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Abstract: Technology innovations have pushed today’s healthcare sector to an
unprecedented new level. Various portable and wearable medical and fitness devices
are being sold in the consumer market to provide the self-empowerment of a healthier
lifestyle to society. Many vendors provide additional cloud-based services for devices
they manufacture, enabling the users to visualize, store and share the gathered information
through the Internet. However, most of these services are integrated with the devices in a
closed “silo” manner, where the devices can only be used with the provided services. To
tackle this issue, an information integration platform (IIP) has been developed to support
communications between devices and Internet-based services in an event-driven fashion by
adopting service-oriented architecture (SOA) principles and a publish/subscribe messaging
pattern. It follows the “Internet of Things” (IoT) idea of connecting everyday objects to
various networks and to enable the dissemination of the gathered information to the global
information space through the Internet. A patient-centric healthcare service environment is
chosen as the target scenario for the deployment of the platform, as this is a domain where
IoT can have a direct positive impact on quality of life enhancement. This paper describes
the developed platform, with emphasis on dependability aspects, including availability,
scalability and security.
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1. Introduction

The term “Internet of Things” (IoT) was popularized at the Massachusetts Institute of Technology
(MIT) Auto-ID Center in 1999, where a group of people started to design and propagate a
cross-company radio-frequency identification (RFID) infrastructure [1,2]. Advancements in information
and communications technology (ICT) have enabled IoT’s vision to be realized by turning everyday
objects into connected objects [3,4], so that the information gathered (or “sensed”) by these objects
can be used in various different services. Everyday objects can be employed to capture and create
information from the physical world instead of relying purely on people, as normally done in traditional
information systems [1]. This is mainly achieved by using RFID and sensor technologies. The ability
to react to events in the physical world automatically not only opens up new opportunities for dealing
with complex or critical situations, but also enables a wide variety of business processes to be optimized.
The real-time interpretation of data from the physical world can lead to the introduction of various novel
services and may deliver substantial economic and social benefits [4].

Although localized services, utilizing information gathered from nearby objects, can be useful in
many different scenarios, the global pervasiveness of things can only be realized when these everyday
objects are connected to the Internet [5]. The Internet has become the de facto standard backbone
for deploying services beyond time and space barriers, which enables people or other services to
consume them 24/7 from all over the world. Cloud computing has pushed the boundary even further,
enabling developers with innovative ideas to develop and deploy services without large capital outlays in
hardware [6]. Myriad Internet-based services can make use of the collected information from various
different everyday objects for value-added functionalities. However, everyday objects may have
limitations in terms of processing power or battery lifetime, which makes it infeasible to incorporate
a full transmission control protocol/internet protocol (TCP/IP) stack [7] in order to communicate with
the current Internet infrastructure. Other more power-preserving communications protocol stacks (e.g.,
Bluetooth, ZigBee, ANT) are more commonly used in embedded devices. In order to be connected to
the Internet, additional gateway devices that have implemented full TCP/IP stacks are needed. These
gateway devices should have at least two network interfaces, one facing the connected objects and
another one facing the Internet, and physically can range from dedicated servers to mobile devices
(e.g., smartphones, tablets). The latter is particularly useful for scenarios that involve the mobility of the
users [8]. With the increasing needs of everyday objects to be connected to the Internet, new technologies
have been developed to extend the Internet to small devices [9,10], such as Internet protocol version 6
(IPv6) over low-power area networks (6LoWPAN) [11,12] and GLoWBALIPv6 [13].

When everyday objects are connected to the Internet (e.g., through a smartphone gateway), an
application-layer protocol is needed to communicate with Internet-based services that are interested
in using the gathered information. Within the web domain, hypertext transfer protocol (HTTP) [14]
has been widely used to exchange content over the Internet [15] since the inception of the World
Wide Web (WWW) [16]. Web services, which are software systems designed to support interoperable
machine-to-machine interaction over a network, normally use HTTP to convey messages, as well. This is
true for both traditional web services [17] and RESTful web services [18]. The majority of Internet-based
services provide web service interfaces to enable message exchange with external systems. Thus, the
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HTTP protocol, combined with the web service approach, is a good combination to be used for message
exchange in the application layer.

The IoT plays an important role in healthcare, for example, in general remote vital sign monitoring of
patients [19], as well as in specific chronic disease treatment, such as diabetes therapy management [20].
Within the personal healthcare sector, many portable and wearable medical and fitness devices are being
pushed to the consumer market by various vendors. This can be seen as a positive trend towards the
self-empowerment of a healthier lifestyle and enables healthcare workers to more efficiently keep track
of their patients’ health conditions by means of telecare, if such a feature is provided. Many vendors
provide additional online services for devices they sell, enabling users to better visualize, store and
share the gathered information from the devices through the Internet. However, many of these services
are integrated with the devices following a closed vertical “silo” approach [21], where the devices
can only be used with the provided services, and different services from other vendors cannot make
use of the gathered information. The main disadvantage of this situation is the inability to combine
information gathered from different devices produced by different vendors for better reasoning and
decision making [22,23]. To solve this issue, open interfaces (e.g., web service interfaces) have to be
provided by device vendors, so that service developers can incorporate the information collected from
the devices in their services.

A common way to integrate devices and Internet-based services is to directly exchange messages
between the two parties in a point-to-point manner. The downside of this approach is that devices
that “sense” new information should deliver it to all services that are interested in consuming it, either
through a push approach from the devices or in a pull fashion from the services. This can be a major
drawback from an energy efficiency standpoint, as portable and wearable connected devices commonly
run on batteries, and thus, sending similar information to many destinations (i.e., services) will lead
to a shorter lifetime of the devices. With the proliferation of mobile cloud computing usage in recent
years [24–26], a brokered approach with a service broker being deployed in the cloud can be a good
alternative, since the devices need to connect to the Internet in order to communicate with Internet-based
services anyway. The service broker will handle the message delivery tasks to all interested services,
so that the devices only need to send the collected information once. A publish/subscribe messaging
pattern is advantageous in such a broker, so that services interested in specific information can subscribe
to that particular information and get notification from the broker whenever new information is available.
However, such a service broker can be seen as a single point of failure, since various devices and services
rely on it, and thus, its dependability is very crucial. An information integration platform (IIP), which
acts as a service broker between connected devices and Internet-based services, has been proposed and
developed as a prototype. Several services within the healthcare domain, mainly related to telecare, have
been developed on top of the platform, as well. This paper will briefly describe the main functionalities
of the platform, while focusing more on its dependability aspects. Prototype services on top of it will be
described to put the platform into a deployment context within the healthcare domain.
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2. Related Work

There are several existing works related to the proposed platform that have been conducted in the
past. This section describes some of them briefly.

2.1. Publish/Subscribe Middlewares

The publish/subscribe messaging pattern was introduced more than a decade ago and is still
considered to be one of the most important communications mechanisms, as it is well adapted to the
loosely coupled nature of distributed interaction in large-scale applications. Subscribers have the ability
to express their interest in an event and are subsequently notified of any event that is generated by a
publisher and matches their registered interest [27]. This complies with event-driven architecture, where
an event is asynchronously propagated to all subscribers.

Many existing middleware prototypes make use of the publish/subscribe messaging pattern, both
in research and production arenas. In the research domain, for example, there are Gryphon [28],
Hermes [29], java event-based distributed infrastructure (JEDI) [30], Scribe [31] and scalable internet
event notification architectures (SIENA) [32]. Although these systems provide relatively complex
topic-based, content-based or type-based subscription schemes, they mainly provide programming
language-specific application programming interfaces (APIs), such as for Java or C++.

Within the web services arena, web services eventing (WS-Eventing) and web services notification
(WS-Notification) are two major competing specifications for “big” web services to incorporate the
publish/subscribe message exchange paradigm. Although their architectures differ from each other,
convergence between the two was realized to a certain degree [33]. Web services messenger (WS-
Messenger) [34] is a middleware prototype that aims to mediate WS-Eventing and WS-Notification
specifications by enabling the utilization of existing messaging systems to provide scalable subscription
management and message delivery.

However, there is no standard initiative for RESTful web services to include publish/subscribe for
supporting an asynchronous communications model. Various projects proposed different approaches to
add a publish/subscribe functionality to RESTful web services-based middleware. Universal presence
service (UnivPS) was proposed in [35], which provides publish/subscribe functionality for a presence
service by using REST interfaces in the telecommunications domain. The authors in [36] proposed
a RESTful gateway for integrating smart meters in future houses that makes use of topic-based
publish/subscribe mechanisms through web push techniques, so that any computing device that runs
a web server can be a subscriber that is notified through HTTP POST requests. The Å publish/subscribe
framework [37] was proposed following a content-based subscription scheme where event patterns
can be defined using scripts with many common script languages supported. The RESTful paradigm
is used together with a client event cache so that clients can periodically query the HTTP endpoint.
PubSubHubBub [38] is a protocol for publish/subscribe messaging on the Internet, which extends
Atom [39] and really simple syndication (RSS) [40] protocols for data feeds. It provides push Atom/RSS
update notifications instead of requiring clients to poll the whole feeds. Constrained application protocol
(CoAP) [41] is a RESTful application layer protocol that is intended for use in resource-constrained
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nodes and networks. Through the Observe option [42], a client can conditionally observe a resource on a
CoAP server, only being informed about state changes meeting a specific condition or set of conditions.

2.2. Event-Driven Service-Oriented Architecture

The SOA paradigm has been adopted in different application domains, as it supports modularization
of service components to be reused in heterogeneous platforms, especially using web services
technology [43]. Traditional web services use a point-to-point mechanism between service providers and
service consumers, where service consumers normally request some information from service providers,
and service providers provide the requested information in a synchronous manner. From this perspective,
service providers become information providers. When the number of services increases drastically, this
approach can potentially create management and integration issues, especially when the information
providers are everyday objects.

Event-driven architecture (EDA) [44] defines a methodology for designing and implementing
applications and systems in which events are transmitted between decoupled software components and
services. Information captured from objects can be treated as events, which may trigger some operations
in different services. If a point-to-point approach is used, an event should be propagated to all services
that are interested in using it, and the event source is in charge of carrying out this task. A brokered
approach is better when the number of services that are interested in a specific event grows significantly;
a publish/subscribe mechanism fits well to fill the void.

The enterprise service bus (ESB) [45] concept combines EDA and SOA approaches to simplify
integration tasks, bridging heterogeneous platforms and environments. It facilitates interactions between
service providers and service consumers, both in synchronous and asynchronous manners. There is
no standardized specification for ESB implementations. In general, it should support message routing,
message transformation, protocol mediation and event handling. Many ESB implementations provide
various sophisticated functionalities for integrating new and legacy services and information systems.
However, many of these functionalities require demanding programming efforts, which make ESB as an
integration platform require quite a steep learning curve.

In this paper, a publish/subscribe platform and its working prototype is presented, providing
information through information channels for event-driven information dissemination from everyday
objects to Internet-based services. The platform itself is designed to be flexible enough, following
the SOA paradigm, to accept not only information from physical devices, but also from any type of
information provider. It aims to simplify the information integration process, while still following
the event-driven SOA concept as ESB does, so that the platform can be used out-of-the-box without
modifying anything in the platform programmatically. This is mainly achieved by imposing strong
constraint that both service providers and service consumers should exchange messages through
RESTful web services. Object gateways are responsible for encapsulating captured information from
the objects as HTTP requests to be sent to the platform in case the objects cannot send HTTP requests
directly. An overview of the platform’s functionalities are discussed in the next section.
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3. Conceptual Design

The IIP aims to bridge the communications between everyday objects (i.e., information providers) and
Internet-based services (i.e., information consumers), acting as a service broker between the two entities.
This broker is expected to break the information reusability issue in a vertical “silo” integration approach
that has been chosen by many personal wearable device vendors, including within the healthcare sector;
see Figure 1a.

Figure 1. (a) Point-to-point “silo” integration; (b) Brokered converged integration.

(a) (b)

Patients are faced with various healthcare-related devices from different vendors in their daily
activities, and the information these devices gather is commonly only used by specific services provided
by the devices’ vendors. Other Internet-based services have no or very limited possibilities to utilize
such information, so it is common that similar information is redundantly gathered by different devices
for their own services. This tight coupling between devices and services can be solved if device
vendors provide open APIs that enable service developers to make use of the gathered information in
their services. However, the integration normally still follows a point-to-point approach, as shown in
Figure 1a, where each service is directly communicating with each device that provides the information.
The downside of such point-to-point integration is, from the information providers’ (i.e., device)
perspective, that they have to send newly gathered information to different services that are interested
in using it. This is particularly an issue for battery-powered wireless devices. A brokered approach, as
shown in Figure 1b, tackles this issue by delegating the information distribution task to the broker, so
that information providers only need to send newly collected information once to the service broker. The
service broker provides convergence for information gathering from various different devices that the
patients encounter.

3.1. General Architecture

The IIP, which plays the service broker role, primarily aims to be deployed in the cloud for global
reachability, although it is possible to deploy it in a closed environment, such as in smart homes.
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RESTful web service interfaces are used facing both information providers (i.e., devices) and information
consumers (i.e., Internet-based services), as they are widely used within the web domain. Figure 2a
shows the main functionalities of the IIP.

Figure 2. (a) Main functionalities of the information integration platform (IIP);
(b) Additional functionalities of the IIP.
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In general, the IIP provides RESTful web service interfaces for both information providers (service
providers from the SOA standpoint) and information consumers (service consumers from the SOA
perspective) that manage the information flow from information providers to information consumers.
These resources are divided into two categories with two main web resource-based uniform resource
identifiers (URIs), namely https://root/provider/ and https://root/consumer/. The root part of the URI
refers to the domain of the specific IIP deployment. Information is managed in different information
channels, and information providers should initially create information channels before being able to pass
through information they gather. The IIP provides resources for information providers to register new
information channels with varying parameters, to list their information channels, to update/modify their
information channels, to publish new information to their information channels and to delete/remove
their information channels. In addition, the IIP provides resources for information consumers to list
existing information channels, to subscribe to existing information channels, to update/modify their
subscriptions to existing information channels and to delete/remove their subscriptions to existing
information channels. When an information consumer subscribes to an existing information channel,
it should provide a notification uniform resource locator (URL), which acts as an end-point for IIP
to deliver notifications of newly published information from an information provider who owns that
particular information channel. An information provider can register many information channels, but an
information channel can only be associated with one information provider (i.e., the owner). This makes
the relationship between information provider and information channel a one-to-many relationship. On
the other hand, an information channel can be accessed/subscribed to by many information consumers,
and an information consumer can access/subscribe to many information channels. This makes the
relationship between information channel and information consumer a many-to-many relationship.
These relationships are shown in Figure 3. An article, which was written earlier by the author, describes
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how these functionalities work in a more detailed manner [46], including sequence diagrams and the
contents of message exchanges. This work is a continuation of the author’s previous work, addressing
several aspects in the future work section of the previous article.

In addition to the main functionalities as previously described, the IIP provides resources for access
control between different credentials within the IIP, as shown in Figure 2b.

Figure 3. Relationships between the information provider, information channel (in the IIP)
and information consumer.

1 *

Information Provider Information Channel Information Consumer

* *

Since the IIP acts as a broker between information providers and information consumers,
dependability becomes a crucial aspect that should be investigated. There are several definitions of
dependability, but in general, it is commonly recognized as an integrative concept that encompasses
different attributes. Littlewood and Strigini [47] suggested that dependability attributes include
reliability, safety, security and availability. Avižienis et al. [48] defined attributes of dependability to
comprise availability, reliability, safety, confidentiality, integrity and maintainability. In this latter view,
security is not seen as a standalone attribute, but rather as a combination of three attributes, namely
confidentiality, integrity and availability. This is in line with the confidentiality, integrity and availability
(CIA) triad model [49], which commonly acts as a fundamental guideline to help secure information
systems by providing a measurement tool for security implementations. The following subsections will
cover the dependability aspects of the IIP that relate to security and availability, including scalability.

3.2. Security and Privacy

Information is passed around between information providers and information consumers through
the IIP, and thus, communications between the three entities should be secured. Since REST
interfaces are used in IIP, the communications security relies heavily on the application layer protocol
used by these REST interfaces. In contrast to traditional web services technology that has a solid
standardized security stack, such as WS-Security [50], RESTful web services do not have predefined
and/or standardized security methods. Although RESTful web services were initially designed to be
technology-agnostic [18], it has been commonly associated with the HTTP protocol. Thus, many of its
security features are mainly inherited or simply adopted from the ones used for HTTP-based applications.
Transport layer security (TLS), in the form of HTTP secure (HTTPS), has been the main ground for
RESTful web services security, which provides a secure point-to-point communications channel on top
of the transport layer.

The HTTP basic access authentication scheme, which was initially specified in the HTTP/1.0
specification, provides a simple authentication mechanism to access resources on a web server (based
on URIs) by means of username and password. This scheme is not considered to be a secure method
of user authentication, as the username and password are transmitted through the network as plain text
(unless used in conjunction with other secure transport mechanism, such as HTTPS). Nevertheless, the
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combination of HTTPS and HTTP basic authentication in many cases is enough for securing resources
on a web server, as everything being sent through the wire is encrypted.

From IIP’s perspective (as shown in Figure 2a), information providers are applications that relay
information from devices used by patients to information channels in the IIP. Likewise, information
consumers are applications that consume/use information by subscribing to information channels in the
IIP. To strengthen the privacy of information being exchanged between different applications through
the IIP, access control to information channels should be maintained by the IIP. Identity-based access
control is utilized, and an access control matrix is maintained. Information channels are registered
by information providers (i.e., the owners), and each information channel has exactly one owner who
can publish information (add new information) to the registered information channel (write access to
the information channel). The access control matrix is used for authorizing information consumers to
access/subscribe to information channels (read access to information channels). An information provider
has the privilege of specifying which credentials (e.g., usernames in HTTP basic authentication scheme)
have read access (i.e., can subscribe) to information channels it owns. Table 1 shows an example of an
access control matrix maintained by the IIP.

Table 1. Access control matrix for read access to information channels.

Usernames Channel 1 Channel 2 . . . Channel n

username 1 YES YES NO
username 2 NO YES YES

...
username m NO NO YES

The rows in Table 1 represent the capabilities of users (information consumers) in the IIP, and
the columns represent access control lists of information channels. Information consumers can list
all information channels (by utilizing a catalog service provided by the IIP), but they can only
access/subscribe to information channels listed in their capabilities lists. Since one of the IIP’s main
responsibilities is to manage information channels, the access control matrix can be simplified to access
control lists only (i.e., the columns in Table 1). Whenever an information provider adds/removes a user
(i.e., an information consumer) from/to its allowed user list of a specific information channel it owns,
the IIP will update the access control list of the corresponding information channel. Figure 4 shows the
relationship between an information provider and its registered information channels with their allowed
user lists. The IIP provides additional functionalities, as shown in Figure 2b, for managing access
to information channels. Information consumers are provided with resources for listing information
channels (information channel catalog service), requesting access to information channels and listing
their pending access requests to information channels. Information providers, on the other hand, are
provided with resources for authorizing access to information channels that belong to them (adding
allowed users to their allowed user lists), deauthorizing access to information channels that belong to
them (removing allowed users from their allowed user lists) and listing pending access requests to their
information channels.
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The identity-based access control to different information channels is meant to be used by applications
(both information providers and information consumers). User identities in this case are application
identities, not users of the applications (e.g., patients, nurses). These identities are used for controlling
what information different applications can or cannot use, where the information is generated by other
applications. However, these identities, which are used in the IIP, can also be directly mapped to user
identities in the information consumer applications if required (e.g., a patient ID as a username in the
IIP). Finer degrees of access control can be implemented by information consumer applications, for
example, utilizing a role-based access control (RBAC) to group individual users of the applications.

Figure 4. Allowed user lists of information channels belonging to an information provider.

Information provider

Information channel 1

Information channel 2

Information channel n

...

Allowed users:
user_1, user_2, ..., user_m

Allowed users:
user_1, user_2, ..., user_m

Allowed users:
user_1, user_2, ..., user_m

Register (information, device)
Publish (information)

3.3. High Availability and Scalability

Despite the positive aspects of the IIP as an integration platform between things and services that
provides information distribution convergence, as shown in Figure 1b, centralized service brokers, such
as the IIP, are architecture-wise a single point of failure, since all information providers and information
consumers communicate with and rely on it. High availability becomes a crucial factor for successful
deployment of the IIP to ensure services receive information from devices in a timely manner and
continue to work properly (i.e., reliable). High availability is not a new topic in itself, as typical
client-server systems require servers to run 24/7, with uptime as close to 100% as possible, accepting
requests from client applications. Redundancy is the key to high availability, where service components
are duplicated in different nodes, so that if one service component fails, another similar component will
take over its tasks. In general, high availability can be achieved in either master/slave or master/master
mode. In master/slave mode, a server instance (i.e., the master) is in charge of providing services to the
clients’ requests, while another server instance (i.e., the slave) is running idle. When the master instance
fails, a monitoring entity (i.e., the manager) will hand over the master’s tasks to the slave instance. On
the contrary, all server instances are treated as masters in master/master mode, all providing services to
client requests. The manager is responsible for monitoring and handling any conflict that might arise
between concurrent changes made by different master instances. A load balancer can be added in front
of master instances, so that client requests can be distributed according to the processing capability
of the master nodes (e.g., requests are evenly distributed among master nodes when they have similar
processing capability).

The IIP utilizes master/master mode for high availability with an additional load balancer as proxy
for handling client requests (both from information providers and consumers). This will make the IIP
seem to be a single entity from both the information providers’ and consumers’ perspectives, but its
components are redundantly distributed among different nodes. This approach allows the scalability
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aspect to be incorporated, as well, enabling new nodes to be added when the current serving nodes are
reaching their peak (i.e., fully loaded) in handling incoming requests. Scalability becomes important
when the number of information providers and consumers using the IIP is not fixed. IIP nodes should
be flexible enough to scale horizontally by the addition of new commodity servers when the number of
participating information providers and consumers grows.

With regard to high availability and scalability, a simple three-layer system architecture is used by the
IIP for deployment, as shown in Figure 5.

Figure 5. Three-layer system architecture for IIP deployment.

Load-balancing layer

Application layer

Data layer

Information providers Information consumers

IIP

Load balancing layer

Service layer

Data layer

Information providers Information consumers

IIP ...

...

The load balancing layer acts as a proxy service, where both information providers and consumers
send requests. The requests are then forwarded to one of the application servers in the service layer that
hosts the main logic of the IIP (i.e., the IIP application) based on the load balancing criteria maintained
by the load balancer. In the service layer, the IIP’s functionalities, as shown in Figure 2a,b, are realized
and exposed through RESTful web service interfaces. All information that needs to be stored, such as
information channels, allowed user lists, information channel subscriptions and the actual information
of the information channels, are persisted in the data layer. By adopting this three-layer architecture,
the IIP’s components can be made redundant and can be scaled up according to deployment needs (e.g.,
add application nodes when more processing capability is needed, add data nodes when bigger storage
capacity is required).

4. Prototype Implementation

The IIP and several service prototypes within the healthcare domain have been implemented following
the conceptual design described in the previous section by utilizing open source software. This
section will describe the prototype implementations that have been conducted as proof-of-concept of
the conceptual design.

4.1. The IIP Prototype

The current prototype of the IIP has been implemented as a Java Enterprise Edition (EE) 6 application
in the service layer, following Figure 5, deployed on the Glassfish 3.1.2.2 open source application server.
The open source MySQL Cluster 7.3.2 is used for data storage in a clustered environment for high
availability and scalability in the data layer, and the Java Persistence API (JPA) is utilized for mapping
relational tables in the database to entity objects in the application through Java Database Connectivity
(JDBC). EclipseLink 2.3.2 (JPA 2.0) is used as the JPA provider. HTTPS is employed for encrypting
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all message exchanges between the IIP and both information providers and consumers, and HTTP
basic authentication is utilized for simple authentication to access the exposed web resources in the
IIP. Figure 6a shows the prototype implementation architecture of the IIP.

Figure 6. (a) The IIP prototype implementation architecture; (b) Information channel
representation example in extensible markup language (XML) format.
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<informationChannel>
<infoId>info:782527135</infoId>
<name>GPS</name>
<description>GPS information channel</description>
<deviceId>dev:125503922</deviceId>
<creationDate>2013-05-05T21:37:12</creationDate>
<lastupdateDate>2013-05-05T21:37:12</lastupdateDate>
<ownerUsername>provider1</ownerUsername>
<parameters>

<latitude />
<longitude />

</parameters>
<allowedUsers>

<username>provider1</username>
<username>consumer2</username>
<username>consumer1</username>

</allowedUsers>
</informationChannel>

Allowed user list

(b)

4.1.1. Information Channel Access Management

Information channels are managed internally by the IIP, and they can be created (registered),
modified (updated) and deleted (removed) dynamically through the provided REST interfaces without
having to recompile and redeploy the application. In the current prototype, the representation of
an information channel can be retrieved in extensible markup language (XML) format, as depicted
in Figure 6b. Each information channel maintains its own allowed user list, and the HTTP basic
authentication’s credentials are directly used for accessing information channels. As described in the
previous section, these credentials are used by client applications to authenticate themselves when
communicating with the IIP. IIP users are categorized into three groups, namely admin, provider and
consumer. Admin users are mainly responsible for adding, removing and assigning groups to users
of the IIP. Users in the provider group are by default added to the consumer group, since information
providers should be able to consume their own information (acting as information consumers). When
an information provider creates (registers) a new information channel, its own username is added
by default to the information channel’s allowed user list as the first information consumer that is
allowed to access the information in the information channel. Users in the consumer group that are
not included in the provider group are strictly information consuming-only users, and they cannot
create (register) new information channels. Information consumers can retrieve a list of available
information channels through the information channel catalog service provided by the IIP at URL
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https://root/consumer/catalog/, which can be requested by using HTTP GET, as shown in Figure 7a.
Only the infoId, name and description of information channels are returned in the catalog, while
the ownerships are not revealed. Information consumers can request access to information channels
(read-only) by sending HTTP POST to URL https://root/consumer/authorization/{infoId}/, where infoId
is a unique ID of an information channel. Figure 7b shows a sequence diagram of an information
consumer requesting access to an information channel.

Figure 7. (a) Information channel catalog request sequence diagram; (b) Information
channel access request sequence diagram.
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Access requests to information channels are stored by the IIP, and a resource for listing pending access
requests is made available to information providers through URL https://root/provider/authorization/,
which can be accessed via an HTTP GET request. This resource will return all pending access requests to
information channels belonging to the caller (i.e., the information provider that accesses this resource) in
XML format, as shown in Figure 8a. Information providers can add information consumer users to their
information channels’ allowed user lists (for read access) by sending HTTP POST request to a resource
provided by the IIP at URL https://root/provider/authorization/{infoId}/. The content of this request
should be of type application/x-www-form-urlencoded and contains a parameter called username, which
refers to the information consumer user being added to the allowed user list. This resource will return a
representation of the affected information channel in XML format, as shown in Figure 8b.

4.1.2. High Availability and Scalability

In order to provide a high availability of service, the IIP must run multiple redundant instances of
service-providing entities, so that, if one instance stops functioning, other instances can still serve client
requests. In relation to high availability, the IIP must also be able to scale to larger deployments in
order to accommodate an increasing number of clients using its service. Application server clustering,
which is supported by the Glassfish application server, can address the needs of both high availability and
scalability. All application instances in a cluster, which can reside in different hosts, can be administered
as a single unit, and user sessions can be automatically replicated between application instances in a
cluster. However, following REST principles, the services being provided by the IIP are stateless, so no
client session from each request is maintained by the IIP. All server resource states are persisted in the
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database. From this point of view, clustering at the service layer (following Figure 5) does not give much
advantage, except simpler administration.

Figure 8. (a) Pending information channel access requests listing sequence diagram;
(b) Adding an information consumer user to the allowed user list of an information channel
sequence diagram.
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The open-source Apache web server with the mod jk module is used for load balancing requests
coming from clients (both information providers and consumers, as shown in Figure 5), acting as a
proxy. The load balancing factor is currently set as equal for all IIP instances (hosted in different hosts),
so that requests are forwarded equally (i.e., evenly distributed) among all IIP application instances. New
IIP application instances in different hosts can be added (scaled up) in the service layer and the load
balanced through this proxy.

In the data layer (following Figure 5), MySQL Cluster is used for storing all of IIP’s information.
The IIP application instance in the service layer is responsible for handling requests from clients, but
it does not store any state or information. Instead, it communicates with the back-end database to
store information. MySQL Cluster follows a master/master architecture with no single point of failure,
providing high availability and scalability of data storage and access. It makes use of a specialized
storage engine, called NDBCLUSTER, which is not used in the standard MySQL server, and employs
a synchronous replication to guarantee that data is written to multiple nodes upon committing the data.
Unlike in the service layer, data replication in the data layer is essential to maintain high availability
of data, which, in turn, will make the IIP run properly (i.e., reliable). Three node types of MySQL
Cluster are used in the prototype, namely management, data and SQL. Management nodes are utilized
for managing the entire cluster. Data nodes are mainly responsible for storing and retrieving data from
memory and disk. SQL nodes are used for providing application access to the cluster. Application
instances communicate with the MySQL Cluster through the SQL nodes by using JDBC, which is
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responsible for load balancing queries across the SQL nodes. Figure 9 shows the current prototype’s
deployment architecture to accommodate high availability and scalability aspects.

Figure 9. High-available and scalable IIP prototype deployment.
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The current prototype consists of seven hosts (virtual machines) for deploying different nodes of
the IIP: one for the load balancer, two for application nodes, two for data and SQL nodes and two for
management nodes. By following the deployment architecture in Figure 9, new nodes can be added
when needed.

4.2. Healthcare Services Prototype

Three prototype services have been implemented within the healthcare domain for patient-centric
well-being as proof-of-concept. The services are developed as information consumers that make use
of information from the IIP. Figure 10 shows an end-to-end perspective of the developed service
prototypes. Information is gathered from several devices relayed through an application gateway running
on an Android smartphone and forwarded to the IIP. All implemented services subscribe to information
channels of interest and provide services to different healthcare actors.

Figure 10. End-to-end perspective of implemented service prototypes.
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Two commercial off-the-shelf wireless Bluetooth medical devices are currently used for gathering the
vital signs (i.e., Nonin Onyx II 9560 for blood oxygen saturation (SpO2) and pulse rate data, Vitalograph
copd-6 bt for spirometry data).

4.2.1. Remote Health Monitoring Service

The remote health monitoring service is implemented as a web application that is accessible by
the users (e.g., doctors, nurses) via web browsers. It utilizes Java servlet technology for handling
incoming HTTP POST notifications from the IIP and simple hypertext markup language (HTML)
with asynchronous JavaScript and XML (AJAX) for presenting the output to the users. This service
shows the latest measurements information from the remote patient, which currently includes pulse
rate, blood oxygen saturation (SpO2), spirometry and location. The service subscribes to these four
information channels and receives almost real-time notifications from the IIP. At the patient’s side, an
android application has been implemented for gathering measurements from a wireless pulse oximeter
and spirometer devices through Bluetooth connections. This application sends all measurements to
their corresponding information channels in the IIP. Location information is gathered directly by the
Android application from the smartphone’s built-in global positioning system (GPS) sensor. The web
application’s user interface is shown in Figure 11. By utilizing this service, healthcare personnel can
monitor the patient’s health condition remotely. Since mobile devices are used at the patient’s side, the
patient is not restricted to measurements from a specific location.

Figure 11. Remote health monitoring service user interface.

4.2.2. SOS-SMS Service

This service provides emergency situation notifications via short message service (SMS) to specific
recipients, enabling the patient to inform selected persons (e.g., relatives, friends, nurses) that he/she
needs immediate help. The ideal interface to the patient would be a physical alarm button that can be
easily pushed in case of emergency. For simplification, an Android application that mimics an alarm
button is used in the current prototype. An SOS information channel is registered in the IIP, and a
server-side application, based on Java servlet technology, is implemented to subscribe and to handle
HTTP POST notifications from the IIP whenever the patient sends SOS messages. A simple web page is
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provided to the patient to administer which mobile numbers should be notified in case of emergency and
also to enable or disable this service. Figure 12a shows a web page for the patient to enable emergency
notifications via SMS to a list of mobile numbers, and Figure 12b shows a web page confirming that
the service is enabled. When the patient enables this service, the web application subscribes to SOS
information channel in the IIP for notifications of emergency events. In reverse, the web application
unsubscribes from SOS information channel when this service is disabled by the patient.

Figure 12. (a) Web interface for enabling specific mobile numbers to be notified in the
case of emergency; (b) Web interface confirming that SOS-short message service (SMS)
is enabled.

(a) (b)

4.2.3. SOS-Social Media Service

This service is similar to the SOS-SMS service, except that it uses social media as the emergency
notification medium. Social media have been used extensively in the last couple of years, and can be
extended further to support emergency situations for the patient. People within the patient’s social media
circle can be the first responders in case of emergency (e.g., due to close proximity to the patient).
A prototype that uses a Twitter account to disseminate emergency information has been implemented,
utilizing the same SOS information channel used by the SOS-SMS service. The author’s Twitter account
is used in the current prototype. This service can be enabled or disabled by the patient through a web
page similar to the SOS-SMS service (the two services are deployed as different applications). Figure 13a
shows a web page confirming that the SOS-Twitter service is enabled, and Figure 13b shows a tweet of
an emergency notification from the patient (i.e., the author).

Figure 13. (a) Web interface confirming that SOS-Twitter service is enabled; (b) A tweet of
an emergency notification.

(a) (b)
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4.3. The IIP Web Console Prototype

The IIP’s functionalities are exposed as RESTful web services. While this can be seen as a positive
way to enable brokered machine-to-machine (M2M) communications, human intervention is rather
difficult to accommodate. Although communications between devices, the IIP and services should
ideally be automated, human involvement is sometimes needed, especially during the development
process of new services. A web console for the IIP has been implemented to ease the management
of resources in the IIP (e.g., information channels, devices, subscriptions, access control) for both
information providers and consumers with simple HTML pages. This web application utilizes the same
REST interfaces that information providers and consumers use. Figure 14a shows the main page of the
web console, which contains functionalities for both information providers and consumers. Figure 14b
shows a web page for information providers to list their information channels. Each resource requires
the user to enter HTTP basic authentication credentials like normal applications do.

Figure 14. (a) The IIP web console’s main page; (b) A web page for information providers
to list their information channels.

(a) (b)

5. Evaluation

The implemented IIP prototypes, both standalone (i.e., all components in one dedicated host) and
clustered (i.e., the components are spread in several different hosts), have been deployed and tested to
work as intended in laboratory environment. This section will briefly present several aspects of the IIP
that have been tested and verified, as well as performance benchmarking, which provide inputs on how
to further improve the current implementation.

5.1. Information Channel Access Management

As described in the previous section, HTTPS is used for securing message exchanges between
information providers, consumers and the IIP, by means of encryption. This will minimize the success
rate of man-in-the-middle attacks. To maintain information privacy between applications, HTTP
basic authentication credentials are directly used in IIP for authorizing applications to access different
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information channels. Information consumers that are not listed in an information channel’s allowed
user list will not be able to access or subscribe to that particular channel. Figure 15a shows a test case
where an HTTP POST request is sent from a test client application, acting as an information consumer,
to the IIP for subscribing to an information channel with infoId info:829055923. The username, which
is used by the information consumer, is listed in the information channel’s allowed user list, and thus, a
200 OK response is returned by the IIP, containing a representation of the subscription in XML format in
its body. Figure 15b shows another test case where similar HTTP POST request for subscription to the
same information channel is sent from an information consumer. This time, however, the username used
by the information consumer is not listed in the information channel’s allowed user list, and therefore,
the IIP returns a 403 Forbidden response with an XML-formatted message in its body, informing that
the username is unauthorized to subscribe to the targeted information channel. All messages in both
tests (Figure 15a,b) are captured using Wireshark, and HTTPS is not used (otherwise all packets are
encrypted and cannot be interpreted). It can be concluded from the conducted tests that the implemented
information channel access management scheme by directly utilizing HTTP basic credentials works
as intended.

Figure 15. Wireshark captures of: (a) An information consumer successfully subscribes to
an information channel; (b) An information consumer is rejected when trying to subscribe
to an information channel.

HTTP/1.1 200 OK
X-Powered-By: Servlet/3.0 JSP/2.2 (GlassFish 
Server Open Source Edition 3.1.2.2 Java/Sun 
Microsystems Inc./1.6)
Server: GlassFish Server Open Source Edition 
3.1.2.2
Content-Type: application/xml
Transfer-Encoding: chunked
Date: Fri, 18 Oct 2013 16:33:26 GMT

<?xml version="1.0" encoding="UTF-8" 
standalone="yes"?><subscriptions><subscription>
<subscriptionId>sub:184684472</
subscriptionId><name>Sub</name><description>A 
subscription</
description><infoId>info:829055923</
infoId><notificationUrl>http://
www.dafferianto.info/</
notificationUrl><creationDate>2013-10-
18T18:33:26</creationDate><lastupdateDate>2013-
10-18T18:33:26</
lastupdateDate><ownerUsername>iip3</
ownerUsername></subscription></subscriptions>

POST /IipDev/consumer/subscription/ HTTP/1.1
Content-Length: 112
Content-Type: application/x-www-form-urlencoded
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Connection: Keep-Alive
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afferianto.info%2F

Request

Response

(a)

HTTP/1.1 403 Forbidden
X-Powered-By: Servlet/3.0 JSP/2.2 (GlassFish 
Server Open Source Edition 3.1.2.2 Java/Sun 
Microsystems Inc./1.6)
Server: GlassFish Server Open Source Edition 
3.1.2.2
Content-Type: application/xml
Transfer-Encoding: chunked
Date: Fri, 18 Oct 2013 16:43:57 GMT

<?xml version="1.0" encoding="UTF-8" 
standalone="yes"?><AuthorizationError>You are 
not authorized for this action!</
AuthorizationError>

POST /IipDev/consumer/subscription/ HTTP/1.1
Content-Length: 112
Content-Type: application/x-www-form-urlencoded
Host: 192.168.1.3:8080
Connection: Keep-Alive
Authorization: Basic 
c29tZXRoaW5nOnNvbWV0aGluZw==

infoId=info%3A829055923&name=Sub&description=A+
subscription&notificationUrl=http%3A%2F%2Fwww.d
afferianto.info%2F

Request

Response

(b)

The tests were conducted manually, since they were only intended to verify whether the access
management implementation worked correctly. Automated unit testing could be used instead for a
more formal way of verification, and protocol conformance testing could be applied, as well, to find
out whether the implemented features comply with the chosen standards.
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5.2. High Availability and Load Balancing

Seven hosts (machines) are used for deploying the clustered prototype of the IIP, where one is utilized
as a proxy server for load balancing requests from both information providers and consumers, two
are used for deploying the main applications that handle requests forwarded (load balanced) by the
proxy/load balancer host, another two are employed for data and SQL nodes of the MySQL Cluster that
act as the main storage for the IIP and the last two are utilized for management nodes of the MySQL
Cluster. This set-up conforms with Figure 9 and can be considered as the minimum requirement for IIP’s
high availability, where all nodes have exactly one redundant backup (except the load balancer). New
nodes can be added when deemed needed. A test was conducted to review the general functionality of
the load balancing between the redundant nodes being deployed. A test client application was developed,
playing the role of information provider that keeps sending one publication message per second to one of
its information channels through the load balancer host. Initially, both application servers’ hosts are up
and running, and the load balancer host distributes the requests evenly to both application servers. As can
be seen in Figure 16a, the load balancer host (acting as a proxy) successfully forwards all requests evenly
to both application servers’ hosts (i.e., 53 and 52 requests for worker1and worker2, respectively). One of
the two application servers’ hosts was then turned off during the test, leaving only one application server
available for handling all requests. From Figure 16b it can be seen that the load balancer host forwards
all requests to the available application server’s host (worker2), and worker1’s state was changed to error.
From this test, it can be concluded that the redundancy of the application nodes works well for providing
highly available service, while enabling new nodes to be added (horizontal scaling) and load balanced to
serve incoming requests.

Figure 16. Snapshot of mod jk status worker: (a) Both application nodes are up and running;
(b) One application node (worker1) is down.

(a) (b)

In the data layer, synchronous replication among data nodes is handled automatically by the MySQL
Cluster, which is monitored and managed by the management nodes. Figure 17a depicts a snapshot of
a MySQL Cluster management client that describes the most current configuration of the cluster and
the status of each node. In this set-up, any data committed from the service layer is inserted into both
data nodes synchronously. One of the two data and SQL nodes’ hosts (with IP address 192.168.1.7) was
shut down. The MySQL Cluster then saves all data and writes to only one existing data node, as shown
in Figure 17b. When the host is up and running again, MySQL Cluster automatically synchronizes all
changes to the newly running data node.
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Figure 17. Snapshot of ndb mgm client showing the most current MySQL Cluster
configuration: (a) Both data and SQL node hosts are up and running; (b) One data and
SQL node host (192.168.1.7) are down.
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(b)

5.3. Performance Benchmark

A dedicated multi-threaded client application was developed for performance benchmarking. The
application acts as an information provider that constantly publishes information to the IIP with a
predefined time interval for a certain period. Another client application, which subscribes to an
information channel that belongs to the information provider application, was developed to receive
notifications from the IIP, playing the role of information consumer. The main aim of this evaluation
was to compare the performance of the standalone IIP prototype with the clustered version in terms of
one complete flow of publication and notification average time. In addition, comparisons between the
inclusion of the security and privacy scheme and also without it were conducted.

All experiments were carried out in a laboratory environment, where all hosts (machines) were
deployed in an isolated network with a switch as the connecting point (there is no connection to an
external network, such as the Internet). Experiments in a standalone set-up involve three hosts: one for
the information provider application, one for the IIP (all-in-one, single point of failure) and one for the
information consumer application. Experiments in a clustered set-up make use of nine hosts: one for
the information provider application, seven for the IIP (as described earlier) and one for the information
consumer application. All hosts that are used for deploying the IIP (both the standalone version and
its clustered counterpart) have similar specifications (i.e., Intel Core 2 Duo 2.4 GHz processor, 8 GB
RAM running Linux Ubuntu 12.04 LTS). Another two hosts that deploy the information provider and
consumer applications also have similar specifications (i.e., Intel Core 2 Duo 2.4 GHz processor, 4 GB
RAM running Linux Ubuntu 12.04 LTS). All application servers’ configurations are kept similar with
almost no optimization from their default settings to ensure fairness in the comparisons.

5.3.1. Publication Rate as a Variable

Four experiments were conducted in this category. All variables are fixed, except the publication
rates of the information provider application, which were varied between one and 40 publications per
second, and all publication and notification messages contain only one parameter. The first experiment
applied the security measures (i.e., HTTPS and HTTP basic authentication) in a standalone IIP set-up,
while the second experiment did not incorporate any security mechanism, also in a standalone set-up.
The third and fourth experiments were conducted in a clustered IIP set-up, where security was applied
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in the third experiment and was ignored in the fourth experiment. Each measurement in all experiments
lasted five minutes, generating 300 to 12,000 data messages (depending on the publication rate). Each
measurement was performed three times to ensure data consistency, and the first 1% of the captured
data is removed from every measurement to avoid the start-up effect of the application servers in serving
incoming requests. All measurement data were averaged and plotted alongside confidence intervals at
the 95% confidence level.

Figure 18. Publication and notification time comparisons with publication rate as variable:
(a) Standalone secure vs. insecure; (b) Clustered secure vs. insecure; (c) Secure standalone
vs. clustered; (d) Insecure standalone vs. clustered.

100

125

150

175

200

225

250

275

300

ca
tio

n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Standalone, HTTPS + HTTP Basic authentication Standalone, no security

0

25

50

75

100

125

150

175

200

225

250

275

300

1 5 10 15 20 25 30 35 40

Pu
bl
ic
at
io
n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Publications per second

Standalone, HTTPS + HTTP Basic authentication Standalone, no security

(a)

40

50

60

70

80

90

100

110

120

130

ca
tio

n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Clustered, HTTPS + HTTP Basic authentication Clustered, no security

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 5 10 15 20 25 30 35 40

Pu
bl
ic
at
io
n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Publications per second

Clustered, HTTPS + HTTP Basic authentication Clustered, no security

(b)

100

125

150

175

200

225

250

275

300

ca
tio

n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Standalone, HTTPS + HTTP Basic authentication Clustered, HTTPS + HTTP Basic authentication

0

25

50

75

100

125

150

175

200

225

250

275

300

1 5 10 15 20 25 30 35 40

Pu
bl
ic
at
io
n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Publications per second

Standalone, HTTPS + HTTP Basic authentication Clustered, HTTPS + HTTP Basic authentication

(c)

30

40

50

60

70

80

ca
tio

n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Standalone, no security Clustered, no security

0

10

20

30

40

50

60

70

80

1 5 10 15 20 25 30 35 40

Pu
bl
ic
at
io
n 
+ 
no

tif
ic
at
io
n 
tim

e 
(m

s)

Publications per second

Standalone, no security Clustered, no security

(d)

Figure 18a shows a comparison of total average publication and notification times between the secured
and non-secured standalone IIP set-ups. It can be seen that the average difference at one publication per
second is about 85 ms, which is the rough estimate of the security scheme’s overhead in the standalone
set-up. This average difference does not change much with the increase of the publication rate until
around 30 publications per second. From there, the difference gap grows larger significantly.

Figure 18b shows a comparison of similar latency measurements as in Figure 18a, except that the
compared experimental results are between secured and non-secured clustered versions of the IIP. In
a clustered set-up, the starting difference between secured and non-secured implementations is about
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90 ms, slightly higher than in the standalone set-up. This difference gap is maintained in a relatively
stable manner up to 40 publications per second. From Figure 18a,b, it can be seen that the clustered
version of the IIP can handle the increase of the publication rate better than its standalone counterpart,
especially with the security scheme being applied.

A latency comparison between secured standalone and clustered IIP set-ups is depicted in Figure 18c.
The average difference gap is stabled at about 20 ms up to around 25 publications per second, and then,
it grows more than two times. This can be viewed as the lesser ability of the standalone IIP set-up in
handling faster publication rates compared to the clustered set-up.

Figure 18d shows a latency comparison for publication and notification between non-secured
standalone and clustered IIP set-ups. The average difference stays almost unchanged at about 20 ms
from one to 25 publications per second, and the gap slightly widens as the publication rate increases.

From the four experiments conducted in this category (i.e., publication rate as a variable), it can
be concluded that the clustered deployment of the IIP handles higher rates of publications better than
the standalone set-up. Even at lower rates, the total average latency for publication and notification
are smaller in the clustered set-up, although only by a small margin. The inclusion of the security
scheme adds additional overhead to the overall processing times in both standalone and clustered set-ups.
The confidence intervals are very small compared to the mean values in all experiments. However, all
experiments were carried out with only one parameter inside the publication and notification messages.
In the next category of experiments, the number of parameters will be used as a variable.

5.3.2. Number of Parameters as a Variable

Experiments in this category were carried out to see how a different number of parameters affects
the overall performance of the implemented platform in both standalone and clustered versions. In
Figure 10, for example, the SpO2, the pulse rate and the SOS information channels use one parameter
each; the location information channel has two parameters, while the spirometry information channel
has 13 parameters for each measurement.

Four experiments were conducted in this category, but unlike the previous category, the publication
rate is fixed at one publication per second in order not to load the application servers. The number of
parameters is varied instead, ranging from one to 700 parameters. Each measurement in all experiments
lasted five minutes, generating 300 data. Each measurement was performed three times to ensure data
consistency, and the first 1% of the captured data is removed from every measurement to avoid the
start-up effect of the application servers in serving incoming requests. All measurement data are
averaged and plotted alongside their confidence intervals at the 95% confidence level, just like in the
previous category.

A comparison of total average publication and notification times between the secured and non-secured
standalone IIP deployments is shown in Figure 19a. The time difference starts at about 85 ms when
one parameter is used, and the gap increases almost linearly to around 125 ms when 700 parameters are
used. This gap represents the implemented security mechanism’s overhead in the standalone IIP set-up.

Figure 19b depicts a comparison of publication and notification latency between the secured and
non-secured clustered IIP set-ups. The time difference is stabled across all measurements at about 90 ms.
From Figure 19a,b, it can be seen that the additional overhead of the security mechanism does not change
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much with the increased number of parameters being used for both standalone and clustered deployments
of the IIP.

Figure 19. Publication and notification time comparisons with the number of parameters as
the variable: (a) Standalone secure vs. insecure; (b) Clustered secure vs. insecure; (c) Secure
standalone vs. Clustered; (d) Insecure standalone vs. clustered.
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A comparison of the average latency difference between secured standalone and clustered IIP
deployments is shown in Figure 19c. When only one parameter is used, the clustered set-up outperforms
its a standalone rival with around a 20 ms difference. However, the clustered deployment suffers
more latency overhead compared to the standalone version with the increasing number of parameters
being used. With 100 parameters used, the clustered deployment performs worse than its standalone
counterpart by around 365 ms, and it is further worsened as the number of parameters being used
is increased.

Figure 19d shows a comparison of average publication and notification times between non-secured
standalone and clustered IIP set-ups. Almost similar to Figure 19c, the clustered version in this
experiment wins in terms of the latency difference compared to its standalone counterpart by about 20
ms when only one parameter is used, but it suffers when the number of parameters increases. When
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100 parameters are used, the clustered set-up falls short by around 360 ms in latency performance
compared to the standalone deployment.

From the four experiments in this category (i.e., the number of parameters as the variable), it can be
concluded that the clustered set-up of the IIP performs better than the standalone set-up when the number
of parameters being used is low. The latency increase rate is higher for the clustered version compared to
the standalone deployment as the number of parameters being used grows. This can be seen as a direct
impact of the synchronization process between data nodes in the data layer, since synchronizing large
amounts of incoming new data takes much more time than writing directly to one data store. The use
of the security mechanism adds overhead to both standalone and clustered set-ups, but the processing
times are not affected significantly with the increasing number of parameters being used. The confidence
intervals are very small compared to the mean values in all experiments.

6. Conclusions and Future Work

An information integration platform (i.e., the IIP) has been designed and developed to bridge
communications between everyday objects and Internet-based services, breaking the traditional vertical
“silo” approach of integration. This broker platform follows an event-driven SOA paradigm with
a publish/subscribe messaging pattern and exposes its functionalities through a set of RESTful web
services. An identity-based access control is used and has been implemented in the prototype to
ensure information privacy between service clients (i.e., information providers at the everyday objects’
side and information consumers at the Internet-based services’ side). Only the owners of information
channels in the IIP can publish new information to their information channels (i.e., write access), and
only information consumers that are listed in an information channel’s allowed user list can subscribe
to that particular information channel for notifications (i.e., read access). Information consumers can
request access to different information channels, and information providers have full rights to add
or remove information consumers from/to the allowed user lists of information channels they own.
Three services within the healthcare domain have been developed, namely remote health monitoring
service, SOS-SMS service and SOS-social media service. This shows how the platform can be utilized
to enhance quality of life by means of novel personalized services for patients, in particular, and to
society, in general. To avoid a single point of failure, a three-layer deployment architecture of the
IIP has been implemented, supporting high availability and scalability by employing redundancy of
service components, as well as clustering technology with load balancer. The IIP prototype has been
tested to work as intended, and some experiments have been conducted to compare the average total
publication and notification times between the standalone IIP deployment and the clustered version, as
well as between the inclusion of the security scheme and without it. From the experiments with the
current prototypes, it can be concluded that the clustered deployment of the IIP can handle better higher
publication rates compared to its standalone counterpart when the number of parameters being used is
low. The standalone set-up outperforms the clustered version when the number of parameters increases.
In both cases, the incorporation of the security mechanism adds latency overhead.

The HTTP protocol is used by the IIP for message exchanges with both information providers and
consumers, due to its pervasive usage on the web. Newer and lighter protocols that are specifically
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designed for embedded devices, such as the CoAP and the message queue telemetry transport (MQTT),
are planned to be supported in the next version of the IIP, especially for interfacing with information
providers. JavaScript Object Notation (JSON) will also be supported in the next implementation iteration
as an alternative data format to the currently used XML, so that information consumers can choose which
data format they prefer for the notifications.

The developed healthcare services described in this article are rather simplistic and straightforward,
utilizing only a handful of devices as data sources. On the other hand, the IIP is designed to
mediate a wide spectrum of information from a variety of information providers, supporting different
application areas. More sophisticated context-aware services that combine information from various
different devices, such as home appliances in a smart home environment to assist patients with living
independently in their homes, are planned to be developed in the near future.

Optimizations in all three layers of the proposed architecture for deployment are planned to be
conducted in the continuation of this work, and further security and privacy enhancements will be
investigated and incorporated in the next prototyping round. Additionally, the current IIP prototype
is planned to be used in several pilot projects that include real-life patients within the healthcare domain
in collaboration with several hospitals and partner companies. In turn, they will provide feedback on
how the system could further be improved.
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