not to be very suitable for machine learning purposes. Using
a heuristic based on some extracted features, the data set was cleaned and made
more usable.

Each part of the pipeline was tested meticulously in order to find the most
suitable methodology for this task. By testing 3 common machine learning algo-
rithms: naı̈ve Bayes, decision tree and the decision tree extension random forest,
a complete methodology was created to benchmark against the PAN data set.

With a 6th place in terms of PlagDet score overall, a 1st place in summary

PlagDet score and 1st in overall case and document performance scores, the the-
sis results confirm the hypothesis: “Machine learning algorithms are capable of

similar, or better performance in terms of plagiarism detection than the current,

manually optimized, state of the art methodologies in PAN 2012-2014”.

The random forest and decision tree algorithms have been shown to be capable
of classifying plagiarism of all complexities with a similar level of performance
when comparing to current techniques. Along with the novel passage extension
algorithm and the novel features, the detector is able to classify plagiarism with
summary obfuscation at a higher level of accuracy than any detector in the state of
the art compared in this thesis, with a PlagDet score of 0.691. It is able to closely
match the top PAN entrant in terms of PlagDet score ending in an overall 6th
place out of 29 entrants with a PlagDet score of 0.839. It is better than all entrants
in case and document level detection with F1 scores of 0.924 and 0.926 respec-
tively. It has the highest overall character recall of all entrants with 0.909 but one
of the worst precision scores with 0.779. The high case scores along with the
slightly lower PlagDet score and low precision suggest that the methodology still
has potential for improvement in detecting the start and end points of plagiarism
passages.

85

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2 Future Work

5.2.1 Seeding and Filtering

The low character precision score combined with the high case score suggest that
too many seeds near the edge of passages are passed on to the extension stage.
Novel features attempting to detect just this may increase the character perfor-
mance for this methodology.

The sliding window algorithm proved inefficient in increasing precision.

There are methodologies in the PAN subtasks author profiling, and author

identification which may be of interest in plagiarism detection. Both for text align-
ment and source retrieval. This step is a natural next step for this thesis in order
to design a full system that includes source retrieval.

By analysing changes throughout the document in terms of writing styles, vo-
cabulary, and punctuation usage, plagiarised areas may be suggested without the
need for a source document. Several such features have been used by entrants in
these subtasks[4, 27]. Features like these may aid in source retrieval by suggesting
what passages of a text that should be analyzed further and have potential sources
retrieved for.

5.2.2 Suggestions to PAN

As this thesis shows that machine learning is fully capable of detecting plagiarism
despite sub optimal data sets, it is suggested that future PAN workshops gener-
ate data sets where plagiarism information is available on a finer level than long
passages. This would open up more for machine learning for this specific task.

Machine learning techniques are already being used extensively in the PAN
subtask of author profiling. Most likely due to a more fitting data set.

86

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2.3 Future Publications and PAN Entry

The methodology in this thesis may possibly be refined and entered into PAN
2015 or 2016 workshop with corresponding papers. This would also likely in-
clude a source retrieval entry, in order to create modules in a complete plagiarism
detection solution. This could also at a later date be joined with other ideas of the
author for a commercial system that could aid educational institutions in limiting
and detecting cheating of several kinds in exams and hand-ins.

87

Bibliography

[1] M. Sanchez-Perez, G. Sidorov, and A. Gelbukh, “A winning approach
to text alignment for text reuse detection at pan 2014,” Notebook for
PAN at CLEF, pp. 1004–1011, 2014. [Online]. Available: http://www.
uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/
pan14-plagiarism-detection/sanchezperez14-notebook.pdf

[2] M. Potthast, M. Hagen, M. Tippmann, P. Rosso, Beyer, Anna,
Stein, Benno, and Busse, Matthias, “Overview of the 6th International
Competition on Plagiarism Detection.” 2014. [Online]. Available: http:
//www.uni-weimar.de/medien/webis/publications/papers/stein 2014k.pdf

[3] P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Approach.
MIT Press, 2001.

[4] F. Rangel, P. Rosso, I. Chugur, M. Potthast, M. Trenkmann, B. Stein,
B. Verhoeven, and W. Daelemans, “Overview of the 2nd Author Profiling
Task at PAN 2014.” [Online]. Available: http://ceur-ws.org/Vol-1180/
CLEF2014wn-Pan-RangelEt2014.pdf

[5] M. Potthast, M. Hagen, M. Vlske, and B. Stein, “Crowdsourcing Interaction
Logs to Understand Text Reuse from the Web.” in ACL (1), 2013, pp. 1212–
1221. [Online]. Available: http://www.aclweb.org/anthology/P13-1119

[6] M. Potthast, B. Stein, A. Barrn-Cedeo, and P. Rosso, “An evaluation
framework for plagiarism detection,” in Proceedings of the 23rd
international conference on computational linguistics: Posters. Association
for Computational Linguistics, 2010, pp. 997–1005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1944681

88

http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/sanchezperez14-notebook.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/sanchezperez14-notebook.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/sanchezperez14-notebook.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2014k.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2014k.pdf
http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-RangelEt2014.pdf
http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-RangelEt2014.pdf
http://www.aclweb.org/anthology/P13-1119
http://dl.acm.org/citation.cfm?id=1944681

BIBLIOGRAPHY

[7] D. Glinos, “Discovering Similar Passages within Large Text Documents,”
in Information Access Evaluation. Multilinguality, Multimodality, and
Interaction, ser. Lecture Notes in Computer Science, E. Kanoulas, M. Lupu,
P. Clough, M. Sanderson, M. Hall, A. Hanbury, and E. Toms, Eds. Springer
International Publishing, Sep. 2014, no. 8685, pp. 98–109. [Online].
Available: http://link.springer.com/chapter/10.1007/978-3-319-11382-1 10

[8] Y. Palkovskii and A. Belov, “Developing High-Resolution Universal
Multi-Type N-Gram Plagiarism Detector.” [Online]. Available: http:
//ceur-ws.org/Vol-1180/CLEF2014wn-Pan-PalkovskiiEt2014.pdf

[9] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980. [Online]. Available: http://www.emeraldinsight.com/
doi/abs/10.1108/eb046814

[10] K. Leilei, Q. Haoliang, W. Shuai, D. Cuixia, W. Suhong, and H. Yong, “Ap-
proaches for candidate document retrieval and detailed comparison of pla-
giarism detection,” Notebook for PAN at CLEF 2012, 2012. [Online]. Avail-
able: http://www.uni-weimar.de/medien/webis/research/events/pan-12/
pan12-papers-final/pan12-plagiarism-detection/kong12-notebook.pdf

[11] D. A. R. Torrejón and J. M. M. Ramos, “Text Align-
ment Module in CoReMo 2.1 Plagiarism Detector.” [On-
line]. Available: http://ims-sites.dei.unipd.it/documents/71612/430938/
CLEF2013wn-PAN-Rodr%C3%ADguezTorrej%C3%B3nEt2013.pdf

[12] K. Leilei, Q. Haoliang, D. Cuixia, W. Mingxing, and H. Zhongyuan,
“Approaches for Source Retrieval and Text Alignment of Plagiarism
Detection,” Notebook for PAN at CLEF 2013, 2013. [Online]. Available:
http://ceur-ws.org/Vol-1179/CLEF2013wn-PAN-LeileiEt2013.pdf

[13] Transatlantic, “Overture - The Whirlwind.”

[14] D. Glinos, “A Hybrid Architecture for Plagiarism Detection.” [Online].
Available: http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-Glinos2014.pdf

[15] D. A. R. Torrejón and J. M. M. Ramos, “CoReMo 2.3 Plagiarism
Detector Text Alignment Module.” [Online]. Available: http://www.
uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/
pan14-plagiarism-detection/rodrigueztorrejon14-notebook.pdf

89

http://link.springer.com/chapter/10.1007/978-3-319-11382-1_10
http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-PalkovskiiEt2014.pdf
http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-PalkovskiiEt2014.pdf
http://www.emeraldinsight.com/doi/abs/10.1108/eb046814
http://www.emeraldinsight.com/doi/abs/10.1108/eb046814
http://www.uni-weimar.de/medien/webis/research/events/pan-12/pan12-papers-final/pan12-plagiarism-detection/kong12-notebook.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-12/pan12-papers-final/pan12-plagiarism-detection/kong12-notebook.pdf
http://ims-sites.dei.unipd.it/documents/71612/430938/CLEF2013wn-PAN-Rodr%C3%ADguezTorrej%C3%B3nEt2013.pdf
http://ims-sites.dei.unipd.it/documents/71612/430938/CLEF2013wn-PAN-Rodr%C3%ADguezTorrej%C3%B3nEt2013.pdf
http://ceur-ws.org/Vol-1179/CLEF2013wn-PAN-LeileiEt2013.pdf
http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-Glinos2014.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/rodrigueztorrejon14-notebook.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/rodrigueztorrejon14-notebook.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/rodrigueztorrejon14-notebook.pdf

BIBLIOGRAPHY

[16] P. Gross and P. Modaresi, “Plagiarism Alignment De-
tection by Merging Context Seeds.” [Online]. Avail-
able: http://www.uni-weimar.de/medien/webis/research/events/pan-14/
pan14-papers-final/pan14-plagiarism-detection/gross14-notebook.pdf

[17] Š. Suchomel, J. Kasprzak, M. Brandejs et al., “Diverse queries and feature
type selection for plagiarism discovery,” Notebook for PAN at CLEF 2013,
2013.

[18] D. A. R. Torrejón and J. M. M. Ramos, “Detailed comparison module in
coremo 1.9 plagiarism detector.” in CLEF (Online Working Notes/Labs/-
Workshop). Citeseer, 2012, pp. 1–8.

[19] Transatlantic, “Shine - Kaleidoscope.”

[20] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–197,
1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0022283681900875

[21] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of molecular biology, vol. 162, no. 3, pp. 705–708,
1982. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0022283682903989

[22] M. G. Snover, N. Madnani, B. Dorr, and R. Schwartz, “TER-Plus:
paraphrase, semantic, and alignment enhancements to Translation Edit
Rate,” Machine Translation, vol. 23, no. 2-3, pp. 117–127, 2009. [Online].
Available: http://link.springer.com/article/10.1007/s10590-009-9062-9

[23] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras,
and C. D. Spyropoulos, “An evaluation of naive bayesian anti-
spam filtering,” arXiv preprint cs/0006013, 2000. [Online]. Available:
http://arxiv.org/abs/cs/0006013

[24] N. Ye et al., The handbook of data mining. Lawrence Erlbaum Associates,
Publishers, 2003, vol. 24.

[25] U. Bandara and G. Wijayarathna, “A Machine Learning Based Tool
for Source Code Plagiarism Detection,” International Journal of
Machine Learning and Computing, pp. 337–343, 2011. [Online].

90

http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/gross14-notebook.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-papers-final/pan14-plagiarism-detection/gross14-notebook.pdf
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.sciencedirect.com/science/article/pii/0022283682903989
http://www.sciencedirect.com/science/article/pii/0022283682903989
http://link.springer.com/article/10.1007/s10590-009-9062-9
http://arxiv.org/abs/cs/0006013

BIBLIOGRAPHY

Available: http://www.ijmlc.org/index.php?m=content&c=index&a=show&
catid=25&id=242

[26] Kong Leilei, Qi Haoliang, Du Cuixia, Wang Mingxing, and Han
Zhongyuan., “Approaches for Source Retrieval and Text Alignment of
PlagiarismDetection,” Notebook for PAN at CLEF. [Online]. Available:
http://ceur-ws.org/Vol-1179/CLEF2013wn-PAN-LeileiEt2013.pdf

[27] E. Stamatatos, W. Daelemans, B. Verhoeven, M. Potthast, B. Stein, P. Juola,
M. A. Sanchez-Perez, and A. Barrn-Cedeo, “Overview of the Author Iden-
tification Task at PAN 2014,” analysis, vol. 13, p. 31, 2014. [Online]. Avail-
able: http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-StamatosEt2014.pdf

91

http://www.ijmlc.org/index.php?m=content&c=index&a=show&catid=25&id=242
http://www.ijmlc.org/index.php?m=content&c=index&a=show&catid=25&id=242
http://ceur-ws.org/Vol-1179/CLEF2013wn-PAN-LeileiEt2013.pdf
http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-StamatosEt2014.pdf

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Thesis Definition
	Claims
	Contribution
	Target Audience
	Report Outline

	State of the Art
	PAN Workshop and Competition
	Text Alignment
	Data Sets
	Results and Comparisons

	Plagiarism detection
	Pre-processing
	Seeding
	Extension
	Filtering
	Summary

	Plagiarism Detector Design
	Overview
	Pre-processing
	Stemming
	Tokenization
	Bag of Words
	Labeling

	Feature Extraction and Seed Classification
	Passage Generation and Extension Classification
	Filtering
	Output
	Comparison and Performance Analysis
	Character Performance Comparison
	Case Performance Comparison
	Document Performance Comparison

	Experiments and Results
	Pre-processing
	Seed Classification
	Naïve Bayes
	Decision Tree
	Random Forest

	Extension Classification
	Naïve Bayes
	Decision Tree
	Random Forest

	Sliding Window Filtering
	Optimal Detector
	PAN Comparison

	Conclusion and Future Work
	Conclusion
	Future Work
	Seeding and Filtering
	Suggestions to PAN
	Future Publications and PAN Entry

	Bibliography

