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Abstract This paper investigates the problem of L1 observer design for positive
switched systems. Firstly, a new kind of positive L1 observer is proposed for positive
switched linear delay-free systems with observable and unobservable subsystems.
Based on the average dwell time approach, a sufficient condition is proposed to ensure
the existence of the positive L1 observer. Under the condition obtained, the estimated
error converges to zero exponentially, and the L1-gain from the disturbance input to
the estimated error is less than a prescribed level. Then the proposed design result
is extended to positive switched systems with mixed time-varying delays, where the
mixed time-varying delays are presented in the form of discrete delay and distributed
delay. Finally, two numerical examples are given to demonstrate the feasibility of the
obtained results.
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1 Introduction

Switched systems, a classical type of hybrid dynamical systems, consist of a family
of subsystems and a switching signal. The switching signal coordinates the operation
of the various subsystems to define which one to be activated during a certain interval.
Switched systems have numerous applications in the control of mechanical systems,
the automotive industry, aircraft, air traffic control, switching power converters, chem-
ical processes, and other fields [5,19,20,38–40].

Positive systems mean that their states and outputs are nonnegative whenever the
initial conditions and inputs are nonnegative [12,21]. And a positive switched system
is a switched system in which each subsystem is itself a positive system. Recently,
positive switched systems have been highlighted and investigated by many researchers
due to the broad applications in communication systems [30,31], formation flying
[11], the viral mutation dynamics under drug treatment [21] and systems theories
[1,13,14,27,28]. However, it should be pointed out that to obtain some results on
positive switched systems, one has to combine both features of general switched
systems and positive systems [3,4,6,15,16,22,26].

On the other hand, it is necessary to design state observers for systems due to
the fact that the states of systems are not all measurable in practice. Moreover, a
straightforward application of available observer designs for non-positive dynamical
systems to positive dynamical systems may not be applicable. This could produce
a meaningless state estimation, if there was no non-negative constraint on the state
estimation. Thus, imposing a positive restriction on the designed observer for positive
dynamical systems is often necessary. Recently, some problems of positive observer
design for positive linear systems have been investigated in [8,10,17,27,29,32,35]. It
is worth pointing out that the aforementioned literatures do not consider the effect of
disturbances. However, disturbance is frequently encountered in practical engineering
and social systems. When designing an observer for a given system, the estimated
error will be inevitably affected by the disturbance. For positive systems, the L1-gain
index [18,34] can characterize the disturbance rejection property and by means of
which we can limit the effect of disturbance in a prescribed level. However, from
the authors’ best knowledge, the problem of positive L1 observer design for positive
switched systems has not been fully investigated, and the main aim of this paper is to
shorten such a gap.

In this paper, we focus our attention on designing a positive L1 observer for a set of
positive switched linear delay-free systems, where the observable and unobservable
subsystems coexist. Moreover, it should be noted that delays are universal in practice,
and the existence of them may give rise to the deterioration of system performance
and instability [7,23,24,33,34,36,37]. Thus, we are also interested in investigating
the positive L1 observer design problem for positive switched systems with mixed
time-varying delays.

The main contributions of this paper are threefold: (1) The definition of L1 observer
is given for the first time; (2) By applying the average dwell time approach, a positive
L1 observer design scheme is presented for positive switched linear delay-free systems
with both observable and unobservable subsystems; (3) The proposed observer design
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method for linear delay-free systems is further extended to the case of mixed time-
varying delay systems.

The rest of this paper is organized as follows. The problem formulation and some
necessary definitions and lemmas are reviewed in Sect. 2. In Sect. 3, based on the
average dwell time approach, a sufficient condition for the existence of a positive
L1 observer is established. An extension of the result obtained in Sect. 3 to positive
switched systems with mixed time-varying delays is given in Sect. 4. Two numerical
examples are provided to demonstrate the effectiveness of the proposed results in Sect.
5. In Sect. 6, concluding remarks are given.

Notations: A � 0 (≺,�,≺) means that all entries of matrix A are nonnegative
(non-positive, positive, negative); A � B(A�B) means A − B � 0(A − B�0); AT is
the transpose of matrix A; R(R+) is the set of all real (positive real) numbers; Rn is n-
dimensional real vector space; Rn+ is the set of all n-dimensional positive real vectors;
Rm×n is the set of all (m×n)-dimensional real matrices. For the vector x ∈ Rn , 1-norm

is denoted by ‖x‖ =
n∑

l=1
|xl | where xl is the l-th element of x ; Given v : R → Rn ,

the L1 norm is defined by ‖v‖L1 = ∫ ∞
t0

‖v(t)‖dt; 1n ∈ Rn denotes a column vector
with n rows containing only 1 entries; L1[t0,∞) is the space of absolute integrable
vector-valued functions on [t0,∞), i.e., we say z : [t0,∞) → Rk is in L1[t0,∞) if∫ ∞

t0
‖z(t)‖dt < ∞.

2 Problem Formulation

Consider the following switched system

{
ẋ(t) = Aσ(t)x(t) + Dσ(t)w(t) + Fσ(t)u(t),
y(t) = Cσ(t)x(t),

(1)

where x(t) ∈ Rn and y(t) ∈ Rz denote the state and the measured output, respectively;
w(t) ∈ Rnw is the disturbance input, which belongs to L1[t0,∞) and u(t) ∈ Rnu is
the control input; σ(t) : [t0,∞) → m = {1, 2, . . . , m} is the switching signal with
m being the number of subsystems; Ap, C p, Dp, and Fp, ∀p ∈ m, are constant
matrices with appropriate dimensions.

Assumption 1 The pairs (Ap, C p), p ∈ Q ⊆ m = {1, 2, ..., m}, are observable.

Remark 1 Assumption 1 also indicates that the pairs (Ap, C p), p ∈ Q̄ = m − Q, are
unobservable, that is to say,

(A1) rank

⎡

⎢
⎢
⎢
⎣

C p

C p Ap
...

C p An−1
p

⎤

⎥
⎥
⎥
⎦

= n, p ∈ Q ⊆ m = {1, 2, . . . , m} ;
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(A2) rank

⎡

⎢
⎢
⎢
⎣

C p

C p Ap
...

C p An−1
p

⎤

⎥
⎥
⎥
⎦

< n, p ∈ Q̄ = m − Q.

When Q = m, Assumption 1 will degenerate into the case that all pairs (Ap, C p) are
observable, which has been investigated in [35].

Definition 1 System (1) is said to be positive if, for any initial conditions x(t0)� 0,
any inputs w(t)� 0 and u(t)� 0, and any switching signals σ(t), the corresponding
trajectories x(t)� 0 and y(t)� 0 hold for all t ≥ t0.

Definition 2 [25] A is called a Metzler matrix if the off-diagonal entries of matrix A
are nonnegative.

Lemma 1 [2] System (1) is positive if and only if Ap are Metzler matrices, and
C p � 0, Dp � 0 and Fp � 0, ∀p ∈ m.

Now, we consider the following observer

{ ˙̂x(t) = Aσ(t) x̂(t) + Fσ(t)u(t) + Oσ(t)(y(t) − ŷ(t)),
ŷ(t) = Cσ(t) x̂(t),

(2)

or, equivalently,

{ ˙̂x(t) = (Aσ(t) − Oσ(t)Cσ(t))x̂(t) + Fσ(t)u(t) + Oσ(t)Cσ(t) x̂(t),
ŷ(t) = Cσ(t) x̂(t),

(3)

where x̂(t) ∈ Rn is the estimated state vector of x(t), ŷ(t) ∈ Rz is the observer output,
and Op ∈ Rn×z are the observer gain matrices to be determined later.

Remark 2 For a non-positive system, the states of the designed observer are only
required to converge to those of the system. However, for positive switched system (1),
the positivity of the estimated state x̂(t) of system (2) or (3) should also be guaranteed
according to [10,27,29,32,35]. Finally, according to Lemma 1, it is naturally required
that Ā p = Ap − OpC p are Metzler matrices, Fp � 0 and OpC p � 0, ∀p ∈ m.

Define x̃(t) = x(t)− x̂(t) the estimated error of the system, then we can obtain the
following error switched system:

˙̃x(t) = (Aσ(t) − Oσ(t)Cσ(t))x̃(t) + Dσ(t)w(t) (4)

From Lemma 1, the error dynamic system (4) is a positive switched system if Ā p =
Ap − OpC p are Metzler matrices, Dp � 0, ∀p ∈ m.

Remark 3 As stated in [35], the positivity requirement on the estimated error x̃(t) is
introduced to be consistent with the state observer case and to facilitate the synthesis of
the desired positive observer. It should be pointed out that although this requirement
may cause a certain conservatism, the positivity of x̃(t) will not affect that of the
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estimated state x̂(t). If the initial condition does not hold, x̂(t) will still remain positive
for all t ≥ t0.

In order to obtain the main results, we need to recall some definitions.

Definition 3 [33] Switched system (4) with w(t) = 0 is said to be exponentially stable
under the switching signal σ(t), if for any initial conditions, there exist constants κ > 0
and ε > 0 such that the solution x̃(t) satisfies

||x̃(t)|| ≤ κ||x̃(t0)||e−ε(t−t0), ∀t ≥ t0

Definition 4 [9] For any switching signal σ(t) and any T2 > T1 ≥ 0, let Nσ (T1, T2)

denote the number of switches of σ(t) over the interval [T1, T2). For given Ta > 0
and N0 ≥ 0, if the inequality

Nσ (T1, T2) ≤ N0 + T2 − T1

Ta

holds, then the positive constant Ta is called the average dwell time, and N0 is called
the chattering bound.

As commonly used in the literature, we choose N0 = 0 in this paper.

Definition 5 For λ > 0 and γ > 0, system (2) is said to be a positive L1 observer of
positive switched (1) if the following conditions are satisfied:

(i) system (4) is positive;
(ii) system (4) is exponentially stable when w(t) = 0;
(iii) under the zero initial condition, system (4) satisfies

∞∫

t0

e−λ(t−t0) ‖x̃(t)‖ dt ≤ γ

∞∫

t0

‖w(t)‖ dt, w(t) �= 0. (5)

Remark 4 Due to the fact that disturbance is frequently encountered in practical engi-
neering, when designing an observer for a given system, the estimated error will be
inevitably affected by the disturbance. For positive systems, the L1-gain index can
characterize the disturbance rejection property (see [34]), and it is important and nec-
essary to consider the L1 observer design to attenuate the effect of disturbance in a
prescribed level.

Remark 5 In Definition 5, the parameter γ characterizes error switched system’s sup-
pression to exogenous disturbance, i.e., it reflects the effect of the exogenous distur-
bance w(t) to the observer error x̃(t).

The purpose of this paper is to design the observer in the form of (2) or (3), such
that the states of system (2) possess positivity and exponentially converge to those of
positive switched system (1). Meanwhile, the L1-gain from the disturbance w(t) to
the observer error x̃(t) is attenuated in a prescribed level.
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3 Observer Design

An observer design scheme for positive switched systems has been proposed in [35].
It is worth pointing out that the design method given in [35] is only applicable for
the case that all pairs (Ap, C p) are observable, and it cannot be directly applied to
positive switched system (1) containing some subsystems whose pairs (Ap, C p) are
unobservable. Thus in this section, we present an observer design method for positive
switched system (1) satisfying Assumption 1.

Let T +(t0, t) denote the total running time of all subsystems with observable pairs
(Ap, C p), p ∈ Q during [t0, t). T −(t0, t) denotes the total running time of the remain-
der during [t0, t).

The following theorem gives the design result.

Theorem 1 Consider positive switched system (1) satisfying Assumption 1, for given
positive constants α, β and γ , if there exist vectors, νp ∈ Rn+ and gp ∈ Rn, and any
matrices Op of appropriate dimensions, such that,

Ā p = Ap − OpC p are Metzler matrices, OpC p � 0, ∀p ∈ m (6)

AT
p νp + ανp − gp + 1n ≺ 0, DT

p νp − γ 1nw ≺ 0, ∀p ∈ Q (7)

AT
p νp − βνp − gp + 1n ≺ 0, DT

p νp − γ 1nw ≺ 0, ∀p ∈ Q̄ (8)

gp ≺ CT
p OT

p νp, ∀p ∈ m (9)

where νp = [νp1, νp2, . . . , νpn]T , then system (2) is a positive L1 observer of positive
switched system (1) for any switching signal σ(t) with the following average dwell
time:

inf
t>t0

T −(t0, t)

T +(t0, t)
≥ β + λ

α − λ
, Ta > T ∗

a = ln μ

λ
, (10)

where 0 < λ < α and μ ≥ 1 satisfies

νp ≺ μνq , ∀p, q ∈ m (11)

Proof It follows from Lemma 1 and (6) that systems (2) and (4) are positive. We
construct the following piecewise co-positive type Lyapunov function for positive
system (4)

V (t) = Vσ(t)(t) = x̃ T (t)νσ(t) (12)

Let t1 < · · · < tl denote the switching instants of σ(t) over the interval [t0, t). When
w(t) = 0, combining (7–9) leads to

Vσ(t)(t) ≤
{

e−α(t−tk )Vσ(tk )(tk) if σ(t) ∈ Q, t ∈ [tk, tk+1)

eβ(t−tk )Vσ(tk )(tk) if σ(t) ∈ Q, t ∈ [tk, tk+1)
(13)

From (11) and (12), at switching instants tk, k = 1, 2, . . . , l, it holds that

Vσ(tk )(tk) ≤ μVσ(t−k )(t
−
k ). (14)
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By (10), (13), (14) and Definition 4, for t ∈ [tl , tl+1), it is not hard to get

Vσ(t)(t) ≤ e−αT −(tl ,t)+βT +(tl ,t)Vσ(tl )(tl)

≤ μe−αT −(tl ,t)+βT +(tl ,t)Vσ(t−l )(t
−
l )

≤ μe−αT −(tl−1,t)+βT +(tl−1,t)Vσ(tl−1)(tl−1)

≤ · · ·
≤ (μ)Nσ (t0,t)e−αT −(t0,t)+βT +(t0,t)Vσ(t0)(t0)

≤ e−αT −(t0,t)+βT +(t0,t)e(t−t0) ln(μ)/Ta Vσ(t0)(t0)

≤ e−(λ−ln(μ)/Ta)(t−t0)Vσ(t0)(t0) (15)

Denoting ε1 = min( j,p)∈n×m
{
νpj

}
and a = max( j,p)∈n×m

{
νpj

}
, n = {1, 2, . . . , n},

yields
Vσ(t)(t) ≥ ε1 ‖x̃(t)‖ (16)

and
Vσ(t0)(t0) ≤ a ‖x̃(t0)‖ . (17)

From (15–17), we get

‖x̃(t)‖ ≤ a

ε1
e−(λ− ln(μ)

Ta
)(t−t0) ‖x̃(t0)‖ . (18)

Thus, by denoting κ = a/ε1 and ε = λ − ln(μ)
Ta

> 0, it can be obtained from (18) that

‖x̃ (t)‖ ≤ κe−ε(t−t0) ‖x̃(t0)‖ , ∀t ≥ t0.

Therefore, error system (4) with w(t) = 0 is exponentially stable for any switch-
ing signal with average dwell time (10). In the sequel, we will consider the L1-gain
performance.

When w(t) �= 0 in system (4), following the proof line above, one get from (7) to
(9) that

Vσ(t)(t) ≤
{

e−α(t−tk )Vσ(tk )(tk) − ∫ t
tk

e−α(t−s)
(s)ds if σ(t) ∈ Q, t ∈ [tk, tk+1),

eβ(t−tk )Vσ(tk )(tk) − ∫ t
tk

eβ(t−s)
(s)ds if σ(t) ∈ Q̄, t ∈ [tk, tk+1),

(19)
where 
(s) = ‖x̃(s)‖ − γ ‖w(s)‖.
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Then, for t ∈ [tl , tl+1), we have

Vσ(t)(t) ≤ e−αT −(tl ,t)+βT +(tl ,t)Vσ(tl )(tl) −
t∫

tl

e−αT −(s,t)+βT +(s,t)
(s)ds

≤ μe−αT −(tl ,t)+βT +(tl ,t)Vσ(t−l )(t
−
l ) −

t∫

tl

e−αT −(s,t)+βT +(s,t)
(s)ds

≤ μe−αT −(tl−1,t)+βT +(tl−1,t)Vσ(tl−1)(tl−1) −
t∫

tl

e−αT −(s,t)+βT +(s,t)
(s)ds

−μ

tl∫

tl−1

e−αT −(s,tl−1)+βT +(s,tl−1)
(s)ds ≤ · · ·

≤ (μ)Nσ (t0,t)e−αT −(t0,t)+βT +(t0,t)Vσ(t0)(t0)

−
t∫

t0

(μ)Nσ (s,t)e−αT −(s,t)+βT +(s,t)
(s)ds

≤ e−αT −(t0,t)+βT +(t0,t)e(t−t0) ln(μ)/Ta Vσ(t0)(t0)

−
t∫

t0

(μ)Nσ (s,t)e−αT −(s,t)+βT +(s,t)
(s)ds. (20)

Under the zero initial condition, we have Vσ(t0)(t0) = 0, then (20) becomes

0 ≤ −
t∫

t0

(μ)Nσ (s,t)e−αT −(s,t)+βT +(s,t)
(s)ds.

From (10), it is obvious that

−αT −(t0, t) + βT +(t0, t) ≤ −λ(t − t0),

It follows that

t∫

t0

e−λ(t−s)(μ)Nσ (s,t)
(s)ds ≤ 0.
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That is,

t∫

t0

e−λ(t−s)(μ)Nσ (s,t) ‖x̃(s)‖ ds ≤ γ

t∫

t0

e−λ(t−s)(μ)Nσ (s,t) ‖w(s)‖ ds. (21)

Multiplying both sides of (21) by e−Nσ (t0,t) ln(μ) yields

t∫

t0

e−λ(t−s)e−Nσ (t0,s) ln(μ) ‖x̃(s)‖ ds ≤ γ

t∫

t0

e−λ(t−s)e−Nσ (t0,s) ln(μ) ‖w(s)‖ ds.

(22)
By Definition 4 and (10), one can obtain

t∫

t0

e−λ(t−s)e−λ(s−t0) ‖x̃(s)‖ ds ≤ γ

t∫

t0

e−λ(t−s) ‖w(s)‖ ds. (23)

Integrating both sides of (23) from t = t0 to ∞ leads to

∞∫

t0

e−λ(t−t0) ‖x̃(s)‖ ds ≤ γ

∞∫

t0

‖w(s)‖ ds.

Therefore, according to Definition 5, we can conclude that system (2) is a positive L1
observer of positive switched system (1).

This completes the proof.

Remark 6 It is worth pointing out that (7) and (9) ensure the exponential stability of
the error subsystem p with observable pair (Ap, C p). However, for the subsystem
p with unobservable pair (Ap, C p), we cannot design a gain matrix such that the
corresponding error subsystem is exponentially stable. To ensure the stability of error
switched system (4), the error subsystem p with unobservable pair (Ap, C p) is allowed
to be unstable with bounded growth. Conditions (8, 9) guarantee that the increase rate
of the error subsystem p with unobservable pair (Ap, C p) is bounded.

Remark 7 Compared with the existing results in the literatures [8,10,17,35], the sys-
tem considered in this section satisfies Assumption 1, which is universal in the appli-
cation. Also, the L1 observer is proposed for the first time to guarantee the robustness
with regard to exogenous disturbance w(t).

Remark 8 From Theorem 1, it can be seen that a smaller α and a larger β will be
favorable to the feasibility of (7, 8). For given positive constants α and β, if (7, 8) have
no feasible solution, we can adjust the parameter α to be smaller or the parameter β

to be larger. Following this guideline, a solution to (7, 8) can be found.
We now present the following algorithm for constructing the positive L1 observer.
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Algorithm 1
Step 1. Input the matrices Ap, C p, Dp and Fp, ∀p ∈ m;
Step 2. Choose parameters α > 0, β > 0 and γ > 0, and solve (7, 8) to obtain νp

and gp;
Step 3. By (6) and (9), one can get the gain matrices Op;
Step 4. Construct the positive L1 observer (2), where Op are the observer gain

matrices obtained in Step 3.

4 An Extension

In the section, we will generalize the design method developed in previous section to
positive switched systems with mixed time-varying delays described by:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Aσ(t)x(t) + Adσ(t)x(t − d(t)) + Bσ(t)
∫ t

t−h(t) x(s)ds
+ Dσ(t)w(t) + Fσ(t)u(t),

x(t0 + θ) = φ(θ), θ ∈ [−H, 0],
y(t) = Cσ(t)x(t),

(24)

where d(t) denotes the time-varying delay which is everywhere time-differentiable
and satisfies 0 < d(t) < du and ḋ(t) ≤ dd < 1 for known constants du and dd; h(t)
denotes the time-varying distributed delay which is everywhere time-differentiable
and satisfies 0 < h(t) < hu and ḣ(t) ≤ hd < 1 for known constants hu and
hd; H = max {du, hu} , andφ(θ) is a vector-valued initial continuous function defined
on interval [−H, 0], H > 0; other definitions are the same as those of system (1).
Moreover, system (24) also meets Assumption 1.

Remark 9 It should be pointed out that Assumption 1 does not indicate that the sub-
system p(p ∈ Q) of system (24) is observable, and it only means that the subsystem
p satisfies the rank condition (A1) in Remark 1.

Lemma 2 [18] System (24) is positive if and only if Ap are Metzler matrices, and
Adp � 0, Bp � 0, C p � 0, Dp � 0, and Fp � 0, ∀p ∈ m.

Similarly, we consider the following observer for system (24)

⎧
⎪⎪⎨

⎪⎪⎩

˙̂x(t) = Aσ(t) x̂(t) + Adσ(t) x̂(t − d(t)) + Bσ(t)
∫ t

t−h(t) x̂(s)ds
+ Fσ(t)u(t) + Oσ(t)(y(t) − ŷ(t)),

x̂(t0 + θ) = 0, θ ∈ [−H, 0],
ŷ(t) = Cσ(t) x̂(t),

(25)

where x̂(t) ∈ Rn is the estimated state vector of x(t), ŷ(t) ∈ Rz is the observer
output, Op ∈ Rn×z are the observer gain matrices to be determined later; we let
Ā p = Ap − OpC p, ∀p ∈ m. According to Lemma 2, it is naturally required that Āp

are Metzler matrices, and Adp � 0, Bp � 0, Fp � 0, OpC p � 0, ∀p ∈ m.
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Let x̃(t) = x(t) − x̂(t) be the estimated error of the system, then we can obtain the
following error switched system:

⎧
⎨

⎩

˙̃x(t) = (Aσ(t) − Oσ(t)Cσ(t))x̃(t) + Adσ(t) x̃(t − d(t))
+ Bσ(t)

∫ t
t−h(t) x̃(s)ds + Dσ(t)w(t),

x̃(t0 + θ) = φ(θ), θ ∈ [−H, 0].
(26)

Moreover, from Lemma 2, the error dynamic system (26) is a positive switched system
if Ā p = Ap − OpC p are Metzler matrices, Adp � 0, Bp � 0, Dp � 0, p ∈ m, for
any initial conditions φ(θ),� 0 θ ∈ [−H, 0].
Definition 6 [33] switched system (26) with w(t) = 0 is said to be exponentially
stable under σ(t), if for the initial condition x̃(t0 + θ) = φ(θ), θ ∈ [−H, 0], there
exist constants κ > 0 and ε > 0 such that the solution x̃(t) satisfies

‖x̃ (t)‖ ≤ κ ‖x̃(t0)‖c e−ε(t−t0), ∀t ≥ t0 (27)

where ‖x̃(t0)‖c = sup
−H≤θ≤0

{‖x̃(t0 + θ)‖}.
To obtain the result, we first present two lemmas for the following non-switched

positive system with mixed delays, which will be essential for later development:

{
ẋ(t) = Ax(t) + Ad x(t − d(t)) + B

∫ t
t−h(t) x(s)ds,

x(t0 + θ) = φ(θ), θ ∈ [−H, 0], (28)

where A is a Metzler constant matrix, Ad � 0 and B � 0 are constant matrices; d(t)
and h(t) have been defined before.

Choose the following co-positive type Lyapunov–Krasovskii functional candidate
for system (28)

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) (29)

where

V1(t, x(t)) = xT (t)ν, V2(t, x(t)) =
t∫

t−d(t)

eα(−t+s)xT (s)υds,

V3(t, x(t)) =
t∫

t−h(t)

t∫

s

eα(−t+θ)xT (θ)ϑdθds,

and ν, υ, ϑ ∈ Rn+, α > 0.
For simplicity, V (t, x(t)) is written as V (t) in this paper.
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Lemma 3 Given a positive constant α, if there exist ν, υ, ϑ ∈ Rn+ such that

AT ν + αν + υ + huϑ ≺ 0 (30)

AT
d ν − (1 − dd)e−αdu υ ≺ 0 (31)

BT ν − (1 − hd)e−αhu ϑ ≺ 0 (32)

where ν = [ν1, ν2, . . . , νn]T , υ = [υ1, υ2, . . . , υn]T , and ϑ = [ϑ1, ϑ2, . . . , ϑn]T ,
then along the trajectory of system (28), we have

V (t) ≤ e−α(t−t0)V (t0).

Proof Along the trajectory of system (28) with co-positive type Lyapunov–Krasovskii
functional (29), we have

V̇1(t) = ẋ T (t)ν = xT (t)AT ν + xT (t − d(t))AT
d ν +

⎡

⎢
⎣

t∫

t−h(t)

xT (s)ds

⎤

⎥
⎦ BT ν

V̇2(t) = −α

t∫

t−d(t)

eα(−t+s)xT (s)υds + xT (t)υ − (1 − ḋ(t))e−αd(t)xT (t − d(t))υ

≤ −α

t∫

t−d(t)

eα(−t+s)xT (s)υds + xT (t)υ − (1 − dd)e−αdu xT (t − d(t))υ

V̇3(t) = −α

t∫

t−h(t)

t∫

s

eα(−t+θ)xT (θ)ϑdθds + xT (t)ϑ

t∫

t−h(t)

ds

−(1 − ḣ(t))

t∫

t−h(t)

eα(−t+s)xT (s)ϑds

≤ −α

t∫

t−h(t)

t∫

s

eα(−t+θ)xT (θ)ϑdθds + hu xT (t)ϑ

−(1 − hd)

t∫

t−h(t)

e−αhu xT (s)ϑds
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Then, we have

V̇ (t) + αV (t) ≤ xT (t)(AT ν + αν + υ + huϑ)

+ xT (t − d(t))
(

AT
d ν − (1 − dd)e−αdu υ

)

+
t∫

t−h(t)

xT (s)
[

BT ν − (1 − hd)e−αhu ϑ
]

ds

From (30) to (33), one obtains

V̇ (t) ≤ −αV (t). (33)

Then, along the trajectory of system (28), we have

V (t) ≤ e−α(t−t0)V (t0).

This completes the proof.

Remark 10 It should be noted that the proposed Lyapunov–Krasovskii functional (29)
is different from the existing one presented in the literature [34]. In order to deal with
the time-varying distributed delay, the following term is constructed:

V3(t, x(t)) =
t∫

t−h(t)

t∫

s

eα(−t+θ)xT (θ)ϑdθds

Lemma 4 For a given positive constant β, if there exist vectors ν, υ, ϑ ∈ Rn+ such
that

AT ν − βν + υ + huϑ ≺ 0 (34)

AT
d ν − (1 − dd)υ ≺ 0 (35)

BT ν − (1 − hd)ϑ ≺ 0 (36)

where ν = [ν1, ν2, . . . , νn]T , υ = [υ1, υ2, . . . , υn]T , and ϑ = [ϑ1, ϑ2, . . . , ϑn]T ,
then along the trajectory of system (28), we have

V (t) ≤ eβ(t−t0)V (t0).

Proof Choose the following co-positive type Lyapunov–Krasovskii functional candi-
date for system (28)

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) (37)
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where

V1(t, x(t)) = xT (t)ν, V2(t, x(t)) =
t∫

t−d(t)

eβ(t−s)xT (s)υds,

V3 =
t∫

t−h(t)

t∫

s

eβ(t−θ)xT (θ)ϑdθds,

and ν, υ, ϑ ∈ Rn+, β > 0.
The rest proof of this lemma is similar to that of Lemma 3, and thus is omitted here.

This completes the proof.

Theorem 2 Consider positive switched system (24) satisfying Assumption 1, for given
positive constants α, γ , and β, if there exist vectors νp, υp, ϑp ∈ Rn+, and gp ∈ Rn,
and any matrices Op of appropriate dimensions, such that

Āp = Ap − OpC p are Metzler matrices, OpC p � 0, ∀p ∈ m, (38)

AT
p νp + ανp − gp + υp + huϑp + 1n ≺ 0, DT

p νp − γ 1nw ≺ 0, ∀p ∈ Q, (39)

AT
dpνp − (1 − dd)e−αdu υp ≺ 0, BT

p νp − (1 − hd)e−αhu ϑp ≺ 0, ∀p ∈ Q, (40)

AT
p νp − βνp − gp + υp + huϑp + 1n ≺ 0, DT

p νp − γ 1nw ≺ 0, ∀p ∈ Q̄, (41)

AT
dpνp − (1 − dd)υp ≺ 0, BT

p νp − (1 − hd)ϑp ≺ 0, ∀p ∈ Q̄, (42)

gp ≺ CT
p OT

p νp, ∀p ∈ m, (43)

where νp = [νp1, νp2, . . . , νpn]T , υp = [υp1, υp2, . . . , υpn]T and ϑp = [ϑp1, ϑp2,

. . . , ϑpn]T , then system (25) is a positive L1 observer of positive switched system (24)
for any switching signal σ(t) with the following average dwell time:

inf
t>t0

T −(t0, t)

T +(t0, t)
≥ β + λ

α − λ
, Ta > T ∗

a = ln(μς)

λ
(44)

where ς = e(α+β)H , 0 < λ < α, and μ ≥ 1 satisfy

νp ≺ μςνq , υp ≺ μυq , ϑp ≺ μϑq , ∀p, q ∈ m (45)

Proof It follows from Lemma 2 and (38) that systems (25) and (26) are positive.
Construct the following piecewise co-positive type Lyapunov–Krasovskii functional
for system (26)
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V (t) = Vσ(t)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x̃ T (t)νσ(t) + ∫ t
t−d(t) eα(−t+s) x̃ T (s)υσ(t)ds

+ ∫ t
t−h(t)

∫ t
s eα(−t+θ) x̃ T (θ)ϑσ(t)dθds, if σ(t) ∈ Q

x̃T (t)νσ(t) + ∫ t
t−d(t) eβ(t−s) x̃ T (s)υσ(t)ds

+ ∫ t
t−h(t)

t∫

s
eβ(t−θ) x̃ T (θ)ϑσ(t)dθds, if σ(t) ∈ Q̄

(46)

Let t1 < · · · < tl denote the switching instants of σ(t) over the interval [t0, t). When
w(t) = 0, by Lemmas 3 and 4, one can easily have from (39) to (43) that

Vσ(t)(t) ≤
{

e−α(t−tk )Vσ(tk )(tk) if σ(t) ∈ Q, t ∈ [tk, tk+1)

eβ(t−tk )Vσ(tk )(tk) if σ(t) ∈ Q̄, t ∈ [tk, tk+1)
(47)

From (45) and (46), at switching instants tk, k = 1, 2, . . . , l, it holds that

V
σ(tk )

(tk) ≤ μςVσ(t−k )(t
−
k ), (48)

where ς = e(α+β)H .
Following the proof line of Theorem 1, we have

‖x̃(t)‖ ≤ b

ε1
e−(λ− ln(μς)

Ta
)(t−t0) sup

−H≤θ≤0
{‖x̃(t0 + θ)‖} , (49)

where

ε1 = min
( j,p)∈n×m

{
νpj

}
,

b = max
( j,p)∈n×m

{
νpj

} + eβdu H max
( j,p)∈n×m

{
υpj

} + eβhu Hhu max
( j,p)∈n×m

{
ϑpj

}
.

Thus, by denoting κ = b/ε1 and ε = λ− ln(μς)
Ta

> 0, it can be obtained from (49) that

‖x̃ (t)‖ ≤ κe−ε(t−t0) ‖x̃(t0)‖c , ∀t ≥ t0,

where ‖x̃(t0)‖c = sup
−H≤θ≤0

{‖x̃(t0 + θ)‖}.
Therefore, error system (26) with w(t) = 0 is exponentially stable for any switch-

ing signal with average dwell time (44). In the sequel, we will consider the L1-gain
performance.

When w(t) �= 0 in system (26), one can get from (39) to (43) that

Vσ(t)(t) ≤
{

e−α(t−tk )Vσ(tk )(tk) − ∫ t
tk

e−α(t−s)
(s)ds if σ(t) ∈ Q, t ∈ [tk, tk+1),

eβ(t−tk )Vσ(tk )(tk) − ∫ t
tk

eβ(t−s)
(s)ds if σ(t) ∈ Q̄, t ∈ [tk, tk+1),

(50)
where 
(s) = ‖x̃(s)‖ − γ ‖w(s)‖.
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Following the proof line of Theorem 1, we have

∞∫

t0

e−λ(t−t0) ‖x̃(s)‖ ds ≤ γ

∞∫

t0

‖w(s)‖ ds

Therefore, according to Definition 5, system (25) is a positive L1 observer of positive
switched system (24).

This completes the proof. ��
We now present the following algorithm to construct a positive L1 observer for

positive switched system (24).

Algorithm 2
Step 1. Input the matrices Ap, Adp, Bp, C p, Dp, and Fp, ∀p ∈ m;
Step 2. Choose the parameters α > 0, β > 0, and γ > 0, and solve (39–42) to

obtain νp, υp, ϑp, and gp;
Step 3. From (38) and (43), one can get the gain matrices Op;
Step 4. Construct the positive L1 observer (25), where Op are the observer gain

matrices obtained in Step 3.

5 Numerical Examples

In this section, two simulation examples are provided to demonstrate the effectiveness
of the proposed approaches.

Example 1 Consider positive switched system (1) with the following parameters:

subsystem 1 : A1 =
[−7 6

6 −8

]

, C1 =
[

0.1 0.2
0.1 0.2

]

, D1 =
[

0.2
0.1

]

, F1 =
[

0.2
0.5

]

,

subsystem 2 : A2 =
[−3 1.5

1.5 −3

]

, C2 =
[

0.1 0.1
0.2 0.2

]

, D2 =
[

0.1
0.2

]

, F2 =
[

0.2
0.6

]

.

It is easy to verify that the pair (A2, C2) is unobservable. Taking α = 0.3, β =
0.5, γ = 0.5, λ = 0.15, u(t) = 2 |sin t |, and w(t) = 0.05e−0.05t , and solving
(7)-(8) in Theorem 1 give rise to

ν1 =
[

0.8798
0.9612

]

, ν2 =
[

0.9612
0.8798

]

, g1 =
[

1.9158
−0.0803

]

, g2 =
[−0.0020

0.4054

]

.

Then by Step 3 in Algorithm 1, the observer gain matrices can be obtained as

O1 =
[

145.5690 −128.7996
135.5416 −118.4527

]

, O2 =
[

3.1476 2.9579
5.2511 1.9061

]

.
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Fig. 1 Switching signal in Example 1
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Fig. 2 State x(t) of the system and its estimation x̂(t) in Example 1

According to (10, 11), we can get μ = 1.1400, and T ∗
a = 0.8737.

Figure 1 shows the switching signal with the average dwell time Ta = 0.9. The
system state x(t) and its estimation x̂(t) are shown in Fig. 2, where the initial states
of the system are x(0) = [

0.4 0.5
]T , and the initial states of the observer are x̂(0) =

[
0 0

]T . The estimated errors are shown in Fig. 3. From Figs. 1, 2 and 3, we can
see that the states of the designed observer not only possess the positivity, but also
approximate those of the original system (1).
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Fig. 3 Estimated errors in Example 1

Example 2 Consider positive switched system (24) with the following parameters:

subsystem 1 : A1 =
[−7 6

6 −8

]

, Ad1 =
[

0.1 0.0
0.1 0.0

]

, B1 =
[

0.2 0.0
0.2 0.0

]

,

C1 =
[

0.1 0.2
0.1 0.2

]

, D1 =
[

0.2
0.1

]

, F1 =
[

0.2
0.5

]

,

subsystem 2 : A2 =
[−3 1.5

1.5 −3

]

, Ad2 =
[

0.1 0.0
0.1 0.0

]

, B2 =
[

0.2 0.0
0.2 0.0

]

,

C2 =
[

0.1 0.1
0.2 0.2

]

, D2 =
[

0.1
0.2

]

, F2 =
[

0.2
0.6

]

.

By Lemma 2, the trajectories of such a system will remain positive if φ(θ)� 0,

θ ∈ [−H, 0]. It is easy to verify that rank
[

C2
C2 A2

]
< 2. Taking α = 0.3, β =

0.5, γ = 0.5, λ = 0.15, d(t) = 0.1 |sin t | , h(t) = 0.1 |sin t | , u(t) = 2 |sin t |, and
w(t) = 0.05e−0.05t , and solving (39–42) in Theorem 2 give rise to

ν1 =
[

0.8563
0.9434

]

, ν2 =
[

0.9497
0.8624

]

, υ1 =
[

1.2638
1.1747

]

, υ2 =
[

1.2504
1.1603

]

,
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Fig. 4 Switching signal in Example 2
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Fig. 5 State x(t) of the system and its estimation x̂(t) in Example 2

ϑ1 =
[

1.3530
1.1747

]

, ϑ2 =
[

1.3405
1.1603

]

, g1 =
[−3.4276

−1.2712

]

, g2 =
[−1.4595

−1.7878

]

.

Then, by Step 3 in Algorithm 2, the observer gain matrices can be obtained as

O1 =
[

148.7714 −132.3642
183.6611 −164.4395

]

, O2 =
[−116.2294 65.2255

51.3943 −18.5864

]

.

According to (44, 45), we can get μ = 1.0344, ς = 1.0833, and T ∗
a = 0.7591.

Figure 4 shows the switching signal with the average dwell time Ta = 0.8. The
system state x(t) and its estimation x̂(t) are shown in Fig. 5, where the initial states of
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Fig. 6 Estimated errors in Example 2

the system are x(t) = [
0 0

]T , t ∈ [−H, 0), x(0) = [
0.4 0.5

]T , and the initial states

of the observer are x̂(t) = [
0 0

]T , t ∈ [−H, 0]. The estimated errors are shown in
Fig. 6. From Figs. 4, 5 and 6, we can see that the states of the designed observer not
only possess the positivity, but also approximate those of the original system (24).

6 Conclusions

In this paper, we investigated the problem of L1 observer design for positive switched
systems. First, we have studied the positive L1 observer design problem for posi-
tive switched delay-free systems with observable and unobservable subsystems. By
constructing a piecewise co-positive type Lyapunov function and using the average
dwell time approach, we proposed a positive observer design scheme. The states of
the designed observer not only remain positivity but also converge to those of the
original switched system, and the L1-gain from the disturbance input to the estimate
error is less than a prescribed level. Then we extended the proposed design method
to positive switched systems with mixed time-varying delays. Finally, two numeri-
cal examples were presented to demonstrate the feasibility and effectiveness of the
proposed method.
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