
Using Bayesian Networks to Describe Hydrologic Processes

Espen Willads Torgersen

Supervisors:
Ole-Christoffer Granmo
Bernt Viggo Matheussen

This master’s thesis is carried out as a part of the education at the University of Agder and

is therefore approved as a part of this education. However, this does not imply that the

University answers for the methods that are used or the conclusions that are drawn.

University of Agder
Faculty of Engineering and Science

Department of ICT

2 June 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Agder University Research Archive

https://core.ac.uk/display/225890629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface
This master thesis is submitted in partial fulfillment of the requirements for the degree Master of
Science in Information and Communication Technology at the University of Agder, Faculty of
Engineering and Science. I would like to thank my supervisors Professor Ole-Christoffer Granmo of
the University of Agder and Bernt Viggo Matheussen, Head of Development at Agder Energi. Their
input, advice and guidance has been invaluable for getting this thesis completed.

Espen Willads Torgersen

ii

Contents

 Preface ii

 Contents iii

1 Introduction 1
1.1 Background...1
1.2 Thesis definition..1
1.3 Related work..2
1.4 Report outline..2

2 Theoretical Background 3
2.1 Bayesian probability..3
2.2 Gibbs sampling..5
2.3 The HBV model..6
2.4 Test data...8
2.5 Tools..9

3 A Bayesian model for snow accumulation and melt 10
3.1 Model design...10
3.2 Implementation..12
3.3 Verification..13

4 Calibration using JAGS 15

5 Conclusion 19

 References 20

 Appendixes 21

A Python code 21

B JAGS model definition 23

C C++ code 24

iii

1 Introduction

Humans have always striven to map and make sense of the world around them, trying to figure out how
things work and relationships between happenings. To help with this we create models of the systems
or part of the systems we are examining.

Hydrologic models are simplified representations of complex physical systems, and carry with them
some amount of uncertainty. Uncertainties come from model structure, both because of the
simplifications that they necessarily implement and that the processes might not be fully understood.
There are also uncertainties tied to the inputs used with the model, how accurate are the measurements
or weather forecasts? And there are uncertainties with the parameters that represent aspects that vary
between the different areas the model is used on, some of which may be difficult or impossible to
measure and must be inferred from observations.

1.1 Background
As I already mentioned, hydrologic models carry with them some amount of uncertainty connected to
the models structure, input and parameters. Quantifying these uncertainties is important both in
research settings and real world applications such as flood forecasting or planning of hydroelectric
power production. But as standard practice today, if uncertainties are considered at all, current methods
in hydrologic forecasting typically focus on one or two error sources [1] and so an approach that
considers a wider perspective is needed.

Model structure uncertainties come from inaccurate representation of the physical processes involved.
These inaccuracies can be caused by the simplifications that are necessary to implement to make
representation of complex physical processes computationally feasible, but also an incomplete
knowledge about the physics that govern the processes [2]. Parameter calibration is usually done
through some form of trial and error, adjusting parameters until model output is acceptably close to
observed data. Closeness of fit is decided by an objective function, and which one you choose can
influence the results. Different objective functions can emphasize different aspects such as high values
vs low values, or other systematic/behavioral errors [3].

Bayesian networks have been used for a long time and for a wide variety of purposes, including
medical diagnosis and language understanding. While probabilistic methods have been used by the
hydrologic community for years, the use of Bayesian networks are largely unexplored in this setting

1.2 Thesis definition
The goal for this Masters thesis is to explore the use of dynamic Bayesian networks for describing
hydrologic processes. The main intent is to try and provide better descriptions of the uncertainties that
are tied to dealing with such complex and partially unknown processes, while also trying to reduce
these uncertainties. For this purpose I have translated part of a well known and widely used
deterministic model, the snow module of the HBV model, into a dynamic Bayesian network:

1

1.3 Related work
Bayesian networks has been used for a long time and for a wide variety of purposes, including medical
diagnosis [4] and language understanding [5]. The term was introduced by Judea Pearl in 1985 [6], and
is summarized in his 1988 book [7].

Although Bayesian networks have not seen widespread use for hydrologic modeling, several articles
describe probabilistic approaches to uncertainty estimation using deterministic models. Vrugt et al
presents a Markov chain Monte Carlo sampler designed to estimate the posterior probability density
function of model parameters. Bayesian model averaging is a common method used for error
estimation, and several articles describe how this can be approached [8][9]. However these methods
typically focus on one or two sources of error, neglecting the others.

1.4 Report outline
The next chapter will provide the theory that is the foundation for this report. I will describe Bayesian
probability and Gibbs sampling, and provide a brief overview of the HBV model. The chapter also
includes in introduction to the tools I have used.

In chapter 3 I present the model I propose for representing the HBV models snow module in a DBN. I
explain the implementation and the testing to validate it. Chapter 4 describes how I calibrated the
model using JAGS, the results of the process is presented and discussed, then a conclusion follows in
chapter 5.

2

2 Theoretical Background

2.1 Bayesian probability
Before I get on to Bayesian networks, I will first give a short introduction to Bayesian probability.
Bayesian probability, named after 18th century English statistician Thomas Bayes, provides a
framework for probabilistic inference and reasoning. It is an interpretation of the concept of probability
where the probabilities are representations of a state of belief that have values even before hypothesis
testing, as opposed to the frequentist view. Equation (2.1) shows the well known Bayes theorem, which
is derived from the basic axioms of probability.

P (A∣B)=
P(B∣A)P (A)

P (B)
 (2.1)

It is stating the mathematical relationship between two probabilities and their conditional probabilities.
In the context of Bayesian inference it describes how we can update the probability of a hypothesis
based on observations or evidence as seen in equation 2.2

P (h∣o)=
P (o∣h) P (h)

P(o)
 (2.2)

• P(h|o) is the posterior probability, the probability of the hypothesis conditional on the
observations.

• P(o|h) is the likelihood, the probability of the observations given the hypothesis.

• P(h) is the prior probability, the probability of the hypothesis before the observations are
considered.

• P(o) is the prior probability of the observations.

Summing this, equation 2.2 states that by accounting for observations, the prior probability of the
hypothesis changes to the posterior probability.

Bayesian networks

To introduce Bayesian networks I will quote Charniak [10]:

“The best way to understand Bayesian networks is to imagine trying to model a situation in
which causality plays a role but where our understanding of what is actually going on is
incomplete, so we need to describe things probabilistically”.

Bayesian networks, sometimes also called belief nets or causal networks, are graphical models
describing the probabilistic relationship between variables as a directed acyclic graph. The nodes
represent objects or events and are usually called variables or states, and edges describe causal
relationships with direction from the cause variable to the effect variable.

3

To complete a model we also need to specify a Conditional Probability Distribution (CPD) for each
node. For discrete nodes this takes the form of a Conditional Probability Table (CPT), where the
probability for the node is given for every combination of values of its parents.

An example from medical diagnosis [11] can be seen in Figure 2.1. Table 2.1 shows the CPT for node
“Dyspnea?”. The node has two possible values, “Absent” and “Present”. Both of its two parents also
have two possible values, “Bronchitis” has “Absent” or “Present”, and “Tuberculosis or Lung Cancer?”
has “Nothing” or “CancerORTuberculosis”. This gives a table with 2*2*2=8 entries as stated earlier,
one for every outcome given every combination of values from the parents.

A potential problem with CPTs can be their size. Since the size of the CPT for a node depends on it
own number of states as well as the number of states of all its parents, it can quickly become too large
to handle, and so care must be taken to keep the number of nodes that each node depends on at a
minimum.

Despite the name, Bayesian networks don't necessarily imply a commitment to Bayesian probability,
frequentist methods are common to estimate the CPDs. The name instead comes from their use of
Bayes' rule for statistical inference. We introduce evidence into the network, setting some variables into
a fixed state and then compute the probabilities of interest conditioned on the evidence, and here Bayes
theorem is central as shown earlier.

Dynamic Bayesian networks

Another name that can be a bit confusing is that of the Dynamic Bayesian Network (DBN). It does not
mean that the network or the parameters changes dynamically, but that it is a dynamic system that is
modeled. Or in other words, it is a Bayesian network with an added time dimension, and consists of
time-steps that each has its own variables. It can be visualized as a normal Bayesian network copied
one or several times and put next to each other, but with one or more variables being dependent on a

4

Figure 2.1: Example of Bayesian network
for medical diagnosis.

Table 2.1: CPT for node “Dyspnea?”

Tuberculosis or Lung Cancer? Nothing CancerORTuberculosis

Bronchitis? Absent Present Absent Present

Absent 0.9 0.2 0.3 0.1

Present 0.1 0.8 0.7 0.9

variable from the previous time step. An illustration of this can be seen in Figure 2.2.

There are different way to perform inference in DBNs. Three main types are:

• Filtering: The current belief state is computed based on all evidence from the past.

• Prediction: A future belief state is computed based on all evidence from the past.

• Smoothing: A past belief state is computed based on all evidence up to the present.

Different types of DBNs require different types of calculations/estimations. There are several different
inference algorithms, some exact and some use approximation.

2.2 Gibbs sampling
Gibbs sampling is a Markov chain Monte Carlo (MCMC) method that has a wide range of applications
within Bayesian statistics. Monte Carlo is a name for methods that use random sampling to get
numerical results, e.g. an unknown probability distribution. They were first developed to help calculate
complex integrals. A Markov chain is a system that transitions stochastically from one state to another
and is memoryless; the transition probabilities are only dependent on the current state. MCMC methods
are based on sampling from a probability distribution by constructing a Markov chain that has the
desired distribution as its stationary distribution.

The Gibbs algorithm was first used in the context of image processing [12] and has been shown to be
well suited for inference in probabilistic models [13]. The way it works is that each random variable is
iteratively resampled from its conditional distribution given the remaining variables which are assigned
fixed values. Lets consider a bivariate random variable (x, y) with conditional probabilities p(x|y) and
p(y|x). The sampler starts with an initial value x0 for x and generating a random variable y0 from p(y|
x0). Then at each step new values for xi are generated from p(x|yi-1) and for yi from p(y|xi). This
principle is the same for multivariates.

The idea behind the Gibbs sampler is that (a subset of) the samples approximate the joint distribution of
all the variables. The marginal distribution for a subset or a single variable can also be approximated by
examining the subset of samples for that subset or single variable. It is common to have a burn-in
period, meaning that a number of samples at the beginning are discarded to be sure that the initial

5

Figure 2.2: Sample DBN

values doesn't have any effect. Thinning is also sometimes practiced, since there are some amount of
correlation between samples only every nth sample is used.

There are several different implementations of Gibbs sampling, among them BUGS (Bayesian
inference Using Gibbs Sampling), and JAGS (Just Another Gibbs Sampler) which I will look further
into later in this chapter.

2.3 The HBV model
The HBV model [14] is a mathematical rainfall-runoff model developed at the Swedish Meteorological
and Hydrological Institute, by Dr. Sten Bergstrøm at Hydrologiska Byråns avdeling for Vattenbalans
(HBV). It was developed in the 1970s, and has since then been revised several times. Some of the main
features and characteristics of the HBV-model are as follows:

• The model uses data for precipitation, air temperature and potential evapotranspiration to
simulate the runoff process.

• It is a conceptual model which consists of numerical description of hydrologic processes in the
modeled catchment area, meaning it is based on an understanding of the physical structure and
processes.

• It is a deterministic model, meaning that if two identical set of input are run through the model
with identical starting conditions and parameter setups, the outputs will always be identical.

• The model has a fixed structure, but is equipped with a set of parameters that are used to tune
the model to a specific catchment area. This means that the model has to be calibrated before it
can be of practical use.

The parameters of the HBV model can be grouped into two categories, free and confined parameters.
Confined parameters are the parameters that can be determined by using maps, field surveys or other
sources. Free parameters on the other hand are the the parameters that can't be decided directly. They
need to be set through the process called model calibration. In this context it calibration means to
determine the set of free parameters in the model that gives the best possible correspondence between
observed and simulated runoff for a catchment [15].

Model structure

The model consist of several modules or subroutines: Meteorological interpolation, snow accumulation
and melt, evapotranspiration estimation, soil moisture accounting, runoff generation, and routing
between subbasins and in lakes. Figure 2.3 [16] displays the schematic structure of the HBV-96 [17]
model with only the most important characteristics showing.

6

Snow routine

The structure of the snow routine can be seen in Figure 2.4. Air temperature is computed based on
observed temperature and adjusted according to the air temperature lapse rate. Likewise, amount of
precipitation is based on observed precipitation and the precipitation lapse rate. Based on air
temperature, precipitation type (snow or rain) and snowmelt or refreezing is computed. These use

7

Figure 2.3: Structure of HBV-96

threshold values specified within the free parameters. Snow melt is based on a degree-day approach
(discussed further below) using air temperature, and the snow pack has a water holding capacity which
delays runoff. The most important results from the routine are the following variables:

• Snow storage in mm of water equivalent

• Free water contents in the snow in mm

• Snow melt/refreeze in mm/timestep

If the water content in the snow exceeds a threshold value given as a fraction of the dry snow, excess
water is released from the snow pack.

The HBV model uses a degree-day approach for snow melt. Formally the degree day factor indicates
the amount of dry snow converted to liquid water when the temperature is one degree above freezing
for one time step. This approach is widely used since air temperatures are generally easily available,
whereas physically based models have much higher demands when it comes to data. Air temperature
has a high correlation to radiation, wind and humidity, which are key factors involved in heat transfer
to the snow. The degree day approach has been shown to be just as good as radiation based approaches
under certain conditions [18].

2.4 Test data
The Natural Resources Conservation Service of the United States Department of Agriculture operates
an extensive network of automated sites that collect snow pack and related climate data called

8

Figure 2.4: The HBV models snow routine. Figure adapted from [15]

SNOTEL (short for Snow Telemetry). The programs main goal is to conduct snow surveys and develop
accurate and reliable water supply forecasts, this is critical since the majority of the water supply in the
Western United States come from melted snow. The network now consists of more than 850 stations in
the Western United States and Alaska, and each site has at a minimum sensors that measure air
temperature, precipitation, snow water content and snow depth. All data are made public almost in real
time through an Internet delivery system.

2.5 Tools

SMILE/GeNIe

SMILE (Structural Modeling, Inference, and Learning Engine) is a powerful and platform independent
library of C++ classes that implements graphical probabilistic decision-theoretic methods, such as
Bayesian networks and influence diagrams, that is well suited to be included in intelligent systems . It
is developed at the Decision Systems Laboratory, University of Pittsburgh, and enables the user to
create and edit, save and load models and use them for probabilistic reasoning and decision making
under uncertainty.

GeNIe (Graphical Network Interface) is a Windows graphical user interface to SMILE. It was
developed with an emphasis on accessibility and user friendliness using a graphical click-and-drop
approach while still providing a robust and versatile development environment.

SMILE and GeNIe have been used have been used for teaching statistics and decision-theoretic
methods at several universities, and some applications around the world include battle damage
assessment (Rockwell International and U.S. Air Force Rome Laboratory), group decision support
models for regional conflict detection (Decision Support Department, U.S. Naval War College),
intelligent tutoring systems (Learning and Development Research Center, University of Pittsburgh),
medical therapy planning (National university of Singapore), medical diagnosis (Medical Informatics
Training Program, University of Pittsburgh; Technical University of Bialystok, Poland) [19].

JAGS

JAGS (Just Another Gibbs Sampler) is as mentioned earlier a program for analysis of Bayesian
hierarchical models using MCMC simulation. It is closely related to BUGS (Bayesian inference Using
Gibbs Sampling), using a dialect of the language, but is written in C++ to have platform independence,
while the original BUGS family was written in Component Pascal which is only available on Windows.
It has no graphical user interface (GUI) of its own for model building and sample post-processing so a
separate program is needed for this. However JAGS is designed to work closely with the R language
and environment for statistical computation and graphics, the package rjags provides and interface to
JAGS in R, and the package coda is useful to analyze the output. I will discuss running a model in
JAGS a bit further in section 3.2 where I talk about the implementation of my model.

9

3 A Bayesian model for snow accumulation and melt

3.1 Model design
To test if modeling hydrologic processes in a DBN is viable I created one based on the HBV models
snow module. The design is shown in Figure 3.1 with explanations in Table 3.1. The parameters from
the HBV model are transformed into stochastic variables taking on some probability distribution. The
rest of the nodes are then just deterministic manipulation of numbers.

I have chosen to work with continuous nodes rather than discrete. Continuous nodes loses some
precision due to the reliance on sampling, but discretization also brings some approximation and the
finer resolution you want the larger the CPTs will be, quickly growing larger than what is manageable.

At each time step two variables from the previous step (or initialization for the first step) are used.
Snow water equivalent (SWE) is the estimated snow storage, given in mm of water equivalent, and is
the most important and interesting resulting output from the model. Also carried between steps is the
amount of liquid water in the snow (SW), and subtracting the liquid water from the SWE total gives the
amount of dry snow. Water released from the snow pack occurs if the amount of liquid water exceeds a
certain fraction of the dry snow. The model takes measurements for air temperature and precipitation as

10

Figure 3.1: The HBV models snow module as a Bayesian network.
Green nodes signify variables from the previous time step, darker
blues are the parameters.

input. Precipitation is computed as either snow or rain, depending on whether the temperature is above
or below the threshold value. Melt has its own threshold, when temperatures are above it snow melt
occurs, providing there is snow to melt. Snowfall is added to the amount of dry snow, rain to the free
water content, and melt is subtracted from the dry snow and added to SW. I have not implemented
snow refreezing in this test model to keep it simpler, and a precipitation correction factor for rain is also
omitted since that has very little impact on snow melt and accumulation.

Table 3.1: Explanation of nodes from DBN.

Name Meaning Equation

Tx Threshold temperature rain/snow in °C.
Temperatures above gives rain, below snow.

Ts Threshold temperature for snowmelt in °C.

Scorr Correction factor for snowfall.

Cx Degree-day factor.

Mlf Max liquid fraction – The maximum of free water
contained in the snow given as fraction of dry snow.

Airt Measured air temperature – daily mean. Measured values.

Prcp Measured precipitation – day. Measured values.

Melt Snow melt. Min(
 If (Airt>Ts) then
 Cx*(Airt-Ts)
 else 0
 ,

 Swe(t-1) - Sw(t-1)
)

Snow If (Airt < Tx) then
 Prcp*Scorr
else 0

Rain If (Snow == 0) then
 Prcp
else 0

Swe Snow Water Equivalent – Amount of snow stored
given as mm of water equivalent.

Dsnow + Sw

11

Sw Free (liquid) water in snow. t_Sw - Swrel

t_sw Intermediary calculation for Sw. Sw(t-1) + Melt + Rain

Dsnow Dry snow. Swe(t-1) - Sw(t-1) + Snow - Melt

Swrel Amount of released water from snow. If (t_Sw > Dsnow * Mlf) then
 t_Sw - (Dsnow * Mlf)
else 0

3.2 Implementation
I tried several different approaches to implementing the model. Though GeNIe is a powerful tool for
working with discrete-valued DBNs it doesn't support the temporal dimension when working with
continuous nodes, taking that off the plate. Instead I created the DBN with C++ code using the SMILE
library, and using a GeNIe model as template. It is a cumbersome approach since the equations has to
be hard-coded into the program, and this makes making even small changes a tedious task. In addition
to that, the SMILE classes that work with continuous nodes are not documented at all at the moment,
complicating thing further. On the back of these things I did not use the SMILE version for further
testing, but the code is included in Appendix C.

Instead I created the model using JAGS. JAGS is as discussed earlier designed for inference on
Bayesian models using MCMC simulation. Running a model in JAGS refers to generating samples
from the posterior distribution of the model parameters. It is a five step process:

• Defining the model: This is done in a text file, using a dialect of the BUGS language. I have
included the model definition in Appendix B. This part also includes definition of the data and
that is done in a separate text file.

• Compilation: A graph representing the model is created in computer memory.

• Initialization: Setting initial values for the models parameters, choosing a Random Number
Generator (RNG) and choosing a Sampler. All of these can be done automatically.

• Adaptation and burn-in: As mentioned earlier a burn-in period is often used. In addition the
model may run in adaptive mode for a period of the burn-in, allowing the Samplers to modify
their behavior to increase efficiency.

• Monitoring: A monitor in JAGS is an object that records sampled values, by default only the
current value of each node is kept in the model, so a monitor is needed for variables of interest.

I also recreated the model with Python code, to be used for reference in the model verification. This
code is included in Appendix A.

12

3.3 Verification
To create confidence that the model is sound and that the
implementations behave as expected I tested it on real data from the
Mount Hood SNOTEL site. Mount Hood lies in Northern Oregon, and
the station is located at an elevation of 5370 feet. From the NRCS
website I got data for daily mean air temperature, daily accumulated
precipitation and daily readings of snow water equivalent for several
years.

Using both the JAGS implementation and the Python implementation
for reference, I set the parameters to be drawn from uniform
distributions with pretty wide but plausible limits and used the same distributions on both
implementations. Then I drew 5000 samples for each of them and ran the models on a time series with
two years worth of temperature and precipitation data. The expectation was that the results should be
the same, and that a plot of the output variable (SWE) should have some resemblance to a plot of the
observations.

Table 3.2: Parameter ranges used for model verification.

Parameter Range

Tx -1.0 – 2.0

Ts -1.0 – 2.0

Scorr 1.0 – 1.5

Cx 3.0 – 6.0

Mlf 0.1 – 0.6

13

Figure 3.2: Mount Hood
SNOTEL site, photo from
http://www.wcc.nrcs.usda.gov/

The results of this test can be seen in Figure 3.3, with the Python implementation to the left and the
JAGS implementation to the right. The blue lines are the observations, while the red yellow and green
are mean, minimum and maximum from the model output. As expected both are nearly identical, and
the model outputs also follow the general shape of the observations. That the spread is so big is not
surprising, since the ranges for the parameters were set pretty wide. These results helps create
confidence that the implementations work as intended, and that the model is sound.

14

Figure 3.3: Model verification results: Plots of SWE mean, minimum and maximum from model output
together with the actual observations.

4 Calibration using JAGS

To demonstrate calibration of the model I have chosen to use JAGS. This was done by adding the
observations into to model implementation and saying that it should have a normal distribution with the
calculated SWE value as mean and some precision. Experimenting with this precision showed that it
had to be set very small (meaning standard error is big), else the parameters would not converge. They
can't explore the parameter space properly, and different chains will get stuck with varying very narrow
distributions. As convergence diagnostics is a large field of its own, I will not go further into it here. I
had to find a value so that the parameter samples converged properly, while the actual observations are
still covered by the model SWE distributions. For the test I present next I used the value 10e-6.

Figure 4.1 shows a plot of SWE ranges from a model run using a burn-in of 15000 and then running
50000 samples, observations are also included in the graph. For the SWE plot I have used a 95%
interval here, cutting away the highest and lowest samples (0.025 and 0.975 percentiles). Comparing
this with Figure 3.3 we can see significant improvement as is expected. The spread is a lot narrower
while still covering the observations for the most part. As an estimation of performance we can
calculate the accuracy of the model output by counting how often the observations are within the
bounds of the chosen interval, in this case it is 664/720=0.922 – an accuracy of 92.2%. Model accuracy

15

Figure 4.1: Plot of SWE samples from model: mean (red), and 0.025 and 0.975 percentiles (yellow and
green). Observations are also plotted (blue).

for various intervals are listed in Table 4.1.

Table 4.1: Model accuracy using different amounts of the samples, every time cutting an equal
percentile from top and bottom.

Samples Accuracy

100.00% 697/720 = 0.968

95.00% 664/720 = 0.922

90.00% 643/720 = 0.893

75.00% 614/720 = 0.853

50.00% 555/720 = 0.771

Figure 4.2 shows what the distributions for the variables Cx and Ts looks like, while Figure 4.3 is plots
of the distribution for SWE on some arbitrarily chosen days. As we can see they take on a distribution
that looks Gaussian.

16

Figure 4.2: Distribution for variables Cx (top) and Ts (bottom)

I have also tested on data from another site to ensure that the results are replicable. Figure 4.4 shows
plots of results from running the model on data from the Mount Jackson SNOTEL site. Here I've also
included a plot of a model run where I set the precision for the observations higher (10e-5) resulting in
a smaller spread of the samples. The accuracy of the models performance in the two runs is
summarized in Table 4.2.

Table 4.2: Model accuracy on Mount Jackson data runs

Samples Accuracy 10e-5 Accuracy 10e-6

100.00% 0.996 1.000

95.00% 0.945 0.995

90.00% 0.924 0.987

75.00% 0.795 0.962

50.00% 0.603 0.887

17

Figure 4.3: SWE distribution for days 70 (top left), 180 (top right), 270 (bottom left) and 460 (bottom
right)

The mean of the samples are similar in both cases, and lie close to the observations for the most part,
but the difference in spread in these results highlight an important point: We need to balance the
numbers so that the observations are within a desired range of the samples an acceptable amount of the
time. Looking back to Figure 3.3, it doesn't give information that can be used for much other than
saying “there probably is snow”, estimating that there is between 1500 and 3000 mm of snow is not
very meaningful. However the data from the model can be used to say with reasonable certainty an
interval the value exist within, and even give its probability distribution (as seen in Figure 4.3).

18

Figure 4.4: Plot of SWE samples mean (red) and 0.025 and 0.975 percentiles
(yellow and green), and including observations (blue) for model run on data
from Mount Jackson SNOTEL site, using precision 10e-6 (top) and 10e-5 (bottom)
in the model for observations.

5 Conclusion

When working with hydrologic models, both in research settings and for real world applications, it is
important to be able to quantify the uncertainties that inevitably are present. These uncertainties have
several origins; The model structure itself, since the complex workings of nature is hard to understand
fully and completely describe numerically. There are uncertainties tied to the parameters of the models,
and also to the observations that are used to feed it. Bayesian networks are popular in many areas, but
have not been explored widely in hydrology, though other Bayesian methods have been gaining
popularity.

To try and create a model that explicitly states uncertainties in its output I have translated the snow
module of a popular deterministic model, the HBV model, into a Dynamic Bayesian Network (DBN).
The model takes observations for precipitation and daily mean air temperatures and use it to calculate
snow accumulation and melt. The main output from the model is the amount of snow stored, given in
water equivalent (shortened SWE). After gaining confidence that the model design was sound, I
attempted calibrating its parameters through Gibbs sampling. The results were that the model produced
samples for SWE that when compared to the real observations, showed that the mean followed them
pretty well, and distribution covered them for the most part.

With this I have shown that modeling hydrologic processes in a DBN could be viable, and this could
provide a new way to explicitly include estimations of uncertainties in hydrologic models.

19

References
[1] D. R. Bourdin, S. W. Fleming and R. B. Stull: "Streamflow modelling: A primer on applications,
approaches and challenges", Atmosphere-Ocean, 50, 2012
[2] P. K. Kitandis, R. L. Bras: "Real-time forecasting with a conceptual hydrologic model: 1. Analysis
of uncertainty",Water Resources Research, pp.1025-1033, 1980
[3] P. Krause, D. P. Boyle and F. Bäse: "Comparison of different efficiency criteria for hydrological
model assessment",Advances in Geosciences, 5, 2005�
[4] D. Heckerman: "Probabilistic Similarity Networks", Technical Report, STAN-CS-1316, Dept. of
Computer Science and Medicine, Stanford Univ., 1990
[5] R. Goldman: "A Probabilistic Approach to Language Understanding", Technical Report, CS-90-34,
Dept. of Computer Science, Brown Univ., 1990
[6] J. Pearl: "Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning", Proc.
of the 7th Conf. of the Cognitive Science Society, University of California, Irvine, CA., pp. 329-334,
1985
[7] J. Pearl: “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference”, Morgan
Kaufmann, 1988
[8] Q. Duan, N. K. Ajami, X. Gao, S. Sorooshian: "Multi-model ensemble hydrologic prediction using
Bayesian model averaging", pp.1371-1386, May 2007
[9] A. Raftery, F. Balabdaoui, T. Gneiting, M. Polakowski: "Using Bayesian Model Averaging to
Calibrate Forecast Ensembles", Technical Report no 440, Dept. of Statistics, Univ. of Washington, 2003
[10] E. Charniak: "Bayesian networks without tears.",, 1991
[11] S. L. Lauritzen, D. J. Spiegelhalter: "Local computations with probabilities on graphical structures
and their application to expert systems.", Journal of the Royal Statistical Society. Series B
(Methodological), 1988
[12] S. Geman, D. Geman: "Stochastic relaxation, Gibbs distributions and the Bayesian restoration of
images", IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 609-628, 1984
[13] A. E. Gelfand, A. F. M. Smith: "Sampling-Based Approaches to Calculating Marginal Densities",
J. Am. Stat. Asso., 85, 389-409�
[14] S. Bergstrøm: "Development and application of a conceptual runoff model for Scandinavian
catchments.", Sveriges Meteorologiska och Hydrologiska Institut, 1976
[15] Å. Killingtveit, N. R. Sælthun: “Hydrology”, Norwegian Institute of Technology, 1995�
[16] Sveriges Meteorologiska och Hydrologiska Institutt, “HBV-96”, [online] May 2014,
http://www.smhi.se/sgn0106/if/hydrologi/images/HBV_fig1.gif
[17] G. Lindström, B. Johansson, M. Persson, M. Gardelin, and S. Bergstrøm: "Development and test
of the distributed HBV-96 model.", J. Hydrol. 201, pp. 272-288, 1997
[18] Rango A., Martinec J. : "Revisiting the Degree-Day Method for Snowmelt Computations",Journal
of the American Water Resources Association, 31, pp. 657-669, June 1995
[19] M. J. Druzdzel: "SMILE: Structural modeling, inference, and learning engine and GeNIe: A
development environment for graphical decision-theoretic models", Proceedings of the 16th national
conference on artifical intelligence (AAAI-99), pp. 342-343, July 1999

20

Appendixes

A Python code

import random
import numpy as np

class Parameters(object):
def __init__(self, **kwds):

self.__dict__ = kwds

def makepara():
d=dict(

cx=random.uniform(3.0,6.0),
scorr=random.uniform(1.1,1.5),
meltth=random.uniform(-1.0,2.0),
prcpth=random.uniform(-1.0,2.0),
mlf=random.uniform(0.1,0.6)

)
return Parameters(**d)

def readdata(infile):
data = []
with open(infile,'r') as f:

for line in f:
data.append(line.split())

return data

def runmodel(data,p):
v=[]
i=0

swprev=0
sweprev=0

for line in data:
prcp=float(line[0])
airt=float(line[1])

pmelt = p.cx*(airt-p.meltth) if airt>p.meltth else 0
snow = 0 if airt>p.prcpth else prcp*p.scorr
rain = 0 if snow > 0 else prcp
melt = min(pmelt,sweprev-swprev) if pmelt>0 else 0

tsw = swprev+melt+rain
dsnow = sweprev-swprev+snow-melt
swrel = tsw - (p.mlf*dsnow) if tsw>p.mlf*dsnow else 0
sw = tsw-swrel

swe = dsnow + sw

21

v.append(swe)

swprev=sw
sweprev=swe

i+=1
return v

def main():
infile='mthoodshort.dat'
data = readdata(infile)
datalen = len(data)
n=5000
p=[]
v=[]
for x in range(0,n):

p.append(makepara())
v.append(runmodel(data,p[x]))

lists=[]
for x in range(0,datalen):

l=[]
for y in v:

l.append(y[x])
lists.append(l)

with open('dout.dat', 'w') as f:
for x in lists:

f.write(str(np.mean(x)) + ' ' + str(min(x)) + ' ' + str(max(x)) + '\n')

if __name__ == '__main__':
main()

22

B JAGS model definition
model {

for (i in 1:N) {
snow[i] <- (airt[i] < prcpth) * prcp[i] * scorr
rain[i] <- (1-(airt[i] < prcpth)) * prcp[i]

swrel[i] <- (t_sw[i]>(dsnow[i]*mlf)) * (t_sw[i]-(dsnow[i]*mlf))

sw[i] <- t_sw[i] - swrel[i]
swe[i] <- dsnow[i] + sw[i]
sweobs[i] ~ dnorm(swe[i], 0.000001)

}

melt[1] <- min((airt[1] > meltth) * cx * (airt[1]-meltth),sweinit-swinit)
dsnow[1] <- sweinit - swinit + snow[1] - melt[1]
t_sw[1] <- swinit + rain[1] + melt[1]

for (i in 2:N) {
melt[i] <- min((airt[i] > meltth) * cx * (airt[i]-meltth),swe[i-1]-sw[i-1])
dsnow[i] <- swe[i-1] - sw[i-1] + snow[i] - melt[i]
t_sw[i] <- sw[i-1] + rain[i] + melt[i]

}

scorr ~ dnorm(1.2, 1.0)
cx ~ dnorm(4.0, 0.1)
meltth ~ dnorm(0.0, 0.2)
prcpth ~ dnorm(1.0, 0.2)
mlf ~ dnorm(0.2, 3.0) I(0.0,)

swinit <- 0
sweinit <- 0

}

23

C C++ code
#include <iostream>
#include "smile/smile.h"
#include <typeinfo>
#include <sstream>
#include <fstream>
#include <random>
#include <stdio.h>
#include <time.h>
using namespace std;

vector<pair<double,double>> fileread(string datafile) {
string line;
ifstream infile(datafile);
vector<pair<double,double>> data;
if (infile.is_open())
{

double prcp,temp;
while (getline(infile,line))
{

istringstream iss(line);
string sub;
iss >> sub;
prcp = atof(sub.c_str());
iss >> sub;
temp = atof(sub.c_str());
data.push_back(make_pair(prcp,temp));

}
infile.close();

}
else cout << "Fail" << endl;

return data;
}

void filewrite(int n){
ofstream outfile;
outfile.open("datatest.dat");
tr1::mt19937 mt; // Mersenne Twister generator
tr1::uniform_int<int> prcp(-40, 50);
tr1::uniform_int<int> temp(-10, 10);
for (int i = 1 ; i <= n; i++){

int p=max(prcp(mt),0);
int t=temp(mt);
outfile << p << " " << t << endl;

}
}

void writeResults (DSL_network& net, int n, string of) {
cout << "Update beliefs.." << endl;
clock_t starttime = clock();

24

net.UpdateBeliefs();
clock_t endtime = clock();
cout << "Done in " << (double) (endtime - starttime) / CLOCKS_PER_SEC << endl;
string nodename;
int nodeid;
DSL_valEqEvaluation *val;

ofstream outfile;
outfile.open(of.c_str());
cout << "Write to file.." << endl;
for (int i = 0 ; i < n ; i++) {

if (i%100==0) cout << i << endl;
nodename = "Swe" + to_string(i);
nodeid = net.FindNode(nodename.c_str());
val = dynamic_cast<DSL_valEqEvaluation *>(net.GetNode(nodeid)->Value());
double mean,stddev,vmin,vmax;
val->GetStats(mean,stddev,vmin,vmax);
outfile << mean << " " << vmin << " " << vmax << endl;

}

}

void makeNet(DSL_network& net, vector<pair<double,double>> indata){
cout << "Make net" << endl;
clock_t starttime = clock();
//node identifiers
int n=indata.size();
int nid;

DSL_equation *nodedef;
DSL_node *node;
DSL_node *firstswenode;

firstswenode = net.GetNode(net.FindNode("Swe0"));

int itype = DSL_EQUATION;
string prcp_id,airt_id,pmelt_id,melt_id,snow_id,dsnow_id,swe_id,rain_id,t_sw_id,sw_id,swrel_id;
string sweprev_id, swprev_id;

//equations
string prcp_eq="%s=%f"; //Prcp=val
string airt_eq="%s=%f";
string rain_eq="%s=If(%s>0,0,%s*Rcorr)";//Rain0=If(Snow0>0,0,Prcp0*Rcorr)
string melt_eq="%s=If(%s>0,Min(%s, %s - %s),0)"; //Melt0=If(Pmelt0>0,Min(Pmelt0,Sweinit-Swinit),0)
string pmelt_eq="%s=If(%s%>Meltth, Cx*(%s-Meltth), 0)";//Pmelt0=If(Airt0>Meltth,Cx*(Airt0-Meltth),0)
string snow_eq="%s=If(%s>Prcpth,0,%s*Scorr)";//Snow0=If(Airt0>Prcpth,0,Prcp0*Scorr)
string dsnow_eq="%s=%s-%s+%s-%s";//Dsnow0=Sweinit-Swinit+Snow0-Melt0
string swe_eq="%s=%s+%s"; //Swe0=Dsnow0+Sw0
string t_sw_eq="%s=%s+%s+%s";//t_Sw0=Swinit+Melt0+Rain0
string swrel_eq="%s=If(%s>%s*0.4,%s-0.4*%s,0)";//Swrel0=If(t_Sw0>Dsnow0*0.4,t_Sw0-0.4*Dsnow0,0)
string sw_eq="%s=%s-%s";//Sw0=t_Sw0-Swrel0
char eqbuffer[500];

//step 1
nid = net.FindNode("Prcp0");

25

nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, prcp_eq.c_str(), "Prcp0", indata[0].first);
nodedef->SetEquation(eqbuffer);

nid = net.FindNode("Airt0");
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, airt_eq.c_str(), "Airt0", indata[0].second);
nodedef->SetEquation(eqbuffer);

int netsize=100;

for (int i = 1 ; i < n ; i++){
if (i%100==0) cout << i << endl;
prcp_id = "Prcp" + to_string(i);
airt_id = "Airt" + to_string(i);
rain_id = "Rain" + to_string(i);
melt_id = "Melt" + to_string(i);
pmelt_id = "Pmelt" + to_string(i);
snow_id = "Snow" + to_string(i);
swe_id = "Swe" + to_string(i);
t_sw_id = "t_Sw" + to_string(i);
dsnow_id = "Dsnow" + to_string(i);
sw_id = "Sw" + to_string(i);
swrel_id = "Swrel" + to_string(i);

sweprev_id = "Swe" + to_string(i-1);
swprev_id = "Sw" + to_string(i-1);

// prcp
nid = net.AddNode(itype, prcp_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, prcp_eq.c_str(), prcp_id.c_str(), indata[i].first);
nodedef->SetEquation(eqbuffer);

// airt
nid = net.AddNode(itype, airt_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, airt_eq.c_str(), airt_id.c_str(), indata[i].second);
nodedef->SetEquation(eqbuffer);

// snow
nid = net.AddNode(itype, snow_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, snow_eq.c_str(), snow_id.c_str(), airt_id.c_str(), prcp_id.c_str());

//Snow0=If(Airt0>Uniform(-1,2),0,Prcp0*Uniform(1.15,1.5))
nodedef->SetEquation(eqbuffer);

// rain
nid = net.AddNode(itype, rain_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, rain_eq.c_str(), rain_id.c_str(), snow_id.c_str(), prcp_id.c_str());

26

//Rain0=If(Snow0>0,0,Prcp0*Uniform(1,1.2))
nodedef->SetEquation(eqbuffer);

//pmelt
nid = net.AddNode(itype, pmelt_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
//Pmelt0=If(Airt0>Meltth,Cx*(Airt0-Meltth),0)
sprintf(eqbuffer, pmelt_eq.c_str(), pmelt_id.c_str(), airt_id.c_str(),airt_id.c_str());
nodedef->SetEquation(eqbuffer);

// melt
nid = net.AddNode(itype, melt_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
//Melt0=If(Pmelt0>0,Min(Pmelt0,Sweinit-Swinit),0)
sprintf(eqbuffer, melt_eq.c_str(), melt_id.c_str(), pmelt_id.c_str(),pmelt_id.c_str(),sweprev_id.c_str(),

swprev_id.c_str());
nodedef->SetEquation(eqbuffer);

// t_sw
nid = net.AddNode(itype, t_sw_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, t_sw_eq.c_str(), t_sw_id.c_str(), swprev_id.c_str(), melt_id.c_str(), rain_id.c_str());
// t_Sw0=Swinit+Melt0+Rain0
nodedef->SetEquation(eqbuffer);

// dsnow
nid = net.AddNode(itype, dsnow_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
// Dsnow0=Sweinit-Swinit+Snow0-Melt0
sprintf(eqbuffer, dsnow_eq.c_str(), dsnow_id.c_str(), sweprev_id.c_str(), swprev_id.c_str(),

snow_id.c_str(), melt_id.c_str());
nodedef->SetEquation(eqbuffer);

//swrel
nid = net.AddNode(itype, swrel_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
//Swrel0=If(t_Sw0>Dsnow0*0.4,t_Sw0-0.4*Dsnow0,0)
sprintf(eqbuffer, swrel_eq.c_str(), swrel_id.c_str(), t_sw_id.c_str(), dsnow_id.c_str(), t_sw_id.c_str(),

dsnow_id.c_str());
nodedef->SetEquation(eqbuffer);

//sw Sw0=t_Sw0-Swrel0
nid = net.AddNode(itype, sw_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, sw_eq.c_str(), sw_id.c_str(), t_sw_id.c_str(), swrel_id.c_str());
nodedef->SetEquation(eqbuffer);

// swe Swe0=Dsnow0+Sw0
nid = net.AddNode(itype, swe_id.c_str());
nodedef = dynamic_cast<DSL_equation *>(net.GetNode(nid)->Definition());
sprintf(eqbuffer, swe_eq.c_str(), swe_id.c_str(), dsnow_id.c_str(), sw_id.c_str());
nodedef->SetEquation(eqbuffer);

27

node = net.GetNode(nid);
node->Info().Screen().position = firstswenode->Info().Screen().position;
node->Info().Screen().position.center_X += 100*i;

}
clock_t endtime = clock();
cout << "Done in " << (double) (endtime - starttime) / CLOCKS_PER_SEC << endl;

}

int main()
{

string datafile = "mthoodshort.dat";
string proto = "../dbn/eq6.xdsl";
string outnet = "../dbn/a6.xdsl";
string outfile = "out.dat";

vector<pair<double,double>> indata;
indata = fileread(datafile);
int datasize = indata.size();
cout << "Datas: " << datasize << endl;

DSL_network net;

net.ReadFile(proto.c_str());

makeNet(net, indata);
net.WriteFile(outnet.c_str());
writeResults(net, datasize, outfile);

return 0;
}

28

