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Abstract 

Smartphones have become amazingly popular the last few years, most likely due to the 

operating system revolution that has taken place, in particular when it comes to the 

introduction of sophisticated applications. The Android operating system is nowadays known 

by the most famous and used one thanks to the new and multiple functionalities it offers.  

Despite the advantages of this revolution, it has come with a high cost: The level of 

sophistication and the multiple functions now offered typically rely on high quality screen, 

intensive CPU usage, and extensive networking. As a result, power consumption increases 

persistently, hindering further advances and lead to a short battery life time. So, techniques 

for predicting the future behavior of the Android phone are needed and can serve as a basis 

for power management. 

The present Master’s thesis seeks to develop a better understanding of how machine 

learning can be efficient and useful to predict the future behavior of the smartphone. Two 

learning approaches KNN Regression and Gaussian Process Regression are used to do the 

forecast of the CPU usage, the screen utilization and the network activity based on historical 

collected measurements of these three components. The results reveal that the Gaussian 

Process Regression model is most efficient and accurate than the KNN regression model with 

a prediction error rate between 1% and 7%. By using the Gaussian Process Regression 

model, it becomes possible to apply power management techniques to smartphones. In fact, 

by predicting the future inactivity periods and the idle states of the phone, components of 

the smartphone can be turned off in the right time and then avoid extensive switching 

between on- and off-modus, which is expensive in itself and consumes too much power; or 

by reducing the CPU frequency, disconnecting the phone from the network and adjusting the 

screen quality to be less bright in idle mode, battery power consumption can be significantly 

reduced. 
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Chapter 1 

Introduction 

The revolution of mobile phones, during the last few years, has transformed them into multi-

functional mobile computers known as smartphones. Launched in the 90s, smartphones 

represent the latest generation of mobile phones and they have extensively evolved. 

Different definitions of smartphone have been proposed; including: 

� “A smartphone is a mobile phone built on a mobile computing platform, with more 

advanced computing ability and connectivity than a feature phone 
1
[1]”. 

� “A category of mobile device that provides advanced capabilities beyond a typical 

mobile phone. Smartphones run complete operating system software that provides a 

standardized interface and platform for application developers [2]”. 

A smartphone is a device dedicated to mobile communications, using an open operating 

system, and accepting third-party applications written by developer community. It offers 

advanced capabilities that you can find only on personal digital assistant
2
 or computer but 

not in previous standard phones. It is based on an operating system that presents platform 

and interfaces for application developers. 

Figure 1.1 shows the principle hardware components of a mobile architecture presented by 

four blocks: the computer hardware containing different kind of processors, the storage 

elements, the output/input components and the radio communication module for voice and 

data exchange. 

                                                           
1
 Feature Phone: Mobile phone which is not considered as smartphone. 

2
 PDA: Personal Digital Assistant, Electronic equipment of pocket used primarily for calendar, phone book and 

notebook, but technological advances added to it multimedia features. 
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Figure 1.1: High-Level overview of mobile architecture 

Smartphone is able to run different software applications and offers functions which include 

not only calls and messaging but also web browser, GPS navigator, media player, games, 

network applications, etc. Many other kinds of software and applications can be installed on 

the smartphone and they give it even greater value. Thanks to these different functionalities, 

a smartphone has become an important and indispensable tool for people’s daily life. 

This wide range of functionality proposed by smartphones needs advanced operating 

systems similar to the ones used by computers. Hence, a revolution of operating systems of 

mobile phone and more precisely smartphones has taken place, which is the key factor of its 

popularity. This revolution consists of the fact that smartphone operating system operates 

under computer operating system software, such as dedicated version of UNIX or Microsoft 

Windows.  

In fact, a mobile Operating System is a software platform specified for mobile devices such 

as smartphones, tablets, etc and it provides basic functionality for these mobile devices. The 

mobile OS is responsible to run different programs and applications in mobile devices at 

once. It supervises the wireless and cellular network connectivity, identifies the functions 

and features available in the mobile device and it also manages the third-party applications 

that can be used. Most of mobile Operating Systems are designed around touch-screen input 
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and offer consistent graphical user interfaces (GUI) to deal with the available applications 

and better interact with the mobile devices. 

So, without its operating system, smartphones are unable to run the multiple applications 

they offer; and the revolution of OS comes with significant improvements in features, in 

addition of the innovation of new services. Different kind of operating systems have been 

announced and used by smartphones, we can mention the iPhone OS
3
, Android, Blackberry 

OS, Windows Phone 7, etc. 

1.1. Motivation 

In these last years, the Android platform has become the most dominant and the world's 

most popular mobile platform [3]. Developed by Google, the Android OS based on Linux, is 

expected to interact and integrate the different existing services offered by Google such as 

mail service, Google Maps, Google Calendar, Google Talk, etc. Thanks to the market 

dominance of Android, which is increasing during these recent years, several researchers 

have concentrated their works on this operating system which has become the most famous 

and used one. Others are focusing on inventing new applications which help to attract more 

users. 

Despite the opportunities offered by the Android phone, the users can face a big problem 

with this kind of smartphones. The regular and continuous use of the different functionalities 

comes with a high cost which is excessive power consumption and battery drain. In fact, the 

previous generation of mobile phones was mainly used for calling and text messaging 

perhaps only few times a day due to the expensive cost of communication compared to 

today. As a result, they could have a standby time of up to 67 days [4], however the android 

smartphone does not last more than 3 days. By comparing the standby time of the two kinds 

of mobile phones, we can remark the big gap between them and this gap can be explained 

by the exaggerated use of resources by the multiple applications running simultaneously on 

the smartphone. These applications are heavily based on the use of different phone features 

like GPS, 3G, Wi-Fi, Processors, high definition camera, touch screen, etc, which lead to an 

elevated power consumption and then short battery life. So, extending smartphones battery 

life time becomes the main challenge for most of the smartphones developers and the need 

                                                           
3
 OS: Operating System 
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of a complete, objective and effective methodology to avoid the fast drain of the battery 

becomes critical especially that the users' satisfaction with smartphones is strongly affected 

by battery performance. 

Recent researches have thus focused on studying and understanding power consumption in 

embedded and mobile architectures and the power estimation and optimization for 

smartphones becomes an increasingly important and popular field of research. 

1.2. Problem and research questions 

Larry Page, a co-founder of Google, declared at a conference during the Google I /O [5]: 

“Your Android battery life should last a day. If it's not, then blame your apps.” 

Larry Page declares if the Android phone does not have enough power, this is not the fault of 

the phone itself but the applications have been installed on it; and then an excessive use of 

the different components and resources on the Android phone will lead to a high power 

consumption.  

In fact, Smartphones consume the battery power faster than the normal mobile phones and 

the lack of empowerment come from the fact that the applications are running at the same 

time in the background of the phone and they are connected to Wi-Fi by default and most of 

them, after started, remain running and do not stop.  However,  there are many elements on 

the smartphone that can reduce the battery life; we mention some of them [6]: Long 

backlight duration, a high brightness, the excessive use of Bluetooth and Wi-Fi, Playing 

music, videos and viewing images for a long period, downloading of some applications that 

consume a lot of energy such as the social networking applications.  

As a consequence, these applications will rely on high quality screen, intensive CPU
4
 usage, 

and extensive networking; and the amplified use of these three hardware components 

increases power consumption persistently, hindering further advances and lead to a short 

battery life time and even the drain of the smartphone battery.  

                                                           
4
 CPU: Central processing unit is the main microprocessor of a computer. It is subject to various parameters 

such as cadence, frequency, cache. It is responsible for the execution of program instructions and it is the 

predominant component of a computer configuration. 



5 

 

So, techniques for extending battery life time and optimizing power consumption are 

needed. Indeed, by putting the CPU in idle mode, disconnecting the phone from the network 

(by disabling the Wi-Fi or 3G when it is not needed as an example), or reducing screen 

quality (by adjusting the backlight to be less bright) at times of inactivity, battery 

consumption can be significantly reduced. By predicting the future inactivity periods, 

components on the smartphone can be turned off in the right time and then we can avoid 

extensive switching between on- and off-modus, which is expensive in itself and consumes 

too much power. 

Therefore, techniques for predicting and forecasting the future behavior of the phone based 

on its historical behavior are therefore needed. Many researchers have focused on machine 

learning approach to develop power estimation and optimization model for smartphones. 

They used different learning techniques such as the Markov chain, the Bayesian classification 

and other methods for estimation and prediction but these methods have not been efficient 

enough since they do not reach a very high accuracy and the error rate is significant in most 

of the cases. In fact, most of the methods used by previous researchers are not tolerant to 

measurement feedback noise [7]. 

Research Questions 

In this paper, we will propose new learning approaches to predict the behavior of the system 

regarding resource usage and we will present two activity forecasting models one based on 

the Gaussian Process Regression and the other is based on the KNN 
5
Regression. The main 

question about our research is:  

How learning approaches such as KNN and Gaussian Processes can be useful techniques to 

forecast the behavior of screen activity, CPU usage, and network activity based on historical 

measurements?  

The sub-questions to be investigated are: 

RQ1 how efficient can be each approach between the two proposed approaches to 

perform the prediction and making the right decision about the future behavior of 

the android phone components?  

                                                           
5
 KNN: K-Nearest Neighbors  
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RQ2 Which of KNN regression and Gaussian processes are the most accurate activity 

forecasting model? 

RQ3 How can an activity forecasting model serve as a basis for battery power 

management?   

1.3. Literature review 

Battery power usage is considered as a crucial element for power management systems, one 

of the reasons why it becomes an important field of research and has been studied through 

both hardware and operating system in several mobile devices. 

Previous works [8, 9, 10 and 11] have been focused only on the power consumption of the 

CPU component of mobile devices and most of the developed energy models had a relatively 

high error rate (between 5% and 20%). Those models are thus very limited because they 

focus on one component of the smartphone which consumes only a part of the total power 

consumption [12]. 

Two efficient analytical models are proposed in both [13] and [14]. The model proposed in 

paper [13] builds a connection between current profile (user's current activities) of the 

smartphone and battery lifetime. In paper [14], a prediction model is designed to estimate 

the remaining battery capacity where the recharge cycle aging and temperature are taking 

into consideration within this model. Another approach proposed in paper [15] which 

combines analytical
6
 methods and statistical

7
 methods for the estimation. 

The models mentioned above differ from the models what we proposed. In fact, their 

estimation is based on complete discharge profile during a battery's life which means that 

they formulate a "calculation" instead of a "prediction". 

Based on the work presented in [16], the authors used statistical methods to make the 

prediction. They estimated the battery lifetime by creating a linear relationship between the 

system load and the time required to reach a particular voltage.  

                                                           
6
 The analytical method: is a procedure used to analyze and interpret collected data while leading an 

evaluation. 
7
 The statistical method: is a procedure used to estimate the values of some parameters based on measured 

data. 
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In the article [17], Wattch estimated microprocessor power consumption based on the use 

of low-level architectural features. Other solution proposed by Cignetti in [18] focused on 

power measurements to derive a power breakdown for Palm devices.  

While in paper [19] Tan introduced function-level power models for software implemented 

power estimation. In [20], SoftWatt studied the power consumption of the parameters 

processor, memory, and disk by using a simulation model. 

1.4. Research approach 

Our research approach holds three main phases in order to achieve an effective activity 

forecasting model for smartphones. The first phase consists of doing a quantitative research 

through the collection of specific measurements from real smartphones when different 

applications are running in the devices. In the second phase, we are based on the domain of 

machine learning to implement two learning approaches (the K-nearest Neighbors and the 

Gaussian Process). The collected data set serves as historical measures for the two modeled 

learning approaches to do the forecast and the prediction of the future behavior of the 

smartphone. The last phase presents an empirical and qualitative study of the proposed 

learning approaches by making a comparison between the two models in order to find the 

most accurate one when doing the forecast. 

1.5. Key assumptions and limitations 

We choose collecting the data from a specific kind of smartphones which is the android 

phone because the android operating system is now dominating the market and can be 

found in several brands of mobile phones and it is not specific to a single mark. However, the 

solution that is presented in the thesis can be generalized and applied to any type of 

smartphones. 

In addition, the collection of measures is done through many users since the battery power 

consumption depend on real user activity patterns which differ from one user to another. It 

is implicit that when collecting the data, users are using their smartphones in a regular way 

in order to conduct a research with real scenarios. 
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The proposed solution can be helpful and interesting for real life usage since it can be used 

as a basis to conduct studies and researches concerning the optimization of smartphones 

battery life. The activity forecasting models can serve as first step or foundation for 

researchers who are focusing on the domain of smartphones’ power management. 

Despite the presented assumptions, some limitations can be presented in the work being 

done. Due to the fixed time plan of the thesis project that we are limited with, we collect 

data from a limited number of users (only 6 users) to achieve our study. In the other hand, 

the measures collected are specified for 3 types of components of the smartphone. These 

components are the CPU, the screen and the network. We choose to focus on these 

components since we conclude from the researches already done that these three 

components are the most power consuming components for smartphones, other elements 

will not be involved during our work. 

1.6. Contribution to knowledge 

Differently from the previous researches which are concentrated on studying the activity of 

one component of the smartphone (in most cases), our work consists of collecting 

measurements from different components which are the CPU, Screen and components of 

network activities since these elements are known by their large power consumption. These 

measurements will be taken when different types of applications are running in the 

smartphone. 

The solution that we propose is based on a learning approach and it differs from the 

previous solutions by its precision at making prediction and decision. We are interested 

during our work in two kinds of machine learning and the goal is to make a comparison 

between these two models in order to find the most accurate one that will help to predict 

the future behavior of the android phone. The first model is based on the Gaussian process 

which is known by its tolerance to measurement feedback noise, the second one is based on 

the KNN which is a rapid and incremental learning method and it is very easy to understand. 

The two models that we focus on are not used in previous works although several previous 

studies have been concentrated on other types of machine learning. 
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The proposed models are expected to provide an overview of the CPU usage, the network 

activity (by capturing the received and transmitted bytes during a connection) and the 

screen utilization, and then predict their behavior in the future. By predicting the future 

behavior of these different components in different scenarios running on the smartphone, 

we can help energy optimization mechanisms to reduce the power consumption and to 

achieve energy efficiency. 

1.7. Thesis outline  

This thesis report is organized as follows. In chapter 2, we introduce the theoretical 

background. We present the android smartphone and we describe battery problems. We 

reveal the most power consuming components on which we concentrate our thesis work 

and lastly we define the two learning approaches that are used to forecast the behavior of 

these components.  

We present our solution in chapter 3. We explain the method used for the collection of the 

data and we give a detailed explanation of the KNN regression and the Gaussian process 

regression, the two models used for the prediction.  

In chapter 4, we present our empirical results. We show here how the KNN regression model 

and Gaussian Process Regression model are used in different scenarios to forecast the future 

behavior of the CPU, the screen and the network activity. 

We discuss and evaluate our results in chapter 5. We present the accuracy of the forecasts 

for the two learning models and make a comparison between them. The research questions 

presented in the introduction chapter (section 1.2) are investigated in this part. 

And finally we draw the conclusion in chapter 6. We give a concise summary of the solution, 

the major findings and their implications and we provide points for future work and 

improvements. 
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Chapter 2 

Technological overview 

In this chapter, we will present a general overview about the android smartphones. We will 

illustrate reasons of making the screen, the CPU and the network as the most power 

consuming components in smartphones, and finally, we will give a theoretical introduction 

to the learning approaches, in which is based our work, which are the K-nearest neighbors 

and the Gaussian Processes. 

2.1. Android smartphones 

Android is an open source operating system based on the Linux kernel for smartphones, 

PDAs and mobile devices. Android is purchased by Google in August 2005 and was officially 

announced on November 15, 2007 [21]. It is specialized in developing mobile applications. 

Different versions of Android have been known since the release of version 1.1 up to version 

4.0. (See Appendix B) 

Advantages of the android OS 

Unlike the operating system iOS
8
 (iPhone OS) Which only runs on the iPhone smartphones, 

the Android operating system is available on mobile phones from various manufacturers 

such as HTC, Samsung, Sony Ericsson, Motorola, etc. 

The opportunity to integrate an operating system which is powerful, free and can enrich of 

third party applications has opened the way for several projects. In fact, the Android phone 

is multitasking; it can run different types of applications at the same time. A user is able, for 

example, to browse the net, see Facebook notifications and listen to music. Moreover, the 

                                                           
8
 iOS: iPhone Operating System 
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user can access the android market and install a lot of applications even for free. Until April 

2011, the number of applications compatible with the android operating system has reached 

250 000 applications [22], in addition to the other services offered by Google such as Gmail, 

Google calendar, Google talk, etc. 

The drawbacks of the android OS 

The advantages presented above can be seen at the same time as inconvenient for the 

smartphone battery. In fact, the applications which are running on the Android phone drain 

the battery and most of the users of the android OS complain against Android wasteful 

batteries. This problem can also be due to continuous internet connection since most of the 

applications need internet connection to run and this consumes too much power of the 

smartphone battery. 

Battery problems 

A main problem for smartphones is thus excessive power consumption. We propose a 

definition for the term “Power Consumption” withdrawn from the “Webster’s Online 

Dictionary” [23] and presented as follow: 

“In electrical engineering, power consumption refers to the electrical energy over time that 

must be supplied to an electrical device to maintain its operation.” 

Mobile devices pull the power needed for their functioning from batteries. In the case of 

smartphones, the capacity of the battery is extremely limited due to constraints on the size 

and weight of the unit, which implies that the power efficiency of these mobile phones is 

very critical for their usability [24]. In addition, the functionalities of smartphones are 

increasing rapidly and have negative effect on the battery life time and can cause its drain in 

a very short time. So, we can say that the development of batteries for smartphones did not 

achieve a high revolution comparing to the rapid revolution of smartphones; and the 

problem is the energy offered by the battery is not proportionate to the needs of different 

functions suggested by the smartphone. 
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Use of HTC Sensation phone 

During our work on this thesis, we used the smartphone HTC Sensation for taking 

measurements from the different components of this Android phone and forecasting the 

future behavior of the system according to resource usage. The different properties of the 

HTC Sensation phone will be presented in the following table. 

Table 2.1: Characteristics of the HTC sensation components 

Component Description 

HTC Sensation  We used the version 3.0 

Operating System It is based on the Android OS version 2.3.4 

Battery Standard battery, Li-Ion 
9
1520 mAh. 

CPU Processor 1.2 GHz Dual-core.  

Display  3.4 inch with QHD
10

 resolution, 16M colors and multi-touch 

option. 

3G Network  mobile network type HSDPA
11

 

WLAN Wi-Fi 802.11 b/g/n 

Other components  It includes also GPS
12

, Sensors (Accelerometer, gyro, proximity, 

compass), camera, Bluetooth, etc. (See [25]) 

2.2. The most power-consuming hardware 

components 

Most of the researches done according to the power consumption in mobile phones and 

especially smartphones have agreed that there are three principle elements that consume 

power more than the other components. The screen, the CPU and the network activities are 

                                                           
9
 Li-Ion: an electrochemical accumulator that uses the lithium in an ionic form. 

10
 QHD: quarter of full HD (High Definition). 

11
 HSDPA: High Speed Downlink Packet Access connects 3G mobile phones to the Internet with a maximum 

speed of 2 Mb/s. 
12

 GPS: Global Positioning System is a Satellite geolocation system. 
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the largest power consuming components in smartphones. The other phone components 

have small influence on power consumption. 

Screen or display: We can say that the screen is the first element that consumes too much 

power since it is the primary output element with which the user always interacts. It shows 

the patterns of user activity. In addition, with the invention of the touch-screen technology 

which has been integrated in most of the smartphones (by 2012, 40% of mobile phones will 

use the touch-screen technology [26]); the screen becomes more power consuming than 

before. In fact, any contact with the surface of the screen triggers its activity and then 

maximize its energy consumption. 

In another hand, the display backlights have negative effects on the battery life time and the 

power consumption is depending on the size of the screen and if it is colorful or not. In fact, 

a big screen size consumes more power than a small one and a screen displaying a lot of 

colors (red, blue, green, etc) also consumes more than one based on deep colors (like black, 

grey, etc). Moreover, turning the screen On and Off many times causes a vast battery power 

usage. So, when brightness of backlights increases, more power is wasted by the 

smartphone [27]. 

CPU: The power consumption of the CPU depends on the CPU usage and the frequency used 

by the CPU. For example, having multiple applications running at the same time in the 

smartphone utilizes a lot the CPU and then the power consumed by CPU will increase. In 

addition, using a very high frequency by the CPU is also more consuming than using a lower 

one. 

In fact, the excessive CPU power consumption is due to execution of some instructions and 

their fetching. If the portion of code that the system should fetch from the caches or 

memories is small then the consumed power will be less [27]. In addition, the frequent 

switching between idle mode and active mode by the CPU is also a reason of high power 

consumption. 

Network activities:  The last generation of mobile phones includes many types of wireless 

communication technologies such as Wi-Fi, 3G, Bluetooth, etc; and these new technologies 

offers new services and more multimedia applications which are growing power 
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consumption to extremely high values. One of the most important reasons that makes 

network activities one of the most power-consuming components is that when opening or 

starting a connection in a smartphone, the user does not close or stop it even if he/she does 

not use it. In addition, when we are connected to a network and working with it, the amount 

of received and sent data increase and then the power consumption will increase too. 

2.3. Machine learning 

Machine learning is known as a subfield of the artificial intelligence (AI
13

). It provides 

computer algorithms that automatically learn perhaps without human help or intervention. 

The main goals of a learning approach can be to make prediction accurately, achieve tasks or 

to behave in a smart way. It is based on observations or a set of data which provides 

experience about making the right decision in the future [28]. 

In a formal way, learning approach can be presented as follow: Learn from an experience EEEE 

by respecting some tasks TTTT and some performance measures PPPP so that the performance PPPP on 

task TTTT is improved with the experience EEEE    [29]. 

Figure 2.1 presents the execution of machine learning. At first, the training set is used by one 

of the learning algorithms such as Bayes Naive, KNN, Support vector machines (SVM), 

Genetic programming, Linear Regression, etc. The output of these algorithms will be a 

hypothesis hhhh. This hypothesis creates new input xxxx and gives out an estimated output yyyy or a 

class. The estimated output yyyy presents a prediction on some of the unseen new input xxxx and 

we say that the hypothesis parameters are learned [29]. 

                                                           
13

 AI: Artificial Intelligence: is a science whose purpose is to make tasks by machine that humans perform using 

their intelligence. 
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Figure 2.1: Machine Learning 

We can distinguish two types of machine learning: the supervised and the unsupervised 

machine learning. 

The supervised machine learning enables a computer program to complete a task based on 

a concise guidance. The learning algorithms used in this kind of machine learning present the 

final product or some examples of the process and can give feedback over the training 

process (for example label for data points in the case of classification). The supervised 

learning algorithm should make the right prediction of the output values from the input 

objects based on a classifier or regression function. 

The unsupervised machine learning, unlike the supervised learning, does not give any 

guidance that can help to complete the task and does not give any feedback over the 

training process. This leads the computer program to create a procedure to cluster similar 

data and there is no clear semantics about this cluster even if we find the right one for the 

data points. 

The goal of machine learning is to develop efficient algorithms for general purpose of 

practical value. The output of these algorithms should be accurate prediction rules that are 

easily interpretable by human experts. The principle advantage of using machine learning is 
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that the results are more accurate than the ones presented by direct programming and it 

also can treat a large amount of data [28]. 

A learning approach often uses pattern recognition which is necessary to analyze and find 

the meaning of a sample of data. Many steps are presented to achieve pattern recognition. 

The most important ones are [30]: 

� Collect data by taking the necessary measurements.  

� Present the data in an understood form (charts, graphs...) by plotting the measures. 

� Extract features from the data such as mean, standard deviation, variance, etc. These 

features are obtained by a specific transformation of the collected data. 

� Analyze the results and make a conclusion to the study. 

� Apply appropriate procedures such as regression or discrimination based on training 

set of exemplar patterns. 

� Make an interpretation to the results. 

During our work, we are based on learning approaches to solve the problem of battery 

power usage. The benefit of using a learning approach is it is based on statistical components 

that rapidly analyze, in a dynamic way, the changing workloads and operating conditions. In 

fact, our proposed solution consists on modeling two learning approaches (KNN for 

regression and Gaussian process regression) and making a comparison between them. The 

more appropriate one should be characterized by its rapidity since we would like to make a 

lifetime forecast and then choosing the right real-time decision about the future behavior of 

the system. It should also be power-efficient so that it can be able to run on the battery-

powered device and it should be dynamic by the fact that it considers user workloads, and 

environmental operating conditions. 

2.4. K-nearest neighbors approach  

The method of k-nearest neighbor is a supervised learning method. It is also appointed as 

lazy learning (or instance-based learning (IBL) or memory-based learning). The k-nearest 

neighbors’ algorithm is one of the simplest learning algorithms. The K nearest neighbors’ 

algorithm is represented by a set of objects called examples (or instances) for which results 

are known. Each example is represented by an observation consists of a set of independent 
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values to which correspond a set of dependent outcomes. The dependent and independent 

variables can be continuous or categorical. In the case of continuous dependent variables, 

we are dealing with a regression problem, in the other case we are dealing with a 

classification problem [31]. 

Classification An object is classified by examining its neighbors and it is attributed to the 

class that its k nearest neighbors belong to (where k is an integer to be chosen). Let’s 

consider that we have a database of elements of a known class (We talk here about learning 

base). As soon as we receive a new element that we want to classify, we calculate its 

distance to all elements of the base. If this base has 100 elements for example, we calculate 

100 distances. If k = 25, we look for the 25 smaller numbers of those 100 numbers. These 25 

numbers correspond to the 25 elements of the database that are the closest to the item we 

want to classify. So, we decide to assign to the item that we want to classify the majority 

class among the 25 elements. The number k can be varied depending on what you want to 

do. 

Regression: The method presented above can be used in the case of regression. The 

difference is that the property value of the object must be assigned to the average values of 

its k nearest neighbors. This method allows to the nearer neighbors to more contribute to 

the average than those which are further. The neighbors used for the classification or the 

regression will present the training set for the KNN algorithm [32]. 

The choice of the number K: The choice of K is important to create the model of K Nearest 

Neighbors. In fact, K is one of the most important parameters of the model, and can have big 

effect in the quality of forecasts. The number of nearest neighbors K can be seen as a 

smoothing parameter. For a given problem, a low value of K can cause a large variance in the 

forecast. Instead, if a high value is assigned to K, this can introduce a significant bias in the 

model. Therefore, the value of K must be large enough to minimize the probability of 

misclassification but also reasonably low (relative to the number of observations in the 

sample examples) so that the K nearest points are sufficiently close to the query point [31]. 

Distance Metric: For a given query point, the method of K Nearest Neighbors will achieve its 

forecasts from the outcome of K nearest neighbors of this point. Therefore, to achieve the 

prediction by the K Nearest Neighbors, we must first define some metric to measure 
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distance between the query point and the observations from the sample examples. Different 

measures can be used in the K Nearest Neighbors approach, we mention some of them 

which are most used: Euclidean, Euclidean squared, City-block, and Chebyshev [31]. 

 

 

 

  

The main advantage of the KNN algorithm is its simplicity and its rapidity for learning. It is a 

very easy to understand method, suitable to parallelization and it has an asymptotic 

performance close to the optimum. On the other side, this learning approach is known by its 

slow prediction and its sensitivity to irrelevant and correlated attributes. 

2.5. Multiple Regression 

A regression is defined by a statistical measure, presented by a formulated equation, 

between a dependent variable and one or more independent variables having parametric 

coefficients that help to predict future values of the dependent variable. In fact, the 

regression is characterized by the prediction of continuous values (contrary to classification 

which treats discrete values) and it has an important role in pattern recognition. There are 

two types of regression: linear regression and multiple regression [38]. 

Linear regression is a statistical technique to estimate the linear relationship between two 

variables (one dependent variable and one independent variable). It uses only one 

independent variable for prediction of the outcome. The principle is to calculate the 

equation of the line, passing through the point cloud formed by the pairs of values of two 

variables, which minimizes the squared distances between points and the line. This kind of 

regression is used in many domains likely due to its simplicity and good interpretability. 

Multiple regression is a generalization of the linear regression model, it uses many 

independent variables for prediction of the outcome. The method of multiple linear 

regressions allows: 

(2.1) 

��� − ��� Euclidean 

�� − ��� Euclidean Squared 

Abs �x-p� City-block 

Max �|x-p|�    Chebyshev 

D �x, p� = 
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� The analysis of the relationship between a dependent quantitative variable and 

several independent quantitative variables. 

� The determination of the equations of a nonlinear polynomial fit for the analysis of 

the relationship between the two kinds of quantitative variables.  

� The determination of the polynomial equations of a geometric correction model 

applicable to vectors and/or data. 

The starting point is the estimation of parameters of regression involving an endogenous 

variable YYYY and pppp exogenous variables XXXXjjjj. When we have nnnn observations, the regression 

equation is written: 

�� = 	 �� + ����,� +⋯+ ����,� + �� 
Where yyyyiiii is the i-th observation of the variable YYYY, xxxxi,ji,ji,ji,j is the i-th observation of the j-th 

variable and εi is the model error called noise, it summarizes the missing information that 

allow to linearly explain the values of YYYY with the p p p p variables  XXXXjjjj. We need to estimate (p + 1)(p + 1)(p + 1)(p + 1) 

parameters, by taking matrix writing: 

� = �� + � 
The dimensions of matrices are respectively: 

� → �!, 1� 
� → �!, � + 1� 
� → �� + 1,1� 
� → �!, 1� 

The matrix X X X X of size (n, p + 1)(n, p + 1)(n, p + 1)(n, p + 1) contains the set of observations of exogenous, with the first 

column formed by the value 1 1 1 1 to indicate that we integrate the constant aaaa0000 in the equation. 

� = #1 ��,�⋯ ��,�⋮ ⋱ ⋮1 �&,�⋯ �&,�' 

(2.2) 

(2.4) 

(2.3) 

(2.5) 
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2.6. Gaussian Processes 

Over the past decade, it has been an increasing researches done in machine-learning that 

have been concentrated in the Gaussian processes (GP) which become more popular and 

sophisticated learning approach. The Gaussian process can be viewed as a generalization of 

the Gaussian distribution. In fact, the Gaussian distribution was characterized by a mean and 

a variance however the Gaussian process is specified by a mean function m(x)m(x)m(x)m(x) and 

covariance function k(x, x').k(x, x').k(x, x').k(x, x'). The mean of a function is defined by the average value of the 

function over its domain [33] and the covariance measures the joint change between two 

random variables around their respective mean [34]. We say that the Gaussian process is 

over functions and we denote it: 

f ∼ GP�m, k� 
Figure 2.2 presents a comparison between the Gaussian distribution and the Gaussian 

process. By applying input values xxxx and time step tttt to the Gaussian process, we will have a 

density function pppp. The covariance function will be helpful for solving regression since it 

presents a-priori knowledge which is the training data [35]. 

 

Figure 2.2: Gaussian distribution vs. Gaussian process [35] 

 

(2.6) 
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A formal definition of Gaussian process is presented in paper [36] as follow: 

"A Gaussian process generates data located throughout some domain such that any finite 

subset of the range follows a multivariate Gaussian distribution". 

Gaussian process is a stochastic process that consists of random values associated with every 

point in a range of times where each random variable is presented by a normal distribution. 

Each random variable is indexed by its position iiii in the vector of the Gaussian distribution. In 

the Gaussian process, each input xxxx is associated to a stochastic random function f(x)f(x)f(x)f(x) and it is 

the input xxxx which has the role of the index set [37]. 

The importance of Gaussian processes appears in the fact that its properties are inherited 

from the normal distribution. For instance, a random process is considered as a Gaussian 

process if the distributions of derived quantities can be achieved explicitly. The principle 

advantage of Gaussian process is it shows efficient and sophisticated view with 

computational tractability. In addition, its mean and covariance functions are known by their 

simplicity of working with them to have a best estimation. GP offers a probabilistic learning 

approach within kernel machines. It is considered as a powerful technique for constructing 

comprehensive probabilistic models of real world problems within Machine-learning. It can 

be practical and used to supervised, unsupervised, reinforcement learning, and principal 

component analysis optimization. 

Gaussian Process Regression (GPR) is known as nonparametric statistical method for 

functional regression analysis. It is concerned with the prediction of continuous quantities 

and presents methods which are based in Gaussian process [39]. GPR can be seen as the best 

tool to perform a wide range of applications very well. For this reason, it can be considered 

as a popular probabilistic regression method. GPR can be able to fit arbitrary-shaped curves 

thanks to its nonparametric nature. Furthermore, GPR is free from pathological behavior for 

regions where there are few data points, unlike relevance vector machines, which present 

another model for probabilistic nonparametric regression. 
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Chapter 3 

Solution  

In this chapter, we will talk about the tools used for the collection of the data from the 

Android smartphones and how this data will help as historical measurements to forecast the 

future behavior of the CPU, the screen and the network. We will give a detailed description 

of our solution by presenting the KNN Regression and the Gaussian Process Regression 

approaches used for the forecast. 

3.1. Data collection 

To collect measures from the Android phone, we used an application that has been released 

on the Android market called Nu JamLogger
14

. Nu JamLogger is an application which was 

developed by a group of researchers of the Northwestern University
15

. By installing the 

application in an android device, it will be possible to collect real data when user is working 

with the smartphone.  

The main goal of this application is to log user activity and system performance. The data is 

collected on a periodic basis (each 1 second) and by clicking the button "Send log to SD card" 

presented on the GUI of the application (see Appendix C), a log file containing detailed 

information and measures about the phone usage (Appendix C) will be saved on the SD 

card
16

 of the phone. The Nu JamLogger application allows us to collect data concerning the 

                                                           
14

 https://play.google.com/store/apps/details?id=edu.northwestern.jamlogger_r2&hl=no 
15

 http://www.ece.northwestern.edu/microarchitecture/jamlogger/ 
16

 The original NU JamLogger application does not save the log file to the SD card; it only uploads the log file to 

the server of the Northwestern University. By making some modifications to the application, it becomes 

possible to send the log file to the SD card of the smartphone. 
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CPU utilization, the system load, network traffic (received and sent bytes and packets), 

display brightness and state (on or off), battery level, etc
17

. 

The collection of data through the Nu JamLogger application is done each 1 second during 3 

hours. During these 3 hours, the battery of the Android phone should not be powered by 

electric current which means that the battery is not charging in order to better study the 

usage patterns when the smartphone is battery-constrained and then it will have no 

influence on the power consumption.  In the other hand, since we are studying real user 

activity patterns, the user should use his/her smartphone in a normal way during the 

collection of the data. For example, the user can make calls, browse the web, play games or 

music, access social network such as Facebook or Twitter, etc. 

By taking a look to the log file obtained from the Nu JamLogger application, we can remark 

that it contains a lot of detailed information that is not very easy to understand. So, to solve 

this problem, we tried to parse
18

 this log file and extract the measures needed for our work 

concerning the CPU usage, the network activity and the screen utilization. The extracted 

information was presented in a simple and easy to understand way (Appendix C). 

 

Figure 3.1: Example of measures of the CPU usage extracted from a log file 

                                                           
17

 No personal information will be presented by the Nu Jamlogger application. 
18

 We create a java code to parse the log file. The code extracts information related to each component that we 

focus on and save them in a separate excel file. So, the output will be 3 excel files, one for the CPU, another for 

the screen and another one for the network. 
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Since the power consumption is very influenced by the usage behavior of the user and the 

power breakdown among hardware components of the Android phone can vary dramatically 

from one user to another, we suggest collecting traces from more than one user. So we 

gather data from 6 users
19

 and we study their activity patterns in order to understand the 

power consumption of Android phone architectures in real environments. 

The following figures show how the usage of the different components of the smartphone 

depends on the users’ activities. In fact, figures 3.2 and 3.3 present the average CPU usage 

breakdown and the average screen utilization breakdown (during 100 seconds) for each 

user. Figures 3.4 and 3.5 present the number of received and transmitted bytes of the 

network activity for each user (during 100 seconds). We can observe that the resource usage 

is not the same for the 6 users, it varies from one user to another and it depends on the 

applications utilized by each user during the collection of measures. 

 

Figure 3.2: Average CPU Usage (%) breakdown from real user traces 

                                                           
19

 The 5 users are employees from the ST-Ericsson company that voluntarily install the Nu JamLogger 

application on their Android phones and send the log files to us. 
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Figure 3.3: Average screen utilization (%) breakdown from real user traces 

 

Figure 3.4: Sum of received bytes of the network for each user during 100 seconds 
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Figure 3.5: Sum of transmitted bytes of the network for each user during 100 seconds 

The collected data will serve as historical measurements (or training set) to forecast the 

future behavior of screen activity, CPU usage, and network activity by using the learning 

approaches the KNN regression and the Gaussian process regression.  

3.2. The K nearest neighbors regression 

model 

We applied the learning approach 1-NN
20

 regression to our data already collected. As we 

mentioned in the previous chapter(section 2.5), the nearest neighbor method is a 

nonparametric method in which a new observation is classified in the class membership of 

the observation of the training sample which is the closest one , in terms of covariates used. 

The determination of their similarity is based on distance measurements. We consider LLLL as 

our data set or training simple. 

. = /��� , ���, 0 = 1, … , !23 

Where �� ∈ /1, … , 53 denotes the class of the individual    iiii and the vector �� = 6���, … , ���7 

represents the predictor variables of individual    iiii. 

                                                           
20

 We choose K=1 since the measures collected previously vary drastically and it may be hard to do the 

regression with more than 1 nearest neighbor. 
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In order to determine the nearest neighbor, we used the function of the Euclidean distance. 

For a given vector xxxx and each compound in the training set with individual vector xxxxiiii, the 

Euclidean distance is calculated as follow:   

8 = �‖� − ��‖�        

The forecasts of K Nearest Neighbors are calculated as the average of the K nearest 

neighbors outcome:   

� = �
: ∑ ��:�<�  

Where yyyyiiii is the ith observation of the examples sample and yyyy is the prediction (outcome) of 

the query point. 

The piece of code presented below shows the implementation done for the forecast
21

. The 

output of this code is show in the appendix C. 

 

 

 

 

 

 

 

 

We calculate also the standard error of the prediction by using the following formula: 

=>>?> = 	@ �AB�∑ �� − ����A�<�  

                                                           
21

 We used the Python language to implement our 1-NN regression model. 

(3.1) 

(3.2) 

def k_nearest_neighbours(k, history, target_x): 

    distance_history = [] 

    for (x, y) in history: 

        distance = math.sqrt((x - target_x)**2) #application of the Euclidean distance 

        distance_history.append((distance, x, y)) 

    distance_history.sort() 

    y_sum = 0.0 

    for (distance, x, y) in distance_history[0:k]: 

        y_sum += y; 

    return y_sum/k      #average of the KNN outcome 

(3.3) 
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Finally, we plotted
22

 the collected values and the predicted ones at the same graph to see 

how efficient is the work done by the KNN regression approach and to analyze the obtained 

results (Chapter 4). 

3.3. Gaussian process regression model 

To do the implementation of our GPR model, we are referred to the work done by Carl 

Edward Rasmussen and Chris Williams [39]. Our model was implemented in python language 

and in this section; we present an explanation of the model. 

Let’s consider that our historical collected values are associated to attributes �� ∈ ℝD and an 

observation�� ∈ ℝ. The observation yyyyiiii is presented by the following equation: 

��	 = E + F� 
Where F�~H�0, J�� is the Gaussian noise presented by a normal distribution with 0 mean 

and variance J� and E~H�0, K�	is an underlying function presented by a normal distribution 

with 0 mean and KKKK covariance (where KKKK is the covariance matrix). We assumed that the 

mean function of the Gaussian process is zero so that the GP is completely based on its 

covariance function. The covariance function that we used in our implementation is a 

squared exponential covariance function with isotropic distance measure presented by the 

following equation: 

K6�� , �L7 = M�	=�� N− OP� ∑ 6��,Q − �L,Q7�DQ R 
Where    kkkk and ρ are the hyperparameters of the covariance function and xxxxi,di,di,di,d is the d-th 

dimension of the vector xxxxiiii. 

In fact, the covariance is presented by two hyperparameters: the length scale characterizing   

the smoothness of the GP and the standard deviation of the noise. Since the GPR is a linear 

smoother [40], these hyperparameters will help to control the degree of smoothness. This 

                                                           
22

 We used the free library “matplotlib”, this library is very used in Python to draw graphics in two and three 

dimensions. 

(3.4) 

(3.5) 
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degree of smoothness called also degree of freedom of the smoother is defined as follow 

[41]: (I I I I is the identity matrix) 

S>�K�K + J�T�B�� 

The aim of using the smoothness is to reduce the noise of the signal where there is a large 

change in the amplitude from one point to another. So, if one point is very higher or lower 

than its immediately adjacent points, it will be reduced or increased respectively and the 

signal will be smoother. 

By having Gaussian likelihood and Gaussian prior, the marginal likelihood will be Gaussian 

too and presented by: 

���|U� = H�0, K + TJ�� 

Where θ presents the hyperparameters of the covariance function. 

By applying Rasmussen and Williams’ conjugate gradient maximization [39] of the log 

marginal likelihood, optimization was done to the hyperparameters. In addition, some log-

transformation was done to the observation set.  The dataset was divided into 1/2 training 

set and 1/2 test set. By using the test set, we calculated measures of evaluation to get a 

good and efficient picture of the predictive performance of trained models. The following 

measures were also taken into consideration during the implementation of our GPR. 

� Root Mean Squared Error: 

VWXY = @ �
Z ∑ ��� − E����  

� Mean Absolute Error: 

W[Y = 1
\ ]|�� − E�|

�
 

� Negative Log Predictive Density: 

H.^8 = − log ^��� = 	 �Z∑ N�� log�2cJ��� + �defge�P�heP R�  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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As we have done with the KNN regression model, we plotted the collected values and the 

estimated ones at the same graph to see how efficient our model is to predict the future 

behavior of the system (the results will be shown in the next chapter). We plot also: 

�i ± 1.96�n�>��� 

It presents 95% confidence interval obtained by applying the Gaussian Process Regression 

where the standard Gaussian noise is presented when the hyperparameters are chosen to 

maximize the marginal likelihood. 

 

  

(3.11) 
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Chapter 4 

Empirical Results 

In this chapter, we will present the results achieved by applying the two learning models the 

1-NN regression and the Gaussian process regression. The graphs that will be presented in 

the following sections will show the behavior patterns of the 3 studied components of the 

smartphone in a time interval of 100 seconds
23

. In each following section, we will give a 

detailed explanation of the results for one user. The results for the other 5 users will be 

presented in the appendices D and E. 

4.1. Results of the 1-NN regression model 
To forecast the behavior of the 3 more power consuming components of the smartphone 

which are the CPU usage, the screen utilization and the network activity (presented by its 

received and transmitted bytes), we are based on one historical measurement. In fact, we 

tried to do three experiments, the first one by doing the prediction based on the exact 

previous value of the one that we want to predict (that’s mean after 1 second), the second 

and the third tests are done by using the historical collected measures to do the prediction 

of the future behavior of the next 5 seconds and the next 10 seconds respectively. 

To make our work easier, we arrange our data points in three matrices related to the three 

experiments. The matrices have the following presentation (N presents the number of the 

training points): 

                                                           
23

 For good legibility and understanding of the behavior of the system and to better show the forecast, we 

chose a time interval 100 seconds to present our results in the graphs. 
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The first column presents the historical values that have been used to make the prediction of 

the values presented in the second column of the matrix. 

4.1.1. Scenario 1: Results based on 1 second 

historical measures 

In this section, we present the forecast done for the behavior of the three components, in 

which we concentrated our work, based on the immediate previous historical values.   

Figure 4.1 shows the forecast of the behavior of the CPU utilization (in %) for one user. The 

forecast presented in this figure is done during 100 seconds. The blue line presents the plot 

of our collected data points and the red one shows the predicted values based on one 

historical measurement (the same legend will be used for the screen utilization and the 

network activity). The error rate of the CPU utilization is equal to 3.26 which is relatively 

high. 
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Figure 4.1: Prediction of CPU usage behavior during 100 seconds 

Figure 4.2 presents the forecast of the behavior of the screen utilization (in %) for the same 

user in 100 seconds time interval. 

 

Figure 4.2: Prediction of the screen utilization behavior during 100 seconds 

We can remark that the percentage of the use of the screen is increasing from the second 60 

which means that the user was using his Android phone with multiple applications and the 
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display was continuously on during this time and it is using a very high backlight. The error 

rate of the screen utilization for this user is equal to 2.29. 

The two following figures present the received and transmitted bytes of the network during 

100 seconds (for the same user). The errors of the received and transmitted bytes were 

respectively 6.1 and 8.15. 

 

Figure 4.3: Prediction of the behavior of received bytes during 100 seconds 

 

Figure 4.4: Prediction of the behavior of transmitted bytes during 100 seconds 
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The graphs present some picks showing that the network is used in this time interval. We 

can remark also that the error rate of the network activity is higher comparing with the ones 

found by the CPU usage and the screen utilization. 

4.1.2. Scenario 2: Results based on 5 second 

historical measures 

In this part, we use the data points collected to predict the behavior of the system after 5 

seconds. Figure 4.5 presents the forecast of the CPU usage. We can see that the error rate 

here is equal to 13.78%. So, the error becomes higher when we want to predict the behavior 

of the CPU for the next 5 seconds. 

 

Figure 4.5: Forecast of the CPU usage 
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Figure 4.6 shows the screen utilization, its error rate is equal to 9.41. 

 

Figure 4.6: Forecast of the screen utilization 

Figures 4.7 and 4.8 present the forecast of the received and transmitted bytes of the 

network by using the same method for the prediction. Their respective error rates are 14.6 

and 15.13. 

 

Figure 4.7: Forecast of the received bytes of the network 
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Figure 4.8: Forecast of the transmitted bytes of the network 

4.1.3. Scenario 3: Results based on 10 second 

historical measures 

The same work is done in this section to forecast the behavior of the CPU usage, the screen 

utilization and the network activity but this time we used the collected data to forecast the 

values of the next 10 seconds. The error rate of each component can be seen in the graphs 

below. 
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Figure 4.9: Prediction of the CPU usage based on 10 seconds historical values 

 

Figure 4.10: Prediction of the screen utilization based on 10 seconds historical values 
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Figure 4.11: Prediction of the received bytes based on 10 seconds historical values 

 

Figure 4.12: Prediction of the transmitted bytes based on 10 seconds historical values 

A general conclusion can be done is that by doing the forecast based on the KNN regression 

model, the error rate will be more important if we will  use the historical values to forecast 

the next 5 seconds and 10 seconds values than to forecast the exact next values (1 second) 

and then the accuracy will deteriorate.  
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4.2. Results of the Gaussian process 

regression model 
To predict the future behavior of the system based on the historical measures taken from 

the smartphone, we follow the same methods described in the section 4.1 above. 

We will present in this part the results for one user concerning the CPU usage, the screen 

utilization and the network activity. The results of the other users can be found in the 

appendix E. 

4.2.1. Scenario 1: Results based on 1 second 

historical measures 

As we have done with the KNN regression model, we are based on the exact previous 

measures to predict the next points. 

Figure 4.13 presents the CPU usage (in %), the blue points characterize the plot of our 

collected data during 100 seconds and the red line characterizes the plot of the prediction 

values when applying the Gaussian process regression model. The error rate of the forecast 

of the CPU usage for this user is equal to 1.09 %. 

 

Figure 4.13: Forecast of the CPU usage based on exact previous historical values 
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The grey bands represent 95% confidence interval. The graph above corresponds to 

optimizing the marginal likelihood of the Gaussian  process but we can remark that the signal 

is noisy, so we tried to reduce the noise by making the hyperparameter “length scale”  of the 

covariance function longer and then the prediction function will be smoother. Figure 4.14 

shows how the forecast of the CPU usage becomes smoother. 

 

Figure 4.14: Smoother forecast of the future behavior of the CPU 

Figure 4.15 shows the screen utilization behavior for the same user. Its error rate is equal to 

1.21%; figure 4.16 presents the prediction of the screen utilization when reducing the noise. 
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Figure 4.15: Forecast of the screen utilization based on the exact previous historical values 

 

Figure 4.16: Smoother forecast of the future behavior of the screen 

The two figures bellows present the received and transmitted bytes of the network in 100 

seconds time interval. Their error rates are respectively 1.59 % and 2.11 %. 
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Figure 4.17: Forecast of the received bytes of the network based on the exact previous 

historical values 

 

Figure 4.18: Smoother forecast of the future behavior of the network presented by its 

received bytes 



44 

 

 

Figure 4.19: Forecast of the transmitted bytes of the network based on the exact previous 

historical values 

 

Figure 4.20: Smoother forecast of the future behavior of the network presented by its 

transmitted bytes 

By looking to the error rate of the forecasts of the three components, we can say that the 

accuracy of the prediction by the Gaussian process regression model looks interesting and 

high which means that the modeled GPR is doing a good job. 
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4.2.2. Scenario 2: Results based on 5 second 

historical measures 

In this section, we show the forecast of the future behavior of the studied components when 

using the collected values to predict what will happen in the next 5 seconds. 

 

Figure 4.21: Forecast of the CPU usage based on 5 second historical values 

 

Figure 4.22: Smoother forecast of the future behavior of the CPU 
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Figure 4.23: Forecast of the screen utilization based on 5 second historical values 

 

Figure 4.24: Smoother forecast of the future behavior of the screen 
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Figure 4.25: Forecast of the received bytes of the network based on 5 second historical 

values 

 

Figure 4.26: Smoother forecast of the future behavior of the network presented by its 

received bytes 
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Figure 4.27: Forecast of the transmitted bytes of the network based on 5 second historical 

values 

 

Figure 4.28: Smoother forecast of the future behavior of the network presented by its 

transmitted bytes 

We can remark that when we used the historical measurement to predict how the system 

will behave in the next 5 seconds, the error rate is increased comparing to the error rate 

found when we did the prediction to examine the behavior of the system in the immediate 

next second. 
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Let’s take as example the screen utilization; by looking to the error rates found in the two 

scenarios, we see that the error in the second scenario becomes almost twice the error rate 

found in the first scenario. 

4.2.3. Scenario 3: Results based on 10 second 

historical measures 

By examining the graphs presented in this section, we can conclude that the error becomes 

increasingly important by increasing the period of prediction based on the historical 

collected values . the error rates when doing the prediction of the next 10 seconds is higher 

than the error rates when doing the prediction of the next 5 seconds and the error rates 

found by doing the prediction of the next 5 seconds is more important than the ones found 

by doing the prediction of the next 1 second. 

 

Figure 4.29: Forecast of the CPU usage based on 10 second historical values 
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Figure 4.30: Smoother forecast of the future behavior of the CPU 

 

Figure 4.31: Forecast of the screen utilization based on 10 second historical values 
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Figure 4.32: Smoother forecast of the future behavior of the screen 

 

Figure 4.33: Forecast of the received bytes of the network based on 10 second historical 

values 
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Figure 4.34: Smoother forecast of the future behavior of the network presented by its 

received bytes 

 

Figure 4.35: Forecast of the transmitted bytes of the network based on 10 second historical 

values 



53 

 

 

Figure 4.36: Smoother forecast of the future behavior of the network presented by its 

transmitted bytes 

 

In the next chapter, we will present the accuracy of these two learning models in order to 

find the more accurate and efficient one that will give us the best way to do the forecast of 

the three studied components of the Android phone   based on their historical 

measurements. 
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Chapter 5 

Discussion 

After presenting the prediction of the future behavior of the smartphone components based 

on their historical measurements in term of graphs (Chapter 4), we will validate in this 

chapter our results in term of accuracy. Since we concentrated our work on the CPU usage, 

the screen utilization and the network activity, we will study the accuracy of each 

component through the three scenarios presented in the previous chapter when applying 

the KNN regression and the Gaussian Process regression models. A comparison between the 

two models will be made and a conclusion about the most accurate one will be done. 

5.1. Accuracy of the 1-NN regression model 

Table 5.1 shows the accuracy of the CPU usage, the screen activity and the received and 

transmitted bytes of the network for each user and the average accuracy of each component 

when we used the collected data points to predict the exact next values (the next 1 second 

values) by applying the 1-NN regression model. 
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Table 5.1: Prediction accuracies when applying scenario 1 of the 1-NN regression model 

 CPU Usage Received bytes Transmitted bytes Screen Utilization 

User 0 96.74 93.9 91.85 97.71 

User 1 97.6 95.56 96.41 97.07 

User 2 96.16 96.82 95.12 97.42 

User 3 96.13 94.17 95.32 97.82 

User 4 96.4 94.29 94.8 97.56 

User 5  96.02 94.43 96.68 97.47 

Average 

accuracy 

96.5 94.86 95.03 97.5 

We can remark that the accuracies of the 3 components vary between 91% and 97%. For 

example, the average accuracy of the prediction of the CPU usage is 96.5% which means that 

we achieve an error rate equal to 3.5%. In fact, by using the 1-NN regression model in 

scenario 1, the average accuracy of the forecast of these different components is ≈ 96% and 

then the error rate will be ≈ 4%.  

Table 5.2 presents the prediction accuracy of the future behavior of these components when 

doing the forecast based on the second scenario which means when using the historical 

measures to forecast the behavior of the system in the next 5 seconds. 

Table 5.2: Prediction accuracies when applying scenario 2 of the 1-NN regression model 

 CPU Usage Received bytes Transmitted bytes Screen Utilization 

User 0 86.22 85.4 84.87 90.59 

User 1 8689 86.5 89.9 88 

User 2 84.55 87.35 88.77 93.12 

User 3 91.02 83.28 87.03 94.09 

User 4 90.77 88.66 91.48 93.19 

User 5  93.65 83.34 87.7 93.71 

Average 

accuracy 

88.85 85.75 87.29 92.11 
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By taking a look on this table and compare it with the previous one, we can see that by 

applying scenario 2, the accuracies of the prediction become lower and the error rates 

increase and reach ≈ 12%. So, it is more accurate to do the prediction of the system based on 

the immediate previous historical measures than doing the prediction of the next 5 seconds 

even if this error rate is not very high and the prediction is still possible. 

The table below presents the accuracy of the three components of the smartphone based on 

the third scenario with the 1-NN regression model. 

Table 5.3: Prediction accuracies when applying scenario 3 of the 1-NN regression model 

 CPU Usage Received bytes Transmitted bytes Screen Utilization 

User 0 83.56 81.38 84.61 85.57 

User 1 84.29 82.99 85.71 89.4 

User 2 83.71 81.37 85.65 87.85 

User 3 86.23 82.92 83.82 88.97 

User 4 86.62 83.06 84.79 88.41 

User 5  85.97 83.68 87.58 88.1 

Average 

accuracy 

85.06 82.56 85.36 88.05 

We can remark that the accuracies become weaker when we use the historical 

measurements to see how the system will behave in the next 10 seconds. The average 

accuracy of the 3 components by applying scenario 3 does not reach 86% and the error rate 

is almost equal ≈ 15%. This error rate is relatively high and in this case it becomes harder to 

make the right decision about the future behavior of the system and the future inactivity 

periods of the different components of the smartphone. 

As a conclusion, we can say that the 1-NN regression model is doing a good forecast in 

general despite its simplicity but the accuracies found by this machine learning does not 

differ from the accuracies found by previous works done by other researchers (error rate 

between 5% and 20%); so, this approach does not help us to achieve our goal which is 

achieve better accuracy of prediction and present an activity forcasting model that is more 

accurate and efficient. 
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5.2. Accuracy of the Gaussian Process 

Regression model 

By applying the Gaussian process regression model to our data, we obtain accuracies which 

are more interesting than the ones found by the 1-NN regression model. Table 5.4 shows the 

accuracies obtained by the first scenario when applying the Gaussian process regression 

approach to our collected data. These accuracies are specified to the CPU usage, the screen 

utilization and the network activity and presented for each user. 

Table 5.4: Prediction accuracies when applying scenario 1 of the Gaussian process regression 

 CPU Usage Received bytes Transmitted bytes Screen Utilization 

User 0 98.91 97.57 97.44 98.79 

User 1 98.73 91.87 91.59 99.31 

User 2 99.05 96.33 96.48 99.42 

User 3 98.69 97.19 97.06 99.4 

User 4 99.38 97.4 96.91 99.59 

User 5  98.25 97.83 97.13 99.5 

Average 

accuracy 

98.83 96.36 96.1 99.33 

We can see that the accuracy of the forecast concerning the 3 components is quite 

interesting and high. We can take as an example the screen utilization, the average accuracy 

of prediction of the screen utilization exceeds 99% which has as a consequence a very low 

error rate that is smaller than 1%. In general, by applying the Gaussian process regression 

approach, the average accuracy of the forecast of the 3 components is nearly equal to 98% 

and then the average error rate is approximately equal to 2%. So, the forecast of the future 

behavior of the smartphone and the prediction of the inactivity periods of the CPU, the 

screen and the network will be more precise and then the reduction of the power 

consumption will be easier.  

Table 5.5 presents the accuracies of the prediction by using the data collected for each user 

per component when applying scenario 2. 
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Table 5.5: Prediction accuracies when applying scenario 2 of the Gaussian process regression 

 CPU Usage Received bytes Transmitted bytes Screen Utilization 

User 0 96.96 96.67 95.73 96.49 

User 1 97.23 92.71 91.26 97.51 

User 2 97.76 96.99 94.61 97.82 

User 3 96.87 95.92 95.89 97.36 

User 4 96.09 96.86 95.7 96.93 

User 5  95.85 96.5 91.33 97.54 

Average 

accuracy 

96.79 95.94 94.08 97.27 

By using the historical collected measures to do the forecast of the behavior of the android 

phone in the next 5 seconds, we can see that the accuracies decline a little bit. By applying 

the second scenario with the Gaussian process regression approach in the training data, the 

average accuracy of the 6 users and the 3 components is almost equal to ≈ 96% which is still 

relatively high comparing to the accuracy found when applying the 1-NN regression model 

(accuracy is equal to ≈ 88%), and the error rate is not so important and it does not reach 4% 

(error rate ≈ 12% for 1-NN regression model with scenario 2). So, even by applying scenario 

2, the prediction is still possible and we can say accurate with the Gaussian process 

regression model. 

The table below shows the accuracies of the forecast when using historical data points to 

predict the future behavior of the Android components for the next 10 seconds. 
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Table 5.6: Prediction accuracies when applying scenario 3 of the Gaussian process regression 

 CPU Usage Received bytes Transmitted bytes Screen Utilization 

User 0 93.88 94.71 92.33 94.54 

User 1 93.95 89.9 88.27 94.83 

User 2 93.57 95.23 91.68 95.11 

User 3 94.71 87.8 89.17 95.26 

User 4 94.7 94.59 92.78 96.01 

User 5  94.42 93.96 89.65 96.6 

Average 

accuracy 

94.2 92.7 90.64 95.39 

As we mentioned in the case of the 1-NN regression model, the accuracies of the forecast 

become lower when we want to predict the future behavior of a far period (10 seconds) than 

the future behavior of a close period (1 second). In fact, the average accuracy achieved in 

scenario 3 is decreased by 5% compared by the average accuracy obtained by scenario 1. On 

the other hand, the accuracy achieved by the GPR model in the third scenario (average error 

rate equal 6.77%) is still better than the accuracy achieved by the 1-NN regression model 

(average error rate equal 14.75%). 

By looking to the accuracies obtained by the two models, we can say that the learning 

approach is a good technique to forecast the behavior of screen activity, CPU usage, and 

network activity in particular and the behavior of the smartphone in general based on 

historical measurements. 

By comparing the accuracies achieved by the two learning approaches that we used to do 

the forecast, we can conclude that the Gaussian process regression approach does better job 

than the KNN regression approach. So, as a consequence it is more efficient to be based on 

the GPR model to predict the future behavior of the smartphone regarding the battery 

power usage and to make the right decision about the future inactivity periods which will 

help as a basis for power management. By having an accurate activity forecasting model, it 

will be easy to reduce battery power consumption of smartphones and optimize the power 

usage. By looking to the graphs presented in the previous chapter (chapter 4) concerning the 
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forecast of the CPU usage, the screen utilization and the network activity, we can remark 

that these components are not always used (inactive state) and even if they are used there 

exist two types of states which are the idle state
24

 (or standby mode) and the active state
25

. 

For example, by looking to figure 4.13 which shows the behavior of the CPU usage, we can 

see that the peaks directed upwards present the active state of the CPU and the peaks 

directed downwards present the idle sate. In addition, figure 4.17 and 4.19 which 

characterize the behavior of the network regarding the received and transmitted bytes; 

show that the network is only used in the period presented by the big and small peaks and in 

the other periods the network is not used. 

So, during the periods of inactivity or the idle state, we can apply different power 

management techniques that will help to save the power of the battery of the smartphone. 

In the paper [42], the author presents two techniques to optimize power in mobile 

architectures. The first one is specified for the screen called “change blindness” and aims to 

reduce the brightness of the screen and the second one is applied for the CPU and aims to 

control the CPU frequency. 

The main advantage of our proposed solution is that by predicting the future inactivity 

periods based on the historical behavior of the smartphone, we can apply power 

management techniques, as the ones proposed in paper [42], and we can significantly avoid 

the excessive use of the power. By discovering the future inactive or idle period, we can 

reduce the screen quality by adjusting the Backlight to be Less Bright, reduce the frequency 

of the CPU slowly and even turn off the network when it is not used while maintaining the 

satisfaction of the end user. 

As a future area of research, we can study the prediction of the components of the 

smartphone per application. If we are using the web browser, playing game or making calls 

(as an example), we can focus on the behavior of the phone components for each 

application to see what degree on power is used by each application and then try to apply 

power management techniques to the apps that use high quality screen, intensive CPU 

usage and extensive networking and then reduce battery power consumption. 

                                                           
24

 The idle state: the processor of the applications is not working but the processor of the modem is still 

operational and we say that the phone is in a low-power sleep mode. 
25

 The active state: the processor of the applications is working and it occurs when a system wake lock is held. 
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Chapter 6 

Conclusion 
 

By the invention of the smartphones, mobile devices become indispensable tools for most of 

people thanks to the different features they offer for their users such as web browsing, e-

mails, games, multimedia, social networking, etc; in addition to the basic functionalities 

which are calling and text messaging. With the integration of these different features, the 

users of the smartphones need a good level of performance and sophistication in mobile 

architecture especially regarding the battery. In fact, the main problem that faces the users 

of smartphones is the excessive battery power usage which leads to a short battery lifetime; 

and this problem is essentially due to the use of the multiples functions offered by the phone 

which rely to a very high quality screen, intensive CPU usage, and extensive networking. The 

excessive use of these different components of the smartphone leads to a very high power 

consumption and causes the drain of the battery. 

Since the Android operating system is known as the most used and popular OS for mobile 

devices in these recent years, we concentrated our work on the Android smartphones. In the 

other hand, since the battery power usage depends on the real user activity patterns which 

differ from one user to another, we conducted usage studies with real users. As a first step, 

we collected data of the CPU usage, screen utilization and network activity (the most power 

consuming components) from 6 users having Android smartphones. As a second step, we 

modeled 2 learning approaches: the KNN regression model and the Gaussian process 

regression model. These models are used to forecast the future behavior of these 

components based on their historical behavior through the collected data. Three scenarios 

are presented in our solution using the historical measurements to see how the system will 

behave in the next 1 second, in the next 5 seconds and in the next 10 seconds. 
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by looking to the accuracies found by applying the KNN regression model and the Gaussian 

process regression model, we concluded that machine learning is a good choice to do the 

prediction of the future behavior of the system since the error rate of the 2 models is 

relatively low compared by previous solutions . When we compare the accuracy of the 2 

proposed learning approaches, we can say that the Gaussian process is doing better job with 

accuracy almost equal to ≈ 98% than the KNN regression model which has lower accuracy 

nearly equal to ≈ 96% (results of the first scenario).  

As a consequence, the Gaussian process regression model is most accurate and efficient to 

do the forecast of the future behavior of components of smartphones based on their 

historical behavior. 

The main advantage of our proposed solution compared by the solution presented in 

previous works is that our solution is more accurate and efficient since it achieves an error 

rate lower than 2% however the error rates of the previous solutions done by other 

researches vary between 5% and 20%. 

The Gaussian process model that we presented in our work can be used as a basis for power 

management. In fact, by predicting the future inactivity periods and the idle states of the 

phone components, we can apply techniques of power management, such as reducing the 

brightness of the screen or adjusting the CPU frequency, and components can be turned off 

in the right time, such as the Wi-Fi and the 3G. These methods will avoid the extensive use of 

the phone resources and then battery power consumption can be significantly reduced. 

Our thesis work presented in this paper can be extended by not only focusing on the 3 

components of the smartphone which are the CPU, the screen and the network but also 

monitoring other components of the smartphones that can consume too much power and 

can cause the drain of the battery. In fact, we can study the sensors embedded on 

smartphones such as the accelerometer
26

, the gyroscope
27

, the compass
28

, microphone, 

camera, GPS, etc. These sensors present new challenge to the smartphones since they give 

                                                           
26

 Accelerometer: or acceleration sensor is a complex electronic system that is attached to a mobile object used 

to measure its acceleration.  
27

 Gyroscope: is a sensor of angular position. 
28

 Compass: is able to calculate the heading direction by determining the rotation of the device depending on 

the Earth’s magnetic north pole. It provides the phone with its exact orientation and position. 
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additional functionalities to the phone but they come with high cost which is excessive 

power consumption. 

In the other hand, we are focusing during our work on doing the forecast of the behavior of 

the whole system. As a future work, we can study the behavior of the components of each 

application running in the smartphone separately and then we will have detailed information 

that will help to manage the power consumption of each application. 

Moreover, since we choose to study the behavior of the system in its real environment 

which is the end user, we can enlarge our database and collect data from more than 6 users 

since the system behavior depend on the user activity patterns. 

The work shown in this paper was presented for a specific mobile device which is the 

Android smartphone but it can be applied to any kind of smartphones and Android devices 

such as the Android tablets that are starting to get famous and popular as the Android 

smartphones. 
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Appendix A - List of abbreviations & 

Glossary 

AI  Artificial Intelligence 

CPU  Central Processing Unit 

GP  Gaussian Process 

GPR  Gaussian Process Regression 

GPS  Global Positioning System 

HSDPA  High Speed Downlink Packet Access 

HTC  High Tech Computer 

iOS  iPhone Operating System 

KNN  K nearest neighbors  

OS  Operating System 

PDA  Personal Digital Assistant 

QHD  Quarter of full High Definition 

SD  Secure Digital 

Wi-Fi  Wireless Fidelity 

WLAN  Wireless Local Area Network 

 

 

 



69 

 

Mean and Covariance functions: 

The mean and the covariance function of the Gaussian process of a real process f(x)f(x)f(x)f(x) are 

presented respectively by: 

\��� = YoE���p 

M��, �′� = Yr6E��� − \���76E��′� − \��′�7s 

Hyperparameters: 

The hyperparameters present a reference to the parameters of the covariance function to 

insist on the point that these parameters are used in a non-parametric model. 

The likelihood: 

The likelihood is the probability density of the observations given the parameters. 

The marginal likelihood: 

The marginal likelihood refers to the marginalization over the function values ffff. 
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Appendix B - Versions of the Android OS 

 

Fig: The different versions of the Android OS 

Platform Codename API Level Distribution 

Android 1.5 Cupcake 3 0.3% 

Android 1.6 Donut 4 0.7% 

Android 2.1 Eclair 7 6.0% 

Android 2.2 Froyo 8 23.1% 

Android 2.3 - 

Android 2.3.2 

 

Gingerbread 

9 0.5% 

Android 2.2.3 - 

Android 2.3.7 

10 63.2% 

Android 3.0  

Honeycomb 

11 0.1% 

Android 3.1 12 1.0% 

Android 3.2 13 2.2% 

Android 4.0 – 

Android 4.0.2 

 

Ice Cream Sandwich 

14 0.5% 

Android 4.0.3 15 2.4% 

Tab: Data collected during a 14-day period ending on April 2, 2012 

 

Link:  http://developer.android.com/resources/dashboard/platform-versions.html 
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Appendix C - Examples of outputs of the 

Nu Jamlogger application and the KNN 

regression model 

 

Fig: The GUI of the NU JamLogger application 

 

Fig: Example of a log file from the Nu JamLogger application 



72 

 

 

Fig: Example of information about the network activity extracted from the log file 

 

Fig: Example of measures (in %) of the screen utilization extracted from the log file 
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Fig: Example of output of the 1-NN regression script  
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Appendix D - Results of the 1-NN 

regression model for the 5 users 

Results based on 1 second historical measures 
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Results based on 5 second historical measures 
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Results based on 10 second historical measures 
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Appendix E - Results of the Gaussian 

process regression model for the 5 users 

Results based on 1 second historical measures 
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