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Abstract An emergency requiring evacuation is a chaotic
event, filled with uncertainties both for the people affected
and rescuers. The evacuees are often left to themselves
for navigation to the escape area. The chaotic situation
increases when predefined escape routes are blocked by a
hazard, and there is a need to re-think which escape route is
safest. This paper addresses automatically finding the safest
escape routes in emergency situations in large buildings or
ships with imperfect knowledge of the hazards. The pro-
posed solution, based on Ant Colony Optimisation, suggests
a near optimal escape plan for every affected person —
considering dynamic spread of fires, movability impair-
ments caused by the hazards and faulty unreliable data.
Special focus in this paper is on empirical tests for the pro-
posed algorithms. This paper brings together the Ant Colony
approach with a realistic fire dynamics simulator, and shows
that the proposed solution is not only able to outperform
comparable alternatives in static and dynamic environments,
but also in environments with realistic spreading of fire and
smoke causing fatalities. The aim of the solutions is usage
by both individuals, such as from a personal smartphone of
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one of the evacuees, or for emergency personnel trying to
assist large groups from remote locations.
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1 Introduction

Evacuation planning is challenging due to the typically
chaotic and un-organised situation occurring in a crisis
situation. Unfortunately, decision makers often have an
incomplete picture of hazards and potential escape routes.
The situation is further complicated by the fact that people
affected are often left alone without any contact with rescue
personnel, or let alone a reliable overview of the ongoing
crisis situation. In addition, the chaotic and dynamic nature
of crisis situations quickly changes which path is the best
escape route as hazards, such as fires, rapidly develop.
There is no doubt that decision making in crisis situa-
tions needs to be timely to minimize the consequences of
hazards at hand. However, it is often difficult for the peo-
ple affected to determine what are the best decisions in an
evacuation situation. In fact, in most situations the evacuees
are not aware of which path to follow for an escape. This
is because evacuees either received insufficient information
from the rescuers or are unfamiliar with the layout of the
affected compound and locations of the hazards. Similarly,
the emergency personnel often lack an overview of where
people are located and which rooms are affected by hazards.
This makes evacuation planning particularly difficult [1, 2].
This paper is part of a larger project! working on using
smartphone technologies in emergency situations. In this

ISmartRescue: http://ciem.uia.no/project/smartrescue

@ Springer


https://core.ac.uk/display/225890897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:morten.goodwin@uia.no
mailto:ole.granmo@uia.no
mailto:jaziar.radianti@uia.no
http://ciem.uia.no/project/smartrescue

M. Goodwin et al.

project, the smartphones are used to communicate to and
from people affected by crisis situations. This enables res-
cue personnel to get an overview of the people escaping
such as information on how they move. Further, the rescuers
can communication how to best escape to the evacuees. In
addition, the sensor information available in smartphones
will communicate presence of hazards using camera, GPS,
gyroscope, etc. This provides a threat map which is support
both the rescue personnel and as a method to automatically
determine the best escape routes [3].

The project has three main steps outlined in the sections
below:

1. Collect information.
2. Calculate escape plan.
3. Communicate the plan to the people affected.

1.1 Collect information

Initially in a crisis situation, it is essential to get an overview
of the people affected and the hazards present.

The aim is that prior to a crisis situation, for example
when people embark on a cruise ship, they will have the
option to download a mobile application for their phone.
This application will in a crisis situation utilize the available
sensors and communicate it to a central location. This way,
the system, including emergency personnel, will be aware of
life saving information such as locations of people, whether
people are moving, the brightness in each room (indicat-
ing hazards such as fire or smoke). The application aims
at automatic activation rather than being actively started by
evacuees. This allows the application to automatically start
when hazards are detected or communicated from a central
location without any activation by the people affected.

1.2 Determine plan

Calculating the escape plan is the main contributions of this
paper. Mathematical models have shown to be valuable for
escape planning in large complex building with many peo-
ple [4-8], but the approaches in the literature are mainly
assuming a static representation of hazards. In contrast, our
system will, based on available information, calculate the
best escape plan and guide each affected person away from
any potential hazard, as well as distributing the people to the
proper escape areas even when the hazards change.

1.3 Communicate plan
When an adaptive plan is available, it should be com-
municated to the affected people, which can be done in

two main ways. The primary method aimed for in the
SmartRescue project is for emergency personnel to actively
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communicate the plan to the evacuees through any available
means, such as loud speakers and communication directly to
each affected person via the smartphone applications. Fail-
ing this, the smartphone applications should automatically
present the plan using simple visual and verbal steps such
as “turn around”, “go left” and safely guide people to an
escape area.

It is also worth noting that the collection, determination
and communication is decentralized without a need for a
central network such as WiFi or GPS — which may be
unavailable in emergency situations. The phones will com-
municate through so-called ad-hoc networks, which enables
communication directly between phones without any cen-
tral network available [9]. Further, decisions can be made
when only part of the network is available such as when two
groups are physically separated on board a ship without any
common network connection between them.

Unfortunately, even in situations where an optimal
escape plan exists and every person affected is aware of the
plan, the human mind works so that not everyone will fol-
low the plan [10]. Most significantly, in a crisis situation,
factors such as panic spread, people pushing, jamming up
and overlooking alternative exits prevent a crowd from fol-
lowing an optimal plan [11, 12]. Therefore, it is important
that information about both hazards and people are con-
tinuously updated to always provide the best overview for
rescue personnel and an update plan.

1.4 Outline

The rest of the paper is organized as following. Section 2
defines the problem to be solved as an optimisation problem
with hazard functions, including functions based on realistic
spread of fire and smoke. Section 3 continues with intro-
duction of the ant colony optimisation with focus on finding
safe escape routes. The approach and empirical results from
five distinct environments are presented in Section 4 Lastly,
Section 5 concludes this paper and maps out further work.

2 Problem formulation

Escape planning from a complex building or a large ship can
be regarded as a combinatorial optimisation problem. In line
with common practice [6], we treat the building layout as a
bidirectional planar graph G(V, E). Each possible location
i is connected with a vertex v; € V, and each potential flow
from vertex v; to v; is represented by an edge ¢; ; € E.

In addition we define a function A (v;, t) representing the
hazard for v; at time ¢, so that the function A (v;, t) returns
probability values representing the likelihood of hazards.

The escape area is a vertex v, € V (sink), and the people
are located in any vertex vy € V (any vertex is a source).
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Further, all routes from vy to v, in the search space are
defined as S.

The aim of the application is to find a route sx € S
so that f(s*,¢t) < f(s,H)Vs; € S, where f(s,t) = 1 —
IIy,es(1 — hA(v;, t)). Le. minimizing the probability that a
person encounters a hazard in at least one of the vertexes in
the chosen route at time ¢.

2.1 Hazards

The hazard functions are based upon known observations
from indications and estimations. If a hazard h(v;, t) = 1, it
means that there is a known hazard and vertex v; is unsafe
at time ¢, and all evacuees should be routed away from the
corresponding room. Similarly, 4 (v;, t) = 0 means that v; is
a known safe vertex. All other hazards are estimated based
on known observations.

This paper presents three distinct variants of the hazard
function. For clarity, these are noted as Y (vi, 1), W2 (vi, 1)
and 3 (vi, t). The algorithms do not have knowledge of how
the functions behave, let alone which variant of the hazard
is used on the model. This is because hazard propagations
are complicated and require significant calculation to be
correct. Hence, all algorithms assume an unknown stochas-
tic function, A (v;, t), which returns hazard probabilities. In
other words, from the view of the algorithm all functions are
treated equally and only noted as & (v;, 1).?

In its simplest form, hl(v;, 1) is a function defined as
a uniform random function yielding a probability in [0, 1],
which means that ¢ is ignored. Section 4.1 presents results
from this scenario.

The initial function is extended in two ways. Firstly,
h(vi, 1) is extended to h%(v;, 1) by making it time depen-
dant. This means that the function is initially based on
random uniform variables. Consequently, it updates accord-
ing to the following rule with a global n representing time
shifts:

R, 1) = 1—h2(vi, t — 1)V, € Vift modn =0

1
n2(vi, 1) = o

hz(v,-, t — )Yy, € V otherwise
Thus, at a given time n the environment updates the function
in line with (1) and makes all hazards exactly opposite. This
produces a particularly difficult situation since an (near)
optimal route changes to as far away from optimal as possi-
ble, and algorithms which have learnt an optimal route will
need to completely relearn its learnt behaviour. Results from
this hazard function are available in Section 4.2.

Secondly, the function h3(v;, 1) is defined to represent
realistic probabilities of fatal hazards based on exposure

2This is not to be confused with that hazard propagations are ignored.
In fact, paper shows that even without the complicated hazard propa-
gations, the learning algorithms learn and predict the hazards.

levels of thermal radiation® and temperature emitted by
the fire[ 13—15]. This extension relies upon timely measure-
ments (or estimations) of temperature and radiation levels in
emergency situations. Such measurements can be collected
from fixed or mobile sensors [3].

Unfortunately, the literature only provides information
on maximum possible exposure time for fixed temperatures
and radiation level, which does not fit with the probabilistic
n3 (vi, t) function. This is solved by converting the exposure
time of temperature and radiation to uniformly distributed
probabilities and combined as one overall hazard function.

It is worth noting that this is a simplification of real-
ity. People’s abilities to withstand hazards depend on many
factors including age, health, gender and time spent in the
hazard. Further, people have thresholds meaning that stay-
ing in a hazardous room a short time may not be fatal,
but staying there longer is likely to cause fatalities. The
functions in this paper are no way meant to be an overall rep-
resentation of survivability. The functions are rather meant
to show the probability of detecting fatal hazards which are
likely to cause death or incapcitations. Whether or not peo-
ple will actually die from the fatal hazards are out of scope
of this paper.

The concrete mapping is done by creating two functions,
c(vi, t), the probability of an evacuee having fatal impact
due to high temperatures in room v; at time ¢ and r(v;, 1),
the probability of an evacuee having a fatal impact because
of high radiation levels in room v; at time ¢. The c(v;, t) and
r(v;, t) functions are formally defined as following:

The probability of a fatal impact due to high temperatures
in room v; is based on the levels in [14], defines as:

—— if for v;140°C > temperature at time t
300 s

ci)=y___ if for v;140°C > temperature > 80°Cat time t
3600 s

0 otherwise

@)

which in layman’s terms state that the probability of an
evacuee encountering a fatal hazard in a room with tem-
perature between 80 and 140 °C is for every second stayed
there ﬁ. If a room has temperatures above 140°C, the
probability of a fatal hazard is ﬁ for every second stayed
there.

3Note that radiation in this paper refers to thermal radiation emitted by
fire, and should not be confused with any other form of radiation such
as nuclear radiation.
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Similarly, the probability a fatal impact because of of
radiation in room v; is defined as:

1
05 if for v; 6.0k W/m2 > radiation at time t
s

if for v; 6.0k W/m2 > radiation > 4.0k W/mzat time t

r(vi.1) =1 1805

00 if for vi4.0kW/m? > radiation> 1.6k W/ m>at time t
s

0 otherwise

3)

which in layman’s terms mean that with radiation expo-
sure between 1.6 and 4.0 kW /m? evacuees encounter a fatal
hazard with a probability ﬁ per second, between 4.0 and
6.0 kW /m? they encounter a fatal hazard with probability
ﬁ and exposures above 6.0 kW /m? have a probability of
impact of %.

The functions are visually shown in Fig. 1.

Finally, the hazard function, /3 (v;, 7) is simply the prob-
ability of either c(v;, t) or r(v;, t) occurring:

W (i, 1) = r(vi, 1) + c(ui, 1) = r(vi, 1) % c(vi, 1) “

In other words, the hazard for a room i is defined as
the probability of a person either encountering fatal heat
radiation or temperature.

Sections 4.3, 4.4 and 4.5 presents results from this hazard
function.

2.2 Smoke

In fire situations, smoke causes significant challenges for
the people involved both due to direct fatalities, e.g. car-
bon monoxide poisoning of the people affected, and because
soot from the smoke reduces the distance of evacuees’

vision. In fact, it is so that for a successful evacuation, there
should be a minimum of 3 meters of vision in primary com-
partments and 10 meters in predefined escape routes [13].
Hence, when exposed to a fire, people are able to exit their
rooms even with visions down towards 3 meters, but require
10 meters of vision to follow an escape plan in corridors
leading directly to an escape area.

To compensate for this in our model, we define a time
dependant function m(v;, t) which indicates whether or
not it is possible for the evacuees to move due to smoke
obscuration:

trueif corridor vileads directly to an escape
area and vision > 10m at time t

m(vi,t) =14 trueif primary compartment v;has vision >3m

at time t

falseotherwise

&)

This can be read as people get “stuck” in rooms where
the vision is so low that it impairs their sight and movability.

3 Ant Colony Optimisation (ACO)

Problem solving approaches inspired by nature and animals,
so called swarm intelligence, have received a lot of atten-
tion due to their simplicity and adaptability. Ant Colony
Optimisation (ACO) is one of the most popular swarm
intelligence algorithms due to its general purpose optimi-
sation technique. ACO consists of artificial ants operating
in a constructed graph. The ants release pheromones in
favorable paths which subsequent ant members follow. This

Fig. 1 Temperature and thermal 1
radiation levels as input to =" .
c(vi,t) and r(v;, t) 0,9 | PP radiation > 6.0
- - kW/m2
O 8 | . . - _ — -
: . _
z L’ -
& 07 . -
5 L 7 --6.0 kW/m2 >
* 06 e 2 radiation > 4.0
° S kW/m2
£ 05 s
o / — -temp 2140°C
g 0,4 1 /l /
° S/
o 03 - 7
v/
/
02 i)/ 4.0 KW/m2 >
/ —_— . .
01 it/ e T radiation > 1.6
Y ’_’_/,,.——-—— kW/m2
Ov—ml\LO —TONLOO—-TONLOONOD-ONLD®O—O® °
NbboZI22QLRS8T8BYIFTSB388 —140°C>temp 2
Seconds spent in hazard 80°C
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way, the colony of ants will walk more towards favor-
able paths and in consequence iteratively build the most
favorable solution [16].

ACO was first used to find shortest path from a source
to a sink in a bidirectional graph. It has later increased
in popularity due to its low complexity and its ability to
work in dynamic environments. The flexibility of ACO is
apparent as it has successfully been applied in a wide variety
of problems such as finding solutions for NP hard prob-
lems [17], rule based classification [18], and is shown to
be particularly useful for routing in real time industrial and
telecommunication applications [19].

Finding the shortest path in a graph G(V, E) using ACO
in its simplest form works as follows. Artificial ants move
from vertex to vertex. When an ant finds a route s from the
source vy to the sink v, the ant releases pheromones 7; ;
corresponding all edges e; ; € s. The pheromones for all
ants m is defined as

m
i <~ (1 —-p1j+ Z A.l"z‘]fj ©)
k=1

The function is for ant k defined as

Afik; _ Q/lslif ei,j G.S o
" Ootherwise
where Q is a constant.

The aim of each ant is to walk from v to v, forming the
path s. This is achieved by the following rule. When ant k is
in vertex i it chooses to go to vertex j with the probability
pfi j defined as

B
‘[.0‘.;7. .
— ffeij e NGP)
o .
Zei,j Ti,kni,k (8)

0 otherwise

ko
Pij=

where s? is the partial solution of s, and N (s”) are the pos-
sible vertexes to visit given s¥. 1, ; is the inverse heuristic
estimate of the distance between node i and j, and @ and B
are numbers between 0 and 1 to give the relevant importance
between pheromones and the heuristics function.

In its simplest form, the § = 1 and & = 1 so that the ants
only consider the pheromones — and the heuristic function
is ignored, giving:

_ g ifei i € N(sP)
) i
phy = La, Tik ©)

0 otherwise

In layman terms, the amount of pheromone released rep-
resent quality of the solution. This is achieved by each ant
releasing a constant amount of pheromones. Consequently,
the shorter the path found, the more pheromone per edge is

released. Further, each ant is guided by a stochastic mech-
anism biased by the released pheromones. Thus, the ants
walk randomly with a preference towards pheromones. In
this way, the ants incrementally build up promising search
space with means that a route s converges towards the
shortest route from vy to v,, §*.

ACO has also successfully been applied for many net-
work applications [19-22]. It has been empirically shown to
have favourable results compared to other routing protocols
with respect to short path routing and reduced load balanc-
ing. Therefore it seems particularly promising for finding
the escape routes.

4 Solution

This section presents the ACO algorithms for finding escape
routes in four distinct realistic environments.

First, the algorithms interact with a static environ-
ment where the hazard functions remain unchanged, yet
unknown. This resembles classical optimisation problems
where the aim is to find a route s* so that f(s*, 1) <
f(s,t)¥s € S. Hence, the environment is populated with
the h'(v;,r) function. (See Section 4.1 for results.)
Subsequently, the problem is extended to interact with
dynamic environments so that the probability of a haz-
ard in v;, h%(vi, 1), is no longer fixed but changes
regularly according to some unknown stochastic func-
tions. This shows how well ACO works when environ-
ments change, such as fire spreading. (See Section 4.2
for results.)

Further, ACO handles realistically simulated environ-
ments where the hazard function, 43 (v;, 7) is based on
measurements of thermal radiation and air temperature. The
simulation is carried out using a Fire Dynamic Simulation
(see Section 4.3 for results).

Subsequently, the environment is extended with smoke,
represented with the function m(v;, t) so that the vision
range and in turn movability evacuees is significantly
reduced when smoke is present (See Section 4.4 for results).

Lastly, the environment is updated with imperfect knowl-
edge so that only hazard functions close to evacuees are
available. Hence, evacuees will not have any knowledge of
fires far away even if it may obstruct evacuation routes.
This simulates an ad-hoc network setup with only part
of the environment’s sensors are available to evacuees (see
Section 4.5 for results).

This section presents empirical evidence for ACO work-
ing in all the above mentioned environments. In these
experiments, all graphs are bidirectional, planar and con-
nected — in line with common practice [6]. This is done
in two ways: Without loss of generality, the first two
experiments (Sections 4.1 and 4.2) are carried out on

@ Springer
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randomly generated graphs of 1,000 vertexes, and 5,000
randomly distributed edges, of which 1,000 edges are used
to make sure the graph is connected. The latter experiments
(Sections 4.3—4.5) are carried out on a graph modelled after
an actual ship, and hazards are updated based on realistic
simulation results.

All experiments are an average of 1,000 runs.*

4.1 Static environments

ACO has been used for static routing in many situations

before. In these experiments ACO is used in its simplest

form, as described in Section 3, with a slight adjustment.5
The constant Q is replaced with a function of s and #:

O(s, 1) = Iyes (1 = h(v;, 1)) (10)

Le. O(s, t) represent the inverse hazard probability at time

t. The consequence of this is that safe paths are given large

amounts of pheromones, and unsafe paths are given low

amount. The pheromone updates are therefore as

Afik,- _ O(s, 1)/Is| ifei; G.S (11
" 0 otherwise

Figures 2 and 3 show the behaviour of the ACO the static
environment. Figure 3 shows the behaviour were there in
addition to the normal setup the graph is manipulated so that
there exists an s so that f(s,¢) = 0 — meaning that there
always exists a safe path. The optimal solution is calculated
using Djikstra’s algorithm [24] by considering h(v;, t) as
basis the cost function for edged e ;.

Figure 3 shows the same experiment but with adjust-
ments of hazard probabilities so that there is an s so that
f (s, 1) = 0 — meaning that there always exists a safe path.

Both experiments show that ACO is able to find the near
optimal solution with very few iterations.

4.2 Dynamic environments

ACO has been used for dynamic environments in many sit-
uations [25-28]. This is achieved by letting, for each time
step, the pheromones evaporate with a defined probabil-
ity, typically between 0.01 and 0.20 [16]. The evaporation
probability is a balance between convergence accuracy and
adaptability. I.e. you choose to what extent the ants should
work towards a more optimal solution or should be able
to adapt to other potential solutions. Dressler et al. [27]
showed that ACO based routing works well in situations
with significant dynamics and continuously broken and

4Many additional experiments have been carried out. For reasons of
brevity, only those more relevant are presented in this paper. Some of
the additional experiment results are available in [23].

5Note that for the static environment the variants of A (v;, t) used is
(v, 1).
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Fig. 2 Experiment results in static environments of randomly gen-
erated large graph comparing ACO to random and optimal. A(v;, t)
random to 1 or 0

newly established connections, which resembles finding an
escape route when hazards change.

Figures 4 and 5 show ACO in dynamic environments
where the variant of 4 (v;, ¢) used is 42 (v;, t) and the update
function (see (1)) is called every 200th.

Thus, for every 200th iteration the environment is exactly
opposite which in turn means that, if an algorithm has learnt
an optimal route, the route changes to as far away from
optimal as possible.

The results show in Fig. 4 that when the evaporation rate
is set to 0, the ACO learns a near optimal solution which
becomes outdated when % (v;, t) changes, and it is not able
to adapt to the new optimal solution. Further, every time the
hazard probabilities change the algorithm is further away
from the solution. On the other hand, Fig. 5 shows that when
the evaporation rate is set to 0.2, the algorithm is able to
quickly adapt to new environments — and is thus able to
interact well with dynamic environments.

4.3 Realistic environments

This section presents empirical results in a realistic envi-
ronment. This is achieved through a sequence of steps.
First we model a graph which the algorithms interact with
based on an actual ship. Subsequently, the variant of the
hazard function A (v;, 1) is h3(v;, ) (see Section 2.1) which
is updated based on known fatalities. Finally and most
importantly, this environment uses a well established fire
simulator, a simulation for populations of the hazards [29].
Le. the functions r(v;, t) and c(v;, t) are populated with
results from the fire simulator. This yields realistic scenar-
ios, including a realistic hazard function h3(v,-, 1), as a step
towards relevant empirical evidence of the usefulness of the
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Fig. 3 Experiment results in static environments of randomly gen-
erated large graph comparing ACO to random and optimal. A(v;, t)
random to 1 or O forcing that there is an s so that f(s,7) =0

algorithms. The details of each of the steps are described in
the following sub sections.

4.3.1 Setup

Ship model The ship model is based on deck sections of the
Thompson Spirit® with some minor adjustments.

The ship consists of 290 rooms and 4 corridors spread
over two floors, including four exists to escape areas. The
rooms vary slightly in size but are in average 15.84 m?.

In line with the actual ship, the model of the ship uses
wooden interior and “British style” carpets on all floor
surfaces. Further, the floors and walls are modelled with
combustion properties to enable a realistic fire spread of
the material. These properties include emissivity, heat, con-
ductivity in line with properties of the actual material used.
Further emphasis is put on thickness and density of the
interior to yield realistic fire spread.

The authors are aware that these parameters vary depend-
ing on the spread of the fire, open and closed areas, efforts
on putting the fire out etc. However, our aim is to provide
a realistic model in order to empirically show that the pro-
posed solution is able to cope in such situations. Whenever
there is room for interpretation, the model is always imple-
mented with the worst case scenario in mind. In practice,
this means that all rooms have carpets, all doors are left open
and no efforts on extinguishing the fire is carried out during
the simulation. If the proposed solution is able to work well
in this worst case scenario, it is expected that it will also
yield good results in better situations.

SAn outline of the Thompson Spirit is available at http://www.
iglucruise.com/thomson-spirit/deck-plans ?deck=83.

09— :
A il &
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TFEFTFANOOONOTITIOOWOOONNNOGDOD0DOD
Number of iterations / artificial ants

Fig.4 Experiment results in dynamic environments. Hazard probabil-
ities, h(v;, t), updates when + mod 200 = 0 — every 200th iteration.
Evaporation rate set to 0, ACO cannot adapt

Note that the outdoor and recreational areas, such as
swimming pools and bars, are deliberately left out of the
model. These are areas that have little influence on an
evacuation.

The model is placed with 3 measurement devices in each
room: temperature, smoke and heat, which is used for popu-
lation of the hazard function /3 (v;, ). The heat is measured
from the room center, radiation at ground level and smoke
in the average human sight at 1.6 m. This means that the
simulation yields one measurement for temperature, smoke
and heat per room per second.

Fire To generate and simulate the actual fires, the well
established tool Fire Dynamics Simulator (FDS) developed
by the National Institute for Standards and Technology is

11

0,9
ol o ,
-3 rlwi“’ il 'W#.I‘:b :
08 1 il 4 it e
—_ ’ L 4 H I-' 1 H i
) --- Random
=
0,7 — -Optimal
ACO
0,6
0,5
0,4
FTOOOONOULITOAUATODNDONOULTOANTOD®NO©
TRNTOLOONTLOLONOOTONOOTOANL DM
T TrANOOOONOTTOLUOLOONNNDOOOOWOD®
Number of iterations / artificial ants

Fig. 5 Experiment results in dynamic environments. Hazard probabil-
ities, h(v;, t), updates when t mod 200 = 0 — every 200th iteration.
Evaporation rate set to 0.2
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used [29]. FDS used computational fluid dynamics of a fire-
driven fluid flow to highlight the spread of heat and smoke
from fires. This is done by a set of partial differential equa-
tions that shed light on the conservation, mass, momentum
and energy within the fire and the surrounding space [30].
The tool has been used to realistically model various fire
dynamics phenomena such as transport of heat and com-
bustion products from fire, capture the heat transfer, flame
spread and fire, and for designing smoke systems, sprinkler
activation or fire reconstructions.

The fire was modelled so that it spreads from a 1 m? fire
burner, and the fire was modelled to spread fast with growth
coefficient was defined as 0.1876 kW/s, reaching a total of
67,536 kW during time 600 s.

This setup enables assessing effects of fire hazards both
numerically and visually, which in turn enables easy inte-
gration with the proposed solution and hazard functions.

Results The simulations were carried out with fire starting
in the middle of the first floor, and kept for 600 simu-
lated seconds.” A visual representation of the temperature
is shown in Fig. 6. Note that the fire reaches one corridor
at ~150 s, and both corridors at close to ~500 s.

The setup is slightly different from previous experiments.
In this case we have a fire that spreads out over a time frame
of 600 s. These seconds are simulated, and for each second
a given number of consecutive ants are released. This means
that every second is in itself a distinct scenario similar to
the complete experiments in Figs. 2 and 3. This facilitates
convergence of the algorithm so that the route s* represents
the “best” possible result.® Further, in the follow empiri-
cal results three variants of ACO are used: with 10, 100
and 1,000 ants. This is done to show the convergence of
the algorithms — how many ants are needed to find near
optimal solutions. Thus, in contrast to Figs. 2 and 3 the fol-
lowing figures show snapshots of the algorithm after 10,100
and 1,000 ants for 600 different scenarios.

Keep in mind that all simulations run 1,000 times, and
the objective is still the same, finding a route s to minimize
f(s). Le. find the safest possible escape route.

Figure 7 shows the behaviour where the evacuees start-
ing position is manipulated so that they all start from a fixed
location on board the ship, the room with id 229. The room
chosen to be particularly difficult to escape from is on the
opposite side of the ship’s escape area on the second floor —

7Two other simulations were carried out with similar setup but with
fires starting in the corner of the first floor and the middle of the second
floor. The results were similar to those shown in this paper — and are
therefore left out.

8The ants do not have any knowledge of the spread of the fire other
than what they observe through the function % (v;, t), so “best” means
most viable seen from the small windows available from the ants. In
practice, data from fixed and mobile fire sensors will populate A (v;, t).

@ Springer

so that the fire always occurs between the evacuees and the
escape area. Hence, the first room in the route s, the source
vy, is always “room 229”. Note that there still exists an
escape route, it is just more difficult to find.

Conversely, Fig. 8 shows the behaviour where the evac-
uees start from random locations on board the ship. Hence,
the first room in the route s is uniformly randomly selected
among all v; € V. It is noteworthy the difficult situation in
Fig. 7 is remarkably similar to the over all situation in Fig. 8,
only with an over all higher value for f (s) for all algorithms.
A conclusion to be drawn from this is that even in the dif-
ficult situations ACO is able to find safe escape routes, but
requires more ants to reach convergence.

4.4 Realistic environment with smoke

This section takes into account that smoke significantly
reduces vision and movability of people affected by fire
hazards. In short, the model is updated with the function
m(v;, t) (see (5)) which represents to what extent people
are able to move considering the heavy smoke available.
The m(v;, t) is populated by the FDS tool [29] presented in
Section 4.3.

Consequently, the function f(s,t) is adjusted with the
above consideration to f/(s, t):

1-I1y,es(1=h(v;, 1)) if m(v;, t)=true Yv; € s holds
s, 0=
1

otherwise

12)

Hence, people get “stuck” in rooms with heavy smoke,
and any rooms in the escape route with people “stuck”
yields fatality for the evacuees.

Figure 9 shows the empirical results from this situa-
tion. This, execpt for considering smoke, is the exact same
experiment as shown in Fig. 8, but provides notably dif-
ferent results. Hence, f (s, 1) and f(s, r) are very different
and the results show that the fatalities are much higher
when smoke is considered. This indicates that smoke has
a much greater impact on evacuations than fire. This is
in line with the literature which clearly states that smoke
is real killer, not heat or temperature [13]. Thus, a hypo-
thetical fire without smoke would be relatively easy to
escape from compared to an actual fire the produces
smoke.

The figure also shows that smoke significantly affects
the performance of the ACO algorithm, but can easily be
overcome by running enough ants so that it converges. Most
significantly, ACO with 1,000 ants still provide close to
optimal results.
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Fig. 6 Heat map visualization
illustrating the room temperature
as the fire spreads over time.
The color-code scale on the right
side shows the temperature

4.5 Realistic environment with ad-hoc networks

In emergency situations, information from smoke and fire
sensors, both stationary and from smartphones, is seldom
available to all. This is because networks, such as WiFi and
GPS, become unavailable in fire situations. As described
in Section 1.2 a mitigation for this is introduction of so
called ad-hoc networks, which means that temporary net-
works appear when people are within close range of each
other. The impact is that smartphones can only communi-
cate with other smartphones in close range, which in turn
means that only sensor data close by is available.
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Fig.7 Experiment results in realistic environments from a fire starting
in the first floor. Evacuees starting from a fixed position in “room 229”
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This simulation is done so that any function related to
v; is only available if it is » rooms away from the start-
ing position of the evacuees. Consequently, pheromones can
only update n rooms out. Say, if n is set to 5, it is a sim-
ulation of an ad-hoc network with a range of 5 rooms in
each direction, and the only information available is within
these 5 rooms. In essence, only the A (v;, t) functions and
amount of pheromones from these 5 rooms can be polled.
All other rooms are assumed safe even though they have
fatal fire. Note that as pheromones in a room v; aim at fore-
telling the safety of both room v; and following rooms in
any s containing v;.
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Fig. 8 Experiment results in realistic environments from a fire starting
in the first floor. Evacuees starting from random positions
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Fig. 9 Experiment results in realistic environments starting from
random locations with smoke affecting the movability of the evacuees

Figure 10 shows the results in simulated ad-hoc net-
works. Note that this is the same experiment as presented in
Fig. 8 where the complete network is available. For reasons
of clarity, Fig. 10 only shows from 350 to 600 s, and include
propagation setups 5 to 50. For comparative purposes, the
results from Fig. 8 are included where there were not
restrictions on propagations. All results are for ACO with
100 ants.

The figure clearly shows, in line with expectations, when
the number of rooms the algorithm can read sensor data
from increases, ACO is able to find a smaller value of
f (s, t). However, the difference is remarkably small. Even
with a network of only 5 rooms, it is able to find a very
good solution. Further, networks with 50 rooms yield and
f (s, 1) very close to situations with sensor data from all
rooms available.
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Fig. 10 Experiment results in realistic environments starting from
random locations with ad-hoc networks where only part of the sensor
data is available
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5 Conclusion

This paper presents an application using Ant Colony Opti-
misation (ACO) for finding safe escape routes in emer-
gency situations. ACO is used in five distinct environments.
Firstly, ACO operates in a stationary environment where
it quickly reaches a near optimal solution. Secondly, ACO
is run in dynamic situations where hazards rapidly change.
Further, ACO is evaluated in three realistic environments:
fire on board a ship without smoke, fire on board a ship with
smoke and fire on board a ship in an ad-hoc network sce-
nario. The realistic scenarios are achieved through set ups
from the Fire Dynamics Simulator tool.

In all tested scenarios ACO is empirically able to reach a
near optimal solution. In some setups, ACO with 1,000 ants
find the optimal route in almost all situations. This leads to
the unproven assumption that given enough ants, ACO will
always find the optimal escape route. In our further work, we
plan to formally verify that whether assumption is correct.

In real evacuation situations, most people escape together
in groups with their family and friends. Further, panic tends
to spread in emergency situations which in practice means
that many will not follow any provided escape routes. These
situations are also planned for further testing.

Additionally, we plan to examine methods for faster con-
vergence of ACO including testing the min-max variants
of ACO, and examining the possibilities of a multi layered
approach.

Most importantly, we are currently implementing a
smartphone application for safe escape planning that will
use the ACO planning.
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