-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Agder University Research Archive

Distributed ASM - Pitfalls and Solutions

Andreas Prinz! and Edel Sherratt?

! Department of ICT, University of Agder
andreas.prinz@uia.no
2 Department of Computer Science, Aberystwyth University
eds@aber.ac.uk

Abstract. While sequential Abstract State Machines (ASM) capture
the essence of sequential computation, it is not clear that this is true
of distributed ASM. This paper looks at two kinds of distributed pro-
cess, one based on a global state and one based on variable access. Their
commonalities are extracted and conclusions for the general understand-
ing of distributed computation are drawn, providing integration between
global state and variable access.

1 Introduction

For many years, models and languages of astonishing variety and depth have
been developed to describe distributed computation, and still its essence is far
from understood.

Distributed Abstract State Machines (ASM) [8] are a key part of a drive to
establish a distributed ASM thesis analogous to the successful sequential ASM
thesis [7]. This work has not yet led to a final result, although Glausch and Reisig
in [5] have established that distributed algorithms that fulfil certain criteria are
captured by DASM.

This paper looks at characteristics of distributed computations and scenarios
that are not fully captured by distributed ASM. Based on the work of Lam-
port [9], a new ASM model is proposed that captures more of these scenarios.

The paper is structured as follows. Section 2 introduces distributed ASM.
Section 3 argues that they do not fully capture distributed algorithms. The
Lamport model is presented in section 4. Section 5 extracts essential properties
of distributed computations, and section 6 proposes how the global view can be
combined with the local variables view. Section 7 concludes the paper.

2 Asynchronous Multi-agent (Distributed) ASMs

A distributed ASM (DASM) is a family of pairs (a; Module(a)) with pairwise
different agents, elements of a possibly dynamic finite set Agent, each equipped
with a sequential ASM Module(a). Each sequential ASM provides a set of states
(first order structures over the same vocabulary), a set of initial states and a
state transition function which can only take into account a bounded number of
elements.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 210-215, 2014.
© Springer-Verlag Berlin Heidelberg 2014

https://core.ac.uk/display/225891284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distributed ASM - Pitfalls and Solutions 211

Definition 1 ((global) DASM run). A partially ordered run of a DASM
is a partially ordered set (M;=<) of moves m (rule applications) of its agents
agent(m) with a state function s satisfying the following conditions [8]:

— finite history: each move has only finitely many predecessors, i.e. {m' €
M|m’ < m} is finite for each m € M.

— sequentiality of agents: for each agent a the set of its moves is linearly or-
dered, i.e. agent(m) = agent(m') implies m < m’ or m’ < m.

— coherence: each finite initial segment (downward closed subset) I of (M; <)
has an associated state s(I) — think of it as the result of all moves in I —
which for every mazximal element Mnq, € I is the result of applying the state
transition function of agent(Mmaz) in state s(I — {Mmmaz}).

This definition implies a global state accessible to all agents, where each agent
has its own local view given by the variables read by the agent. The definition
does not say how moves are to be scheduled in a run; moves can be performed
in parallel, or by interleaving the moves of different agents. However, every run
leads to the same end state.

Proposition 1. All linearizations of the same finite initial segment of a DASM
run have the same final state [8].

This means that each ASM run is essentially sequential and we conclude.

Proposition 2. If DASM runs are the most general way to look at distributed
computation, then distributed computation is essentially sequential.

3 Distributed ASM Do Not Capture Distributed
Algorithms

The distributed ASM thesis is still open, because there are many distributed
scenarios that are not properly captured by distributed ASM.

1. Context switching between threads can occur between a read and a write. In
ASM, an update is performed instantaneously, which means that the state
is read, the answer is computed and the result is written as a single atomic
action.

2. In larger distributed systems, inconsistent system states are possible. With
ASM, the system state is always consistent.

3. In parallel computation, two processors can simultaneously write the same
memory location. Similarly, a write could be at the same time as a read. The
ASM consistency condition [4] excludes such conflict, and a more elaborate
treatement by [1] treats memory locations as proclets (active processors) in
their own right, that do some computing to resolve write conflicts.

4. The meaning of distributed computations varies a lot according to the level
of atomicity used. DASM have a fixed level of atomicity.

This brings us to the following conclusion.

212 A. Prinz and E. Sherratt

Proposition 3 (Failed Distributed ASM Thesis). DASM as defined in sec-
tion 2 do not capture distributed computation; at least they do mot capture the
scenarios given above.

If certain restrictions are accepted, then DASM do capture some kinds of dis-
tributed computation|5|. However, those restrictions conflict with our scenarios.
A consistent global state cannot be assumed for a highly distributed computa-
tion. Context switching between reads and writes conflicts with the assumption
of instantaneous actions. For autonomicity, the update sets of [5] introduce con-
straints by claiming that the input (read) and output (write) locations should
be the same. This leads to the impossibility of parallel read, which is not in
line with our understanding.! Finally it has to be noted, that the concept of
DASM run as introduced in [5] is not the same as the traditional DASM run.
In particular, the consistency condition is not introduced, and no proof is given
that both concepts coincide. As our examples in section 4 show, these two ideas
of DASM run do not coincide.

4 Sequentially Consistent Runs

A different way of looking at distributed computation was introduced by Lam-
port [9]. Here, a distributed execution is a set of sequential executions (one per
agent), each being a sequence of reads and writes of locations. Not all Lamport
executions are valid. Lamport defines sequential consistency as follows[9)].

Definition 2 (sequential consistency). Consider a computation (execution)
composed of several sequential processors accessing a common memory. The com-
putation is sequentially consistent iff the result of any execution is the same as if
the operations of all the processors were executed in some sequential order, and
the operations of each individual processor appear in this sequence in the order
specified by its program.

A sequentially consistent execution has at least one witness, which is a legal in-
terleaving of the reads and writes. Different witnesses may yield different results.

The level of granularity is lower for Lamport reads and writes as opposed to
moves for DASM. Reading and writing is implicit in the DASM model. As a
contrast, Lamport does not look into the global system state.

4.1 Examples to Compare DASM and Lamport Runs

It might not be obvious how Lamport and DASM runs differ, so we give some
small examples with agents A and B, and variables = and y.

! Please note that [5] is not altogether consistent at this place. In requirement D4
(autonomicity), the parameter values of the locations could be locations themselves.
However, this is not used in the examples shown later. But if there are no loca-
tions used as parameters, D4 is trivially true. On the other hand, using locations as
parameters, the notion of “same location” suddenly becomes quite advanced.

Distributed ASM - Pitfalls and Solutions 213

Table 1. ASM and Lamport witnesses - all examples

No witness ASM witness Lamport result
“W1 ma;mp write(z, 1); write(z, 2) x=2
HW2 mp;ma write(z, 2); write(x, 1) x=1

W1 ma;mp read(z, 0); write(z, 1); read(z, 1); write(z,2) x=2
UW2 mp;ma read(z, 0); write(z, 1); read(x, 1); write(z,2) x=2
Hws - read(z, 0); read(z, 1); write(z, 1); write(z,1) x=1

W1 ma;mp read(y, 0); write(x, 1);read(z, 1); write(y,2) x=1, y=2
C:2\7\72 mp;ma read(z, 0); write(y, 2); read(y,2),wri.te(x,1) x=1, y=2
HW3 - read(z,0);read(y, 0); write(z, 1); write(y,2) x=1, y=2

W4 - read(z, 0); read(y, 0); write(y, 2); write(z,1) x=1, y=2

Example Ex1 : A:z:=1; B:z:=2; initially x = 0.
ASM: two possible runs: {W1}, {W2}
Lamport: one possible run: {W1, W2}
Example Ex2 : A:z:=z+4+1; B:z:=2z+ 1 ;initially x = 0.
ASM: two possible runs: {W1}, {W2}
Lamport: two possible runs: {W1, W2}, {W3}?
Example Ex3 : A:z:=y*x0+1;B:y:=xx0+2; initially z =y =0
ASM: one possible run: {W1, W2}
Lamport: three possible runs: {W1}, {W2}, {W3, W4}?

4.2 Distributed ASM Runs Are Sequentially Consistent

Since each move of a DASM run writes the same values, regardless of the lin-
earization, it is possible to translate DASM runs into sequentially consistent
Lamport runs. Please note that it is not true that each move reads the same
values independent of the linearization, see the last example in the previous
section.

Thus, one DASM run can produce several Lamport runs and each Lamport
run of a DASM run is sequentially consistent.

5 General Properties of Distributed Computation

Distributed computation generally comprises sequential agents that work to-
gether. They may use synchronization of memory locations to coordinate their
work. However, it is essential that their work has to respect causality (proper
synchronization of writes with reads). When conflicts arise, then there is an
underlying mechanism to handle inconsistencies between reads and writes of
different agents.

2 Observe that W3 is not possible in ASM, although it is not conflicting.

3 The last two runs have one more witness each where the reads are swapped. As
opposed to DASM, [5] would not consider W1 and W2 independent but view them
as two different runs.

214 A. Prinz and E. Sherratt

Property 1 (Sequentiality). The actions of each agent are sequential. *

Property 2 (Synchronization). There are (global) memory locations where
access is sequential.

Property 3 (Causality). It is impossible to read values before they have been
written. °

Property 4 (Consistency). When two agents try to write to the same posi-
tion, then one of them wins as opposed to having arbitrary outcome. In the same
way, also possible conflicts between read and write are solved.

With these requirements in mind, we will describe a local state model that
captures our idea of distributed computation.

6 Localized State

We introduce a localized DASM model where a memory location can be updated
by one agent, and its value can take some time before it is available to other
agents. This is addressed with reference to persistent queries in [2,3], where a
query is accompanied by the location where its result is to be deposited.

Definition 3 ((localized) DASM run). A localized partially ordered run of
a DASM is a partially ordered set (M;=<) of moves m (rule applications) of its
agents agent(m) with a state function s satisfying the following conditions:

1. finite history: see definition 2

2. sequentiality of agents: see definition 2

3. The (local) states of an agent before and after a move m are related using
the state transition function of agent(m).

4. The (local) state of an agent before a move is a combination of all the (local)
states after the directly preceding moves. If there are no preceding moves, an
initial state is used.

5. A combination of two (local) states is done with the following rules.

— When the value of a location is the same in both states, then this value
is taken.

— When the value of a location is different in the two states, then the one
resulting from the later move with respect to the partial order is taken.

— When the value of a location is different in the two states and both values
are coming from moves that are not ordered by the partial order, then an
arbitrary value of the two is chosen.

The new definition brings the following advantages, in particular related to the
problems given earlier.

4 Although this property looks innocent enough, it is rejected by the Java memory
model for distributed computation [6].
5 This property is also called no-out-of-thin-air in the context of Java.

Distributed ASM - Pitfalls and Solutions 215

1. Context switching is implicit in the new model, since the write of a move is
taken into account first when the new read is done.

2. Since agents work independent of each other and each agent has its own local
state, a global inconsistent system states is not only possible but normal.

3. Concurrent write at the same time onto the same memory location is possible
and would result in one of the written values.

4. Reads and writes are the level of atomicity.

5. The new definition does not guarantee sequential consistency. Please note
that all examples from section 4 will be captured in one run using the local-
ized model. In all three cases, the moves of agents A and B can be unordered.

6. The new definition provides a higher level of abstraction than Lamport and
at the same time brings less restrictions to the runs. It aligns better with
the moves of ASM.

7 Summary and Conclusions

In this paper, we have shown that distributed computation is not always easy to
understand and that DASM do not capture the essence of distributed computa-
tion. We have compared DASM with the Lamport model and have extracted a
new model that is not sequential in the bottom. This local state model captures
at least the problems indicated with the DASM model.

References

1. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Transactions on Computational Logic (TOCL) 4(4), 578-651 (2003)

2. Blass, A., Gurevich, Y.: Persistent queries (2008)

3. Blass, A., Gurevich, Y.: Persistent queries in the behavioral theory of algorithms.
ACM Transactions on Computational Logic (TOCL) 12(2), 1-43 (2011)

4. Borger, E., Stark, R.: Abstract State Machines — a Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

5. Glausch, A., Reisig, W.: An ASM-characterization of a class of distributed algo-
rithms. In: Abrial, J.-R., Glasser, U. (eds.) Rigorous Methods for Software Con-
struction and Analysis. LNCS, vol. 5115, pp. 50-64. Springer, Heidelberg (2009)

6. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java language specifica-
tion Java SE 7 edition (2013), http://docs.oracle.com/javase/specs/jls/se7/
jls7.pdf

7. Gurevich, Y.: The sequential ASM thesis.The Logic in Computer Science Column.
Bulletin of European Association for Theoretical Computer Science (1999)

8. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Borger (ed.) Specification
and Validation Methods. Oxford University Press (1995)

9. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers 28(9) (September 1979)

http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

	Distributed ASM - Pitfalls and Solutions
	1 Introduction
	2 Asynchronous Multi-agent (Distributed) ASMs
	3 Distributed ASM Do Not Capture Distributed Algorithms
	4 Sequentially Consistent Runs
	4.1 Examples to Compare DASM and Lamport Runs
	4.2 Distributed ASM Runs Are Sequentially Consistent

	5 General Properties of Distributed Computation
	6 Localized State
	7 Summary and Conclusions
	References

