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Abstract 
This thesis will test one of the most popular market-timing strategies, using the longest available 

data set ranging from 1857 to 2012. The market-timing strategy has already proven to deliver 

superior results in the period 1926-2012 in a back-test. Which is why, the performance of the 

period pre-1926 will be compared to the post-1926 performance in a back-test. The performance 

of the two periods is similar, but period 1857-1925 is found to have the greatest improvements 

when the strategy is tested, which I find to be due to the lack of long consecutive bull markets. In 

both time periods the market-timing strategy is providing a small increase in returns while 

decreasing the volatility significantly when compared to a passive buy-and-hold strategy. In order 

to minimize the potential data-mining bias that all in-sample technical analysis struggle with, an 

out-of-sample simulation method is tested on the entire data-set and it is found that the 

performance is poorer than what was found in a back-test. The reason for the out-of-sample 

deterioration is mainly found to be due to changes of the optimal moving-average length.  
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1. Introduction 

Investing in stocks has a reputation of being risky business, and as the latest decade has shown, it 

might be an entitled one. For stockholders the events of the dot.com crash and the financial crisis 

in 2007-08 were devastating, with losses cutting their wealth dramatically. Even the most well-

diversified portfolios experienced rough times the last decade, as previously uncorrelated assets 

all started to plummet in value simultaneously. When investors needed the diversification 

advantages the most, it failed and it is not the first time it has happened. Throughout modern 

economic history the same pattern can be found. In times of financial crisis, a well-diversified 

portfolio is not enough to avoid large losses (Preis, Stanley, Helbing, & Ben-Jakob, 2012). Yet 

the potential profits outweigh the risk of losing money for the many investors. This thesis will 

explore the possibilities of implementing a market timing strategy based on technical analysis, in 

order to reduce market risk without having an adverse impact on the returns. The market timing 

systems seek to exploit potentially existing trend patterns in price series in order to forecast future 

realizations of the stock prices. Trend following strategies has gotten a lot of attention in the 

recent years, much because following a trend strategy would have resulted in astonishing results 

for the last decade, as it managed to time the exceptionally volatile market with great success.   

In order to predict the future on the basis of trends, the trends need to be identified. This will be 

done by using a simple-moving-average (SMA) where the current price will be evaluated against 

the mean of the last “k” observation, if the current price is higher than the mean, the price is 

upward trending meaning the asset should be bought and held until the trend has turned negative, 

i.e. the current price is lower than the mean. There exist no clear guidelines on how the length of 

the moving-average should be chosen, the typical lengths used are 10-month mean on monthly 

data and 200-day mean on daily data. I will test several different lengths of the simple-moving-

average in order to find what length results in the best performance in each of the periods tested.  

There are numerous papers that have documented the superior performance of different trend-

following strategies from the interwar period to present date, which is why I will test the strategy 

on a longer time period than any published article has to this point. The goal of this thesis is to 

find out if the SMA strategy works on a longer data-set than tested before. The data-sets used 

provide monthly data from 1857 to 2012. In order for the results to be comparable to what others 

have found the data will be divided into a “classical” period from 1926-2012 and another period 
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from 1857-1925, the performance of the two periods will be looked at separately and also 

compared to each other.  

Even though the trend-following strategies has provided some very promising results, the market-

timing strategy has been the subject of critique, where it is claimed that the performance found on 

historical data is better than one can expect if the strategy is implemented in real life. The reason 

is that this strategy is very exposed to data-mining issues, where only the best rules are reported 

in back-tests. Creating a potential of a substantial discrepancy between the performances reported 

on historical data and the performance one would get in a real life application. Some of the reason 

for this is when using a moving-average there is no way of knowing what length will give the 

best results, there is close to any documentation of the out-of-sample performance of this 

strategy. To address the data-mining critique and the lack of existing out-of-sample literature this 

thesis will have an out-of-sample simulation, where the choice of the optimal moving-average 

length will be based on the length that gives highest Sharpe ratio in a back-test. This will 

hopefully provide an unbiased picture of the real-life performance a user of the strategy can 

expect. The out-of-sample simulation will be tested on several different periods in the data set 

ranging from 1857 to 2012.  

The goal of this thesis is to contribute to the ongoing research in-sample and also provide an out-

of-sample simulation. The in-sample contribution will be to test the simple-moving-average 

strategy in a back-test on a longer data set than ever previously tested. The out-of-sample 

simulation will hopefully provide unbiased performance measures like what one can expect to 

achieve if implemented in real-life.   

This paper will be built up in the following way; it will start with a concise part on portfolio 

theory and have an overview of relevant literature, before talking shortly about the data used in 

this paper, then first the methodology and the results of the in-sample study will be shown before 

the out-of-sample methodology and results will be shown. This will be followed by a discussion 

about the results, before the last section will contain a short summary and conclude the thesis.  
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2. Relevant literature and theory 

2.1 Modern Portfolio Theory 

Harry Markowitz introduced modern portfolio theory (MPT) in (Markowitz, 1952) and 

(Markowitz, 1959) were he proclaimed that individual stocks should not be selected based on its 

own merits, but rather on the basis of how each asset’s individual price changes relative to the 

other asset prices in the portfolio. Through diversification and risk control MPT explains how an 

investor’s portfolio should be composed in order to maximize the return given a level of risk, or 

minimize the volatility (risk) given a level of return. MPT uses the investor’s set of beliefs for the 

expected return from each asset and the covariance between each pair of assets. Based on these 

probability beliefs all investors should create their portfolio to find what combination of assets 

provide the return and volatility that maximizes the perceived utility (often assumed to be a 

function of risk aversion). As a result MPT suggests that all portfolios should be efficient, 

(McInish, 2000) defines efficient portfolios as; 

“A portfolio is efficient if it has the highest return for a given level of risk and the lowest 

risk for a given level of return. One portfolio dominates another if it has more return for a 

given level of risk or less risk for a given level of return”. 

This means that for any given portfolio return,   , the minimum portfolio variance,   , can be 

found. If one assumes that there exists   different assets, and if the proportion of investment into 

each asset is   , where    [      ], so that, 

∑    

 

   

  

This make the portfolio return,   , the weighted sum of the individual asset returns,   , 

   ∑     

 

   

 

Where the expected portfolio return is given by, 
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The portfolio variance is equal to, 

  
     (  )  ∑∑       (     ) 

 

   

 

   

 

Then for some targeted portfolio return,   , one can find the minimum variance by solving the 

following quadratic problem; 

   
 

 
  

                                      ∑    

 

   

   

The solution to this problem gives the answer to what combination of assets that will provide the 

lowest risk for a given level of return. It is this combination of assets which is called efficient and 

it is lying on the efficient frontier. For every other feasible target return, there exist another set of 

asset weights that provide that return while having the minimal risk. By varying the target 

portfolio return the entire efficient frontier can be found. In (Tobin, 1958) he introduced a risk 

free asset in addition to the N risky assets. By introducing this, the efficient frontier will no longer 

consists of several alternative compositions, it will only be one single portfolio of risky assets and 

that portfolio is often called the tangency-portfolio. That tangency-portfolio (also called the 

optimal risky portfolio) is the portfolio that has the highest reward-to-risk ratio, and it will be 

held in combination with the risk free asset to best suit each individual investors risk tolerance. If 

the return of the optimal risky portfolio is denoted as   
 , the risk free return is    and w is the 

portfolio weight, the portfolio return will be,  

       (   )  
   

This is often called the best capital-allocation line (CAL). Since the covariance between the risk 

free and risky asset is zero (in order to be risk free,    has to have a volatility equal to zero by 

definition), this new portfolio has a standard deviation of,  

   (   )    



7 
 

Combining the expression for the portfolio return and standard deviation enables one to calculate 

the CAL as, 

      (
     

  
)   

An example of an efficient frontier with a capital-allocation line superimposed is shown in figure 

1. 

 

Figure 1: Efficient frontier with the capital-allocation line superimposed. 

Modern portfolio theory dictates that all risk averse investors will adapt their portfolio 

somewhere along the CAL-line between point A and B
1
 in Figure 1 to best suite their level of risk 

aversion.  

The Capital-Asset-Pricing-Model (CAPM) was created by Jack Treynor, William Sharpe, John 

Lintner and Jan Mossin in the early 1960s. The model is an extension of the previous work of 

Markowitz, and it comes up with some interesting results about the properties of the tangency-

portfolio. From the assumption that all investors are rational, have the same available information 

and are maximizing economic utility, it follows that they will all hold the exactly same optimal 

risky portfolio. When all market participants hold the same portfolio in combination with a risk 
                                                           
1
 Given that gearing is not allowed. If one allows for it, the feasible area of the CAL continues along the line past 

point A.  
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free asset, that portfolio has to be the market portfolio. Another interesting thing that follows 

from CAPM and the market tangency portfolio is that the market portfolio has to have the highest 

possible Sharpe ratio (defined in the section 2.2).  

2.2 Sharpe Ratio as a Performance Measure 

The slope of the capital-allocation line is a measure of reward-to-risk and is popularly called the 

Sharpe-ratio (SR) (Sharpe, 1966). It is one of the most commonly used measures of reward-to-

risk, much because it is so easy to compute and interpret. The SR can be computed as the 

expected mean return in excess of the risk free rate of return, divided by the standard deviation of 

that excess return, 

    
 [     ]

   [     ]
  

Even though this measure is widely used and accepted, the measure has also been the subject of 

critique. The most relevant critique in data sets of the type I will use in this thesis is about the 

usage of the standard deviation of the excess return as a measure of risk (Zakamulin, 2013). The 

standard deviation takes the distance of each return from the mean, positive or negative. By doing 

this, large positive returns are also penalized in addition to the negative. So that in extreme cases, 

very large positive returns may actually lower the Sharpe ratio (Harding, 2002). Of course this 

problem has been encountered by others in the past and solutions have been proposed, for 

instance other measures have been developed, like the Sortino rate. That only uses the negative 

realizations to compute the standard deviation. Nevertheless, I will use the Sharpe ratio 

extensively and use it as an optimization criterion throughout this thesis. In order to test the 

statistical significance of changes found in the Sharpe ratios I will use the SR-test developed by 

(Jobson & Korkie, 1981) and later the test statistics was simplified by (Memmel, 2003). The null 

hypothesis is,              , giving the test statistic, 

   
       

√ 
 * (    )  

 
 (   

     
           )+
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Where     and     are the Sharpe ratios of two different portfolios, in this application it will be 

for the active and passive strategy, the correlation coefficient,  , measures the correlation 

between the two Sharpe ratios. The test statistic, z, is thought to be asymptotically distributed as a 

standard normal distribution.  

2.3 The Efficient Market Hypothesis 

The efficient market hypothesis (EMH) is widely accepted amongst economists, is a concept 

developed by Eugene Fama amongst others in the 1960s. In (Fama, 1965a) he defined efficient 

markets as “a market where prices at every point in time represent best estimates of intrinsic 

values”, the efficient markets was only a few years later divided into three forms of market 

efficiencies that ultimately differs in what they consider to be “all available information”, (Bodie, 

Kane, & Marcus, 2011) defines the three forms as; 

- Weak-form, asserts that all stock prices already reflect all information that can be derived 

by examining market trading data such as the history of past prices, trading volume, or 

short interest. This version of the hypothesis implies that trend analysis is fruitless.  

- Semi-strong-form, states that all publically available information regarding the prospects 

of a firm must be reflected already in the stock price. Such information includes, in 

addition to past prices, fundamental data on the firm’s product line, quality of 

management, balance sheet composition, patents held, earning forecasts, and accounting 

practice.  

- Strong-form, says that stock prices reflect all information relevant to the firm, even 

including information available only to company insiders.  

In any of the three forms the EMH predicts that all technical analysis strategies should fail to 

provide any increase in performance, even in the weak-form there are no past price patterns that 

can be exploited. This means that all studies that have found strategies that can exploit past prices 

with success is a direct contradiction of the EMH.  

At the same time it was (and still is) a large debate on whether or not stock prices follow a 

random walk or not. The random walk hypothesis says that stock price changes are identically 

distributed and are independent of each other, meaning that past movements or trends of a 

stock/market price cannot be used to predict its own future movements (Bodie, Kane, & Marcus, 



10 
 

2011). (Cootner, 1962), (Fama, 1965a) and (Granger & Morgenstern, 1963) all found evidence 

that stock market prices follows a random walk, while papers like (Alexander, 1961) and (Steiger, 

1964) found that they do not follow a random walk. The link between the random walk debate 

and the efficient market concept is that in an efficient market, “the action of the many market 

participants should cause the actual price of a security to wander randomly about its intrinsic 

value” (Fama, 1965b). This is an important debate especially for the users of technical trading 

rules, as the whole technical trading business is built around the belief that the markets are in fact 

not efficient and that the prices do not follow a random walk, enabling the potential of systematic 

returns in excess of the market. 

2.4 Literature Review 

Technical analysis is far from a new concept and has been around for a long period. The earliest 

known use dates to the early 18
th

 century in the Japanese rice market. Techniques based on 

psychology of the market made the developer Homma Munehisa (1724-1803), a successful 

financial trader at the time (Chen, 2010). The development of the Dow Theory in the first years of 

the 1900s is by many thought to be start of technical analysis in the western part of the world. 

This theory was published in a total of 255 “Wall Street Journal” editorials from 1900 to 1902 

(Wikipedia, Dow Theory), all written by the Charles H. Dow. His theory is based on the use of 

different trends, where he distinguishes between three types of trends in order to predict future 

stock price movement.  

During the next decades there were proposed a lot of different technical strategies, most of them 

used stock-charts and similar methods that do not rely on a vast number of computations as 

modern technical analysis often do. One of the first applications of a moving-average techniques 

can be found in the book “Profits in the Stock Market” written by (Gartley, 1935), where he uses 

a 200-day SMA (close to equivalent of a 10-month SMA on daily data). Modern technical 

analysis has developed a lot since the introduction of the Dow Theory for more than 110 years 

ago, today almost all technical analysis rely heavily on computer power. When the computers 

started making their entrance in the 1970s, it marked an important turning point in technical 

analysis (Burch, 2011). It enabled a whole set of new techniques that could be tested out, and 

many tried to find new strategies that could have prevented the losses experienced in connection 

with the financial crisis in the early 1970s, as a result the literature on technical analysis 
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exploded. Still, there were a lot of skeptics claiming that the performance found using different 

technical analysis techniques was due to randomness, data-snooping or even if the reason for the 

performance in fact had existed, it would surely disappear in an out-of-sample application. The 

paper by (Brock, Lakonishok, & LeBaron, 1992) is by many considered one of the most 

important papers in the field of technical analysis. The paper changed the academic view on 

technical analysis from something that does not work, to something that might actually have 

some relevance.  

(Lo, Mamaysky, & Wang, 2000) try to provide some underlying statistical foundation to why 

technical analysis rules might work. An article by (Levy, 1966) summarize technical analysts’ 

theory beliefs into four points; 

1. Market value is determined solely by the interaction of supply and demand. 

2. Supply and demand are governed by numerous factors, both rational and irrational. 

Included in these factors are those that are relied upon by the fundamentalists, as well as 

opinions, moods, guesses and blind necessities. The market weighs all of these factors 

continually and automatically. 

3. Disregarding minor fluctuations in the market, stock prices tend to move in trends which 

persist for an appreciable length of time. 

4. Changes in trend are caused by the shifts in supply and demand relationships. These 

shifts, no matter why they occur, can be detected sooner or later in the action of the 

market itself. 

The trend-following part of the technical analysis literature has gotten very popular in the last few 

years, for one simple reason, the performance has been incredibly good since year 2000. Papers 

like (Faber, 2007) and (Park & Irwin, 2007) reported that following different trend techniques 

could provide superior performance both in terms of volatility and returns when compared to a 

passive buy-and-hold strategy. The articles by (Faber, 2007) and (Faber, 2009) tests a 10-month 

simple-moving-average (SMA(10)) technique on five different asset classes and finds that it 

provides “equity-like returns with bond-like volatility and drawdown”. (Gwilym, Clare, Seaton, 

& Thomas, 2010) investigate the performance of timing strategies for investing in 32 

international equity markets and find that trend following strategies deliver superior risk-adjusted 

returns when compared to a buy-and-hold strategy. (Clare, Seaton, & Thomas, 2013) show how 
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transaction costs have a very limited impact on the performance of the moving-average strategies 

(often not even considered in other market-timing papers). All the different moving-average 

articles mentioned has as good as no out-of-sample parts, which they also acknowledge as being a 

problem as out-of-sample deterioration is a known problem in technical analysis, as argued by 

(Aronson, 2006). Aronson proposes several plausible explanations for the deterioration, where he 

partly claims it is due to what he calls a random component in any historic series which one can 

by chance find patterns that can exploit. But this random component will change for the next 

sample of history, making it impossible to exploit out-of-sample. He also points to data-mining 

biases, where randomness and “the logic of data-mining”, where the best performing rules are 

always selected. One of the very few papers trying to deal with the potential of out-of-sample 

deterioration is (Zakamulin, 2013), he implements an out-of-sample simulation strategy that has 

the objective of providing performance results free of potential data-mining biases. In addition to 

real-life simulation he also tests alternative realizations of the stock price movements in order to 

remove Aronson’s random component, where the resulting performance is substantially worse 

than others have reported in-sample. 

There are a lot of alternative trend following strategies, the most common use different versions 

of moving-averages to determine when what assets should be held. The general moving-average 

(MA) rule creates buy and sell signals on the basis of; 

      ( )             

      ( )               

Where    is the observed price in period   and    is the number of months taken into 

consideration, the    ( ) is generally computed as; 

   ( )   
∑       

   
   

∑   
   
   

  

There exist several different weighting schemes for the way the past prices are used in the MA 

calculation. The most common is the simple-moving-average (SMA), which simply is the 

average price over a specified period, 
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    ( )  
 

 
∑    

   

   

  

Other popular versions can be the linearly weighted-moving-average (WMA) where the latest 

observations are given more weight. Computed as 

    ( )  
∑ (   )    

   
   

∑ (   )   
   

  

Another version who also reduce the weight for the prices furthest away from period t is the 

exponential-moving-average (EMA),  

    ( )  
∑       

   
   

∑      
   

  

which often use all realizations up to time t in computation of the EMA (meaning that k equals t), 

where each price observation is weighed down exponentially by a factor of   for each observation 

apart from t. It is the SMA weighting scheme that is the most commonly used, and in order for 

this study to more easily be comparable with findings of other papers it is the SMA who will be 

implemented. Moving averages are not the only trend following strategies out there, some of the 

more popular alternatives can be the momentum rules (MOM). The MOM rule prescribes to hold 

an asset if the difference between the prices at    and      is positive, and sell if it is negative, so 

that 

    ( )           

    ( )                

    ( )               

3. Data Sources and Data Construction 

In this thesis I will use two data sets, which will be compared against each other and combined. 

The first data set is from the work of (Schwert, 1990) who created a monthly return data set for 

the period 1802-1925, where the data is available online from Schwert’s homepage 
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(schwet.ssb.rochester.edu). He created the data set from combining and splicing together several 

indices, as no complete records exist of a sufficient quality that far back, I will use the period 

1857-1925 (828 months). This data set provides both the dividend return (calculated as the 

monthly 12-month moving sums of the dividends paid) and the capital return, which together 

makes the total return for the period. So that when later talking about the return, it is the total 

return that is meant (capital return adjusted for dividend return). The starting point of the period is 

determined on the basis of risk free rate, because that is how far we can get a reasonable estimate 

for it and I will stop in 1925 in order for the two compared data sets to approximately be equal 

length and not to overlap each other. For the second data set I use the updated data from a paper 

by (Goyal & Welch, 2008), which gives data on S&P500 for the period 1926-2012 (1044 

months). The data contains index values and dividend returns, so the monthly total return can 

easily be calculated from it. The monthly risk free rate of return is also included in the data set. 

There are no available data on risk free rates for the period prior to 1920, in the previously 

mentioned Goyal & Welch paper they use a regression based on the commercial paper rate in 

New York to get risk-free short-term debt back to 1872. The regression has a very high 

explanatory power in-sample (where it is possible to double check the estimated risk free rate and 

the actual risk free rate), so the estimation is most likely valid out-of-sample as well. For the 

period 1857-1925 I use the same regression in order to make a risk free rate prior to Goyal & 

Welch’s work. The resulting linear regression is used; 

                                                              

The commercial paper rate is obtained from “National Bureau of Economic Research” (nber.org).  

In 1914 there were no trade for four months, due to the First World War, so a linear 

approximation has been used to estimate the changes, this is done by splitting the movement 

between closing and opening index for the closed period equally between each of the four closed 

months.  

The period 1857-1925 will be called the first period and 1926-2012 will be called the second 

period.  
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Some key features of the period first and second period are summarized in Table 1 (all data are 

monthly). They look quite equal to each other, but there are some differences. The average total 

return is higher for period two as a result of a near doubling of the capital return. Period one has a 

smaller standard deviation, which also comes to show with smaller extreme values providing a 

smaller range of returns. 

Period 1857-1925 1926-2012 

Observations 828 1044 

Average capital return 0.32% 0.61% 

Average dividend yield 0.43% 0.33% 

Average total return 0.75% 0.93% 

Standard Deviation (total return) 4.48% 5.49% 

Min Return (total return) -24.37% -29.20% 

Max Return (total return) 17.59% 42.70% 

Range 41.96% 71.91% 

Table 1: Descriptive statistics for period one (1857-1925) and two (1926-2012), all data are 

monthly. 

4. In-Sample Tests 

4.1 In-sample: Methodology 

I implement a widely used technical trading rule to decide when an investor’s wealth should be 

invested either in a risky asset or in a risk free asset. As (Faber, 2007) argues the rules that 

determine the trade should be easy for investors to follow while being mechanical enough to 

remove emotion and subjective decision-making. This resulted in three criteria on which all 

trend-following rules should be based on,  

1) Simple, purely mechanical logic. 

2) The same model and parameters for every asset class. 

3) Price-based only.  

The rule I will use certainly meets the criteria proposed above. The short version of the rule I 

employ in this thesis says that if the risky asset at current time is above the k-month simple-

moving-average the cash should be invested into the market, if not, the investor should exit the 

market and invest the wealth into a risk-free investment instead. Something means that one need 
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to compute the different SMA(k) values. I will limit the SMA(k) lengths to     [    ]  in order 

for the presentation of the results not to get too complex and chaotic.  

The simple-moving-averages (SMA) are computed as,  

    ( )  
 

 
∑    

   

   

  

where (P1, P2, … PT) is the monthly observed closing index prices. When this is done for all 

observations between     [   [ ]    ], (starting point determined by k in order to make all 

SMA(k) vectors equal length), the SMA(k) matrix and the price vectors can be presented as, 

(
      [ ](   [ ])        [ ](   [ ])

   
      (   [ ])        (   [ ])

)      (

    [ ]

 
    

) 

It is this SMA matrix that will be evaluated against the monthly closing index price vector in 

order to determine what asset to hold for the coming month. Such that for each month one can 

determine if the index or the risk free asset should be held for the next month, which has to be 

done for all the different lengths of the SMA: 

       ( )                          (   ) 

       ( )                           (   )  

Once it has been established what months you should be invested in what, for each of the 

different SMA(k) vectors, you can use that information to assign the realized returns of that asset. 

This will create a new vector for each k for all periods of time between     [   [ ]   ] consisting 

of the returns of alternately the index and the risk free asset. It is these new active return vectors 

that will be evaluated against a benchmark to see how that SMA(k) length performs. The 

benchmark used will be a passive buy-and-hold strategy.  

An in-sample analysis of this type can be done in a lot of different ways, and has been done in a 

lot of different ways already. This in-sample part will consist of two analyses where the rule 

described above will be put to work on. One part will be a comparison of the two periods 1857-

1925 and 1926-2012, and the second part will analyze the entire period of 1857-2012. The in 
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depth in-sample research around, is one of the main reasons why I am going to do a comparison 

of the period 1857-1925 to 1926-2012 instead of a more standard performance evaluation (in 

addition to making the results comparable to previous research). The point being that the data 

from 1926 to present date has been very thoroughly examined by several previous papers, so my 

contribution to the ongoing in-sample research will focus on a performance evaluation of a longer 

data set then previously tested, as well as a time period comparison.  

To illustrate how a moving-average looks like, a plot of the 10-month moving-average and the 

index are shown in Figure 2.  

Figure 2: Illustrative example of how the SMA(10) vs. index looks like in the period 2000-2012. 

There are many ways to do a performance evaluation, as already stated I will use the Sharpe ratio 

to rank the different versions. As a complement to the best performing SMA(k) lengths according 

to the Sharpe ratio, I will also report the geometric return as a measure of total end wealth for the 

investor. For after all, the goal of the investor is to maximize his or her wealth at the end of the 

investment period. The reason I will report both the arithmetic returns and the geometric returns 

are quite simple, the arithmetic return do not necessarily provide an unbiased picture of the 

observed wealth development. For instance if an extreme event happens and make a stock 

previously worth 100 $, drop by 90 % in one day and the following day it increases by 90 %, the 

arithmetic return for the two days would be 0. But the geometric daily return would be – 55 %, as 



18 
 

the value would drop to 19 $. In addition the drawdowns of the optimal rolling mean length will 

be inspected.  

The maximum drawdown (MDD) in percent is calculated as the peak-to-trough decline in the 

asset value divided by the peak value (Burghardt, Duncan, & Liu, 2003) formally,  

         
  (   )

{ 
   
  (   )

     

  
} 

For each decade,     (     ), the maximum drawdown will be computed to show the strategy’s 

ability to time markets and exit them in time. Below is an illustrative example (Figure 3) with the 

maximum drawdown superimposed for the index development from year 2000 to the end of 

2012, with that period’s maximum drawdown superimposed.  

 

Figure 3: Illustrative example of the maximum drawdown for the period 2000-2012. 

4.2 In-sample: Results 

The results of the different SMA(k) lengths tested on period one and two, as well as the period as 

a whole are shown below in Table 2, 3 and 4.  
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As can be see for period one (Table 2) the best performing simple-moving-average length is 12 

months, when ranked according to the Sharpe ratios. The resulting SR ratio is 0.482. The eight 

different lengths tested all give results that are quite equal to each other, with average monthly 

returns ranging from 0.0076 to 0.0081
2
. If we look at the geometric returns (computed from 

differences in end wealth), even small differences can have large impacts when the data series 

becomes this long. The difference in choosing the best performing length instead of the worst 

performing length, with respect to the end wealth, is more than 55%. Even though the 

performance is quite alike across the different lengths tested, there is one of them that stand out a 

bit, the SMA(12). When we compare the different Sharpe ratios the next best realized Sharpe 

ratio it is 0.032 lower, which is quite a lot when we take into consideration that the entire range of 

Sharpe ratios is only 0.066.  

 

The results for period two are shown in Table 3, where the best performing SMA(k) length is 15 

months. For this period we can’t see the same evidence of one length being superior compared to 

the others, here we have several Sharpe ratios in the neighborhood of the maximum one. Both 10 

and 12 month SMA seem to perform about equal as the 15 month version, respectively with SRs 

at 0.579 and 0.568 compared to 0.582. The second period’s Sharpe ratios are a bit higher than 

what the strategy achieved in period one, which is simply due to the fact that there were a higher 

mean return for the latter period. The standard deviation is very similar to each other in all of the 

SMA(k)’s tested. In close to all of the cases, ranking according to either mean return, end wealth 

or Sharpe ratios give the same ranking, but not all. According to mean return and Sharpe ratio’s 

the best strategies for period two is 15, 10, 12 starting with the best, but for end wealth its 15, 12, 

10.  

 

If the two periods are treated as one (Table 4), we find that the best length is SMA(12), with a 

Sharpe ratio of 0.532. Else, most of what is said about period one and two is also true for the 

entire period. In addition since the two periods are about the same length, the period as a whole 

                                                           
2
 When talking about the average mean return it is the arithmetic mean return that is meant and not the geometric. 

                   
 

 
∑   

 
   .  

                   ((    )(    ) (    ))
 

   . 
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will almost be an average of the two. To avoid repeating myself, there will only be limited 

comments on the results for the whole period.  
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If we compare the best SMA(k) length in a back test with its passive counterpart as done in the 

Table 5 above, there are several interesting things worth noting. The most obvious might be the 

drastic improvements in Sharpe ratios, for period one it has increased by a staggering 63% and 

for period two 46%. The large improvements are mainly due to the large drop in standard 

deviation for each of the two periods, which is about 1/3 less in both periods for the active 

strategy. The mean return have improved by about 7% for period one, while dropping by 5% for 

period two. As mentioned in the methodology part, looking at the average returns may give a 

biased picture of what is really going on. If we instead look at the geometric returns, the 

improvements are even larger than for the average monthly returns. This is due to how high 

volatility diminishes geometric returns (Chambers & Zdanowics, 2014), or said in a different 

way, increase the difference between average return and geometric return. Period one’s average 

return increase was 7%, its geometric return was at 15%. While period two experienced a drop in 

the average return of 5%, the geometric return increased by 6%. The same story goes for the 

period as a whole, with a decrease in average return of 1% and an increase in geometric return of 

9%. These results show why market timing rules, like SMA, have gotten such a resurgence of 

popularity in the recent years, simply because the results the techniques can provide is 

exceptional when used in a back-test. The range of the observed returns, have drastically dropped 

for the active strategy as well, when compared to the passive, with drops of 20% and 45% for 

period one and two. When we look at the range, it is not only the minimum return that has 

improved as a result of the active trading strategy, which is something good. But the maximum 

returns have also decreased, which of course is bad in the eyes of the investor. If we look at the 

Sharpe’s test statistics for period one they are presented in Table 6:  

  1857-1925 1926-2012 1857-2012 

SMA(k) 12 15 12 

z Value -1.9971 -2.1496 -2.6379 

Probability 4.58% 3.16% 0.83% 

Table 6: Test for Sharpe ratio change significance for the best SMA(k) in a back-test for period 

one, two and the entire period. 

As Table 6 shows, the best performing SMA(k) in all the periods lead to statistically significant 

higher Sharpe ratios at a    confidence level. This means that we can reject    and say that the 

data support the alternative hypothesis that says that the two Sharpe ratios are not equal. The 
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active strategy does provide a statistically significant higher Sharpe ratio than the passive for all 

of the three periods tested.  

To inspect the improvements of the drawdowns, the maximum drawdowns for each 10-year 

period in period one and two for the best active strategy and the passive strategy will be shown, 

see Table 7 and 8.  

  Passive Strategy Active Strategy, k=12 

10-year period Months from period start Drawdown Months from period start Drawdown 

1859-1868 64-75 -22% 22-24 -22% 

1869-1878 86-102 -35% 8-9 -8% 

1879-1888 45-66 -23% 84-88 -7% 

1889-1898 38-55 -36% 80-84 -16% 

1899-1908 95-106 -35% 85-90 -12% 

1909-1918 94-107 -25% 84-85 -7% 

1919-1925 10-30 -22% 10-11 -10% 

Average Length / Drawdown 15.57 -28% 2.57 -12% 

Table 7: Maximum drawdowns for each 10-year period in period one for the active strategy and passive. 

  Passive Strategy Active Strategy, k=15 

10-year period Months from period start Drawdown Months from period start Drawdown 

1926-1935 44-77 -83% 44-46 -23% 

1936-1945 14-27 -50% 14-83 -51% 

1946-1955 5-11 -22% 5-25 -17% 

1956-1965 72-78 -22% 7-20 -13% 

1966-1975 84-105 -43% 114-117 -11% 

1976-1985 59-79 -17% 59-68 -9% 

1986-1995 20-23 -30% 20-22 -23% 

1996-2005 56-81 -45% 56-59 -13% 

2006-2012 22-38 -51% 52-56 -17% 

Average Length / Drawdown 15.89 -40% 13.88 -20% 

Table 8: Maximum drawdowns for each 10-year period in period two for the active strategy and passive. 
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The drawdown tables above are to be read as following, the first number in the “Months from 

period start” is the months from the period start to the month of the peak, and the second number 

is the month of the trough away from the periods start. So for instance, the first line in the table 

for period one, month 64 after 1859, means that the peak was in April 1864 and the trough was 

hit 11 months later (in the 75
th

 month after 1859) meaning March 1865 and the asset decline 

resulted in a 22% value drop. There are specially two things that stand out when looking at the 

two tables above, the average drawdown of the active strategy is a lot lower than if an investor 

followed a passive buy and hold strategy. In addition the average length of the drawdown period 

is lower for the active than the passive strategy.  

For period one (Table 7), the average 10-year drawdown has been reduced from 28% to 12% and 

the average length of the maximum drawdowns has been reduced from an average of 15.57 

months to only 2.57 months. Period two also have some improvements, reducing the average 

maximum 10-year drawdown from 40% to 20%. The average length of the drawdown period has 

“only” been reduced from 15.89 to 13.88 months, some of the reason for this, is due to what 

happened in the period 1936-1945. Where the passive strategy uses 13 months to hit the trough 

and while the active strategy use 69 months, pulling the average significantly up. If that 10-year 

period is excluded, the average length would be almost half the length.  

The drawdowns experienced in period two (Table 8) is on average a bit larger than the ones 

experienced in period one, especially the periods during the Great Depression are huge. The 

index experienced a drop of a staggering 83% from the autumn 1929 to the middle of 1932, in 

addition to 4 other sub-periods with more than 40% drops. Period one had no 10-year periods 

with drawdowns larger than 40%. But an important point is that this should not necessarily be put 

to much weight into, as there are a good possibility that choosing a different year to start each 10-

year period might alter the results quite a bit. If a drawdown is “cut in half” by the sub periods 

start or end points it can fail to get reported as the maximum drawdown, even though it should 

have been in one of the periods. This is some of the disadvantage with a setup like this, but it still 

illustrates the point, the active strategy has on average far smaller maximum drawdowns when 

compared to a passive buy-and-hold strategy, something that is true for both periods.  

Some key numbers of the trades following the active strategy for period one and two are added in 

Table 9 below.  
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Period 1857-1925 1926-2012 1857-2012 

K 12 15 12 

% time long index 56.58% 67.53% 62.84% 

Number of round-trips in total 48 44 97 

Average round-trips per year 0.696 0.506 0.622 

Average length of index holding, in months 9.760 16.023 12.128 

Average length of risk free holding, in months 7.490 7.705 7.171 

Table 9: Key numbers following the trade of the optimal active strategy found in a back-test for 

period one, two and the entire data-set. 

We can see some interesting differences between the trades in the two periods (Table 9), period 

one’s trade led to being long the risky index for about 57% of the time, period two were long 

almost 68% of the time. Period one also has more round-trips than period two, even though 

period one is slightly shorter than period two. This resulted in considerably higher average round-

trips per year number for period one. Since period one has more trades per year, one would 

assume that the average holding length of the index and the risk free would be shorter. The length 

of the index holding is considerably lower for period one, with 9.76 months and 16.02 months for 

period one and two, but the same cannot be said for the risk free holding. The average lengths of 

the risk free holding are almost identical, which means that the reason for the fewer trades in 

period two must be seen in correlation with the longer index holding periods.  
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Figure 4: SMA(12) and passive index development for period one on a logarithmic scale.  

As we can see in Figure 4 the market timing strategy is above the passive for most of the time and 

ends a fair amount above it. Even though it ends well above the passive index, we can see that for 

a long period of time, it did not perform better, it is actually about the same for the first 20-25 

years. Especially the years between 1900 and 1925 the active strategy performs very well, we can 

see that this is a period filled with lots of relatively short periods where the market either goes up 

or down, and only very few periods with a flat development.  
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Figure 5: SMA(12) and passive index development for period two on a logarithmic scale.  

The second period has quite a different development than the first period as we can see from 

Figure 5. This period is dominated by long bull and bear markets, especially the events around 

the Great Depression in the 1930s stand out. The active strategy performs exceptionally well 

during that period, bringing the market timing strategy value significantly higher than the passive 

index value. But the lead that was built up during the Great Depression is gradually eaten away in 

the 20-year period starting from 1940, when the accumulated wealth is as good as equal once 

again in 1960. The active and passive strategy follows each other quite close in the 40-year period 

between 1960 and 2000, the active is slightly ahead after the bad years in the early 1970s, but that 

lead gradually decreased as the almost 20-year long bull market from 1980 to 2000 started. By 

the time the downturn in the 2001 started, the active and passive strategy was once again almost 

equal, but the active quickly gained ground as yet another persistent bear market started. The 

happenings in 2007 further increased the discrepancy of the strategies, ensuring that the active 

strategy ends up above the passive strategy in terms of wealth, but still not as much above as it 

were under the Great Depression. 
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Figure 6: SMA(12) and passive index development for the spliced data-set, 1857-2012.   

If the two periods are treated as one, the active strategy would look like shown in Figure 6. Even 

though this uses the SMA(12) for the second period as well (instead of SMA(15)), it definitely 

resembles the two previous graphs just spliced together, which it also of course what it essentially 

is. We can see that the values following the active strategy is above the passive index for almost 

all of the years, but with a varying magnitude. What has already been said separately for period 

one and two still applies when the periods are treated as one.  

The results shown for the in-sample back test part clearly shows that the SMA(k) can perform 

exceptionally well under certain circumstances, as it do outperform our passive benchmark in a 

back test in both the periods tested. A further discussion and comparison of the results will take 

place in the section 6 of this thesis, the discussion part.  



30 
 

5. Out-of-Sample Tests 

5.1 Out-of-Sample: Methodology 

As mentioned earlier this type of back testing different technical trading strategies, like the SMA 

rule, can be exposed to serious data-mining issues, which in turn can lower the credibility of the 

results in some cases. Where the risk is in that when you are trying out several different strategies 

or rules, they will vary in performance and most likely only the best performing strategies looked 

at will be reported. This especially applies to examples where there are no academic grounds to 

suspect that one version of the strategy should outperform another, like what SMA(k) length to 

use. As (Zakamulin, 2013) also points out, a lot of literature on this subject has obviously tested 

several different moving average lengths and only reported the best performing length for the 

periods tested. Like the paper by (Faber, 2007), where he only reports the results of using a 

SMA(10). Even though the length he used was the best performing choice for the periods he 

looked at, that do not mean that that length will be the best for other periods. In fact, if we look at 

what length of the simple-moving average that would have resulted in the best SR for each 10-

year period in the data set (first observation is for the period 1860,1-1870,1, then the second 

observation is for the period 1860,2-1870,2 and so on), we can see that what SMA(k) length 

gives the best trading signals is very volatile (Figure 7). 
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Figure 7: The optimal SMA(k) length changes for a 10-year rolling window in the period 1860-

2012. 

The optimal length k has a mean of 10.21, a median of 11 and a standard deviation of 4.97. 

This is the reason why the results of several SMA(k) lengths was inspected and reported for the 

in-sample part of this thesis and is also the reasons to why an out-of-sample simulation with both 

a rolling and an expanding approach will be tested. As there are no restricting reporting concerns 

to take into consideration, the different SMA(k) length to be tested will be increased from 

    [    ] for the in-sample part to     [    ] for the out-of-sample part. 

This out-of-sample simulation is a method that has the intention of simulating the choices an 

investor has to make in real-life. In this paper these choices would be to find the optimal SMA(k) 

length, and use that to decide whether or not he wants to be invested in the risky asset or the risk 

free asset for the next month. From the investor’s point of view, he is trying to decide if he thinks 

that the market will go up or down in the next month and that is all he is interested in. Of course 

if he thinks it will go up, he will stay long and if not, he will want to put his money in the bank 

instead. As previously said he will base that decision on the rule that if the last observation of the 

closing price or the index is above the SMA(k), he will be invested in the index and if not, he will 
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choose a risk free investment instead. Since the different lengths of the SMA(k) may lead to 

different decisions, he needs to choose a k for each single month and use that length of SMA(k) 

to evaluate against the closing index prices. Which leads to the next big question, how to choose 

what SMA(k) length to base that decision on?  

The way this will be done is to take an initial in-sample period and check the performance of each 

SMA(k) length and whatever length that performs the best in that period, according to some 

optimization criteria (SR still used), and use that in the rule to decide the capital allocation 

problem. This exercise will then be repeated for each single month that passes. If we let the total 

number of observations range from 1 to T, and τ is denoting the split point between what is 

considered in-sample and out-of-sample. So the initial in-sample period or rolling window length 

(dependent on whether the expanding or rolling strategy is used) is denoted as [   ] and then 

when deciding where to invest the first period, [   ], first optimize according to the Sharpe 

ratio for the period initial in-sample/rolling window to find what SMA(k) length to use the 

following month,  

   
  [    ]

  (          )  

Then use that optimal SMA length to evaluate against the current closing index price and base the 

decision on what asset you want to hold for the coming month. Then the next month the process 

can be repeated to make a decision for period [   ]. But first the investor needs to make a 

choice of what type of a look-back window he wants to use, either an expanding or a rolling 

window. Two strategies that are quite similar, but that can lead to different results. The reason 

both an expanding and a rolling strategy is tested is that they are both viable options, there is no 

“right or wrong” choice. For the expanding window type, for every iteration the sample that is 

used to decide what the optimal SMA(k) length is increased by one. So that if you initially started 

following the rule with [   ] as start and split points, after n iterations you would find the k that 

maximize according to the optimization criteria for the period with start and split as [      

 ]. Then the value of that optimal SMA(k) will be evaluated against the passive closing index 

price the [     ] period to decide which of the two assets are to be held for period [   ]. 
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The only thing that changes for the rolling window type is that you keep the period you optimize 

the SMA(k) length from, a constant. So that after n iterations the period would be ranging 

between [       ]. 

 As for what optimization criteria to use, once again the Sharpe ratio is the logical choice, 

although it has some drawbacks as previously discussed, it is all in all a very good measure of 

reward-to-risk. So that the general maximization criteria for the n
th

 iteration of the expanding 

window would look like 

   
  [    ]

  (              )  

And for the rolling window with a length of  , 

   
  [    ]

  (                )  

There are still some considerations that need to be thought through, for instance how long should 

the initial in-sample part be and how large should the rolling window be? I will test several 

different lengths and compare the performance. The different lengths from start to split 

considered, will range from 5 to 50 years for both the expanding and the rolling strategy. For the 

comparison of the Sharpe ratios to be unbiased the periods compared to each other need to be 

exactly the same length and be for the same period. Something that isn’t ideal when testing such a 

variety of different lengths of initial in-sample periods and rolling windows, meaning that even if 

we only test for a 5 year length, the first observation that can be used are still after the maximum 

length tested, in this case 50 years. So when holding the split date and end date fixed, the variable 

that needs to be changed is the starting point. In this thesis I have got index and risk free rate of 

return data ranging from 1857-2012, meaning that this performance comparison can only get out-

of-sample simulation data for approximately 1910-2012 (you lose 20 observations due to rolling 

mean calculations in addition to the 600 from maximum initial in sample size tested). 

The best length for both the expanding and the rolling, ranked by Sharpe ratio, will be further 

evaluated, with an examination of the drawdowns and the indices produced following the active 

and the passive strategies will be shown. In addition I will show plots of the performance of the 

active strategies versus the passive strategies, which will be used as a tool to show what periods 

the active strategies performs well and what periods it does not. This will be computed as the 
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logarithmic values of the active index values divided by a risk adjusted version of the passive 

index values or put formally, where       are the standard deviations of the active and passive 

strategy and the   
    

 
 are the passive and risk free returns for period t. This makes   

   the risk 

adjusted passive returns, which have the same standard deviation as the active strategy, 

  
   

  
  

   
  (  

  
  

)    
 
  

         

If the active returns (the returns resulting from following either the expanding or the rolling 

strategy) and the risk adjusted passive returns are made to an index. 

  
     

  
    

         
 
    

∑   
  

    

  
      

  
     

          
  

    
∑   

   
    

It is these indices that are divided by and taken the natural logarithmic value of to create the 

relative strength,   , for each month. 

      (
  
 

  
  ) 

If the expression is swapped with the one found earlier we get  

      (
 ∑   

  
   

 ∑   
   

   

) 

      ( ∑   
  

   )      ( ∑   
   

   ) 

   (∑  
 

 

   

 ∑  
  

 

   

) 

This rewriting illustrates what this really is, the cumulative difference in performance for the 

active and the risk adjusted passive strategy. This means that if    increases, the active strategy is 

outperforming the passive strategy and vice versa if    decrease.  



35 
 

5.2 Out-of-sample: Results 

Below are the results of the different lengths tested for both strategies, with different starting 

points, but with equal length of the period between split and end. I will begin showing the 

performance of all lengths tested, before showing the changes of the best performing length vs. 

the passive, the best performing length will also have the trades, drawdowns and cumulative 

wealth analyzed. 
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From the performance of the rolling strategy (Table 9) it is a rolling window size of 420 months, 

or 35 years, that performs the best in terms of Sharpe ratio. The range of the Sharpe ratios is 

relatively narrow, with observations between the best performing window size of 0.553 and the 

worst size achieves 0.481. Also here I find that the main reason for the differences in the Sharpe 

ratios has to do with the differences in the numerators and only in a limited degree with the 

denominator. There are several of the lengths tested that are in the neighborhood of the 420 

month version, but the bottom observation, the 600 month, is the definitive worst performing 

length tested. The range of the maximum and minimum return observation is also close to equal 

for all of the window sizes.  

 

The expanding strategy, Table 10, have much of the same features like the rolling window has, 

with low variation in the both the average return and the volatility, but of course there are still 

some variability. For the expanding strategy the best performing length is a tie between having an 

initial-in-sample part of 300 and 360 months, the resulting Sharpe ratio is 0.560. I find that using 

a 120-month initial-in-sample result in the worst performance, with a SR of 0.499. 

 

For the rolling strategy, there might be a vague pattern that the longest window sizes tested 

perform a bit worse than the ones tested in the other end of the scale and for the expanding 

strategy, there might be poorer performances for the smallest initial-in-sample sizes, but this 

analysis do not look deeply enough into the matter to really claim such a relationship in either of 

the cases. It is hard to get a feel that one of the lengths are more appropriate than the other based 

on this, the “relationship” between the different lengths and the performance can just as likely be 

coincidental or be caused by something else. Even though the differences in the Sharpe ratios are 

small, most of them are still statistically significant, the probability and the test statistics of the 

best vs. the worst performing length for both strategies are presented in Table 11. 

 

Period 1857-2012 1857-2012 

Strategy Rolling Expanding 

Lengths tested against each other 420 and 600 120 and 300 

z Value -2.501 -2.261 

Probability 1.24% 2.37% 

Table 11: Statistical significance of the difference found in the SR of the best vs. the worst initial 

in-sample periods and rolling-windows tested.  
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In short, table 11 says there are clear evidence supporting that there are differences in the Sharpe 

ratios for the different lengths of both the initial in-sample and the rolling window.  

 

If we further look at the best performing lengths for the expanding and rolling strategy in 

comparison with the passive index, we find similar results as we did for the in-sample-part.  

 

Period 1910-2012 1910-2012 % Change 1910-2012 % Change 

Strategy Passive Rolling - Expanding - 

Window/initial-in-sample - 420 - 300 - 

Average return 0.90% 0.85% -6% 0.86% -4% 

Geometric return 0.76% 0.79% 4% 0.80% 6% 

Standard deviation 5.27% 3.37% -36% 3.43% -35% 

Range 71.91% 39.65% -45% 39.65% -45% 

Sharpe ratio 0.3878 0.5531 43% 0.5601 44% 

Table 12: Key figures of the best performing window/initial-in-sample period for the OOS-

simulation compared with the passive strategy.  

 

In Table 12 we can see that the Sharpe ratios have increased a fair amount for the two strategies 

in comparison with the passive performance, 43% and 44% increase for the rolling and 

expanding strategy. The passive index performed very well in the period as well, with a Sharpe 

ratio of 0.388. Also here we can see some good examples of how the geometric return and 

average return may give a different picture of the increase/decrease in end wealth. It is also worth 

noting that the only reason the Sharpe ratio is increasing, is due to the drop in standard deviation 

of 36% and 35% for the two strategies. The results of a SR test of the changes between the 

Sharpe ratios for the two active strategies and the passive are added below in Table 13.  

 

Period 1910-2012 1910-2012 

Strategy Rolling Expanding 

Lengths tested against passive 420 300 

z Value -1.910 -2.024 

Probability 5.61% 4.30% 

Table 13: Statistical significance of SR changes for the two active strategies vs. passive for 

different starting points but with split 1910 and end 2012. 
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In both cases we are about 5% certain that the    (that the SRs are of equal size) is correct, but 

the rolling strategy is strictly speaking not significant at a    level. We can with close to 95% 

certainty say that there is a difference between the Sharpe ratios for the two active strategies and 

the passive strategy.  

 

The rolling and the expanding strategy seem very equal to each other based on Table 12 above, 

but if we inspect some key numbers of trade, Table 14, we can find some differences for the 

trades following the strategies.  

 

Period 1910-2012 1910-2012 

Strategy Rolling Expanding 

Window/Initial in sample 420 300 

% time long index 64% 65% 

Number of round-trips in total 79 55 

Average round-trips per year 0.767 0.534 

Average length of index holding in months 9.945 14.539 

Average length of risk free holding in months 5.701 7.934 

Table 14: Key figures of the trade following the best performing OOS-simulation for the rolling 

and the expanding strategy for different starting points but with split 1910 and end 2012. 

 

Even though they have a very similar time long the risky asset, they have some significant 

differences in the amount of trades. Something that is also shown in the average holding length of 

the two different assets. The rolling strategy had 79 round-trips in total, compared to only 55 for 

the expanding strategy, a difference of almost 44%. The average length of index holding is about 

10 months for the rolling, compared to 14.5 months for the expanding. For the risk free average 

holding length the same pattern can be seen, with a shorter average for the rolling than the 

expanding. The relative decrease in the average holding length is about the same for both the 

risky and the risk free asset.  

 

The maximum drawdowns of the rolling and the expanding strategy compared with the passive 

strategy are shown in Table 15. 
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Both strategies have smaller maximum drawdowns on average when compared to the passive. 

The passive had an average maximum drawdown for 10-year periods of 31%, while the rolling 

and expanding had 19% and 17% respectively. There is not very large changes in average length 

of the drawdown periods, the passive averaged about 10 months, while the rolling had close to 

11.4 months on average and for the expanding they lasted about 8 months. We can see that the 

two active strategies has a lot of the exact same drawdown periods, actually in 6 of the 11 

decades, which also backs up the fact that these two strategies only marginally differ from each 

other.  

 

The graphical plot of the wealth following the expanding strategy with a 300 month initial-in-

sample part and the rolling strategy with a 420 month rolling window is shown in Figure 8.  

Figure 8: Value development of the rolling-, expanding- and passive-strategy for period 1910-

2012 

 

This graph in Figure 8 resembles the one presented for the second period of the in-sample-part 

(Figure 5) of this thesis quite a bit. We can see how the performance in the period around the 

Great Depression also here is extremely good, almost avoiding the drawdown completely. Also in 

this plot, once the passive index really begins to recover from the turbulent 1930s, the two active 
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strategies lose ground to the passive. In the late 1960s the three strategies are almost dead even 

once again, but they maintain the small lead that they have built up during the 1970s, until they 

once again outperform the passive significantly in the start of the 21
st
 century. We can see that 

the two active strategies really follow each other closely for most of the time, where they are 

never really far apart from each other. The largest discrepancy is starting to occur in the 

beginning of 1990s, where the expanding strategy seems to exit the risky asset too early, missing 

out on a period with some good return.  

 

It can be hard to really see how the performance of the two active strategies develops over time, 

which is why I’ll show the relative strength of the indices next in Figure 9. As explained in the 

methodology part it is defined as the logarithmic values of the active index values divided by a 

risk adjusted version of the passive index values. 

Figure 9: Cumulative difference in performance between the active and the passive strategies, 

period 1910-2012. 

 

We can see from Figure 9, that the general trend is that the difference between of the cumulative 

wealth are increasing, which means that active strategies are outperforming the risk adjusted 

passive strategy with respect to cumulative wealth. Both the rolling and expanding have, except 
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for some short periods, almost a linear increase, ending close to the value 2. A value of 2 means 

that the difference in cumulative wealth is        , so both the active strategies are in the 

neighborhood of having 7 times the value as the risk adjusted passive strategy would have. 

Which sounds like a lot, but it is important to keep in mind that this is in fact the risk adjusted 

passive strategy, which in order to have the same standard deviation as the active strategy, consist 

of approximately 1/3 risk free asset and 2/3 index. Both active strategies have periods where the 

performance is deviating from the trending increase, the biggest is the increase around 1929. 

Although, it was later reversed back towards the trend level in the second half of the 1930s. The 

active strategies performed poorly in 1990s as well, especially the rolling strategy. We can also 

see periods of varying performance around 2007-08, where the strategies performance increased 

right before and decreased right after. It is no coincidence that all of the periods just mentioned 

are results of either periods with extremely high returns or low returns. The active strategies are 

performing poorly in very good times and relatively good in bad times.  

 

Another important thing that needs to be taken into consideration is the choice of starting points. 

This is of course of great importance to almost any time series analysis, but because the strategy 

varies a whole lot in performance it is of even greater importance as just illustrated. The active 

strategies do not gain its strength by consistently outperforming the passive strategy, but rather in 

its ability to avoid major bear markets. Something which is a rare event, in the last 150 years 

there has been between 3-35 periods, depending on how they are measured and how big a drop 

need to be to be classified as a “bear market”. There have been 32 periods of bear markets with a 

20% drop or more in the last 114 years (Anspach, 2013), but if the requirements are only 

increased by a little, the number drops drastically. The shorter the period inspected is, the greater 

the impact of choosing a starting point is. This can be another major source of data-mining issues, 

where only the periods where the strategy works best is reported. As mentioned in the literature 

review, this whole SMA(k) strategy has gained a real boost in popularity in the last five years or 

so. The decade following year 2000 has been one of the most turbulent decades in modern 

economic history, consisting of periods with extreme returns, as well as the two major crashes 

(bear markets) following the “IT-boom” and the “subprime-bubble”.  During which the SMA(k) 

strategy performed extremely good, if an investor followed the SMA(k) instead of following a 

passive buy-and-hold strategy, he would have ended up with a staggering 2.33 times more 
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compounded wealth than its passive counterpart in the period between 2000 and 2010. This just 

stresses the importance of determining the right time periods to inspect, as an answer to this issue 

I will test the out-of-sample simulation techniques on several different periods in addition to the 

main analysis previously done, additional periods tested will be 1885-2012, 1935-2012 and 1975-

2012. So, what rolling window and initial-in-sample size should be used for these periods? Even 

though the best answer was found for the period with split 1910 and end 2012, it is of course not 

automatically the same for the other three periods. I will use the length that gave the best 

combined Sharpe ratio for the two strategies, which was 300 months as the rolling window and 

initial-in-sample period.  

The results for 1885-2012, using a 300 month initial-in-sample/rolling window size (Table 16)    

Table 16: Key numbers of the trade, OOS-simulation using 300 rolling window/initial-in-sample 

for period. Start 1860, split 1885 and end 2012.  

 

 

 

 

 

 

Strategy type: Expanding   Rolling   Passive 

Periode 1885-2012 % change vs. Passive 1885-2012 % change vs. Passive 1885-2012 

Initial in sample/Window 300   300   NA 

Average monthly return 0.82% -6% 0.79% -9% 0.87% 

Geometric monthly return 0.76% 3% 0.74% 0% 0.74% 

Standard deviation 3.38% -34% 3.30% -36% 5.15% 

Min return -23.38% -20% -23.38% -20% -29.20% 

Max return 16.28% -62% 16.28% -62% 42.70% 

Range 39.65% -45% 39.65% -45% 71.91% 

Annualized Sharpe Ratio 0.5152 38% 0.5037 35% 0.3742 
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Period 1885-2012 1885-2012 

Strategy Rolling Expanding 

Lengths tested against passive 300 300 

z Value -1.692 -1.889 

Probability 9.06% 5.89% 

Table 17: Sharpe test for changes between the active and passive strategies for period 1885-2012 

using 300 as both the initial-in-sample and the rolling-window. 

 

Figure 10: Values of the rolling-, expanding- and passive-strategy for period 1885-2012, using a 

300 month initial in-sample/rolling window. 



46 
 

Figure 11: Cumulative difference in performance between the active and the passive strategies, 

period 1885-2012. 

 

The two active strategies both end up with almost the same end value as the index following the 

passive strategy, but have an increase in the SR of around 35% (Table 16). When testing the 

statistical significance (Table 17), both strategies fail to provide enough certainty that there in 

fact exist a difference in the observed Sharpe ratio of the active vs. the passive strategies on a 5% 

level, the expanding strategy comes very close with a probability of 5.89% and the rolling 

strategy is at 9.06%. Besides that one cannot say with certainty that there is a difference in the 

SRs, not that much interesting can be found in this period. The expanding approach seems to be 

doing slightly better than the rolling approach for most of the time, but there is something 

interesting in the relative strength graph (Figure 11). In the period 1900-1930 the expanding 

strategy seems to be performing a considerable amount better than the rolling strategy, so that the 

difference between the two is rather big. This difference for that period did not really exist when 

the strategy was tested with different start to split lengths earlier in the paper. Although it has to 

be said that the difference only seem to be temporary, as the two strategies follow each other 

closely once again after 1930. It may seem odd that the results of the expanding are not the same 

as when tested earlier, but even though the length of the initial-in-sample period is the same, it is 

not optimizing k for the same period as before. Different k’s can create different trading signals. 
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Something that seem to be the most reasonable explanation to why the difference can be 

observed. The relative graph ends up with about the same values as it did earlier, close to 2.  

 

Results of the period 1935-2012 

Strategy type: Expanding   Rolling   Passive 

Periode 1935-2012 
% change vs. 
Passive 1935-2012 

% change vs. 
Passive 1935-2012 

Initial in sample/Window 300   300   NA 

Average monthly return 0.83% -13% 0.82% -14% 0.95% 

Geomtric monthly return 0.78% -9% 0.77% -10% 0.85% 

Standard deviation 3.35% -27% 3.27% -28% 4.57% 

Min return -23.38% -4% -23.38% -4% -24.28% 

Max return 13.43% -47% 13.43% -47% 25.24% 

Range 36.80% -26% 36.80% -26% 49.52% 

Annualized Sharpe Ratio 0.5373 11% 0.5381 11% 0.4853 

Table 18: Key numbers of the trade, OOS-simulation using 300 rolling window/initial-in-sample 

for period. Start 1910, split 1935 and end 2012.  

 

 

Period 1935-2012 1935-2012 

Strategy Rolling Expanding 

Lengths tested against passive 300 300 

z Value -0.564 -0.573 

Probability 57.27% 56.64% 

Table 19: Sharpe test for changes between the active and passive strategies for period 1935-2012 

using 300 as both the initial-in-sample and the rolling-window. 
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Figure 12: Values of the rolling-, expanding- and passive-strategy for period 1935-2012, using a 

300 month initial in-sample/rolling window. 

 

 

Figure 13: Cumulative difference in performance between the active and the passive strategies, 

period 1935-2012. 
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The performance of this period is not very impressive, the average return has decreased with 13% 

and 14% for the expanding and rolling strategy (Table 18). While the standard deviation has 

“only” decreased with about 27-28%, all of the previous periods tested had decreases of more 

than 30%. These two factors both contribute to the very low Sharpe ratio improvement of only 

11% for both the strategies, neither of the strategies SR changes come close to being significant 

in the test performed in Table 19. This performance can also easily be seen on the index plot, 

where the passive index is well above both the rolling and expanding strategy for close to the 

entire period. There seems to be very little difference between the rolling and expanding strategy 

for this period, except for some time between 1970 and 1990, where the rolling is some above the 

expanding.  If we look at the relative strength graph (Figure 13), it looks quite different than the 

ones previously presented. It has no clear upward trending element, it is below zero for much of 

time, it actually crosses zero for the final time just before year 2000. We can also see the 

difference between the values of the indices in the 20-year period from 1970, where the 

difference is close to 0.4 at its maximum and if we exploit this relationship, 
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It means that if an investor followed the rolling strategy instead of the expanding strategy he 

would have had 49.2% more wealth at that point. The two strategies are at most at 0.8 in the 

relative graph, but the bull market to follow the crash in 2007-08 ensures the relative graph ends 

up around the value 0.4.  

The last period tested was from 1975 to 2012, this is the results. 
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Strategy type: Expanding   Rolling   Passive 

Periode 1975-2012 % change vs. Passive 1975-2012 % change vs. Passive 1975-2012 

Initial in sample/Window 300   300   NA 

Average monthly return 0.91% -10% 0.88% -14% 1.01% 

Geomtric monthly return 0.85% -7% 0.82% -10% 0.91% 

Standard deviation 3.35% -24% 3.36% -24% 4.42% 

Min return -21.47% 0% -21.47% 0% -21.47% 

Max return 13.43% 0% 13.43% 0% 13.43% 

Range 34.90% 0% 34.90% 0% 34.90% 

Annualized Sharpe Ratio 0.4913 8% 0.4597 1% 0.4555 

Table 20: Key numbers of the trade, OOS-simulation using 300 rolling window/initial-in-sample 

for period. Start 1950, split 1975 and end 2012.  

 

Period 1975-2012 1975-2012 

Strategy Rolling Expanding 

Lengths tested against passive 300 300 

z Value -0.188 -0.467 

Probability 85.10% 64.02% 

Table 21: Sharpe test for changes between the active and passive strategies for period 1975-2012 

using 300 as both the initial-in-sample and the rolling-window. 

 

Figure 14: Values of the rolling-, expanding- and passive-strategy for period 1975-2012, using a 

300 month initial in-sample/rolling window. 
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Figure 15: Cumulative difference in performance between the active and the passive strategies, 

period 1975-2012. 

 

Also for this period, as we can see from Table 20 that both the average and the geometric returns 

are smaller for the active strategies than for the passive. With average return drops of 10% and 

14% for the expanding and the rolling. The standard deviation dropped with 24% in both cases. 

Despite having a drop in the standard deviations, the Sharpe ratio increase is only 8% and 1% for 

the two strategies. If we look at the Sharpe test in Table 21, there is no evidence to support the 

claim that there is a difference in the Sharpe ratios for either strategy. For the first time in all of 

the periods tested, the range is as large for the active as for the passive strategy. If we look at the 

indices created following the active and passive trades, it really shows the reason to why the 

performance reported is so poor, the active indices just can’t keep up with the passive in the bull 

market that almost lasted from the periods start to year 2000. Especially in the years between 

1990 and 2000 the difference grew by a lot, where in hindsight the active strategies produced too 

many exit signals making it miss out on important return. Both the active strategies actually catch 

up with the passive during the financial crisis in 2007-08 for a short period of time, but they 

quickly fall behind once the market improves. The relative graph (Figure 15) has almost a flat 

development for the first 30 years, where it stays pretty close to zero until the turbulent times in 



52 
 

the beginning of the millennia starts, first increasing from -0.2 to 0.2 in the first round and then 

increasing another 0.4 in the second round, before decreasing some again.  

6. Discussion 

As the results showed the market timing strategy has large fluctuations in the performance, with 

both periods of extreme over- and under-performance. This discussion part will try to explain the 

reasons for the differences we can observe for the different strategies and for the different periods 

tested.  

After inspecting the cumulative wealth and cumulative difference in performance figures it is 

pretty evident, the market timing strategy works well for bear periods and badly for bull periods. 

This is due to the timing strategy’s ability to switch between the risky and the risk free asset. But 

it is also this ability that makes it underperform in bull periods when compared to a passive buy-

and-hold benchmark. The motivation for exchanging one asset for the other is the belief that it 

will yield a higher return for the coming month, but that belief is not always realized. In fact most 

of the times the risky asset is swapped with the risk free asset it is the result of a “false signal”, 

where the investor would have been better off sticking with the risky asset. In order for the active 

strategies to end up with a higher cumulative wealth, the average return of the periods where the 

risk free asset is held has to be higher for the risk free than that of the risky asset. A market 

timing strategy is definitely a two way street, where surely exiting the market can prevent large 

losses, but it can also prevent large gains by not being in the market at the right time. This is due 

to the way the simple-moving-average works, where the SMA becomes a lagged version of 

previous realizations giving it the ability to exit the market if there is a negative trend, but that 

also means that it takes time for the signal to switch back to buy. So when the trend has turned 

positive we can already have missed out on important return. This also means that if the events 

are sudden drops in a very limited number of observations the strategy will perform poorer than if 

a drop of equal size is spread out in longer period of time. When talking about trends, what is 

actually implied is that there exist a correlation between the months (autocorrelation), so on the 

basis of previous realizations one can make a qualified guess for the next unrealized month. 

There have been established that there exist significant autocorrelation for monthly return data 

previously, I find the first order auto-correlation to be 0.076 for the period of 1857-2012, it is not 
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a very high correlation, but it is found to be statistically significant at a      level using 

Pearson’s product moment correlation test (Pearson, 1895). This correlation shows that there are 

price patterns that can potentially be exploited with the right setup, as according to MPT and the 

random walk hypothesis there should not exist such correlation. 

From both the in-sample and out-of-sample analysis we could see drops in the standard deviation 

for the active strategy of approximately 25-35%, this is the result of the time invested in the risk 

free asset. The reduction in volatility comes through when one looks at the reduced drawdowns, 

but it is important to remember that this reduction also means that one has an increased risk of 

missing out on return and ultimately end up with a lower wealth. There is a risk change from 

potentially large drawdowns to potentially lower end wealth, this change might be obvious, as 

economic theory dictate; reduced risk always comes at the price of reduced expected returns, but 

from the results shown we can see several examples of reduced volatility while not having an 

adverse impact on the returns. My point being that there is still a considerable risk that a market 

timing strategy user will end up with less cash than a passive strategy, not because of drawdowns 

or market drops, but as a result of not being in the market at the right time and that may not be 

reflected when using volatility as a measure of risk. 

For the in-sample part, period one (1857-1925) had a substantially larger increase in Sharpe ratio 

than period two (1926-2012) had, a 63% increase compared to only 46%. As already stated, the 

market timing strategy gains its strength from its ability to avoid bear markets, and when we 

know that the average 10-year maximum drawdown for period one was 28% and 40% for period 

two, one would think it would be period two that should see the bigger increase in performance 

relative to the passive. I believe the fact that it do not is due to the lack of the extreme bull 

periods one could observe in the second period (1945-1955, 1980-2000 for example). Even 

though there are no periods of really exceptional performance, there are very few periods of 

underperformance as well, making the discrepancy between the market timing and the passive 

strategy’s cumulative wealth a little bit bigger for every drawdown the market experienced. It is 

these long bull periods in the second data set which I find to be the main reason to why the 

strategy seems to work better in period one than two, but the timing strategy would certainly had 

provided better results that a buy and hold strategy could have in both periods, both in terms of 

cumulative wealth and reward-to-risk measurement.  
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The in-sample results found in period two are very similar to what others have found before, both 

in terms of average return and volatility. In the literature review I said that it was the SMA(10) 

that was the most popular length in the literature, and still I do not find it to be the optimal length 

in the in-sample analysis which may seem a bit odd. (Zakamulin, 2013) use data from 1926-2012 

for the S&P500 and finds the SMA(10) to be the optimal length, which is identical to my period 

two where I find that it is the SMA(15). The reason for this is that one loses some observations at 

the start of the data-set due to simple-moving-average calculations (lose the number of the 

highest k tested), and since my complete data set it ranging from 1857 and not 1926, I only lose 

the k first observations in 1857 and not in 1926 as well. If I try the strategy only for the data set 

from 1926-2012 (meaning that the first SMA results are for 1926 + k months ahead) I also find 

that it is the SMA(10) that is the optimal choice.   

As the out-of-sample simulation showed the active strategy performed very well in some of the 

periods tested and rather poorly in other. In the main out-of-sample analysis which was for the 

period 1910-2012, where the different initial in-sample periods tested were put accordingly in the 

time before the split point in 1910, the resulting performance for the rolling and the expanding 

had a 43% (0.553) and a 44% (0.560) increase in the Sharpe ratio when compared to what a 

passive strategy (0.388) would have achieve in the same period. If the same period was tested and 

treated as in-sample the best performing SMA(k) length would give a SR of 0.575, this difference 

between the out-of-sample and the in-sample SR ratio is the size of the out-of-sample 

deterioration of the Sharpe ratio. It can be calculated as, 

                   (
     

       

 
       

 

)  

     is the Sharpe ratio of the optimal SMA(k) length in a back-test,         are the Sharpe 

ratios of the rolling and expanding strategy. The out-of-sample deterioration for the different 

periods tested are given in Table 22. 

Period 1910-2012 1885-2012 1935-2012 1975-2012 

Deterioration 3.32% 9.38% 19.25% 16.08% 

Table 22: Out-of-sample deterioration for the different OOS-simulation time periods tested 
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The deterioration is quite different in the periods tested, this clearly show that there is a risk of 

getting substantially lower Sharpe ratios than what can be found using a standard in-sample back 

test. For the period 1910-2012 the optimal length of the initial in-sample and the rolling window 

was found, but it was not found for the other three periods. This can account for some of the 

deterioration, but it seems unlikely that that is the only reason, the magnitude is bigger than the 

range of Sharpe ratios found using the different lengths of the initial in-sample and rolling 

window in the period 1910-2012 (range of SR for the expanding strategy was 0.061 and for the 

rolling it was 0.071). And even if the differences is a result of not having the optimal initial in-

sample size or rolling window length, one cannot on beforehand know what that length is, which 

is why I cannot really see any reason not to expect an out-of-sample deterioration of similar 

magnitude of what is shown in Table 22 if one were to implement this timing strategy in the real 

world. Although the in-sample results suggests that this trend following strategy can provide 

superior performance to what a buy-and-hold strategy can, it is not enough evidence to claim that 

the efficient market hypothesis is wrong (meaning that there are still past price patterns that can 

be exploited in the stock market prices). In my opinion there are two problems with making such 

a claim. One, the out-of-sample performance is a substantial amount poorer than what the in-

sample performance is. Two, the strategy do not provide consistent performance, where the 

performance is reliant on some short and rare periods of time in order to work well.  Since the 

strategy seems to be working for some of the periods inspected, and not at all for others, it might 

at best be evidence that there are periods where markets are not efficient. But further research is 

needed to be able to conclude with anything.  

From the empirical results obtained in this thesis it is not obvious whether an expanding or a 

rolling window is the more appropriate to use. From a theoretical point of view it depends on the 

data, if the data are drawn from the same distribution in all 156 of the years used, an expanding 

window are the more appropriate choice, but if it changes throughout the years one should use a 

rolling window instead. Trying to decide if all data are “drawn” from the same distribution for the 

entire sample can be very hard to determine, one simplification of the problem can be to split the 

data in two and compare the 78 first years to the 78 last years and for instance use a two-sample 

Kolmogorov-Smirnov test
3
 to see if the two sets are coming from the same distribution or not, but 

                                                           
3
 The point is not to go into the details of the test, but to have some statistical foundation to say that the data has 

changed/not changed in the period looked at. The test was developed by Andrey Kolmogorov and Nikolai 
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if implemented the results are not strong enough to say that they are from the same distribution or 

from different distributions. In Figure 7, the optimal lookback period for a 10-year rolling 

window was shown, and it changed a lot, having a standard deviation of almost 5 months. The 

world has definitely changed a lot the last 150 years, so it would not be very surprising if the 

supposed underlying distribution function of the returns have changed as well, but as just stated 

the first half is not statistically different from the second half. The expanding strategy seems to 

perform slightly better than the rolling strategy, having the highest cumulative wealth of the two 

strategies in all periods tested. Another thing that suggests the expanding strategy might be better 

is that it generates fewer trades, making the transaction costs lower. So from a conceptual point 

of view I would say the rolling window is more appropriate, and based on the results found here 

an expanding window would be better. None of the arguments are in my opinion strong enough 

to conclude with what strategy is best, further research would be necessary to determine which is 

the better to use or under what conditions one outperform the other.  

7. Conclusion 

This thesis has inspected the performance of a popular trend following strategy on a longer time 

series than previously tested. The complete data set was divided into two parts (1857-1925, 1926-

2012), where the performance of the two periods were found and compared using a back-test. In 

addition to the standard back-test, a simulated out-of-sample approach was used to eliminate 

some of the potential data-mining bias that exists. The choice of optimal length of the SMA was 

simulated in four different time periods in order to see how the performance differs in the periods 

tested. I find this trend following strategy to perform very well in severe bear-markets and very 

poorly in major bull-markets.  

The in-sample part revealed that the simple-moving-average trend following strategy worked 

well in both periods tested, with substantially decreased volatility without it compromising the 

returns and therefore giving rise to enhanced risk-to-reward returns. It seems like the strategy 

worked a bit better in period one (1857-1925) than two (1926-2012), despite period two having 

                                                                                                                                                                                            
Vasilyevich Smirnov, in the 1930- and 1940s through a series of published articles. Further explanation, test-
statistics and critical value tables can be found at (Wikipedia, Kolmogorov–Smirnov test) 
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on average having larger 10-year maximum drawdowns. The reason for this seems to be the lack 

of extreme bull-markets that period two experienced more of than period one.  

The out-of-sample analysis revealed that the risk of out-of-sample deterioration is definitely 

present, the amount of deterioration seems highly dependent of the period it is tested on. If this 

simple-moving-average technique is to be tested out in real-life, one can expect to have a 

reduction in standard deviation of about 1/3, it is not as obvious what one can expect for the 

returns, but one should not be surprised if the wealth development following the active strategy is 

less than what one would get following a passive buy-and-hold strategy. Yet, the drop in standard 

deviation should ensure that one ends up with a higher risk-to-reward return than what a passive 

strategy achieves.  
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Appendix 

R-kode: 

##  Packages used 

library ("zoo") 

library ("tseries") 

 

### Functions 

SharpeTest <- function(ex1, ex2) { 

  # test for equality of two Sharpe ratios 

  # ex1 and ex2 are excess returns to two portfolios/strategies 

  # returns the p-value of the test 

  if (length(ex1) != length(ex2)) 

    stop("Different lengths of two returns!") 

   

  SR1 <- mean(ex1)/sd(ex1) 

  SR2 <- mean(ex2)/sd(ex2) 

  ro <- cor(ex1,ex2) 

  n <- length(ex1) 

  z <- (SR2-SR1)/sqrt( (2*(1-ro)+0.5*(SR1^2+SR2^2-2*SR1*SR2*ro^2))/n ) 

  pval <- 2*pnorm(-abs(z)) 

  return(pval) 

} 

 

#Rollmean, change lbs freely before program line 

rollk <- function(x, lbs=2:20){ 

  roll <- list() 

  ft <- lbs 

  for (i in seq_along(ft)){ 

    roll[[i]]<- rollmean(x, ft[i])} 

  return(roll) 

} 

 

#Assign appropriate return based on rollm vs. index (us after rollk) 

aret <- function(index, rollm, ret, rfree){ 

  n <- length(index)-1 

  aret <- rep(0,n) 

  for (i in 1:n){ 

    if (rollm[i] < index[i])(aret[i] <- ret[i+1]) 

    else (aret[i] <- rfree [i+1]) 

  } 

  return(aret) 

} 

 

#Annual Sharpe-Ratio created from monthly data 

SRannual <- function(er){ 

  Sharpe <- SR(er)*sqrt(12) 

  Sharpe 

} 

 

#SR creater 

SR <- function(er) { 
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  # computes the Sharpe ratio 

  return(mean(er, na.rm=TRUE)/sd(er, na.rm=TRUE)) 

} 

 

#Expanding window, OOS-simulation 

smak.e <- function (roll,rfree, split=120){ 

  smak <- vector() 

  ft <- (length(roll[,1])) 

  for (i in 1:(ft-split-1)){ 

    part.r<- (roll[1:(i+split),]) 

    part.rf <- (rfree[1:(i+split)]) 

    er.part <- part.r -part.rf 

    SRperiod <- apply(er.part, 2, SR)   

    endperiod <- as.numeric(SRperiod) 

    k <- which.max(endperiod) 

    smak[i+split]<- roll[i+split+1,k] 

  } 

  return(smak) 

} 

 

#Expanding window, OOS-simulation 

k.e <- function (roll,rfree, split=120){ 

  smak <- vector() 

  ft <- (length(roll[,1])) 

  for (i in 1:(ft-split-1)){ 

    part.r<- (roll[1:(i+split),]) 

    part.rf <- (rfree[1:(i+split)]) 

    er.part <- part.r -part.rf 

    SRperiod <- apply(er.part, 2, SR)   

    endperiod <- as.numeric(SRperiod) 

    smak[i+split] <- which.max(endperiod)+min(lbs)-1 

  } 

  return(smak) 

} 

 

#Rolling window, shows how k change 

smak.r <- function (roll, rfree, split=120){ 

  smak <- vector() 

  ft <- (length(roll[,1])) 

  for (i in 1:(ft-split-1)){ 

    part.r<- (roll[i:(i+split),]) 

    part.rf <- (rfree[i:(i+split)])  

    er.part <- part.r -part.rf      

    SRperiod <- apply(er.part, 2, SR)   

    endperiod <- as.numeric(SRperiod) 

    k <- which.max(endperiod) 

    smak[i+split]<- roll[i+split+1,k] 

  } 

  return(smak) 

} 

 

#Rolling window, shows how k change 

k.r <- function (roll, rfree, split=120){ 

  smak <- vector() 
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  ft <- (length(roll[,1])) 

  for (i in 1:(ft-split-1)){ 

    part.r<- (roll[i:(i+split),]) 

    part.rf <- (rfree[i:(i+split)])  

    er.part <- part.r -part.rf      

    SRperiod <- apply(er.part, 2, SR)   

    endperiod <- as.numeric(SRperiod) 

    smak[i+split] <- which.max(endperiod)+min(lbs)-1 

  } 

  return(smak) 

} 

 

#Assigns dates to a data set 

part <- function(data, hele.data=c(2012,12), start=c(2000,12), 

end=c(2012,12), freq=12){ 

  ts.data <- ts(data, end=hele.data, freq=freq) 

  ts.data2 <- window(ts.data, start=start, end=end, freq=freq) 

  return(ts.data2) 

} 

 

#Shows value development of a return vector 

cumproduct <- function(tsaktiv, start=100){ 

  S <- vector("numeric", length(tsaktiv)) 

  S[1] <- start 

  for (i in 1:length(tsaktiv)){ 

    S[i+1] <- S[i]*(1+tsaktiv[i+1])} 

  return(S)} 

 

#Summary function, use on returns, if er not available use r x2  

my.summary <- function(r,er) {  

  cat("\n**************************************** \n") 

  cat("  SUMMARY STATISTICS \n") 

  cat("**************************************** \n") 

  cat("Number of observations = ", length(r), "\n") 

  cat("Mean = ", mean(r, na.rm=TRUE), "\n") 

  cat("Median = ", median(r, na.rm=TRUE), "\n") 

  cat("Variance = ", var(r, na.rm=TRUE), "\n") 

  cat("Standard deviation = ", sd(r, na.rm=TRUE), "\n") 

  cat("Min = ", min(r, na.rm=TRUE), "\n") 

  cat("Max = ", max(r, na.rm=TRUE), "\n") 

  cat("Range = ", max(r, na.rm=TRUE)-min(r, na.rm=TRUE), "\n") 

  cat("SR= ", SRannual(er), "\n") 

} 

 

################################################################ 

 

# Create the data file 

# Period 1, 1857-1925 

STKDATM <- read.table("~/STKDATM.dat",header=TRUE) 

 

#drop data for 1802-1856,12 = 660 months 

STKDATM1 <- STKDATM[-(1:660),] 

 

cprates <- read.table("~/paperrates.dat", header=FALSE) 
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kuncprates <- cprates$V3 

 

#Estimated tbill rate from commercial paper rates 1857-1972 

tbillhat <- tbillhat (kuncprates) 

 

#Data as whole percent to numbers 5% = 0,05 tall 

rfree.1<- annualtomonthly (tbillhat)  

rfree.1 <- window(rfree.1[1:828]) 

rfree.1 <- as.numeric(rfree.1) 

 

#Estimated tbill rate from commercial paper rates 1857-1926 

#tsrfree <- ts(monthlycprates, start=c(1857,1), end=c(1925,12), freq=12) 

 

#Index og dividender 

rret <- STKDATM1$bla 

rdiv <- STKDATM1$bla1 

a.ret <- rret+rdiv 

 

##### 

predict <- read.csv("~/PredictorData.csv",header=TRUE, sep=",") 

predict <- predict[-(1:660),] 

ret2 <- vector("numeric") 

for (i in 1:(length(predict$Index))){ 

  ret2[i+1]<- (predict$Index[i+1]-predict$Index[i])/predict$Index[i] 

} 

ret2 <- head(ret2, -1) 

ret2[1]<- 0.02247 

div2 <- (predict$D12/predict$Index)/12 

df2 <- data.frame(ret2, div2) 

a.ret2 <- rowSums(df2, na.rm=T) 

rfree2 <- predict$Rfree 

 

capital.return <- c(rret, ret2) 

dividend.return <- c(rdiv, div2) 

rfree <- c(rfree.1, rfree2) 

total.return <- c(a.ret, a.ret2) 

 

index <- cumproduct(total.return, start=100) 

index<- head(index, -1) 

date <- seq(as.Date("1857-1-1"), by="month", length=1872) 

 

new.dates <- data.frame(dates = as.Date(date, by="month")) 

 

df <- cbind(new.dates, capital.return, dividend.return, total.return, 

rfree, index) 

 

write.table(df, file="data.dat") 

 

# Calculation 

 

data <- read.table("~/data.dat",header=TRUE) 

lbs <- 8:15 #Set wanted SMAK to test for 
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tds <- max(lbs)-1 

est <- length(lbs)-1 

 

index <- cumproduct(data$capital.return, start=100) # Choice what returns 

the rollk should be based on, either capital.return or total.return 

index <- head(index, -1) 

rolling <- rollk(index, lbs) 

for (i in 1:est)( 

  rolling[[i]]<- (rolling[[i]][-(1:((length(lbs))-i))])) 

rolling <- matrix(unlist(rolling), ncol=length(lbs)) 

data <- data[-(1:tds),] 

index <- index[-(1:tds)] 

 

aktiv.ret <- matrix(ncol=length(lbs) , nrow=(nrow(data)-1)) 

for (i in 1:length(lbs)){ 

  aktiv.ret[,i] <- aret(index, rolling[,i], data$total.return, 

data$rfree)} 

data <- data[-1,] 

 

er.aktiv.ret <- aktiv.ret-data$rfree 

er.aktiv.ret <- ts(er.aktiv.ret, end=c(2012,12), freq=12) 

 

# In sample, set time for start and end period, ONLY for in sample 

start=c(1926,1) 

end=c(2012,12) 

del.periode <- window(er.aktiv.ret, start=start, end=end, freq=12) 

SRperiod <- apply(del.periode, 2, SR)  

endperiod <- as.numeric(SRperiod) 

best.v <- which.max(endperiod) 

best.k <- best.v+min(lbs)-1 

best.k 

 

SRannual(del.periode[,best.v]) 

ts.aktiv <- ts(aktiv.ret, end=c(2012,12), freq=12) 

del.aktiv <- window(ts.aktiv, start=start, end=end, freq=12) 

te <- best.v 

my.summary(del.aktiv[,te],del.periode[,te]) 

cum.w <- cumproduct(del.aktiv[,te], start=100) 

cum.w[length(cum.w)-1] 

del.periode.pret <- part(data$total.return, start=start, end=end) 

ts.rfree <- ts(data$rfree, start=start, end=end, freq=12) 

er.del.periode.pret <- del.periode.pret - ts.rfree 

cum.w.p <- cumproduct(del.periode.pret, start=100) 

cum.w.p[length(cum.w.p)-1] 

 

SharpeTest(del.periode[,te], er.del.periode.pret) 

 

active.ind <- ts(cum.w, start=start, end=end, freq=12) 

passive.ind <- ts(cum.w.p, start=start, end=end, freq=12) 

range <- range(c(log(active.ind), log(passive.ind)), na.rm=TRUE) 

plot(log(active.ind), ylab="Cumulative Return, log scale", col="red", 

ylim=range) 

lines(log(passive.ind), col="black") 
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legend("topleft", c("Market Timing Strategy", "Passive Strategy"), 

cex=0.5, col=c( "red","black"), lty =1) 

 

# OOS simulering, set time for start and end period, split = rolling 

start=c(1950,1) 

end=c(2012,12) 

split=300 #initial in sample period from start to n periods after start 

and size of rolling window 

del.periode.r <- part(aktiv.ret,  start=start, end=end) 

del.periode.rf <- part(data$rfree, start=start, end=end) 

del.periode.pret <- part(data$total.return, start=start, end=end) 

 

# Expanding 

expanding <- smak.e(del.periode.r, del.periode.rf, split=split) 

er.expanding <- expanding- del.periode.rf[-1] 

er.expanding <-ts(er.expanding, end=end, freq=12) 

SRannual(er.expanding[split:(length(er.expanding))]) 

k.expanding <- k.e(del.periode.r, del.periode.rf, split=split) 

k.expanding <- k.expanding[split:length(k.expanding)] 

k.expanding <- ts(k.expanding, end=end, freq=12) 

roundtrips.expanding <- 

sum(rle(er.expanding[(split+1):length(er.expanding)])$values==0) 

time.long.expanding <- 

(sum(er.expanding[(split+1):(length(er.expanding))]!=0))/length(er.expandi

ng[(split+1):(length(er.expanding))]) 

my.summary(expanding, er.expanding) 

#Relative graph 

del.pret <- (del.periode.pret[(split+1):(length(del.periode.pret))]) 

del.rf <-  (del.periode.rf[(split+1):(length(del.periode.rf))]) 

del.expanding <- expanding[split:(length(expanding))] 

relativ.sd <- sd(expanding, na.rm=TRUE)/sd(del.pret) 

mkt <- del.pret*relativ.sd+(1-relativ.sd)*del.rf 

ind.mkt <- cumproduct(mkt, start=100) 

ind.exp <- cumproduct(del.expanding, start=100) 

relativ.ind.exp <- log(ind.exp/ind.mkt) 

relativ.ind.exp <- ts(relativ.ind.exp, end=c(2012,12), freq=12) 

plot(relativ.ind.exp) 

 

# Rolling 

rolling <- smak.r(del.periode.r, del.periode.rf, split=split) 

er.rolling <- rolling- del.periode.rf[-1] 

er.rolling <-ts(er.rolling, end=end, freq=12) 

SRannual(er.rolling[split:(length(er.rolling))]) 

k.rolling <- k.r(del.periode.r, del.periode.rf, split=split) 

k.rolling <- k.rolling[split:length(k.rolling)] 

k.rolling <- ts(k.rolling, end=end, freq=12) 

roundtrips.rolling <- 

sum(rle(er.rolling[(split+1):length(er.rolling)])$values==0) 

time.long.rolling <- 

(sum(er.rolling[(split+1):(length(er.rolling))]!=0))/length(er.rolling[(sp

lit+1):(length(er.rolling))]) 

my.summary(rolling, er.rolling) 

#Relative graph 

del.pret <- (del.periode.pret[(split+1):(length(del.periode.pret))]) 
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del.rf <-  (del.periode.rf[(split+1):(length(del.periode.rf))]) 

del.roll <- rolling[split:(length(rolling))] 

relativ.sd <- sd(rolling, na.rm=TRUE)/sd(del.pret) 

mkt <- del.pret*relativ.sd+(1-relativ.sd)*del.rf 

ind.mkt <- cumproduct(mkt, start=100) 

ind.roll <- cumproduct(del.roll, start=100) 

relativ.ind.roll <- log(ind.roll/ind.mkt) 

relativ.ind.roll <- ts(relativ.ind.roll, end=c(2012,12), freq=12) 

plot(relativ.ind.roll) 

 

#Max drawdown calculations 

max <- 120 

index <- index.active #Put name of whatever index is to be inspected 

ac.in <- index[-length(index)] 

x <- seq_along(ac.in) 

ac.in <- as.numeric(ac.in) 

test <- split(ac.in, ceiling(x/max)) 

res <- list() 

lengde <- length(test) 

for (i in seq(lengde))( 

  res[[i]] <- MDD((test[[i]]))) 

 

 

#Correlation inspection 

data <- read.table("~/data.dat",header=TRUE) 

capital.return <- ts(data$capital.return, end=c(2012,12), freq=12) 

dividend.return <- ts(data$dividend.return, end=c(2012,12), freq=12) 

total.return <- ts(data$total.return, end=c(2012,12), freq=12) 

 

start=1860 

end=2010 

cor3 <- vector() 

for (i in start:end){ 

  start[i]= (i) 

  end[i]=(i+1) 

   

  del.total.return <- window(total.return, start=c(start[i],1), 

end=c(end[i],12), freq=12) 

   

  cor1 <- del.total.return[2:(length(del.total.return))] 

  cor2 <- del.total.return[1:(length(del.total.return)-1)] 

  cor3[i] <- cor(cor1, cor2) 

  cor3 

} 

cor3<- ts(cor3[1860:2011], end=2010, freq=1) 

plot(cor3) 

 

cor11 <- capital.return[2:(length(capital.return))] 

cor22 <- capital.return[1:(length(capital.return)-1)] 

cor(cor11, cor22) 

cor.test(cor11, cor22) 

   

 


