AT UNIVERSITETET | AGDER

Semantic Web for Data integration within
Oil&Gas or maritime

By
Li Kuang

Thesis submitted in Partial Fulfiliment of the
Requirements for the Degree Master of Technology in
Information and Communication Technology

Faculty of Engineering and Science
University of Agder

Grimstad
May 2009

http://www.uia.no/no

Abstract

The Semantic Web technology has become quite popular recently. The ontology-based data
integration architecture is the important part of Semantic Web technology. It enables the sharing of
concept with common schemas and also enables the representation of the information in machine
understandable way. Therefore, the data source could be processed automatically.

This master thesis is using the Semantic Web technology for data integration within Oil&Gas or
maritime industries. The Norwegian Oil Industry Association (OLF), which takes a leading role in
next generation Integrated Operations, has developed an Oil&Gas ontology for data integration
across multi-domains. The Oil&Gas ontology is based on the 1ISO15926 standard.

The master thesis devotes to clarify to what extend the Semantic Web technology and 1SO15926
standard can be used together to improve the functionality of the Safety Instrument System (SIS),
which is provided by the problem owner. This master thesis introduces a data integration
framework according to the implementation methodology of 1S015926 standard and the
architecture of Ontology based data integration. The framework uses the software Protég&[12] as
a modeling tool to create a model for the Cause&Effect matrix based on the 1SO15926 standard.
The Jena API [33] is used to map the real-time data to the data source ontology. This project also
implements a prototype using the Jena API including a querying system and reasoning system.
The implementation of querying system, which gets the information intelligently, shows the
improvement of data quality and accessibility. And the reasoning of the ontology shows the ability
of automatic processing of the real time data, which has obviously improved the software
functionality.

Preface

This thesis is proposed by Origo Engineering AS. First of all, | would like to thank for the high
level guidance of my technical supervisor Andreas Prinz. He has given me some good advices
when | went lost in the wrong direction.

And | would also like to thank my supervisor Trond Friis@and his colleague Trond K. Nilsen
from Origo, who helps me to understand the problem of the thesis clearly and gives good
suggestions all the time. At the same time | want to thank Origo for providing me the raw data.

Finally, I would like to thank Terje Gjaseeter, who helped me a lot with language usage in the

report writing. And thanks for the effort of my thesis contact Jan Pettersen Nytun.

Grimstad, May 2009
Li Kuang

Table of contents

I [oo (VT £ o] o OSSPSR 8
I = T Tod (o] (10 o SRS 8

1.2 History of Data INtEgration...........cceiieiiiiiiiiieeic et 8

I =T oo Ao 11 [T TSP 9

B o o] o] =T ¢ o (=TSt] o] o] o ISR 10
2.1 Problem SEAEEMENT.coviiiieree bbbt 10

2.2 Problem delimitations ..o 12
2.2.1 Data iNtegration STIUCTUIEccvoiiierieieire et 12

2.2.2 Advantages of data iNtegrationcccooevereieiine s s 14

2.2.3 Importance of the research on the ONtolOgYccccooereriiieniieiese e 14

2.2.4 Environment of data integration...........cccoereieiineieies s 15

2.2.5 Level of the data INtgration...........ccoeoeiieririeise e s 16

2.2.6 Semantic Web technology used in this project.........ccccovvvereneinicnenein e 16

2.3 ROIES ANA SCENAIIOS ...ttt sttt st et sbe e ens 17
2.3.1 Analysis of Cause&Effect MatriX.........coccoereieiiiieieics e 17

2.3.2 Roles in the Semantic data iNtegrationcccooereieiniiienenese e 19
2.3.3SCENAM0S OF the SIS ... s 20

3. Theoretical DaCKgroUNd............ccoviiiiiiii e 24
3.1 SeMANTIC WED ... e 24
3.1.1 What is Ontology, what is it USEd FOr?ccoeiiiiiiiiecreee e 25

3. 1.2 XML + XML SCHEMAS ...c.vevinieiieiiiieieee et 26

3. 1.3 RDF+RDF SChEMAScueviieiieiisiesie ettt eens 27

3.1.3.1 Distinguish is-a and part-of relationsccccooveiiieininineee e 28

3132 SPARQL ...ttt 29

3.1.4 OWL (Web ONntology LangUAGE)coveeruerieieirieniesieieesie et 29

3.1.4.1 SyntaxX Of OWL-FUILcoooiiiiiiee e 30

3.1.4.2 Reasoning With OWLccciiiiiiiiiise et 33

3.1.4.2.1 Reasoning With iNCONSISLENCYccccerveiriienieeere e 34

3.1.4.2.2 Inference With OWL........ccooooiiiiiiiiecee s 36

3.1.5 DESCIIPLION LOGIC....c.viiviivieiieiecie ettt ettt be e et sae e e e 38

3.2 1SOL5926 SEANCANDc.eevereeeiiieieieieese ettt ettt se e s e e e enene e 39
3.2.11S015926 Part 2: Data MOUelccoiiiiiiieieeeee s 40
3.2.21S015926 Part 4: Reference Data..........ccoceveiieirerieieeieie et 41

3.2.3 15015926 Part 7: implementation methodology..........ccccvereieieieneiciecceeee 44

3.2.3.1 1S015926 implementation hierarchyccccocevevereinieneneseeee e 44

3.2.3.2 Template SPeCIfiCatioN...........ccooiiiriiiriie e 45

3.2.3.3 OIM (Object Information Models)..........cccereiriiriieneirese e 47

3.2.3.4 Data integration in a distributed SyStemccccvviviieinine i 47

4. DeSIgN SPECITICALIONeiuiiiiiicie ettt st sr e st e e et e b e ae e s srea 49
4.1 Mapping the Cause&Effect matrix to 1SO015926 Specificationccccocevereririereriennn 50

4.2 Mapping the real-time data to data source ontology Specification.............cccccceevvvivennne. 51

4.3 Semantic Querying and Reasoning system specification............cccccevceveveiiievc e e, 52

5. Mapping IMpIemMENtatioNcoviiiiee et 54
5.1 Mapping the Cause&Effect matrix t0 ISO15926cceevveviieiieie e 54
5.1.1 Hierarchy of the MOEIS..........cooiiiiiiie s 54

5.1.2 “System’ hieTarchyccooviiiiiieiieiiee e 55

5.1.3 ReStrictions Of the CIASSEScvivirieriiieirie e 56

5.1.4 Tag ClasSifiCatioN..........cccoveiiiieii e 59
5.1.5Voting iMPIementationccoiiiriiieiiene e 62

5.1.6 InStance definitionccocoriiiiiiiii s 66

5.1.7 Relate Fire&Gas With ESDccccoiiiiiiiiiieise e s 70

5.2 Mapping the real-time data into data source ontologycccceverireiineneneiere e 71

6. Prototype IMplemMENtationc.coviiiiiiiieie e et 74
6.1 Semantic reasoning iMPIEMENtationcccoiieiiiiiiere e s 74

6.2 Semantic query implementation..........cccooireiieieneee e 75

A 2 010 0T il To g (ot o | PSS 77
7.1 Reasoning VEMTICAtIONc.cc.oiiiicicic et 77
7.1.1 CheCK CONSISIENCYveviivieiieie sttt sttt sttt s be et sae e e 78

7.1.2 ClasSify taXONOMYcc.eiiiieieiie ettt te et beera et e saeenee e 79

7.1.3 Inferring the states of the Tag in Fire&Gas and ESD..........cccoceovviiiieincnenene, 80

7.2 Testing of the semantic reasoning and qUErYiNg SYStEMccoceverererierenenierere e 83

B DHISCUSSION ...ttt ettt etttk e ettt b e bt e bt e bt eb e b e Rt e bt et e e et e b e et et et eneabesbe b e neens 87
9. Conclusion and FULUIE WOTK ..o e 89
LT O3 Tod 1] o o OSSOSO 89

0.2 FULUIE WOTK ...ttt bbbt bbb st et e e s et b e e 89
RETEIBNCE ...ttt ettt ettt e bt Re b sb e e e Rt et ebe e et be et et nbeneas 91

List of figures

FIGURE 1 SYSTEM OVERVIEW OF SIS CITED FROM [7] ..vtviriiiiiieiiiiiieieiisieieesie e 11
FIGURE 2 ARCHITECTURE FOR THE INTEGRATED INFORMATION FRAMEWORK, CITED FROM [3]............... 12
FIGURE 3 COMPARISON OF THE CONCEPTUAL LAYERING AND PRACTICAL LAYERING OF THE ONTOLOGY
... 14
FIGURE 4 CONCRETE DATA INTEGRATION STRUCTUREccitiiiteeiteeteetreetreeteesteesteetesssessaestessreesreesseensesnns 17
FIGURE 5 CAUSE&EFFECT SHEET OF UBL-2 ...ttt ettt tee e nnne et nnee s 19
FIGURE 6 COLLABORATION OF F&G, ESD AND PCSo 21
FIGURE 7 CAUSE&EFFECT SHEET OF ESDiviiiii ettt ettt tee e e naeennee s 22
FIGURE 8 A PART OF THE EMERGENCY SHUTDOWN SYSTEM HIERARCHYccoieivieieeieirieiteeireesneeereeeneens 23
FIGURE 9 SEVEN LAYER CAKE PROPOSED BY TIM BERNERS-LEE........cccccoviiiiitietecie et 25
FIGURE 10 RDF GRAPH EXAMPLEooiuviittisttesttesieestessaesseesseesseesssasssansesssesssesseessesssessssssesssesssessseessnsnsesnes 28
FIGURE 11 LINGUISTIC REPRESENTATIONcttettesteestesseesseesseesenesenaseeassssssessessssesseessesssnssesssesssesssesssesnsennes 29
FIGURE 12 CLASSIFICATION OF SYNTAX OF CLASSESeivveiteeiteeeeeeeaseesseesseesssesseessessssssessesssesssesssesnsesnes 31
FIGURE 13 PROTEGE-OWL SYNTAX ...iiutiittertteteesiesstessaesseesseesseesssasssassesssessessseesseessessssssesssesssessseessesnsesnes 32

FIGURE 14 VENN CHART OF THE ONTOLOGY .. uuvttiiiieeiieiiitiieieeeessiisisseteesesssssssssesssesssssssssssssssssssssssssseessssins 35

FIGURE 15 DL ARCHITECTURE ...cectttitieiteeasteeetesasteeastesasteeassseasteeasaseassesassessasesasssesssesasessssesssssesssenensees 38
FIGURE 16 OWL AS DL: AXIOMS. FROM [20]eivitiiiitiiiiieiirie ettt s 39
FIGURE 17 MODEL DIAGRAMS IN PART 2(FROM [23]) ..veverietirieieiinieieiisieece e 41
FIGURE 18 REFERENCE DATA HIERARCHYuecitiiitieiiiiieiteeiteesteesteesaesnsesssesseesbeesteesbesssesseessnessesssesssesnsesnns 42
FIGURE 19 PART 2 RELATED WITH PART 4 ...ttt ettt et et eennae e ntae e nna e e nnneenee s 43
FIGURE 20 THE 1SO 15926 STACK, (FROM [27]) .. cveivtreetirierieiirieieiisieeeie sttt 45
FIGURE 21 LONGHAND TEMPLATE SPECIFICATION, CITED FROM [27]..c.ciiiiiriiiiineiccnieesieecsie s 46
FIGURE 22 COMPARISON OF LONGHAND TEMPLATE AND SHORTHAND TEMPLATE, FROM [27]c.covevveee. 47
FIGURE 23 INFORMATION CHAIN OF FACADESc.vecitiitieiteeiteeiteecteeitesrestsesteesteesteesbessaestaestaesreesreesreensesnns
FIGURE 24 DATA INTEGRATION SYSTEM ARCHITECTURE
FIGURE 25 WORK FLOW THE MANUALLY MAPPINGccveitieitieiteeiteeiteeresssesseesseessessesssesseessesssesssesssesnsesnns
FIGURE 26 REAL-TIME DATA MAPPING STRUCTUREcoittitieiteeiteeiteerestresteesteesteestessaesseesseessessseessesnsesnns
FIGURE 27 SEMANTIC QUERYING AND REASONING SYSTEM STRUCTUREccveiviereerreireesteesreesreesreenneenns 52
FIGURE 28 CLASS HIERARCHY OF THE MODELSc.tviitieiiteeeiteeesteeesteeestesssseesssesessessssessssessssesssssssssessssees 55
FIGURE 29 REFERENCE DATA OF THE “SYSTEM” HIERARCHY, FROM [30]......ccvvuiiiiriiiiinieicinieec e 56
FIGURE 30 DISIOINT SYSTEMS ...teiittiitteeteeaiteeeteeasteeassesasseeassesassasasssassesasessssessssssssssasssssssesesssessessnsees 56
FIGURE 31 “ACTIVITY” AND “ROOM” CLASS DEFINITIONueciviiiieiieereitresteesreesteeresssesseesseesreessessseensesnns 57
FIGURE 32 “SYSTEM” AND “LITLED” DEFINITION ...uveiitvtiiteeeiteeeiteeesteeesteeesseesssnsesseesssssssssssssssessssessessssees 58
FIGURE 33 “CAUSEANDEFFECTCHART” AND “AREA” CLASS DEFINITIONccveiiuieeiiieetreenineeneneesineennnens 58
FIGURE 34 “CAUSETAG” AND “TAG” CLASS DEFINITION ...ccvteiveeiteeireereetresteesteesteesesssesseessessseessesssesnsesnns 59
FIGURE 35 “EFFECTTAG” AND “ACTIVEEFFECTTAG” CLASS DEFINITION ...vecivieitiereeiesteesreesreesreesreeneens 60
FIGURE 36 “ACTIVECAUSETAG” AND “NONACTIVECAUSETAG” CLASS DEFINITIONcceevveerieerineennenn 61
FIGURE 37 “TAGFROMVOTING” AND “TAGFROMFIREANDGAS” CLASS DEFINITIONccvveeviveeiieesineennenn 62
FIGURE 38 “VOTING” CLASS DEFINITION....cctutiitieeiteeeiteeesteeesseeestesessseassesesssesssesssssssssssesssesssnsssssesssssssees 62
FIGURE 39 “SINGLEVOTING TRUE” CLASS DEFINITIONcvvieiuveeieeeteeesieeesteeesteeesseeessnessssesssesssseeessnssssnens 63
FIGURE 40 “DOUBLECOINCIDENTVOTING TRUE” CLASS DEFINITION ...ccviivieitieireereeresreeseeesreesreesreenneenns 64
FIGURE 41 “TRIPLECOINCIDENTVOTINGTRUE” AND “FULLCOINCIDENTVOTINGTRUE”CLASS DEFINITION
... 65
FIGURE 42 PROPERTY RESTRICTIONuttitttiteeeteeeitreeteeasseeesseeassesesssesssesasssssssesssssssssssasssssssessnsessssssnsees 66
FIGURE 43 INSTANCE OF “TAGFROMVYOTING”......cciiiiitie ittt eitee e steeestee s steeestte e steeestee s staeesnaeestaeennseesnneenneen 67
FIGURE 44 INSTANCE OF “ROOM” AND “CAUSEANDEFFECCHART”ciiiiiitie e iteeeitee e ntee e stee e e sine e 68
FIGURE 45 INSTANCE OF “GASDETECTIONSYSTEM .. .viiiitiiiitieciteeeitee e steeestee e steeestee s staeesnsesstaeennseessneennnes 68
FIGURE 46 INSTANCE OF “TAGFROMFIREANDGAS”.......ciiiiiitieeiee ettt steeestte e steeestee e staeestae s staeennneestaeennee s 69
FIGURE 47 INSTANCES OF “FLAMING”, “EFFECTTAGOFFIREANDGAS”, AND “SINGLEVOTE”cc...... 69
FIGURE 48 SAMPLE OF INTEGRATION BETWEEN FIRE&GASAND ESD......ccccooviviiiiiiiec e, 70
FIGURE 49 REAL TIME DATA IN RELATIONAL DATABASEccveitteiteeiteareatresseesteesseesteesesseesseessesssesssesnsesnns 71
FIGURE 50 JENA INFERENCE METHODOLOGY, CITED FROM [31]..iviieieiirieir s 74
FIGURE 51 QUERY OF INSTANCEveiutiiutiitteiteeiteeteestesteesteesteesteesteasesssesasesssesssebeestesssesseessessresssesssessesnns 75
FIGURE 52 QUERY OF CLASS. ..euttiuttiueeiteeattesttenteesteaseessasssesssessseesseasssansssssesssesseenseesseasssssesssesssessseessesnsesnes 76
FIGURE 53 PROTEGEREASONINGvviiuvisttestteteestesseessaesseessessseesssasssassssssesssesseeseessessssssesssesssesssesssesnsesnes

FIGURE 54 CHECK CONSISTENCY ...iiittieeiitteieeiteeeesisteeessseeesasssssssessessssssssssassesssssessssssesssssssessssssesssssssnes
FIGURE 55 INCONSISTENCY CLASS DEFINITION

FIGURE 56 INCONSISTENCY EXAMPLEvviieeitieieiisteeesisteeessssteessssaesesssesesssssessssssesssssesesssssesessssessssnsenes

FIGURE 57 THE “UNDEFINEDCLASS” DEFINITION ...iiiiiiiittitiieeessiiititeieesessssssssseessesssssssssssssesssssssssssseessssnns 79

FIGURE 58 RESULT OF THE CLASSIFY TAXONOMYuiiiiiiieesieesteesueaeeaneesseesseesseessesssesssessesssesssesssesssesnsesnns 79
FIGURE 59 RESULT OF THE MODELuvittiitiestiestiestesstesiaesteesieesteesaeaeesssesssesseesseeseessesssessssssesssesssesssesnsennns 80
FIGURE 60 INSTANCES DEFINITION IN THE ONTOLOGY ...cuveiiteeiteeieaeeaneesseesteesseesseessesssessesssesssesssesssesnsesnns 81
FIGURE 61 COMPUTE TYPE OF USL_DFOOLocuiiiiiieieiiie ettt 82
FIGURE 62 COMPUTE TYPE OF “DOCULECOINCIDENTGASVOTING”ceiiiitienieeniieieeiesree e sieeseeeseeeneeenes 82
FIGURE 63 COMPUTE TYPE OF “O87C 51 2 CGHOO2”......cciiiiieiieie sttt 83
FIGURE 64 COMPUTE TYPE OF “ES _87C 003A B ..ottt 83
FIGURE 65 SEMANTIC SEARCH USER INTERFACEciuiiiieittesieesteaseeaneesseesseesseesseessesssessesssesssesssesssesnsesnes 84
FIGURE 66 QUERY RESULT OF “UST 27 ...ttt 84
FIGURE 67 QUERY RESULT OF “UST DFO01™....oiiiiiiieiiite st 85
FIGURE 68 QUERY RESULT OF “O87C 51 2 CFO01” ...ciiiiiiiiieieeieie st 85
FIGURE 69 QUERY RESULT OF “O87C 51 2 ESD....iiiiiiiiiiiisecee et 86
FIGURE 70 QUERY RESULT OF THE “TAG” CLASS ...eeuvtetieiteesieesteesteaseeaseesseesseesseesseessesssessesssesssesssesssesnsesnes 86
FIGURE 71 AUTOMATIC MAPPING STRUCTUREccvtviuietitesietestessesessesesestessesessessessssessesessessessssessessssessenes 87
FIGURE 72 MAPPING FROM CAUSE&EFFECT SCHEMAS TO OIL&GAS ONTOLOGY INOWLccceevvvnnee 88

List of tables

TABLE 1 STATE TABLE OF “TOON” VOTING ...cvteuviitieiteeiteeiteeiteeresssesseesseessessesssessesstesssesssesnsesnsesssessesssenns 18
TABLE 2 STATE TABLE OF “200NVOTINGeeeitiiiitieeiteeesireestteestseessseesaeessssessssesssesssssesssesssssssessssessnsessns 18
TABLE 3 SYNTAX OF PROPERTIES. ...ecutttitttiiteeeteeastesasteeessseassseassssessseessssessssessssesssesssssesssesssssesssesssssesssessns 32
TABLE 4 DETAIL DESCRIPTION FOR FIGURE.LDiiiiiiiiiiiiiie ettt sttt eane b v e 43
TABLE 5 DIVIDING OF LEVELSuviiutiittiitt ettt st ste ettt ste e etesatesatesbaesbeebeenbessaestaesbeesbeesteensesnsesssesseesreens 43
TABLE 6 CONDITIONS THAT DOUBLE VOTING TRUE.....uttiitvieitieesteeestteesieeesteeesineessnesstneessseessneesssesssseessessns 64
TABLE 7 DOMAIN AND RANGE OF OBJECTPROPERTYveiitiiiieiteitreiteeeteeiteetessaesteesteesbeestessesssesssesseesseens 65

1. Introduction

Chapter 1.1 introduces the background of the project, including the domain we work with. Chapter
1.2 introduces the history of data integration. It explains why we need data integration, and why
we need semantic data integration. Chapter 1.3 gives the outline of the rest part of the project and
the report.

1.1 Background

The Oil&Gas industry does more and more rely on the information and communication
technology. It improves the efficiency and safety of the industry. There are large amounts of data
being collected and optimizing the utilization of these could bring great benefit to the economy
and environment protection. Currently, most of the data sharing in the Oil&Gas industry is in
XML format, which provide well-formed rules for data representation. However, XML is still not
well enough, since it does not contain any semantemes of the data. Therefore, the RDF and OWL
schemas are introduced for knowledge representation. These are the basic elements of the
Semantic Web. The Semantic Web is known as the extension of the current web. “It facilitates
navigation and meaningful use of digital resources by automatic process. Searching, requesting,
execution, and payment for services can be accomplished without the need of human
interactions.”[3] The Semantic Web is ontology based, which enables the reasoning of
information.

OLF is a professional body and employer's association for oil and supplier companies. It is the
head organization of developing Integration Operations (10) for the industry. OLF’s 10 project is
responsible for providing standards, integrated solutions, and technologies for supporting
operational decisions of the onshore control centers for offshore installations. It has developed 10
generation 1, and plans to implement generation 2. “The aim of the first generation (I0 G1) is to
integrate processes and ability to support offshore operations. The aim of the second generation
(10 G2) is to help operators utilize the vendors’ competences and services more efficiently than
today [3].” A challenge for 10 G2 is data collection across disciplines and dissimilar data systems.
Semantic Web is assumed to play a key role in data integration for integrated operations together
with 1SO 15926, SOA/Web Services is also assumed to be an important element. OLF have
facilitated the development of an Oil & Gas Ontology (a defined terminology for oil exploration
and production) to enable this data integration.

1.2 History of Data integration

Data integration is an old research topic, but that does not mean that it is not valuable to research.
Due to the requirement of more and more large scale and deep data integration, there are many
new and complex problems arising, which lead to lots of technologies being developed, like
semantic technology. To better understand the data integration, let’s start from the beginning.

The first question could be why do we need data integration? Actually, there are two reasons: First,
facilitate data access of heterogeneous data sources in a single access point. Second, data from
complementation information systems need to be combined to gain a comprehensive basis [1]. In
fact, many applications can gain advantages of integrated information. For examples, CRM
(Customer relationship management) can improve custom service by integrated custom
information and service information. Integrated information enables transactions and service over
network for e-commerce and e-business [1].

Data integration deals with the data transparency problem of distributed systems. That means it
has to make the users think they are accessing a single information system with homogeneous data
structures. But actually the data is physically distributed over heterogeneous data sources. In this
way all the data has to be represented with the same standard.

Data integration has evolved from structural to semantic integration. Traditional integration is
based on relational and functional data model that integrate with one single global schema [1].
With the development of Internet and web applications, mediator and agent systems have become
popular in the data integration. However, providing explicit and precise semantics is the critical
problem of data integration. In the requirement of integration with heterogeneous data sources, the
one single global schema and mediator or agent system is not possible to fulfill the needs.
Therefore, the ontology is introduced for providing explicit, formal, conceptualized definition of
the data source. Compared with the former integration, the ontology based data integration
reduced the semantic ambiguous by providing shared understanding. For example, the same
syntax may have different meaning in two databases, but in the ontology, it will give more
complete definition to each syntax to avoid the ambiguousness.

One ontology approach is only suitable for the integration within a single domain. It requires all
the data sources mapping to the common ontology. As the multi-domain data integration the single
ontology will have limited abilities to provide precise meaning of the data. Therefore,
multi-ontology approach (e.g. 1S015926) is introduced. Multi-ontology approach divides
ontologies into a hierarchy. The top level (upper) ontology is a highly abstract data model that
provides meta-concept and meta-data for the lower ontology.

1.4 Report outline

The rest of this thesis is organized as follow:

Chapter 2 states the problem, delimitates the problem from different aspects, and presents the
scenarios

Chapter 3 analyzes the principles of Semantic Web technology and the 1ISO15926 standard.
Chapter 4 shows the design specification of the data integration framework

Chapter 5 shows the mapping implementation both from Cause&Effect matrix to 1S015926 and
from real-time data to data source ontology

Chapter 6 shows the prototype implementation of the querying and reasoning system

Chapter 7 shows the proving of the concept of reasoning and testing of querying.

Chapter 8 discusses the possibility of automatic mapping from data source ontology to domain

9

ontology
Chapter 9 gives the conclusion of the work, and point out the future works.

2. Problem description

The Chapter 2.1 gives the problem statement of this project. It describes the current problem of
Origo Engineering AS and the goal they want to achieve. The Chapter 2.2 delimitates the problem
from different aspects including data integration methodology (Chapter 2.2.1), goal of data
integration (Chapter 2.2.2), research problem (Chapter 2.2.3), data integration environment
(Chapter 2.2.4), level of data integration (Chapter 2.2.5), and semantic web technology in data
integration (Chapter 2.2.6). The Chapter 2.3 gives the roles that can benefit from data integration,
and scenarios of data integration. It also analyzes the Cause&Effect matrix in Chapter 2.3.1.

2.1 Problem statement

Origo Engineering AS is a company that provides safety systems for the customers. Such as
Fire&Gas, Emergency shutdown and Process shutdown systems, which are often used in the
drilling/well maintains. Figure.1 shows an example of a safety system named Safety Instrumented
Systems (SIS). The functions of SIS are to discover and prevent situations that can escalate into
larger accidents. The different systems are independent, and together they form a chain of barriers
to prevent accidents [6].

SIS is passive during normal operation and it has to be verified regularly that they actually will
work on demand. This could be done by explicit full-scale tests. However full-scale test is time
consuming. Alternatively, logged data from unplanned shut-downs could be used to verify
activated functions. Each system in the SIS has a real-time database that stores logged data. In
order to verify the functions, it is necessary to collect data from various sources. These data
sources are mostly heterogeneous. Therefore, data integration is needed to get better functions.

Figure.1 shows an overview of the SIS (Safety Instrument System). According to [7], it contains
the following systems:
® |MS (Information Management System)
(1) Long term storage of alarms and events
(2) Trend data storage
(3) Long term storage of selected measurement values
(4) Alarm analysis
(5) Administrative tasks
® PCS (Process Control System)
® PSD (Process shutdown)
(1) Process protection
(2) Equipment protection
® F&G (Fire & gas)

10

(1) Alarm and annunciation
(2) Fire fighting

® ESD (Emergency shutdown system)
(1) Blow down and flare/vent
(2) Ignition source control
(3) Process segregation

E 3 F&G Action ESD Action
- Panel Panel
Operator Station A
Shore
T | communication
Datalinks i | M S | _
SAS Network |
SAS Unit :
PDCS : PCS PSD F&G ESD
i ‘
1
i =} b3
m |z ! 2 |B
a, ¢ | @ @ @
=1 I
g | a |8
=3 Package Package Package Fieldbu S.
8 cat.2 Cat. 1 Cat. 3 s Unit @
=

Figure 1 System overview of SIS cited from [7]

Origo has developed a prototype of a tool for online analysis of Safety Instrumented Systems (SIS)
in operation. This tool will collect data from various sources, analyze them and report the
goodness of the SIS in operation. However, this tool has been developed without using the Oil &
Gas Ontology. To prepare for a role within 10 G2 Origo want to supply this kind of information
with other oil and supplier companies. Therefore, Origo want to clarify that to what extend the
semantic web, the Qil and Gas ontology, and 1SO 15926 can be used to optimize the current
system they already have. As we mentioned in Chapter 1.1 the data integration of 10 generation 2
is based on Oil&Gas ontology which is the part of 1SO15926. And usage of the ontology is the
basic building blocks of Semantic Web.

As it shown in Figure.2, Origo Engineering AS collects data from sensor network. These data
should be integrated based on the ISO standard. Therefore, the incorporation between
heterogeneous data sources could be achieved.

11

This project is devoted to verify if the framework for data integration based on the Oil&Gas
ontology is suitable for useing in Origo Engineering AS, to clarify how the Oil & Gas Ontology
could be incorporated. Based on this framework and the prototype that Origo developed, this
project should suggest a solution for data integration in an 10 context. And also implement a
prototype and demonstrate the use of it. A test case will be developed by Origo for use in the test
of the implementation.

< Middleware. data fusion with reasoning >4@
y L i Semantic

Logic&policy |ayer

Drilling&completion - Reservolr&Producuon >'\
ISO standard

m}ppng mapping mapplng

Sensor data datastore

/ \ datastore

V‘K T

Sensor network

Figure 2 Architecture for the integrated information framework, cited from [3]

2.2 Problem delimitations

2.2.1 Data integration structure

As pointed out in [8], the conceptually data integration structure is arranged in four different
layers: data source, data source ontology, domain ontology, and view. The structure has a lot of
advantages. The system is flexible: it is better to react on changing, since the changes of one layer
will not affect other layers. And the system is extensible: it is easy to add a new data source with
new schemas into the system. As it shows on Figure.3, it compares the conceptual layering
presents in [8] and practical layering that is used in this project, similar layering can also be found
at [5]:

® Data sources: the data sources layer stores the raw data. Most of the times the data stores in
the relational database, such as MySQL and Oracle. On this project, the data source is the real
time data from the SIS system.

12

Data source ontology: the “data source ontology” is not real ontology, since it does not
represents a shared conceptualization of a domain [8]. It is the schemas of the data sources,
such as Cause and Effect Matrix in this project.

Domain ontology: the domain ontology is the real ontology, which provides the terminology
and taxonomy for the domain. “It describes the shared conceptualization of the domain at
hand. It is a reinterpretation of the data described in the data-source ontologies and thus
gives these data a shared semantics” [8]. This project we have the Oil&Gas ontology as
domain ontology.

View: this layer could use the common user interface to query for the information. The
semantic querying and reasoning system is defined by the software engineer who is familiar
with the domain ontology and developing tools of ontology.

Each layer is connected to another layer by mapping. These mappings are exactly the objectives of
this project. We need to clarify to what extend the four layers could provide better functionality.
There are three mappings:

From data sources to data source ontology can be mapped automatically.

From data source ontology to domain ontology are usually manually created. Although, |
find some papers [9] and [10] that try to research on the automatic mapping, it has been
found not suitable for this project because of the complexity of the domain ontology.

From domain ontology to view should be defined manually. According to the need, we
specify which kind of information that we need to query. We also need to specify the
methods to reasoning the queries, so that the queries of the users can be understood by the
computers.

The detailed design of each mapping above can be found at the design specification part of this
report (Chapter 4).

13

Conceptual Layering Practical Layering

ece
. G S ¢t | view
view

|

User interface

Semantic querying and
reasoning system
\ \ T

Domain ontology @9 @ Oil and Gas

|
|
|
|
|
| \\ \\ //
| Do
/ AN | : 4 ontology
' /r \T\
manually mappings f \ | manually mappings
- L

- |
|
|
|
|
|
|

b
A H‘ Hf automatical mappings

% % Real time data

Figure 3 Comparison of the Conceptual Layering and Practical Layering of the ontology

Data source
ontology

I i v

Data source

Cause and Effect Matrix

2.2.2 Advantages of data integration

As [3] concludes: “Ontology based Data integration provides:

1. improved data quality and accessibility

2. significant cost reduction with change of software
3. increased flexibility with organizational changes
4. improved software functionality”

The four aspects can be used to evaluate the quality of data integration. There are all the goals we
want to achieve in this project. However, the 2 and 3 are not easy to verify as we cannot change
the software and organizational currently. Therefore, we developed a prototype called semantic
querying and reasoning system to prove the 1 and 4. The implementation of querying system,
which gets the information intelligently, shows the improvement of data quality and accessibility.
And the reasoning of the ontology shows the ability of automatic processing of the real time data,
which will obviously improve the software functionality.

2.2.3 Importance of the research on the Ontology

The Semantic Web technology is young. It grows more complex as the domain scales up. The

14

1ISO15926 is a standard that could be used across domains. Due to the large scales of the domain,

there are lots of challenges of the 1ISO15926. As it is noted in [3], “Research is needed to ensure

ontology that:

— provides meaning to data collected from sensors and agents and thus turns data into
information

— provides a framework for unambiguous exchange of information

— data integration from different domains

— supplies a logical structure that can be used to make deductions about the state of the system
on the basis of the data collected”

This report presents the research work on the theoretical background (Chapter 3). It researches on
the Semantic Web technology on the layering view. It finds out the methodology of representing
the knowledge information with XML, RDF, and OWL. And how to inferring and reasoning the
knowledge based on the ontology we defined. The Semantic Web provides the ability to turn data
into information and unambiguously represent the information. The reasoning ability shows how
to make deductions about the state on the basis of the data collected. Also the reasoning will be
proved in the prototype.

In Chapter 3 it also investigates the 1SO15926 standard on the layering view. It finds out how does
the 1SO15926 support data integration across domain? How does it provide unambiguous
representation of the data? How does the data turn into information? What kind of information?
How does it reach the robust and complete?

2.2.4 Environment of data integration

Every data source has its own structure and semantics. It is theoretically not possible to solve all
the problems of heterogeneous data sources. Therefore, different kinds of integration may depend
on the specific requirement of the customer. As it was concluded in [2], the particular integration
task depends on: “

(1) The architectural view of an information system.

(2) The content and functionality of the component systems.

(3) The kind of information that is managed by component systems (alphanumeric data,
multimedia data; structured, semi-structured, unstructured data):

(4) Requirements concerning autonomy of component systems,

(5) Intended use of the integrated information system (read-only or write access),

(6) Performance requirements,

(7) The available resources (time, money, human resources, know-Aow, etc.)”’

As for (1), the architectural of the SIS system has been introduced in the Chapter 2.1. For (2), the
function and content of the component system is introduced in the scenarios (Chapter 2.3). For (3),
the kind of information is included in the Cause&Effect matrix. It is introduced in Chapter 2.3.1.
For (4) the autonomy of component system is implemented through the reasoning of the ontology.
The reasoning is implemented in Chapter 5.1.5 Voting implementation, and verified in the Chapter

15

7.1 reasoning verification. For (5), the intended use of the integrated information system, we
focuses on the optimization of querying of the information we need. It means the integrated
system is read-only. The (6) and (7) are not considered in this project, because of time and
resource limitation.

2.2.5 Level of the data integration

According to [1], beside the specific requirement, several kinds of heterogeneity typically have to
be considered. These include differences in: “(1) hardware and operating systems, (2) data
management software, (3) data models, schemas, and data semantics, (4) middleware, (5) User
interfaces, and (6) business rules and integrity constraints.” In this project, we will not consider
too much about the hardware and middleware heterogeneity. Since most of the software is Java
based, which means that they are platform independent, so we don’t need to deal with the
operating system heterogeneity. We use common ontology language OWL and RDF to represent
and share information, therefore the data management software heterogeneity is not a problem. In
fact, we mainly focus on the (3) data model, schemas, and data semantics and (6) business rules
and integrity constraints. We have also developed a common user interface using JSP.

In [2] the data integration is divided into levels: (1) manual level (2) user interface level (3)
application level (4) middleware level (5) data access level (6) data storage level. In manual level
the user has to combine the information manually. That requires the user to be familiar with
different kinds of user interfaces and query language. Moreover the user has to be a domain expert.
On the user interface level the users utilizes the common user interface. However, the information
integration still has to be done manually, since the data structure is still heterogeneous. The
application level uses the programming to encapsulate the heterogeneous data. It is useful when
the amount of data format is small. As the amount of data increases the application will be
complex and slow. The middleware share the responsibility of applications. The data access level
provides global applications that can access the virtual data for the physically distributed system.
This project we do the data integration in the data storage level. We map the meta-data to a new
format with semantic definition.

2.2.6 Semantic Web technology used in this project

XML, RDF, and OWL are the basic elements of the Semantic Web technology. Currently, most of
the information is shared, transferred and stored in the XML format. However, the XML document
does not provide semantic meaning for the data source. Therefore, to lift the XML document to
RDF or OWL is the only way we can find to introduce semantic concept into the data source. As
we know the POSC Caesar Association (PCA) [24], which is a global, nonprofit member
organization that devotes in improvement of international standard in Oil&Gas industry for
interactive of data [3], has done a lot of job by mapping Oil & Gas ontology into OWL. Therefore,
this project will use the OWL file that PCA provided as the basis. The details of XML, RDF, and
OWL will be analyzed in the theoretical background (Chapter 3).

16

Figure.4 shows a concrete data integration structure of this project. The Sensor network collects
data in the Oil&Gas industry and store in the Origo database in XML format. The XML file
represents the syntax of the metadata. In order to get the semantic of the metadata, you have to use
the Tag name to check the Cause & Effect standard manually. The problem will delimited to
mapping the real-time XML documents to an OWL instance, and the Cause & Effect standard into
OWL. The OWL is based on the Oil&Gas standard. And | will implement a prototype, which
support querying the data model through OWL and reasoning based on OWL. The 1SO15926
part2 and 1SO15926 part4 is available as meta-model for the user defined ontology.

Cause & Database in
Effect Origo

@)
@)
Sensor

Network
)

mapp\“g

owL [

Based on | <'> OowL

instance

@
O\
I

Modeling ‘ ‘ ‘

Oil & Gas
Ontology

Figure 4 Concrete data integration structure

2.3 Roles and Scenarios

2.3.1 Analysis of Cause&Effect matrix

Before introducing the mapping approach it is necessary to analyst the Cause&Effect matrix first.
As it shows in Figure.5, it is the Cause&Effect chart for “SEACABLE TRANSFORMATOR
ROOM AREA-NORTH?” that is located in area U51-2. It is divided into CauseTag and EffectTag,
they matches by the “X” and “&” symbol. “X” means direct match, while “&” means that an
intersection of the CauseTag and the EffectTag match. CauseTag contains elements “Description”,
“Voting”, “From”, “Input Type”, ‘“Note”, and “Tag Number”. Likewise, EffectTag contains
elements “Tag Number”, “Output Type”, “Action” and “Note”. The elements will be described

17

below:

Tag Number: There are two kinds of tags CauseTag and EffectTag. Every Tag Number is
unique in the whole system. The tag name contains information, for example the tag
“U51_DGO01” put the area information U51 in the tag number.

Description: Simple description of the CauseTag. It gives the semantic of the tag. Such as
“Single Gas Low” in figure.3 it means a single sensor has detected that there is a gas
concentration above the low alarm limit in the area. The description in bold type are the
classification of the tags, it points out which system the tag belongs to. For example, the tag
“U51_DGO004” belongs to the “Gas detection Ventilation” system.

\oting: The voting means that the status of the candidate is evaluated according to the status
of the voter. There are three kinds of voting type in this table: “100N”, “200N”, “NooN”.
“looN” means that the voting tag is true if any of the voters is true. Similarly, “NooN” means
the voting tag is true if and only if all the voters are true. The CauseTag who contains the
voting type is the candidate of that voting. Voters are the CauseTags that located above the
candidate CauseTag in the table. For example, the tag “O87C U51 2 SGL002” has a voting
type “looN”, than it is a candidate of this voting. And the voters of this voting are tag

“U51 _DG004”, “U51_DG005”, and “U51_DGO006”. As it shows in table.1, only on the

C; = 3(N=3) conditions the candidate tag “O87C_U51_2_SGL002” is true. Otherwise, it

will be false.
087C_U51 2 SGL002 U51 DGO004 U51 DGO005 U51 DGO006
true true false false
true false true false
true false false true

Table 1 state table of “10oN” voting

For the candidate tag “O87C _US51 2 CGL002” which has a voting type of “200N”, it also has

C2 =3 (N=3) conditions that will be true showing in table.2.

087C_U51_2 CGL002 U51_DG004 U51_DGO005 U51_DG006
true true true false
true true false true
true false true true

Table 2 state table of “200N”voting

From: “F&G” means the tag information is collected from the sensor in the Fire&Gas area.
The “Voting” means the tag is coming from the voting system.

Input Type and Output Type: The chart contain data type: “INT”, “DI”, “AI”, “Loop 07,
“Loop 17, “Bus”, “DO”. The “INT” is integer, “DI” is digital input, “Al” is analog input, and

18

“DO” is digital output. Loop means that several detectors are connected in a loop.

¢ Action: Simple description of the effect action caused by the activity in the Fire&Gas system.
There are some classifications of the actions on top of the chart, such as “CAP MARIX”,
“Fire Protection”. “CAP MARIX” is the critical alarm panel.

CAR MATRIX COMMON FIRE PROTECTION
& Z|Z
o Z|Z Zz|Zz -] - z z - o m
2 ol
Us1-2
SEACABLE : r 5
] & = Z
g . E
= i] z g 5 H H
TRANSFORMATOR 0 HERERRLREE N y
w AREERRHEHE 8] | z:| |2
T 1 g gl |2z & |2 b HERE
ROOM I gl | |2| |2|E HEERRE Tl
w gl=| |gl5| (2|5 N 2] | S
= Hie @z H z . = a |~ o
o= 2= o=z = & o} E [} =
- i Tl =7 = E E =B I
g2 o2 w3 = 2 < z R w
2ol [Ble] |gf= HEE £ |3 gl g
wlZ ME] == z & w S Ble =
HE 215 il I = H 53 I =L i
=3 L] A ES = 5 = &% =
w
g
E
CAUSES SRRl B |E|E £ |2 | |2 HENE
£
5
o
=
i
e o - &
it §] T e B e R 5‘) é.
DESCRIPTION vating | From | TP | ats TAG HUNEER E] z|E| [BIE| |2]8 B |B R 2 |
Tips = IBlE| |212] B I 21z il |z
el 515 B3 |55 EIN 35013 IHEE
= oo ola o 5] o =) o
Z1E| 1B18| |F|7 gl |5 Bl |B HHE
DF [=HN=] =N K=] =] =] o =] [= M=} [=]
From C4P 1AAAAAAAAAMAAAAGAAAAAAAAAAAAAAAAAA8a4
[pre2 Cverrigen Us 12 FiG | D | P |ogiC OvERROE Ut A | 01 [
@
|Gas detectors Arsa [
(25 Getechion Seacable irabroom FiG | A 51 D60t [0
s oetection Seacani rabioom FiG | A 51 DGO o5
(Gas defieciion Seacadle irsforoom Fi& Al (] %
TN | Vong | NT | € [o87C_UsT 2 seLen [X
TN | Voing | NT | € [o87C Ust 2 sehol] AEE
Cobeioent Cas Low 2N | vemng | NT | & |ogTc_Usi2 CeLmn 0 [ANE
Cobeitent Gas High TN | vang | T | & |owrc Usi 2 cenmt 0 % X
1
|Gas dtactors Ventistion i2
(a8 oeection alf e FiG | A 51 DGO B
Gas deection 2l e i | A 51060 O
s geection alf ke FiG | A US1_ DGO %5
[Singl Gas Low TN | Voing | NT | § [oerc Usi 2 seLme % x
[singie Gas Fign TN | votng | NT | 5 [087C_Ust 2 sahoz [AEE
Cobelient Gas Low TN | vang | INT | § |owrc Usi 2 ceLme B AEE
Concioent Gas Hign 2N | vemng | INT | 5 _|orC_Usi_2_cahez 0 x| |x

Figure 5 Cause&Effect sheet of U51-2
¢ Note: The note element indicates that there are some extra restrictions or information
attached to the tag. There are two kinds of notes: general note and specific note. General note
is the notes for all the Cause&Effect chart. Specific notes are only for the chart that contains

them. For example, the tag “O87C U51 2 CGLO002” has the note 5, which is “Low alarm
limit to be 5%. High alarm limit to be 10% LEL”

2.3.2 Roles in the Semantic data integration

By introducing semantic data integration based on 1S015926 within the SIS system showed above,
the following roles can get some advantages.

® External developer/ System integrator:

19

External developer or system integrator could understand the information provided by other
systems without a domain expert, because of the sharing of the same Oil&Gas ontology. The
data based on 1SO15926 standard are extensible and reusable. The data does not need to be

modified before it is reused.

® |[nternal developer

The semantic web technology enables the information to be understood by the computer.
Therefore, the internal software developer could improve the current system. The current
system in F&G uses manual searching or simple matching to get the real time information.
That is not intelligent enough, and usually takes long time because of the redundant
information. The knowledge representation of the data supports intelligent querying of the
real-time data. For example, given an area name “U51-2”, the query engine could get all the
states of the sensors at that time. The reasoning could also bring automation of the process
control. For example, in the Cause&Effect matrix of U51-2, if the two voting tags
U51 DGO004 and U51_DGOO05 actually were above alarm level, the reasoning engine will infer
that the “Confirmed Tag” O87C _U51 2 CGO002 is set to high. So as the Effect tag is set to
high as well.

® Safety person
The safety person is responsible for quality control and testing of the system. For example, the
safety person in F&G can check the feedback of the alarming. The safety person can check if
the valves are actually closed after the F&G has sent an ESD initial signal to ESD system.
And the safety person from ESD system can check if the ESD receives the alarming
information in time. The ontology can provide explicitly definition of the information, which
is critical for the safety person. A ambiguous information in the integrated system may lead to

disaster.

® Control center

The semantic data integration enables transformation from the real-time data to useful information
as soon as possible. Therefore, the control center could make proper decision in real time. For
example, the IMS system uses a control panel to control the whole system, based on all the
information from F&G, ESD, PCS, and PSD

2.3.3 Scenarios of the SIS

Based on the SIS system described in problem statement, we will have the following subsections.
Figure.6 shows the collaboration of the F&G, ESD and PCS systems. The sensors in area U51-2
collect safety data from off-shore. The Fire&Gas system processes the real time data according to
the Cause&Effect matrix. If some accident (such as a fire) happens in area U51-2, the F&G
system will send a signal to initiate the ESD system. The ESD system will shut down the

20

Emergency Shutdown Valve immediately. The PCS system records the state of the limit switches.
This can be used to calculate the actual time the valve used to close.

(9

Q)
F&G Sensors In
U51-2

Real-time data of Fire&Gas

——as3 renul

PCS

20C

(=17

Shutd, 34735736

ESD

10"BBCS
Real-time data of ESD

Real-time data of PCS

Figure 6 Collaboration of F&G, ESD and PCS

1. Assume that two detectors detect gas in U51-2. See the Cause&Effect sheet in Figure.7.
From the Fire&Gas data the safety person of Fire&Gas want to verify:
a) that two of the voting tags actually were above alarm level
b) that the “Confirmed gas” tag, O87C _U51 2 CGO002, was set to true

c) that the intersystem tag for signaling to the ESD system, O87C_U51 2 ESD, was set
to true

21

[T

T = T
[P 1

[P

INEEESZNN

INEVEN NN

TTHARTT

B 3 3 3 A S

T

T o[e e e e T [T

T e e e e e e e 7

EANENENEI

ST
Ja T

o

i e v e

sz

ESD
(CAUSE & EFFECT DIAGRAM

ESD LEVEL 2.6
PROCESS SECTIONALISATION

IGNITION CONTROL
EL.POWER FROM SNB VIA

SEACABLE

cxin

LTG0

iR
oL R ST IYERALC LD, CLOBAE AL WS A A S AELUEAD S0 L

-

1

Y WELLCONL O PO

lo 20 vmnorme oo zanmns

Figure 7 Cause&Effect sheet of ESD

From the Emergency Shutdown System Hierarchy the internal software developer of ESD

2.

h actions the ESD 2 imply. Among others, all the Emergency

ic

d out wh

In

need to f

Shutdown Valves should be closed.

From the log of the ESD system the safety person would like to check that

3

d, 87C-ES 003A/B (there are

Ive

| from the F&G system was rece

igna

the si

a)

i ies, but for

Inconsistencies

latform so there are some

isp

d enough)

ions on going at th

icati

modi

is goo

ion i

b) The outputs

lustrati

k one single

illustration we pic
lled 20C

For

the valves are set.

ing

Is for clos

igna

Isgoestoa

-EY 815. Th

is ca

ignal
pilot valve that controls an actuator that closes the valve.

The output si

20C-ESV 815

9

e.

valve

22

Wellnead South

Wellhead HPU 600 bar

A{M)\
ing S5V valves

Qmm B :a\
Pustution CCR /

INMATEESD 26
Confrmed Fr/Gas
Hazardos arezs.

|

Clsing ADV valves
Wellhead Suth

D

\N\TMTE EsD28 //IWT\ME
Inefument A \

Wsek I
5 Blowdown Main
w5 | [
leed OpenallBOV topsice
Cosing 88V vaes
Wellhead North
E!Im\\ /- wmﬂfzsnu\ ﬂmmsnﬁ\
mh nP
j \\Ps:e:v:ﬂ@;{/ \Igw";vhgwg: s

Il PSD 34
PSD Snore & Vigdis

Trip Main Power

Closeall SV
onlation vahes| | Generaors A

Topsite

Close PMV & PV
Subsea Wells

IMTIATE ESDZ‘M
Pustuton Drler
cmmur W

ol 0 Expt

lsolate Gas/Oil Export
to to
SFA GFA

\NFMIEESMH
Crrimed m
> Jnnmmavec

Snore AESD 2.6, cause| Initiate Delayed
c Shutdown TFL

Srore B ESDsystem
ESD Level 1.10

Figure 8 A part of the Emergency shutdown system hierarchy

4. A part of the Process and Instrument drawing (P&ID) is shown in figure.6. From the

datasheet for the valve, the closing time is missing. From the NORSOK standard S-001,

we are then guided to use 2 seconds per inch. The valve is 10,

so we assume that the

closing time should be about 20 seconds. Let’s say between 15 and 30 seconds. From the

documentation system, we see that there are two tags related; 20C-EZSH 815 and

20C-EZSL 815, that are limit switches. The first one is indicating closed valve, whereas

the other is indicating opened valve. From the PCS system the safety person of Fire&Gas

would like to check:

b) The ESV actually closed

c) The time from the gas was detected to the valve was closed

d) The closing time of the valve

23

3. Theoretical background

This chapter covers the research work of the Semantic Web technology and 1SO15926 standard.
The Semantic Web is a new technology and 1SO15926 is work in progress. Many concepts and
basic elements are necessary to introduce here. Therefore, the design and implementation part can
be more easily to understand. The Chapter 3.1 introduces the concepts of Semantic Web, describes
the ontology, the represents of information with XML, RDF, OWL, reasoning and inferring with
OWL, and also the description logic supporting OWL reasoning. Chapter 3.2 introduces the
1ISO15926 standard, describes functions of each part of the standard, and how does each part
related together.

3.1 Semantic Web

The inventor of Semantic Web is Tim Berners-Lee, As he said (cited from [28]): “a goal of the
Web was that, if the interaction between person and hypertext could be so intuitive that the
machine-readable information space gave an accurate representation of the state of people's
thoughts, interactions, and work patterns, then machine analysis could become a very powerful
management tool, seeing patterns in our work and facilitating our working together through the
typical problems which beset the management of large organizations”. From his words we can see
that the Semantic Web is considered to be a new generation of the current web. Based on this
technology, it could be possible for the user and machine to understand the content of the web.
The procedure of understanding is executed automatically by the reasoning system. To reach this
goal, firstly we should represent the state of people’s thoughts, interactions and work patterns in
an explicitly way. Therefore, we use the ontology based development, which is the significant
characteristic of Semantic Web.

The resources in semantic web contain properties and values. The resources and relationships
between them can be caught from statements. The statement is a simple sentence composed of
subject, predicate and object. [3] e.g. consider about statement”CO2 Release U45-17, in which
CO2 is the subject, Release is the predicate, and U45-1 is the object. Based on this structure this
statement can be interpreted by the reasoning system, so that the integration of data could possibly
be done in real-time.

Figure.9 is the famous seven layer cake, which is proposed by Tim Berners-Lee. It simply
describes the hierarchy of components used in the Semantic Web. This master project will use the
ontology vocabulary, RDF+RDF schema, and XML+XML schema. The ontology vocabulary is
represented by OWL (Web Ontology Language), which provide a more extensive vocabulary than
RDF schema. XML provides syntax for the structure of content in the XML document, while
XML schema restricts the structure and element content in it. RDF is a language that expresses the
data model. RDF Schema provides the vocabulary to define the properties and classes of RDF file.

24

Rules Trust
Data Proof %
N Data Logic Egn
desc. Ontology vocabulary E
doc RDF + rdfschema %n

Figure 9 Seven layer cake proposed by Tim Berners-Lee

3.1.1 What is Ontology, what is it used for?

Ontology is a concept coming from philosophy. It attempts to describe the concepts of existence,
relationship, taxonomy of entities. The concept is introduced to the computer science by Gruber in
1993. His famous definition is “An ontology is an explicit and formal specification of a
conceptualization of a domain of interest” [28]. As Fensel concluded that ontology covers four
aspects: explicit (unambiguous definition of relationships between entities), formal (precise
mathematical description), conceptualization (abstraction aspect of entity), and share (ontology is
common agreement by all the users). Correspondingly, Staab and Studer used the 4-tuple <C, R, I,
A> to express the ontology, in which “C” represents set of concept, “R” represents set of relations,
“I”” represents the Instance, and “A” represents the axioms. For example (See figure.10) “C” can
be used to represent a “Father” and “Son” Class. “Jim Green” and “John Green” are the instances
“I” of the Class. The set “R” contains the relation “hasSon”. The axioms can be express as (John
Green, hasSon, Jim Green). Due to the explicit, formal, conceptualization characteristic of
ontology, it has more advantages in the data integration. “Compared with other classification
schemes, such as taxonomies, thesauri, or keywords, ontologies allow more complete and
more precise domain models” [14]. There are two kinds of ontology language: Graphical
notations (like Semantic network, UML, RDF) and Logic based (like Description logic, rules, and
first order logic). Currently, the most commonly used language to define an ontology is the OWL
(Web Ontology Language), which is a description logic. Similar description logic can be found as
OIL, DAML+OIL.

25

3.1.2 XML + XML schemas

XML (Extensible Markup Language) is a widely used standard format for data transmission. It‘s
extensible because it enable user to define mark-up element. The elements are defined by XML
schemas which describe the grammar of XML languages. Compared with traditional used HTML,
XML succeed in separating the data from form of expression. XML documents contain the data
set in a tree structure, while XSL (Extensible Stylesheet Language) is responsible for the form of
expression. XML has to be well-formed, if not it would be impossible to parse it. Moreover, the
XML document is valid if all of its elements are defined in XML Schemas or DTD (DTD is an old
version of XML schemas). XML Schemas defines the contents, structure and semantic of XML
documents. Sharing the common XML Schemas allows for data integration. Due to the simplicity
and robustness, this kind of data integration is widely used in the industry. However, the data
integration in this project introduced more semantic concepts, so that it is more complex. In the
following paragraph I will introduce some techniques of XML which are involved in this project.

XML namespace is an important function of XML. It is employed to prevent name conflicts of the
elements by adding prefixes before the names of the elements. To define the prefix of the name,
the attribute of XML xmins (short for XML namespace) has to be set as follows:
xmins:prefix=""URI". URI is short for Unified Resource Identifier that is used for identifying
internet resources. In the following example the prefix is set to “part2”, the URI is set to
“http://www.15926.0rg/2006/02/part2#”. OWL inherits this namespace attribute of
XML. It enables one ontology to import another ontology, because the elements of an ontology
can be simply reached by the namespace. In the following example is a reference class definition
OWL code from the 1SO15926 part 4, where it imports the 1ISO15926 part2 as a upper ontology.
The “RDL-9697922” is defined as an instance of class “ClassOfActivity” from the 1SO15926
part2.

xmlns:part2=http://www.15926.0rg/2006/02/part2#
<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://www.15926.0rg/2006/02/part2"/>
</owl:0Ontology>
<part2:ClassOfActivity rdf:ID="RDL-9697922">
</part2:ClassOfActivity>

XSD is short for (XML Schemas Definition). In the following is a sample XML schema for
Cause&Effect data. There are two types of elements in XSD: Simpletype and ComplexType. A
simple type element contains only text, like “CAUSEID”, “EffectID”,”NOTETYPE”. A complex
type element can contain other elements or attributes, like “INTERSECTION”. The attribute
definition fype ="xs:string”define the data type of the element. The attribute definition
minOccurs="0" restrict the minimum number of the element to zero.

<xs:schema 1d="CAUSEEFFECT"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata'">

26

<xs:element name="INTERSECTION">
<xs:complexType>
<xs:sequence>
<xs:element name="CAUSEID" type="xs:unsignedByte" minOccurs="0" />
<xs:element name="EffectID" type="xs:unsignedByte" minOccurs="0" />
<xs:element name="NOTETYPE" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>

</xs:element>

XSLT (XSL Transformation) is a transformation language for XML document. XSLT is part of
XSL. XSL contains three parts: XSLT, XPath (XML navigation language) and XSL-FO (XML
formatting language). XSLT could enable conversion from a XML tree to another tree structure. It
can be used to map XML document to OWL, the implementation is done by a tool called
JXML20OWL. The following code is a sample of XSLT. The basic elements of XSLT are:
<xsl:template>, <xsl: for-each> and <xsl: value-of>. The element <xsl:template> is used to
build template. It contains a attribute “match” that links template with XML element. The element
<xsl: for-each> is used to select XML element of a specified collection of nodes. The element <xsl:
value-of> can get the value of an XML element and put it to the out stream of the transformation.

<xsl:stylesheet xmlIns:xsl=http://www.w3.0rg/1999/XSL/Transform>
<xsl:template match="/">
<xsl:variable name="part4Activitys0">
<xsl:for-each select="/CAUSEEFFECT/CAUSE/ID">
<Activityld>
<xsl:value-of select="translate(normalize-space(.), ', ")"/>
</Activityld>
</xsl:for-each>
</xsl:variable>
</xsl:template>
</xsl:stylesheet>

3.1.3 RDF+RDF schemas

RDF stands for Resource Description Framework. It is a W3C recommendation data model for
representing metadata. Its data specification is based on the XML syntax and has a graph structure.
It is an ontology language that can express the semantic of the data. The RDF documents can be
understood by the computer. The resources of RDF are organized as statements. The statements
are in the triple form <subject, predicate, object>. RDF schemas are extensions of RDF that
provide user defined elements for knowledge representation. Frequently used elements of RDF
Schemas are listed below:

rdfs:range of rdf:property. It defines the range of the property. (object in the triple)

27

rdfs:domain of rdf:property. It defines the domain of the property (subject in the
triple)

rdf:type It defines an instance has a type of a class

rdfs:subClassOf It defines a class is a subclass of another class

rdfs:subPropertyOf it defines a property is a sub property of another property

Given the following example in figure.10, there are four classes “Father”, ”Child”, ”Son” and
“Daughter”, in which “Son” and “Daughter” are subclasses of “Child”. And there are three
properties: “hasChild”, “hasSon” and ‘“hasDaughter”, in which “hadSon” and “hasDaughter”
should be the sub property of “hasChild”. Moreover, there are two instances: “John Green” and
“Jim Green”. The triples would be like (John Green, rdf:type, Father) and (Jim Green, rdf:type,
Son). If the domain of property “hasSon” is set to class “Father”, and range is set to class “Son”,
Then we can get the triple (John Green, hasSon, Jim Green).

John Green rdf:typ
| |
7 5
wn A
o =.
i i
! \
: 3 %
Jim Green g %
< %
N
\ & ®,
S %
/‘O}f. \‘b%

/
s D

Figure 10 RDF graph example

The semantics of RDF is given by RDF Model Theory (MT). MT defines the relationships
between syntax and interpretations. The interpretation is the methodology of how the machine can
understand the meaning of the elements of RDF schemas, like rdf: type and rdfs:subClassOf; The
property rdfs:subClassOf and rdfs:subPropertyOf should be transitive. That means:

(1) if (A, rdfs:subClassOf, B) and (B, rdfs:subClassOf, C)
then (A, rdfs:subClassOf, C)

(2) if (A, rdf:type B) and (B, rdfs:subClassOf, C)
then (A, rdfs:type, C)

3.1.3.1 Distinguish is-a and part-of relations

In RDF syntax, the is-a relation is denoted as rdf:subClassOf, and the part-of relation is denoted as

28

rdf:type. There two relations are easy to confuse. Is-a relationship defines a class that is an
extension of another class. For example, ‘male’ is-a ‘human’, and ‘human’ is-a ‘animal’. In
contrast, the part-of relationship denotes the part and whole relations between the things. For
example, 'bark’, 'trunk’ and 'limb' are part-of ‘tree’. In the figure.11 it shows the linguistic
representations of the is-a and part-of relationships.

is‘-|a part-of

N hyponym meroL|m
|ln9U'S“C{))pposite Y y?opposite
hypernym

holonymy

Figure 11 linguistic representation

3.1.3.2 SPARQL

Sparql is a RDF query language. It is a W3C standard that is being considered as a component of
semantic Web. It can be used to execute query over large amount of data source, which is stored in
a RDF format. “SPARQL contains capabilities for querying required and optional graph patterns
along with their conjunctions and disjunctions.”’[25] There is a Java plug-in developed under Jena
API called Jena ARQ, which supports SPARQL.

The following code is a query of SPARQL. As you can see, the SPARQL support the URI
definition as PREFIX, like ont: <http://protege.com/Ontology#>. The variables are presented by a
symbol “?” or a prefix. The query will search for the set of results that match the triple pattern.

PREFIX ont: <http://protege.com/Ontology#>

SELECT ?Friend
WHERE {
?x ont:hasFriend ?Friend ;

¥

3.1.4 OWL (Web Ontology Language)

OWL is an ontology representation language maintained by Word Wide Web Constitution. It
provides more vocabularies than RDF Schemas to give semantic representation of the information.
We will list some vocabularies that are used in this project in the following paragraph. OWL is
used in the situation where the information should be processed and understood by machines.
Actually, OWL is a logic based language. Its semantic is giving by the logic definition, such as
description logic. And the description logic could be translated to first order logic. The logic based

29

semantics makes it support reasoning by the computer. There are some open source semantic
reasoners like DIG, Pellet, Racer, and Fact++. In this project Pellet [17] and Racer [34] are used as
reasoner.

OWL has three sublanguages that are: OWL-Lite, OWL-full, and OWL-DL. For building an OWL
ontology, it is necessary to choose a proper sublanguage. According to [12], the OWL-Lite is the
simplest sublanguage. It is suitable to use in the situation where simple classes hierarchy and
simple constrains are needed. Obviously, it is useful for building conceptual simple hierarchy like
thesauri ontology. Furthermore, the OWL-DL is based on the Description Language. The
Description Language is a decidable language, so that automatic reasoning is possible. Therefore,
the ontology based on OWL-DL can use semantic reasoner tools to check consistency and build
class hierarchy automatically. At last, the OWL-full is the most expressive language. It has
different semantic with OWL-Lite and OWL-DL. And it’s compatible with RDF Schemas. It’s
used on the situation that OWL-Lite and OWL-DL is not sufficient to represent the semantics. The
disadvantage is that it is not possible for the computer to automatically reason over all the
semantics of OWL-Full until now. In this project we would like to choose the OWL-Full as
ontology description language because of the complex structure of the 1SO15926 standard. The
1ISO15926 standard requires a highly expressive language and need support for the concept of
meta-classes.

Considering the syntax of OWL, there are two kinds of syntax representation: Abstract syntax and
RDF/XML syntax. RDF/XML syntax is based on both RDF and XML syntax, so that it can be an
extension of RDF and accessed by RDF applications. The abstract syntax is a specific language
that is easier to read and write. It is more similar and related to the description logic language. In
this thesis project, the ontology definitions based on 1SO15926 are using the RDF/XML syntax to
support the RDF applications like Spargl query. However, to express the concept more clearly, we
will borrow the abstract syntax of OWL to illustrate the concept in the report writing. The example
of both syntaxes can be found at following webpage.

(Abstract syntax): http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.abs
(RDF/XML syntax): http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf

3.1.4.1 Syntax of OWL-Full

OWL-Lite, OWL-DL, and OWL-Full has different syntax. As we will use OWL-Full in this
project, we will introduce and explain some Syntax of OWL-full that used in this project in this
chapter. As the W3C specification in [13] the Syntax can be basically classified into 5 types:
Syntax of Classes, Properties, Individuals, Datatypes, and Annotations. The following chapters
will introduce each of them separately.

(1) Syntax of Classes

As shown in Figure.12, Syntax of Classes can be divided into class description and class axioms.
Class description syntax is used to build an OWL-class, and specify the structure and axioms of

30

http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.abs
http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf

the OWL-class. The class axioms list the axioms that can be defined in the OWL-class. There are
three kinds of class descriptions: Enumerations, Property Restriction, and AND, OR, NOT logic
description. The property restriction means: given a defined class A, it contains two aspects: the
class A has a property B and the property B has some value constraints and cardinality constraints.
The AND, OR, NOT is a mathematic equivalence of the OWL-syntax. For example, if a class A is
defined as (class B, owl:intersectionOf , class C), that means class A is a collection of individuals
that both is a type of class B and class C. Likewise, if a class A is defined as (class B, owl:
uinionOf , class C), that means class A is a collection of individuals that either a type of class B or
class C.

Basic Class Axioms are rdf:subClassOf, owl:equivelentClass and owl:disjointWith. The
rdf:subclassOf is extended from RDF syntax described above. Class A owl:equivelentClass to
Class B, if all members of A belongs to B and vice versa. Likewise, Class A is owl:disjointWith
Class B, if class A and class B has no common member. For more details and examples of the
Syntax described above please look at [13].

owl:allValuesFrom
1 owl:someValuesFrom
Enumerations
Value constraints | L—| owl:hasValue
|| Property Restriction | | [] owlmaxCardinality
Cardinality constraints —|
— owl:minCardinality
L_| owl:Cardinality
owl:intersectionOf
Class Descriptions [~ AND,ORNOT [
owl:unionOf
Classes H owl:complementOf
rdfs:subClassOf
| Class Axioms owl:equivalentClass
Owl:disjointWith

Figure 12 Classification of Syntax of classes
The Figure.13 is a snapshot cut from the software Protégé It lists the most frequently used

syntaxes of OWL. And it gives the mathematic symbol that has the same meaning of the syntax.
Moreover, it gives some examples that make it easy to understand.

31

[£| Protégé-OWL Syntax

OWL Element | Symbol Key Example Meaning of example
alValuesFrom L) * children ¥ hale All children must be of type Male
somedaluesFrom 3 ? children 3 Lawyer | At least one child must be of type Lawyer
has“alue] rich = true The rich property must have the value true
cardinality = = children =3 There must be exactly 3 children
minC ardinality z * children = 3 There must be at least 3 children
maxCardinality S L4 children = 3 There must be at most 3 children
complementOf - ! - Parent Anything that is not of type Parent
intersection Of n & Human n Male All Humans that are Male
unionOf u | Doctor u Lawyer | Anything that is either Doctor or Laweyer
enumeration [...} {1 {male female} The individuals male or female

Figure 13 Protégé-OWL syntax

(2) Syntaxes of Properties

Syntaxes of properties are listed in table.3. Some of the syntaxes are inherited from RDF, such as
rdfs:subPropertyOf , rdfs:domain, and rdfs:range, which will not be described here.

Classification

Syntax

Description

Relations to other

properties

owl:equivalentProperty

Properties that has the same “values” but may denote

different concept

owl: inverseOf

If the axioms (P1 owl:inverseOf P2), than for every

axiom (x P1y) that exist (y p2 x) and vice versa

Global cardinality
restrictions on

properties

owl:FunctionalProperty

If P is a functional property, than for each instance x it

has unique value y in axiom (x Py)

owl:InverseFunctionalProper

ty

If P is a functional property, than for each instance y it
has unique value x in axiom (x Py)

Logical characteristics
of properties

owl: TransitiveProperty

If P is a transitive property, given axioms (x P y) and (y
P z), than it has (x P z)

owl:SymmetricProperty

If P is a symmetic property, given axioms (x P y) , than
it also has (y P x)

Property

classification

owl:objectProperty

properties that relate instance to instance, like hasSon,
may have the axiom (Father hasSon Son)

owl:datatypeProperty

Properties that relate instance to data type, like
hasTime, relate a instance to data type dateTime.

Table 3 Syntax of properties

(3) Other syntax of OWL

Considering the syntax of Individuals, there are two aspects: individual definition, and identifier.
Individual can be defined as either named individual or anonymous individual. And there are three
ways to define identifier individual, that are owl:sameAs, owl:differentFrom and owl: AllDifferent.
See [13]. Syntax of owl Datatypes is inherited from RDF and XML. Reasoning with data type is

supported in OWL.

Syntaxes of Annotations are listed as follow: owl:versioninfo , rdfs:label, rdfs:comment,
rdfs:seeAlso and rdfs:isDefinedBy. Semantic annotation is a important concept in the semantic
web. It enables the semantic search that is different from traditional search engines. The
full-featured text search engine software Lucene is often used to implement the semantic search.
And in the Jena API there is a plug-in that supports Lucene.

owl:import syntax enable the ontology to import another ontology as references. In the 1SO15926
standard the 1SO15926-part4 has to import 1ISO15926-part2. And 1SO15926-part7 has to import
both 1SO15926-part2 and 1SO15926-part4. And so on the user defined ontology based on
1SO15926 has to import all above.

3.1.4.2 Reasoning with OWL

Reasoning is a concept coming from philosophy. As it is defined in [15] “Reasoning is the
cognitive process of looking for reasons for beliefs, conclusions, actions or feelings” Through the
reasoning process, people can distinguish and recognize things. In philosophy the reasoning is
divided into deductive reasoning and inductive reasoning. Formal logic is typical deduction
reasoning that by given premises the conclusion can be drawn through logic inference. For
example:

Premise 1: All the lions are animals

Premise 2: Simba is a lion

Conclusion: Simba is an animal
Relatively, in the RDFS this relation can be defined as follow:

Axioms 1: (lions, rdfs: subClassOf, animals)

Axioms 2: (Simba, rdf: type, lions)

Implicit Axioms: (Simba , rdf:type, animals)
This implicit semantic of RDFS is defined in the Model Theory, which can be interpreted
automatically by the machine. Compare to deductive reasoning the inductive reasoning is inferring
of the things will happen in the future based on the current situations, inductive statistics, or
common sense. It cannot guarantee that the conclusion is 100% true if the premises are true. The
mathematical induction is the typical inductive reasoning.

In the Semantic Web technology, all the reasoning could be consider as deductive reasoning. It is
defined as: reasoning is the evaluation of ontologies according to their specification. As it noted in
[16] “Reasoning is the essential background technology for knowledge representation.” The
reasoning has three advantages for Semantic Web: (1) ontology management, (2) inferencing, (3)
query answering. Reasoning for inconsistence is a kind of ontology management, and the
consistency is the important requirement for the ontology. So we will discuss it in the following
paragraph. The inferencing is also the critical concept of the ontology building. We will present
some examples to illustrate the inferencing with OWL. The query answering means the when the
users input queries in the user interface, the applications will analyze the query based on reasoning
of ontology and return the inferred answer as result to the user.

33

3.1.4.2.1 Reasoning with inconsistency

As it mentioned in [29], there are 3 important characteristics of the Semantic Web: scalability,
distribution, and joint author-ship. All of these may lead to inconsistencies. Sacrificing the
expressivity of the languages could avoid some inconsistency. However, for most applications the
current languages like OWL are too expressive to implement. Actually, there are two ways to deal
with inconsistency. One is find out the inconsistency and fix it. The reasoner can be used to check
inconsistency, such as Pellet, Fact++, RacerPro and Jena support incomplete consistency checking
for OWL-DL. Another is to tolerate the inconsistency by applying a nonstandard reasoning
method to acquire meaningful answers. The inconsistency we consider about here is the logical
theory inconsistency. A logic theory is inconsistent if it contains a contradiction: Both Aand —A
are true in the theory. As [29] concludes there are many causes of inconsistency, we will discuss
them will examples as follow:

(1) inconsistency by mis-representation of default

The knowledge engineer may define the fish as follow. It sounds reasonable if there are not any
special animal does not fit with the definition.

fish C animal N liveInWater (Fish is an animal that live in water)

animal N livelInWater C fish (Animal that live in water is fish)
For example, when you want to extend the ontology as follow:

whale C animal NliveInWater (whale is an animal and whale lives in water)
whale C —fish (Whale is not a fish)

Then the ontology will be in consistent. Because from the animal ()livelnWater C fish and

whale C animal ﬂliveInWater , the implicit assert can get that “whale is a fish”. However, it
has defined that “whale is not a fish”, so that we have the contradiction. Therefore, in this case we
cannot generally define thatanimal () liveInWater C fish.

(2) inconsistency by polysemy

Ploysemy represents the words that have multiple meaning. In the paper [29], it gives an example
of a “marriedWoman” which both mean a woman who has a husband and a woman had a husband
but has divorced now.

MarriedWoman CWoman (A married woman is a woman)

MarriedWoman C —Divorcee (A married woman is not a divorcee)

Divorcee C HadHusband (1—HasHusband (A divorcee had a husband and has no
husband)

HasHusband C MarriedWoman (HasHusband means married)

HadHusband = MarriedWoman (HadHusband means married)

34

Figure.14 use a Venn chart to represent the ontology defined above. It would be easy to notice that

the ontology is inconsistency with the implicit assertion: Divorcee = —Divorcee That is

obviously a contradiction.

— Divorcee

_MarriedWoman

Divorcee

Figure 14 Venn chart of the ontology

(3) Inconsistency through migration from another formalism

Inconsistency may occur when an ontology is migrated from other data sources [29]. This should
be taken into special consideration when the data integration is conducted. The translation of the
ontology should be strictly analyzed. Take the famous paradox of the court for example, the
ancient Greece philosopher Protagoras who is learned in law, has a pupil, Euathlus. They made a
deal: if and only if Euathlus wins his first court case, the Euathlus would pay the tuitions to
Protagoras. However, the Euathlus seems do not want to receive any case at all, so that he won’t
have to pay the tuitions. Finally, Protagoras decides to take Euathlus to the court.

Euathlus argued that if he won the case, according to the law, he doesn’t need to pay the tuition.
And if he lost the case, according to the deal, he doesn’t need to pay the tuition, because he didn’t
win a case.

However, Protagoras argued if he lost the case, according to the deal, he should get the tuition
back, because Euathlus had won his first case. Else if he won the case according to the law, he
should also get the tuition back.

Can you judge who should win this case? If we consider the deal as an ontology, and the law as
another ontology, obviously, there is a contradiction between these two ontologies. Let us use the
if-then logic to represent both of them.
(1) The deal:

if Euathlus win a case, then Euathlus should pay the tuition

if Euathlus lose a case, then Euathius don t need to pay the tuition

35

(2) The law:
if Euathlus win a case, then Euathlus don 't need to pay the tuition
if Euathlus lose a case, then Euathlus should pay the tuition
As we know for the sentence: if a then b, “a” is the hypothesis and “b” is the conclusion. More

specifically “a” is the sufficient condition for “b”, and “b” is the necessary condition for “a”. The
ontology will be as follows:

EuathlusWinACase C EuathlusPayTuition (1)
—EuathlusWinACase C —EuathlusPayTuition)
EuathluswWinACase C —EuathlusPayTuition 3)
—EuathlusWinACase C EuathlusPayTuition 4

The formula (1) and (2) are defined according to the deal between Protagoras and Euathlus, and
formula (3) and (4) are defined according to the law. In the argument of Protagoras, he used the
formula (1) and (4), so that no matter Euathlus win or lose the case, he will pay the tuition fee. To
the contract, in the argument of Euathlus, he used the formula (2) and (3). However, as a
knowledge engineer’s point of view, this is obviously an inconsistency of the ontology caused by
migration from the formalism of the law to the formalism of the deal. If you look at formula (1)
and (3), the concept EuathlusWinACase is unsatisfiable, because (1) and (3) can be
combined as:

EuathlusWinACase C EuathlusPayTuition () —EuathlusPayTuition =

Likewise, the concept for formula (2) and (4) —EuathlusWinACase is unsatisfiable as well.
The problem is which formalism you want to follow as standard to make the decision. In this case
a better reasoning tool is required to make more advanced choices. In [29] it proposed a
methodology for reasoning with inconsistent ontologies.

(4) inconsistency caused by multiply sources

“When a large ontology specification is generated from multiple sources, in particular when these
sources are created by several authors, inconsistencies easily occur” [29] The 15015926
ontology is a huge ontology specification with multiple sources in multiple domain. Therefore, the
goal of consistency is a big challenge for data integration based on 1S0O15926. Although,
1ISO15926 has a centralized global upper ontology, the lower level ontology still has to cope with
the heterogeneous data sources. A lot of works need to be done to build standardized templates for
each specific domain.

3.1.4.2.2 Inference with OWL

As it noted in [17] the inference with OWL are divided into two kinds:

Classification: Inference with classes to create the complete class hierarchy based on the
subclasses relations assertions. The queries of getting subclass or super class can be answered
through the class hierarchy.

36

Realization: Inference with the instances to find out the direct and indirect classed that the
instances belongs to. The realization step should be done after the classification, because the types
of instances are defined according to the class hierarchy.

The following code is writing in OWL abstract syntax which is used to illustrate classification of
classes. For the meaning of intersectionOf and someValuesFrom please check the OWL syntax in

[T¥E 1}

figure.5. It’s worth to mention that the axiom (a, partial, b) means “a” is sufficient condition of “b”.
And the axiom (a, complete, b) means “a” is sufficient and necessary condition of “b” and vice
versa. From the classes definition we can get the following information:

A Java programmer is a person who programs with Java.

A Programmer is a person who programs with programming language.

Java is a kind of programming language.

From the assertions above the computer can infer that Java programmer must be a Programmer.

Class(a:Java+Programmer complete intersectionOf(a:person
restriction(a:programsWith someValuesFrom (a:Java))))
Class(a:Programmer complete intersectionOf(a:person
restriction(a: programsWith someValuesFrom (a: ProgrammingLanguage))))
Class(a:Java partial a:ProgrammingLanguage)

The following code is writing in OWL abstract syntax which is used to illustrate the realization of
individuals. From the classes and individual definition we can get the following information:

F-22 is a kind of thing.

Tom is a man who drinks cappuccino and drives F-22.

Cappuccino is a kind of Coffee

coffeeLoverMan are the man who drinks Coffee, the man who drinks coffee are
coffeeLoverMan

coffeeLoverMan drives car.
From the assertions above, the computer can infer that, Tom drinks coffee, so he is a
coffeeLoverMan. And coffeeLoverMan drives car, so Tom can only drives car. So that F-22 here is
a car not a plane.

Individual(a:F-22 type(owl:Thing))

Individual(a:Tom type(a:male)
value(a:drinks a: Cappuccino)
value(a:drives a: F-22))

Individual(a: Cappuccino type(a:Coffee))
Class(a: coffeeLoverMan complete

intersectionOf(a:man restriction(a:drinks someValuesFrom(a:Coffee))))
Class(a: coffeeLoverMan partial restriction(a:drives allValuesFrom (a:Car)))

37

3.1.5 Description Logic

As it defines in [18], the description logic is knowledge representation languages. “It is used for
logical reconstruction of representation tool like frames, Object-Oriented and semantic data
models, semantic networks, type systems, and feature logics.” High expressivity and decidability
enable the description logic to describe most of the concept in the world explicitly. There are many
kinds of description logics which are represented by different naming conventions. Description

logics provide well defined semantics for OWL, OWL.2 supports SR@IQ{D) of the

description logic. Separately, OWL-DL is based on, and for OWL-Lite it is SHIJF{D:'[ZO].
Description logic is the basis of Semantic Web. It facilitates ontology engineering, reasoning with
ontology, and service description and discovery.

As it shows in figure.15 from [17] the structure of Description logic can be divided into Thox and
Abox. Thox defines the schema of the ontology. There are the axioms of the classes, they could be
description of concepts or statement of constrains, such as subclass, equivalent class, intersection
or union of axioms in OWL. Abox defines the data of the schema, which means the assertion of
the individuals. Such as differentFrom, samelndividualAs, oneOf syntax in OWL. Knowledge base
contains both Thox and Abox to construct a complete OWL ontology.

Knowledge Base

Tbox(schema) - Abox(data)

Happy-Man(Franz)
OlderLady = Humen () female old has-child(Franz,Luisa)

has-child(Franz,Julian)

Figure 15 DL Architecture

As introduced in [19] there are some basic constructors of DL:

CND,—-C,vr.C,ar.C,(=nr),(£nr)

€699 €69

In the constructors the “C” and “D” represent classes, “r” represents property, and “n” represents
cardinality. The OWL class constructors and relative DL syntax can be found in Figure.16. DL
syntax also can support OWL axioms as Figure.16 cited from [20]. Relations like subclass,
disjoint class and equivalent class of classes; classify the same and different individuals; sub
property, equivalent, inverse, functional, transitive, reverse functional properties all can be

expressed by DL syntax. As it noted in [20], the following equivalence is obviously true:

38

C=Diff bothCCDandDCC

C=D < VX.C(X) «<>D(X) (The statement “C and D are equivalent class” equals to the

statement “for any instance x type of C, x is also type of D and vise verse”)

C C D < vx.C(x) > D(X) (The statement “C is the subclass of D” equals to the statement

“for any instance x type of C, X is also type of D)

Axiom DL Syntax | Example

subClassOf CiC(Cy Human C Animal N Biped
equivalentClass C1=0y Man = Human M Male
disjointWith (1 E-Cy | MaleC -Female
samelndividualAs {z1} ={ap} | {President Bush} = {G_W _Bush}
differentFrom {z1} C ={xp} | {john} C —{peter}
subPropertyOf PCPH hasDaughter C hasChild
equivalentProperty P =P cost = price

inverseOf P =Py hasChild = hasParent™
transitiveProperty PTC P | ancestort C ancestor
functionalProperty TCL1P | TLC <1hasMother
inverseFunctionalProperty . TLC <1P~ | T C €£1hasSSN™

Figure 16 OWL as DL: Axioms. From [20]

Mapping OWL to equivalent DL enables the reasoning of OWL. The semantic of DL defines by
the interpretations: 1 = (AI, .1) , where A’ is the domain, and e’ is the interpretation function

that maps concept (class) A, role (property) R and individual 1 [20].

3.2 1S015926 Standard

1ISO15926 is an international standard with the title: “Industrial automation systems and
integration—Integration of life-cycle data for process plants including Oil&Gas production
facilities”. It’s used for data integration, sharing, exchange, and hand-over between computer
systems [22]. The goal of 1SO15926 is to enable data integration for process plants, in order to
reduce the redundant and inconsistent information in sharing data between different companies or
organizations. 1SO15926 is extremely complete and robust, which differentiates it from other
standards. 1SO15926 is introduced because of the requirement for a common terminology for a
huge number of heterogeneous data sources. Also this standard has to be as stable as possible, at
least no substantial changes for decades. The scope of 1SO15926 nearly covers the whole process
plant industry, including Oil&Gas industry. It contains 7 parts; each of them is published
separately.

Part 1 is an introduction document to the 1SO15926 which gives an overview and describes the
fundamental principles of the standard. Part 2 defines a generic, conceptual data model for
representation of life-cycle of a process plant. Part 3 defines ontology for geometry and topology

39

based on concept of 1SO 10303-42 and ISO 10303-104. Part 4 specify reference data that
represents information in a certain domain. The reference data library is commonly used for all the
users. Part 5 specifies the procedures to be followed by a registration authority for reference data.
[22] Part 6 is the methodology for the development and validation of reference data [24], it defines
the abstract syntax of the reference data. Part 7 Implementation methods for the integration of
distributed systems [24]. Part 1, 2, 4 has published as ISO standard, while Part 6, 7 is still under
development. In the thesis we mostly used Part 2, 4, 7, so we will give more details of them in the
following chapter.

3.2.1 1S0O15926 Part 2: Data model

1ISO15926 Part 2 is an upper ontology, “which define top-level concepts such as physical objects,
activities, mere logical and topological relations from which more specific classes and relations
can be defined” [26] Similar upper ontology can be found as SUMO, Sowa upper ontology, Dolce,
CIliP. Upper ontology can be considered as similar to the meta-model concept in UML. The data
model is generic, which means “atoms” can create many statements by different combinations. To
construct a data integration framework based on 1SO15926, the engineer must start with part2. At
least some basic principles and methodology should be mentioned as follow.

Data model of Part 2 uses the 4 dimensionalism paradigm, which are 3 spaces and 1 time.
Compare with 3 dimensionalism paradigm, the 4D ontology consider all the individuals as
spatio-temporal extend. In such a way every individual has both spatial part and temporal part.
Only on condition of both of them are equal, an individual is equal to another one. Due to the 4D
characteristic, the 15015926 can be used to represent life-cycle data for process plants.

There are four basic elements of Data model: Thing, Possible Individual, Class, and Relationship.
Respectively, thing represents anything either real or abstract, Possible Individual denotes
individuals with spatio-temporal extend, Class is a collection of things, and Relationship describes
the relation between things. All the other elements in Part 2 are extends from these basic elements.
Model diagrams in Part2 are using the EXPRESS G diagram as template. The Model diagrams
contain attributes: EXPRESS entity types; EXPRESS sub typing; EXPRESS relationship; and
EXPRESS G symbols. The following figure.17 is an example of model diagram in part 2; it
defines the cause_of_event Relationship which we will use in this project. There are several
elements that have been defined as follows:

Relationship: cause_of_event, temporal_bounding, participation, recognition,
involvement_by_reference, beginning, ending

PossibleIndividual: activity, event, point_in_time

ObjectProperty: part, caused, causer, whole, involved, involver, recognizing, recognized

The point_in_time class is the subclass of event, while the class beginning and ending are the
subclass of temporal_bounding. The ObjectProperty caused has domain cause_of_event and range
event, while the ObjectProperty causer has domain cause_of_event and range activity.

40

2,4

(BT} part

(A BE)
temporal bounding

95011 1
é heginning
9.306) cause_of event ending
2
96011

calnser

O
&
ircvobver itvvolvement irrobved 1.1
by _reference thitg

activity (BT whale
bl participation
9T
TECOgHIZ
L g recognition

Figure 17 Model diagrams in Part 2(from [23])

3.2.2 1SO15926 Part 4: Reference Data

If you consider Part 2 as “grammar” for a sentence, the Part 4 will be the “words” [27]. Such as
“firing”, “flaming” as you can see from Figure.18 as follow. Part 4 is primarily divided into some
basic spreadsheets, such as activity.xls, piping.xls, property.xls, static_equipment.xls etc. The
reference data is defining the terminology as a general standard used by every company and
organization in a specified domain in order to provide data consistency. The reference data is
arranged in a hierarchy like it shows in Figure.18. It employs the taxonomy mechanism for the
“Activity”. “Activity” is a genetic meta-class from Part 2, for which the “Reacting” is the subclass
of “Activity”. Likewise, the “burning” and “responding” are subclasses of “Reacting”. Based on
the taxonomy defined in Part 4, it could be possible to specify the members of the terminology.
For example, the “firing in U51-2” is a kind of “firing” (subclass). The members are specified in

Part 7.

41

o

Reacting

Taxonomy

Member

firing in U51-2 flaming in U51-2

Figure 18 Reference data hierarchy

The question may arise how the Part 2 and Part 4 are related to each other, what is the modeling
methodology to achieve the completeness and robustness of the 1ISO15926 standard? As you can
see from Figure.19, it illustrates the composition of Part 2 and Part 4. In figure.19 the object with
red color comes from Part 2, object with green color come from the Part 4, and the black arrow
defines the relation between them. As it is described above in Part 2 there are some basic elements
such as Class, Relationship, and Possiblelndividual. Therefore, in Part 4 it has Class and
Relationship, the Class of Part 4 (in green rectangle) is extended from super class in Part 2 Class
or Possiblelndividual. And there are only two kinds of relationship in Part 4 that is Classification
(green arrow) and Specialization (green line with round end). The Classification means something
is part-of something, while Specialization means something is kind-of something.

42

Part2:Classification

Part2:ClassOfClassOfl Part4:protection
ndividual ’ equipment class // \

Partd:Fire detection

, , system
Part4.'Funct|'onaI Partd:system Part4:Safety system
physical object \
Part2:Functional
physical object
Part2:Specialization
Figure 19 Part 2 related with Part 4
Figure Type Description
Instance of Part2: | kind of a Relationship (part 2) Individual, with the
Specialization objectProperty: SuperClass and SubClass

RDFS property objectProperty with the domain of all class from part 2
rdfs:subclassOf and range of all class from part 4

Instance of Part2: | kind of a Relationship (part 2) Individual, with the
Classification objectProperty: “classified” and “classifier”

Table 4 detail description for figure.19

To understand the Classification and Specialization relationship, the dividing levels of 1SO015926
part 2 need to be introduced [24]. The basic element “Class” is the collection of things. There are
some subclasses of Class, such as “ClassOfIndividual”, “ClassOfClass”, and
“ClassOfClassOfIndividual”. “ClassOfindividual” is a type of “Class” whose members are
instance of “Possiblelndividual”. Likewise, “ClassOfClassOfIndividual” is a type “ClassOfClass”
whose members are instances of “ClassOfIndividual”. As you see from chart.3 below, there are
three levels have been defined, so that we can get the OWL restrictions in OWL abstract language
in the following code. It restricts the range of the property of each class.

Level ClassName Members
Level 0 Possiblelndividual all individuals
Level 1 ClassOfIndividual all set of individuals
Level 2 ClassOfClassOfIndividual all set of set of individuals

Table 5 dividing of Levels

43

Class (part2:Classification partial
unionOf(
intersectionOf (Restriction (part2:hasClassified allValuesFrom(Level_0))
Restriction (part2:hasClassifier allValuesFrom (Level_1)))
intersectionOf(Restriction (part2:hasClassified allValuesFrom(Level 1))
Restriction(part2:hasClassifierallValuesFrom(Level _2)))))
Class(part2:Specialization partial
unionOf(
intersectionOf(Restriction (part2:hasSubclass allValuesFrom (Level 0))
Restriction (part2:hasSuperclass allValuesFrom(Level_0)))
intersectionOf(Restriction (part2:hasSubclass allValuesFrom (Level 1))
Restriction (part2:hasSuperclass allValuesFrom(Level_1)))
intersectionOf(Restriction (part2:hasSubclass allValuesFrom (Level_2))
Restriction (part2:hasSuperclass allValuesFrom(Level_2)))))

3.2.3 1S0O15926 Part 7: implementation methodology

Given 1SO15926 Part 2 and Part 4, we still do not know how to do the data integration. Therefore,
in part 7 it specifies the implementation methodology. Including the following questions: How
does each part collaborate as one? How is it related to RDF and OWL? How does the data
integration work in a distributed system?

3.2.3.1 15015926 implementation hierarchy

The Figure.20 shows the 1S015926 stack. There are many versions of this kind of stack, for
example in [21] the hierarchy of process industry ontologies is a pyramid. On top of the pyramid
is the 1ISO 15926 Part 2 that has 200 classes and properties. The layer under the 1SO15926 Part 2
is the 1SO15926 Part 4 that has thousands of classes. The number of classes and properties
increases as it is going down the pyramid. If we come back to this Figure.20, it gives a clearer
overview of the hierarchy of 1SO15926 standard. On the top layer is the main technology of the
Semantic Web. All the classes, properties and restrictions (ontology) in 1SO15926 are written in
OWL language, and all the data store (instances) are in the RDF triple. From layer 4 to layer 7 are
defined in 1SO15926 standard. Based on ISO 15926 Part 2 and 15926 Part 4, 1SO15926 Part 7
specifies Generic Templates and Object Information Models. Layer 2 and 3 are the user layer,
which includes proprietary OlIMs and Document Classed (Ontology) and User data in Facades
(instances).

44

RDF-RDFS-OWL

'W3c

ISO 15926-7 Generic Templates

ISO 15926

()

@ ISO 15926-7 Object Information Models (OIMs)

E @ Proprietary OlMs and Document Classes
o 1

E_@ User data in Facades (in standard format)
S@ User data (in proprietary format)

o

Figure 20 the ISO 15926 stack, (from [27])

3.2.3.2 Template specification

A template is a standard format for a kind of data sheet to enable common look for every user. It is
a lower level model built upon 1S015926 part2. Someone use the metaphor that considers the
template as lego block that you can use to build anything you like. As I understood, if we regard
the part 2 as “grammar” and part 4 as “words”, than the template is the “phrase” of a sentence. The
template is a generic model. And there are specified templates for each field of industry. For

example, there are templates for “pumps”,” piping”, in the first step of data integration you have
to find out which templates fit for you.

There are two kinds of templates in 1SO15926-7 that are Shorthand Template (ST) and Longhand
Template (LT). “A Longhand Template is a collector of ISO 15926-2 entity data types that
together capture the representation of the information one wants to exchange.”[27] LT gives a full
definition of information that is based on the 1S015926-2 data model. However, it would be a
waste of resources for storing and processing many objects we do not need at all. Therefore that
Shorthand Template is introduced. “A Shorthand Template is an n-ary relationship that only points
at the variant "leaves" of the graph of its companion ("isDefinedBy") Longhand Template.”[27] It
is much more efficient to use shorthand template than longhand template. In the case that you may
need Longhand Template you can get it via the “isDefinedBy” property. In an ideal situation, if we
want to do the data integration, all the templates should be created and published by a standard
organization. Since the 1S015926-7 is still under development and not fully published, on this
project | will define some simple example templates according to the methodology when
necessary.

Figure.21 shows an example of Longhand template specification. The LT-1002 is the name of the
longhand template. It inherited the classes and object property from the 1S015926-2.
“Classification”, “Beginning” and “TemporalWholePart” are subclasses of the basic element
“Relationship” in ISO15926-2, which defines the relation between things.

45

“ClassOfTemporalWholePart”, “ClassOfRepresentationOfThing”, and “ClassOflnformationRepre

sentation” are the set of individuals.

ClassOf
Temporal
WholePart

i

classifier [0:7]

Temporal
WhuolePart

Classification

LT-1002,
Possible
Individual

classified| 1]

LT-1002,
Temporal
WholePart

Paossible
Individual

a—hiole] 1]

whole[1]

ClassOf Lass(y
Information Representation
Representation Of Thing

part][1]
| T-1002.Class - -
XmlSchema N LT-1002,
attcrn[1] OfRepres:gmatmn represented| 1]
O Thing
|
content| 1]

Litcrﬂl ©=
G

Figure 21 Longhand Template Specification, cited from [27]

Possible
Individual

N

IS0 13926-2 entity type
130 15926-7 specialization

ISO 15926-4 reference class

Figure.22 shows an example of comparison of Longhand Template and Shorthand Template that
cited from [27]. From this figure, we can clearly see the difference of Longhand and Shorthand
Template. The Longhand Template gives the well-form definition of the model LT-1002 according
to the 1S015926, whereas the Shorthand template turns to be developer friendly. It is easy to see
that the ST-1002 is a MultidimensionalObject that has the property: temporalWhole, tempralPart,

context, and beginning. The instance of ST-1002 is showing as follow.

<part2:MultidimensionalObject rdf:ID="ST-12321">
<rdf:type rdf:resource="http://tpl.rdIfacade.org/data#ST-1002"/>
<part7:temporalWhole rdf:resource="#ddf2"/>

<part7:temporalPart rdf:resource="#dtss2"/>

<part7:context rdf:resource="http://www.ontology.com/rdI#Cfd"/>
<part7:beginning rdf:resource="#SDFD"/>
</part2:MultidimensionalObject>

46

raph of LT-1002 —— graph of ST-1002
|

ClassOf e
01O Gt iy st Tt 0
WholePart
classified element™

context

T-1002.
Temporal
WholePari

rdfs:isDefinedBy

part e temporal Whole

1002
o Ili_e-[m]nf:?;u whole m temporal Part

part

|
|
|
|
o : beginning
|
|

represented

IS0 153926-2 entity type

—
=180 15926-7 specialization
22

IS0 15926-4 reference class

LT-1002.Class
OfRepresentation
O Thing

XmlSchema
DateTime

content

xsd:dateTime s Literal

Figure 22 comparison of Longhand Template and Shorthand Template, from [27]

3.2.3.3 OIM (Object Information Models)

OIM ontology specifies the template. It is defined by domain experts, which means that each of
the companies that want to use 1SO15926 standard has to participate in the development of OIM.
The models in OIM give more specific information of things than the template.

3.2.3.4 Data integration in a distributed system

The Fagade concept is introduced to solve the problem of implementation of the above technology
in a distributed system. Facade is a web server that can store triples, and supply an API
(Application Programming Interface) to share information between all the Facades. The following
figure.23 shows the information chain of facade. Each of the system facade hands over its
messages to the Group fagde, and the Group facade hands over its information to the Project
facade. In this way all information in the fagade can be available to the other fagades. The fagde
support the Spargl query, the query can retrieve information from one or more facades at one time.

roject Facade

mappin
‘(\a(\<\°\le‘

System Faqde of Fire&Gas Cause&Effect matrix of Fire&Gas

%%,
/70'0‘/@
Group Facade 7
mapping

System Fagde of ESD Casue&Effect matrix of ESD

1aAOpURY

Figure 23 Information chain of Facades

48

4. Design specification

According to the data integration structure (in problem delimitation Chapter 2.2.1), and the
implementation methodology defined in 1SO16926 Part 7 (in Chapter 3.2.3), this project would
like to design the data integration system like it shows in figure.24. Similar architecture of
ontology based data integration architecture can be found in [4], [11], and [32]. The users of all the
integrated systems share the same User Interface. The Query Engine and Reasoning engine
separate the users with the data layer. It is usually developed by the integration software engineer
who knows both the requirement of user and the developing tool of Semantic Web. This project
will implement a prototype with the querying and reasoning system. The Cause&Effect matrix,
which is the data source ontology, need to be mapping manually to the System Fade. As it
introduced in the 1SO15926 part-7 the system Facade are the web service that can store triples.
The triples are based on the 1SO15926 standard. Each system facade should handover its data to a
group fagade. The group facade stores the integrated ontology of the whole group. The Reasoning
Engine could reason through the group facade to get the integrated meaning of the query user
input. Then the Reasoning Engine sends the result back to the Querying Engine. Therefore, the
guerying engine could use the result from Reasoning Engine to implement semantic query of the
real-time data.

ﬁ I:I Search
Interface roject Facade mappin
User

@%ystem Fade of Fire&Gas Cause&Effect matrix of Fire&Gas

handover mappin
Reason

System Fagde of ESD Casue&Effect matrix of ESD

aanopuey

Group Facade
Real Time Data from Fire&Gas d
In RDF Fromat
n RDF Fromal Q\@d f Q(,@Q/ —
System Fagade of PCS Casue&Effect matrix of PCS

Real Time Data From ESD
in RDF format

Real Time Data From PCS
in RDF format

Mappin
mapping
mapping

O
O

Real Time Data from Fire&Gas - Reg Time Data from ESD Real Time Data from PCS

Figure 24 Data integration system architecture

49

There are three systems involved in the data integration. The Fire&Gas system belongs to Origo
Engineering AS. Their database, Cause&Effect matrix and domain experts are available for the
implementation. Therefore, this project mainly focuses on the model design and implementation
of Fire&Gas system. The ESD (Emergency shutdown system) and PCS (Process Control System)
are introduced for testing and verification of the data integration ability of the prototype.

The system contains the following parts:
® Mapping the Cause&Effect matrix to OWL ontology based on the 1S015926 standard. The
OWL ontology is stored in the Facade database. We tried two approaches to implement this
part.
(1) Manual mapping approach: use ontology creation and modification tool Protége&to map
Cause&Effect matrix to OWL ontology based on 1SO15926 standard
(2) Automatic mapping approach: Use transformation software JXML20OWL to map
automatically. (Note: Although this approach has proved not suitable for this project, the
automatic mapping problem is valuable for research. It will be discussed in the
discussion chapter)

® Mapping the real-time data to data source ontology: depending on the format of the real-time
data, there are two approaches can be used as follow:
(1) Mapping from relational database to OWL instance: use Jena API to implement.
(2) Mapping from XML to OWL: use JXML20OWL to implement

® Semantic Query engine and Reasoning engine implementation: it contains two parts as

follow:

(1) The query engine receives the query information from the user interface, queries the real
time databases and returns the query results. The query engine is developed based on
Jena API, and the RDF query language Spaqrl is used to query data.

(2) The reasoning engine reasons the queries of the user, get the semantic information
according to the ontology stored in Fagde. The reasoning engine is also developed based
on Jena API, and the reasoning tool Pellet is used as reasonor.

® User interface: The user interface should be user friendly. It supports keyword searching and
advanced searching in different conditions. JSP is used to implement the user interface.

4.1 Mapping the Cause&Effect matrix to 1S015926
Specification
As it shows in Figure.25, the manual mapping includes the following steps:

¢ Analyze the 1SO15926 Part 2: Figure out the functionality of classes in the Part 2, find out
the top level classes and relations that could be used in this project.

50

Analyze the 1SO15926 Part 4: Based on the top level classes and relations, find out how are
the Part 2 and Part 4 cohered as a whole, for example the classification and specification
relationships. Besides, figure out the class hierarchy of the Part 4.

Analyze the Cause&Effect matrix: This step is going on currently with the above two steps.
Find out to what extent the information of Cause&Effect matrix can be expressed by the
1SO15926 standard.

Mapping the terminology in Cause&Effect matrix to Part 4. Map the terminology based on
the above steps. This step needs to be iterated in order to reach an unambiguous mapping.

Define 1SO15926 Part 7 template specification and design Object Information Model: Based
on the “words” given by Part 4 and “grammar” given by Part 2, it could be possible to
formulate a “sentence”. However, without the semantic given by the Cause&Effect matrix,

the “sentence” can make no sense.

=" Classification/
specification

Analyze 1S015926-part2

\
\

f@ \

Uy |
0/ I
%,
N : : .
Mapping terminology in
Cause&Effect to part4
“0\09\}
A ; i
%, ’ !
% Analyze Cause&Effect) jterate. -~ J
%
g @0‘&
] iterate -~

Define 15015926 part7 template
specification |-

Design Object Information Models

Figure 25 work flow the manually mapping

4.2 Mapping the real-time data to data source ontology

Specification

As it shows in Figure.26, the XML20OWLMapping class is the main class of mapping. It gets the
real time data from the database by GetDataFromDatabase class, and create ontology model from
the 1SO15926 Part 7 ontology database by OntologyModelCreation class. Then it maps the
elements of real time data to the relative individuals of classes in the ontology, and stores it in

51

RDF format.

GetDataFromDatabase
— query ()
Real Time Data
XML20WLMapping
mapping ()
1 stor
OntologyModelCreation
Real time data in RDF format
|_OntologyModel
Creation()

1SO15926 part?

Figure 26 real-time data mapping structure

4.3 Semantic Querying and Reasoning system

specification

Dao Design Pattern

Query
specification

Dao Interface

Query Execution

Result Transfer

DAOQimpl

DAOfactory

Call' Call/Return value

Pellet Reasoning Impl

\ Reasoner

Initialization

Split_page.jsp

DataConnection

ReasoningImpl

Ontology Real time data in
RDF formate

Figure 27 Semantic querying and reasoning system structure

As it shows in figure.27, this project uses the DAO (Data Access Object) design pattern to

52

separate the user interface, data access, and service logic. The user interface is designed by JSP.
The main page is written in index.jsp file, it is responsible for interaction between the user and
DAO. The Split_page.jsp file is responsible for constructing the appearance of the user interface.

The index.jsp can initialize the DAO factory class. The methods in DAOFactory class return a
DAQimpl class as A Daolnterface. The DAOimpl implements the DAOInterface. Therefore, in the
index.jsp it can call the methods in DAOQInterface, which are implemented by DAOimpl class. The
DAOimpl contains “Sparqul query Impl” part and “Pellet Reasoning Impl” part. The
DataConnection class is responsible for getting data from the database. In this project it gets data
from an ontology database and a real-time database in RDF format. The vo class is short for value
object, it contains all the business values required by the clients.

The “Sparql query impl” part implements the querying of the ontology and real-time data. It
contains three steps. First, the Query specification step specifies the Sparql query as the
requirement of the clients. Second, execute the query. At last, the query result needs to be
transferred into value objects.

The “Pellet Reasoing impl” part implements the reasoning of the ontology by using the Pellet

Reasonor. It contains two steps. First, the reasonor needs to be initialized according to the methods
in the Jena API. Second, the reasoning is implemented by finding graphs in the inferred result

53

5. Mapping Implementation

5.1 Mapping the Cause&Effect matrix to 1ISO15926

This implementation maps the Cause&Effect matrix to OWL ontology based on 1SO15926
standard. We will design ontology based on 1SO15926 for Cause&Effect matrix, in which the
“grammar” is defined by ISO15926-2 and “word” coming from ISO15926 part-4. The software
Protégéis used as model creation and modification tool. And CMapToolsCOE is used as the graph
representation of the OWL ontology.

5.1.1 Hierarchy of the Models

Figure.28 shows the hierarchy of the models. The models are related by the subclass relations.
Most of the classes are in the yellow color, some of them are in the red color. The classes in red
color have some restrictions that are both sufficient and necessary. For example, assume the class
A has sufficient and necessary restriction X, than if “a” is a instance fulfill the restriction X, than it
is the member of A and if “a” is a member of A, then “a” has the restriction X. The owl:thing is the
root class, all the classes in OWL should extend from it. All the classes in the Figure.28 are
belonging to 1SO15926 Part 2, ISO15926 Part 4, or 1ISO15926 Part 7. The details of them will be
introduced in the following chapters. As you can see from Figure.28, it contains the following
parts:

Tag: Classification of different kinds of tags. It is defined in Part 7
Activity: Classification of different kinds of activity. It is defined in Part 4
Area: set of areas

Datatype: set of datatypes

Event: Classification of different kinds of events. It is defined in Part7
CauseAndEffectChart: set of Cause&Effect charts

Room: set of rooms

PhysicalObject: set of physical objects that will be used in this project. It contains some kinds
of detector, LED display and also the alarm panel.

System: Classification of different kinds of systems. It is defined in Part 4
\oting: Classification of different kinds of voting. It is defined in Part 7

® Note: Classification of different kinds of notes. It is defined in Part 7

54

'::_:I'a gFromFiresnd Gas__::'

— -
T
- = T
(;_HHA.EHVECEHSETEE A
,—"/’— - — -~
" — .
“ It
P __41"// L TagFromWoting)}
(CauseTag ﬁ::7 - -
—— T I
"“Hx Q:_:tiueCausET?E_/'
— — —
— _ .

: CauseTagsOfESD_ pl

7 /—‘__ ___"‘-‘-H\
- - . C ActiveEffectTag
S = .

EffectTag . _
— | < — - — .
o (_EffectTagOfESD
— ; __\I \ — i
s parming N -—

 EffectTagOfFireAndGas

e
.

— -
[i)
— - -
L e .
/ o,
Datab_,rpe | | PointinTime / B B
' — — o~ T
——— e)
fl:{ / — [L _FireDetector
7 — —

’ ull o~ ., -
(event B3 { LitLed) /
.y " - —

—,
e —— - e,
f '__;(_} asD etecto_r‘/.-

! §
_/ [Gauseﬁ«ndEffectGhart P ['e)] ! B B
— — —— e - .
o P . _ ___f___l_—'lameDetecto[__)'

(owl:Thing 1o

- T,
'&E:oincidentFireLe_El’/'

o — "v\ . T
'i__ Frotection System _j:' '-" \ I
—— \ - i T

e
|

GasDetectlonSystem-j - N

——— — — -

: FlreDetectlonSystem j

' GontrolSystem L GasWetilationSystem
—— — S —
SafeWetllatlonSystem] ':__Triplecoincident\!’ote E‘
__ - e —
e __/ — —— —

! _ l'/;;ft'-\' [+ dh.rt ‘:]—'FIIG' identwote B
\ \ .\. o |n?’/;_|f§|____—‘\ oinciden ote / E__ oimncidenn _?__e__d,

\ \ o T I
\\ _ - __C:_Single\f:)_t_e,;'::_q_

— ., — T " =
\ | Note Jﬂz_ - o . o N
\ T Y_(“;ﬂarticularhlot;“‘! '/;ETHEIEVEtETru =
I — 2 Mate / ! e
C_:l;abIeT\rpeGulrentTranforme_r‘_) . _ _
?GeneralNote ::Z-

Figure 28 Class hierarchy of the models

5.1.2 “System” hierarchy

The Figure.29 shows the system hierarchy defines in the 1SO15926 Part 4 [30]. In the
Cause&Effect matrix of U51-2, it contains the “fire detection system”, “fire fighting system”, “gas
detections system” and “safety ventilation system”. All these systems are subclass of “safety

system”, which is the member of the “protection equipment class”

55

fire detection system

fire fighting system

fluid expansion system

functional physical object 4@

protection equipment class

—& gas detection system

safety system

pressure relief system

protection system

safety ventilation system

Figure 29 reference data of the “system” hierarchy, from [30]

These four systems are set into disjoint system as it shows in the following figure. Disjoint
relations ship means the two classes has no common members.

[Fire DetectiunSystem]

-~
-~
~

/

cannot be are

gl IS

[SafetyVe L|Iat|cnSr,rstem [F|reF|ght|nQSystem GasDetectlonSystem]

Figure 30 disjoint systems

5.1.3 Restrictions of the classes

Constrains defines the relationship, cardinality of classes. In order to give a clear view of the
concept the following figures gives both graph representation and OWL abstract syntax definition.
The “must be” tag in the graph representation equals to the “only” symbol in OWL abstract syntax,
and also equals to the OWL element “owl:allValueFrom”. Likewise, the “can be” tag in the graph
representation equals to the “some” symbol in OWL abstract syntax, and also equals to the OWL

56

element “owl:someValueFrom”.

Figure.31 gives the definition of “Activity” and “Room” classes. The “Activity” happens in the
offshore area relates to the tag “CauseTag” by the object property “relatedTag”. There are should
be some physical object involved in the activity, like “Flame detector” involves the “Flaming”
activity. The activity happening may cause some event, that is defined by the “causeOfEvent”
relationship. The “Room” here means the rooms in the offshore area, such as control room. Each
room has a related “CauseAndEffectChart”, like the “CauseAndEffectChart” in area U51-2 is
related to sea cable transformator room. The cardinality of the object property “hasChart” is
constraint to exactly one. Each room contains at least one system. And the room must be located at

an area.
Activity
/
involvedEquipment relatedTag causeQfEvent hasChart / containsSystem
locatedAt
must be must be must be must be must b are must be
exactly Ong at least One

[Physicalom‘ect] [CauseTag

\
:

Event

|

owl:Thing

CauseAndEffectChart owl:Thing

ol Thing
cauzefEvert onhby Evert

relatedTag only CauseTag

invalvedEquipment only Phy sicalOhbject

ol Thing

contains=ystem onby System
containzs=ystem min 1

hazChatt onby CauseandEffectChart
hasChart exacthy 1

locatedAt onby Ares

Figure 31 “Activity” and “Room” class definition

Figure.32 gives the definition of “System” and “LitLed” classes. Each system contains some tags
that used for transferring information. The “Event” “LitLed” uses at least one equipments from

“LedDisplay”.

57

System

usedEquipment

/ _ are must be
are containsTag at least One
1 must be
[Eventj [LedDisplay]
owl: Thing Tag
) Event
vl Thing uzedEquipment only LedDisplay
containsTag only Tag

uzedEqguipment rin 1

Figure 32 “System” and “LitLed” definition

Figure.33 gives the definition of “CauseAndEffectChart” and “Area” classes. Each
“CauseAndEfectChart” class relates to a room. One “CauseAndEffectChart” contains at least one
“CauseTag” and at least one “EffectTag”. Each area may contain some rooms.

CauseAndEffectChart

relatedRoom hasEffectTag hasCauseTag
must be are must be must be containsRoom are
exactly One atleastOne atleast One must be

|
:

[Roomj [nwl:Thing] [EffectTagJ [CauseTag]

(o) (i)

ol Thing

hazCauzeTay only CauzeTagy
hasCauzeTay min 1
hasEffectTay only EffectTay owl: Thing

hasEffectTag min 1 containsRoom onby Room
relatedRoom only Room
relatedRoom exacthy 1

Figure 33 “CauseAndEffectChart” and “Area” class definition

58

5.1.4 Tag classification

Figure.34 shows the “CauseTag” and “Tag” class definition. Each tag belongs to a system by
“belongToSystem” property. And a tag may have a note that gives some extra information. This
definition corresponds to the “Note” element in the Cause&Effect chart. The “CauseTag” is the
subclass of the class “Tag”. It inherits all the attributes from “Tag”. And it is disjoint with
“EffectTag”. Each “CauseTag” is involved in an “Activity”. The “CauseTag” match to the
“EffectTag” by the “causeOfEvent” property. The “CauseTag” has the input type for the input
signal. As it shows in figure.34, the “CauseTag” is classified into “TagFromFireAndGas”,
“TagFromVoting” and “TagFromESD” according to the “From” element of Cause&Effect chart.
“TagFromFireAndGas” is the “CauseTag” which has the “F&G” symbol in the “From” element.
“TagFromVoting” is the “CauseTag” which has the “Voting” symbol in the “From” element.
(Please check the “CauseAndEffect” chart in Chapter 2.3.1 if you are not clear about the
description above)

e
f,f’
//f" / \
S
7 haslnputlype . ceofEvent involvedIn

cannot be must be must be are must be belongTaSystem hasNote
exactly One | must be must be

+ vy
[EffectTag J [Datatypej [EffectTag J
[System] [owl:Thing]

o
=
[1-]

Tagy

cauzefEvent only EffectTag
hazsinputType only Datatype
hasinputType exacthy 1
invalvedin onby Activity

vl Thing
belongToSystem only System
hazhote onby Mote

belongTozystem onby System
hazMote only Mote

Figure 34 “CauseTag” and “Tag” class definition

Figure.35 shows the “EffectTag” and “ActiveEffectTag” definition. The definition of “EffectTag”
is similar to the “CauseTag”. The differences are: the “EffectTag” relates to an “Event” rather than
“Activity”, and the “EffectTag” relates with the “Datatype” class with the “hasOutputType”
property. The “ActiveEffectTag” is defined as the “EffectTag” which is related to an
“ActiveCauseTag”. That means if the “CauseTag” that the “EffectTag” related with is reasoning as

59

the type of “ActiveCauseTag” than the “EffectTag” will be reasoning as the “ActiveEffectTag”.
The “ThingsWhich is define as” in the graph representation is equal to the Necessary&Sufficient
definition in the OWL abstract syntax.

I: Active EffectTag j

EttTag

\ same class as

hasOutputType
st be relatecEvent relatedCauselag tannotbe haante -

ercty e must be must be ‘
is definaed as

all of

SN
“
/ ™
"y
relatedCausaTag
can be
Datatype Eyant (auseTag CauseTa a l

[ActiveCauseTag]

Tay MECESSARY & SUFFICIENT
hasMote onby Mote
hasOutput Type onby Datatype -
hasOutput Type exacthy 1
relatedCauzeTag onby CauzeTag EffectTag
relatedEvent onty Event relatedCauzeTay some ActiveCauseTag

belongTosystem onby System

Figure 35 “EffectTag” and “ActiveEffectTag” class definition

Figure.36 shows the class definition of “ActiveCauseTag” and “NonActiveCauseTag”. It’s
necessary to note that the “all of” in the graph representation is equal to the OWL syntax
“owl:intersectionOf”. And “any of” is equal to “owl:unionOf’. The “ActiveCauseTag” and
“NonActiveCauseTag” are disjoint class. The “ActiveCauseTag” is defined as a “CauseTag” that
has state true or candidate of any kind of voting true. The voting specification will be described in
the next chapter. As it shows in Figure.37, all the members of “TagFromVoting” class are
candidates of one kind of voting. All the members of “TagFromFireAndGas” are voters of one
kind of voting. The state of the member of class “TagFromFireAndGas” is evaluated according to
the real time data collected from the sensors offshore. The state of the “TagFromVoting” is
evaluated according to the voting result. Therefore, both of them can be inferred to be
“ActiveCauseTag” if there are active.

The “NonActiveCauseTag” is defined as the “CauseTag” that has state false. Therefore, a member
of “TagFromFireAndGas” can be evaluated to “NonActiveCauseTag” if the has state false. It does
not cover the members of “TagFromVoting” because they are not real time data. It is not necessary
to evaluate them to be non-active state.

60

ActiveCauseTag

=

.
-
-~ “‘a,\‘
- .
same class as cannat be
e
MNanActiveCauseTag
/ ™,
/N
’,r'r \
/ ,
/ AN
i i i,
e same class as cannot be
all of
s
/ o\
/ N,
/ \
¥ X

is defined as

Things
efincd ActiveCauseTog
- \\

e ’r»”-' \H H—..LH
initialedBy candidateOf hasState is defined as
can be can be must be exactly qll of

| | /
| I /
v rf

" Things true hasState

Actvefrectiag .

must be exactly

is defined as false
any of (xsd:boolean)
N T

..--"'------ T
____/------ ------"'\-\.____
—

- Tl
[FullCaincidentvoteTrue] [TripleCoincidantVoteTrue] [DoubleCoincidentVateTrue] [

SingleVoteTrue]

ActiveCauseTag:

NECESSARY & SUFFICIENT
CauzeTay

(hesState has true) or (candidster some (SingleoteTrug or TripleCoincident'voteTrug or FulCaincidentyoteTrue or DoubleCaincidentyfcteTrug)) or (ndisledBy some ActiveEﬁecﬂaH
NonActiveCauseTag:

CauseTagy

MNECESSARY & SUFFICIENT
hazState has falze

Figure 36 “ActiveCauseTag” and “NonActiveCauseTag” class definition

Figure.37 gives the class definition of “TagFromVoting” and “TagFromFireAndGas”. The
restriction in light color is inherited from “CauseTag”.

61

TagFromFireAndGas
/ \ \ Vaterof / / \\HR“‘
candidateOf d
cannat be must be are must be are cannot be
: v . }
[TagFromFireﬁ.ndGas] [Voting] [CauseTag] [VOtinQJ [CHUSETBQJ [TagFromVoting]
CauzeTagy CauzeTay
candidateOf only Vating voterof onhy Yoting
helonaTosystem only =ystem helongToSystem onby System
causefEvent onby EffectTagy
hasinputType only Dstatype cauzedfEvent only EffectTag
hasinputType exacthy 1 hazinput Type only Datatype
ashiote onby Mote hasinputType exacthy 1
involvedin onby Activity hazMate onkhy Mote
insvolvedin onby Activity

Figure 37 “TagFromVoting” and “TagFromFireAndGas” class definition

5.1.5 Voting implementation

Some cause tags from F&G will launch a voting if the tag is active. The voting will decide
whether to initial a candidate or not. There are four types of voting: single vote, double vote, triple
vote, and full vote, which depend on the number of active voter. The Reasoner can infer the voting
result by the assertion of logic

« If a CauseTag x has state true, it will be infer as a ActiveCauseTag

« If xis avoter of a SingleVote y, then the SingleVote y will be infer as a SingleVoteTrue

« Ify has a candidate Tag z, then the tag z will be infer as a ActiveCauseTag

Figure.38 gives the definition of “Voting”. The “Voting” has exactly one candidate from
“TagFrom\oting”, and at least one voter from “TagFromFireAndGas”.

ol Thing
hasCandidste onby TagFromoting
hasCandidate hasVoter .
must be must be are hazCandidate exacthy 1
exactly One at least One hasoter onby TagFromFiresndGas
l hasioter min 1

[TagFromVoting] [TagFromFireAndGas] [owl:Thing]

Figure 38 “Voting” class definition

62

Figure.39 shows the “SingleVotingTrue” class definition. It is defined as a “SingleVoting” class that
has Voter that from “ActiveVotingTrue”. Any classes that are defined as “ActiveVotingTrue” class
should have the property “hasActiveVoter” exactly one from “ActiveCauseTag”. The
“hasActiveVoter” is the sub property of “hasVoter”. The figure also illustrates that the classes
“SingleVotingTrue”, “DoubleCoincidentVotingTrue”, “TripleCoincident\otingTrue”, and
“FullCoincidentVotingTrue” are disjoint classes. They related to “looN”, “200N”, “300N” and
“NooN” voting types in the Cause&Effect chart.

SingleVoteTrue
o -
g -,
.,
™,
\\
— " | hasActiveVoter
cannot be sar"nl:l I'I: Uafss as must be
P B ;o exactly One
T T PR

i v A ¥

[FullCoincidentvateTrue] [T—. pleColncidentvateTrue] [Dnubleom ncidenmte'rrue] [smgle\tote J T-T;Tfhs

hasVoter

carl b
SingleYote
hazVoter some ActiveCauseTagy
hasActive’oter only ActiveCauseTag
hasActive'oter exacthy 1
hazCandidste onby TagFromy/oting [from Wating]| E
hazCandidate exacthy 1 [from Woting]| E
has'/oter only TagFromFire&ndGas [from Yoting]|
has'oter min 1 [from “aoting]|

Figure 39 “SingleVotingTrue” class definition

Figure.40 shows the “DoubleCoincidentVotingTrue” class definition. As a
“DoubleCoincident\VotingTrue” class it is necessarily has exactly two active voters. Assume that
the “DoubleCoincidentVote” has two or three voters. It is defined as the same class as a
“DoubleCoincident\ote” class that fulfills the following formula:

If the voting has two voters, than in C22 =1 conditions that the voting is true.
(' hasVoter_1 some ActiveCauseTag ™ hasVoter_2 some ActiveCauseTag)
If the voting has three voters, than in C32 =3 conditions that the voting is true.

(' hasVoter_1 some ActiveCauseTag ™ hasVoter_2 some ActiveCauseTag) U
(' hasVoter_2 some ActiveCauseTag ™ hasVoter_3 some ActiveCauseTag) U
(hasVoter_1 some ActiveCauseTag ™ hasVoter_3 some ActiveCauseTag)

63

41

If the voting has four voters, than in Cf = m =6 conditions that the voting is true.
hasVoter 1 | hasVoter 2 hasVoter_3 | hasVoter 4
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0

Table 6 Conditions that double voting true

DoubleCoincidentVoteTrue

‘\\
//I

/’ same class as

SinglevoteTre | Bg/ aarilyonff hasActiveVoter
..f"’

Il of must be
o exactly Two

7 dllef \“‘\x__x
/ all of g
/ | .
/) |‘ \\ .
- |
~ / Y
Things Things Things Things Things Things ActiveCauseTag
TripleCoincidentVoteTrue | | which which which which which which

‘| ‘f DoubleCoincidentVote |‘ |

| } | |
hasVoter 3 hasloter 3 hesVoter 2 hasVoter 1 hasVoter 2 hasVioter 1
an be can be an be can be an be an be
|‘ ‘ / | | |
| | | | |
\ \ | |
‘l I‘ | \ \
v v Y v v
[Actw‘veCauseTag J [ActweCauseTag] [ActiveCauseTag] [Act\'veCauseTag] [ActiveCauseTag] [ActiveCauseTag]

NECESSARY & SUFFICIENT

DoubCaincidertate H
({hasVoter 1 some ActiveCauseTag) and (hasVoter 2 some ActiveCauseTag)) or ((hasVoter_2 some ActiveCauseTan) and (hasvater_3 some ActiveCauseTag]) or ((hasoter 1 .
NECESSARY
hasActiveVoter only ActiveCauseTay
hasActiveVater exactly 2

HH

Figure 40 “DoubleCoincidentVotingTrue” class definition
The graph of “TripleCoincidentVotingTrue” and “FullCoincidentVotingTrue” are similar to the
graph of “DoubleCoincidentVotingTrue” so we will not show them here. The class

“TripleCoincidentVotingTrue” is defined as the same class of a “TripleCoincidentVote” that has

64

the property “hasAvtiveVoter” exactly 3 from “ActiveCausTag”. The “FullCoincidentVotingTrue”
is defined as the same class as a “FullCoincidentVote” that “haVoter” only from

“ActiveCauseTag”.

TripleCoincidentVotingTrue

m
m
1)
1

1
m
i

TripleCaincident ote
hazActive'oter onby ActiveCauseTag
hasictive’oter exacthy 3

FullCoincidentVotingTrue

m
m
0
1

1
m
i

FullZaincident'ate
hasz'Yoter only ActiveCauseTag

Figure 41 “TripleCoincidentVotingTrue” and “FullCoincidentVotingTrue”class definition

The figure.42 defines the restriction of the four properties: “hasVoter”, “hasActiveVoter”,
“hasVotingTrue” and “Voterof”. It defines the domain and range of each property as it shows in
the following chart. It also defines the “hasVoter” inverse property of “Voterof” and vice versa,
and “hasActiveVoter” inverse property of “hasVotingTrue” and vice versa. The
“owl:inverseProperty” means if you define the axiom (a , hasVoter, b) than it also have the axiom
(b, \oterof, a). Moreover, it defines (hasActiveVoter, owl:subPropertyOf, hasVoter) and
(hasVotingTrue, owl: subPropertyOf, VoterOf).

ObjectProperty Domain Range
hasVoter \oting TagFromFireAndGas
hasActiver\oter \oting ActiveCauseTag
\oterof TagFromFireAndGas \oting
SingleVoteTrue or
hasVotingTrue TagFromFireAndGas DoubelCoincidentVoteTrue or
TripleCoincident\VoteTrue or
FullCoincidentVoteTrue

Table 7 Domain and range of ObjectProperty

65

DoubleCoincidentVateTrue " -
/ -‘H CauseTag Is defined 35— e oWl:Thing
anyof ~—p 4
~ | TripleCoincidentvoteTrue | TagFromFireAndGas
\ (4

TagFromFireéndGas

! =y . Things 4 f
- | R | Wieh hasCandigate
Voteref | hasViotingTrue st b
canngt e must be | (Objuctl’ruuul‘t'{} exactly One are
| | ‘\
| N
+ | \ i
l \ l-:‘r-llvursu of neskt
| \) must e
TagFrom\ating | Y I at least One
i mveseof | /
| \ I | Voting
| subproperty of \ ¥ L
‘ f / bashctvelioter ===="="" |
| DT Vatero! {ObjecProperty) !
(QtjectProperty) AN /
¥ ,’) !
¥ !
.
\\ ~ / \ /
N 4 \ /
\ ‘
\, subproperty of .r',
N inversedf ™ i
\\ T— — \\\]
\\ e o
\ T hasoter
me——— ’ mbiudpmﬁmﬂ
\
A\

1
TaoFromFreAndGas

Figure 42 Property restriction

5.1.6 Instance definition

The class definition and restriction above are based on the 1SO15926 standard. They could be used
as shorthand template. If they get general approval by the companies, it could be used as common
standard. For all the system that uses the similar Cause&Effect matrix, the template is reusable.
However, the instance definition goes to more concrete level. For example, some of the tags are
only used by the Origo Engineering. Obviously, this instance definition is not reusable for other
situation. We defines the instance for illustration the functions of the classes. And used for the

proving concept of prototype implementation.

The figure.43 shows the definition an instance “O87C 51 CF001”, which is a member of
“TagFromVoting”. This tag belongs to the system “FlamelnArea”. It matches with effect tags:
“O71_XY228”, “O87 _U51 FWP”, and “O700 XA 072 2”. It is a candidate of a voting
“FullCoincdientFlameVoting”. It has input type “INT”. It involved in an activity “CoincidentFire”

which is a type of “Flaming”.

66

0710 _XY228
| 3
TagFromVoting Y
! e

N\ -
‘\ causeOfEvent /,/’
|
isa_ | /I:isjnput'l'ype
e,
FlamelnArea "~
L3 . || —
ol \T < — 03?'5_'_—5{—2—5':001 — candidateOf
engToSystem " ~, .
~ ™ S
- ! .
i - causeOfEvent y
involvedIn | causeCiEvent |FUIICoincidentFlameVDting
A“/ A
| CoincidentFire O87C_US51_FWP O700_XA_072_2

relatedTag —
- g /

s

OB7C_51_2_CFO01
isa
r

¥

Figure 43 Instance of “TagFromVoting”

Figure.44 shows the definition of an instance of the “Room” and the “CauseAndEffectChart”. The
room “SeaCableTranformatorRoomArea-North” is a type of “CableTypeCurrentTransformer” that
has a “CauseAndEffectChart” that is “CauseAndEffectChart U51 2”. The room contains a lot of
systems by the “containsSystem” property. This room is located at area “U51-2”. The
“CauseAndEffectChart U51 2 has some cause tags and effect tags. And it is related to the room
by “relatedRoom” property, which is the inverse property of “hasChart”.

67

|Critica\Alaml’anelcontrols',lstem | GasDetectionventiation [SeaCableTransformatorRoomArea-North
3

\\ FlamelnArea |
FireWaterSystemPump Y)
Y \\ \ | FireProlectionSystem| ContainsRaom
\
\ \ | / ()
i e
containsSystem \\ G untalnssvst - e
Us1-2|
containsSystem contamsSYstern contamsSystem /{_,p
[atadAt
Of | SeaCableTransformatorRoomArea-North
~, e A
-~
-~ |
is a—P| CableTypeCurrentTranformer |
|
systemLocatedat
containssystem N e
g SmokelnAreafutronica
|SeaCabIeTransfonnaturRoomArea North| /

[067C_51_2_56L002] 'II sa—_

| B

| FireDetectionSystem
{ CauseAndEffectChart

087C_51_2_CGLOO2 |
hasclhart
[U51_pFoui DFUU \@useTag |
Y. hasCauseM ' isa
> __0?00.):#4_072_2
\‘ha,gCauseTag Y hasEﬁe:tTag

— hascauseTa‘h \
. hascausmg' y ;Eﬁ ch u5 2[-h Effe:tTa
= _ stfclag__
- - —[0710_x228
H‘““\-\.__

087C_51_2_SGHO02 hastauseTag_, cgfect
a3 g

Us1_DF0D2| 4= "asCauseTa »
_ o g & 9 hasEffect]a
087C_51_2_CGHO0Z 51 &ausaTag \
hasCauseTag f hasCauseTag relate dRourn \
0700_XA_071_2 DSFC BLAR -*
W u51 D(;gm \SeatabIeTransfnrmatorkaomArea North|

51 _DGO03

Figure 44 Instance of “Room” and “CauseAndEffecChart”

Figure.45 shows an instance of “GasDetectionSystem”. This system “GasDetectionVenidation” is
located at room “SeaCableTranformatorRoomArea-North”, and it contains some cause tags.

D87C_51_2_SGHO02 [087C_s51_2_CGHo0Z |
[oB7C_51_2_cGLODZ | 4
|
/
cantainsTag ! containsTag
T~ containsTag !
.
containsTag H“‘--.__H\ ’__;// [SeaCableTransformatorRoomArea-North
|Gésnetecﬂunvéntilatiun| o "f
Us1_DGO0E — / T s a{_————— systeml_lncated.ﬁ.t
::DntalnﬁTag e
cunta:nsTag containsTag y % .
f 5 GasDetectionSystem
|
v \
087C_51 2 SGLOD2| US1_DGO0S

U51_DGE004

Figure 45 Instance of “GasDetectionSystem”

68

Figure.46 shows an instance of the class “TagFromFireAndGas”. The tag “U51 DF001” belongs
to the “FlamelnArea”. It both of
“FullCoincidentFlameVoting”. It has the input type “AI”, which means the analog input. It
involved in the activity “FlamingDetetorUtilityHandling”. It has the DatatypeProperty “hasState”
which is false. This state should be changed according to the real time data.

system is the voter “SingleFlameVoting” and

FlamelInArea
| FullCoincidentFlameVoting | A [FlamingDetectorUtilityHandling |
| .
| -~
belongToSystam invnlvEE[n
'-."Dter{g-_F |
o U51—DF{"?1 ——— hasState
is a st
Ve / T
e . hasInputType false
Voterof . {xsd:boolean)
[TagFromFirefAndGas]
|S|ngIEFIa meVoting |
is &
k!
§
<

Figure 46 Instance of “TagFromFireAndGas”

Figure.47 shows the instance of “Flaming”, “EffectTagOfFireAndGas”, and “SingleVote”. The
“FlamingDetectorUtilityHandling” is an activity that relates with tag “U51 DF001” and
“U51_DF002”. It has involved equipment “StarEye 20007, which is a “FlameDetector”.
“087C_U51_FWP” is an “EffectTagOfFireAndGas” that has input type “INT”, belongs to system

“FireWaterSystemPump”, and has a related CauseTag “O87C _US51 2 CF001”. The
“SingleFlameVoting” is type of “SngleVote” that has some voter and an candidate.
* " M EffetTagOfFreAndGas s WL
hted |)
relate Tag | @ ", ? " ‘,‘
"‘ I ‘*. I
"--.“ l_,.--" -I- . h .
nesOutpt 'l‘Ee L hawmr"--.._ ..-.____EIJSCandldate
i el ORTCUSLPW SmglfeFlameL'lE:EInq
involvedElquipment "‘.‘ ; / '\.\
| 1 e /
y Us:_DFO2 fd hisioter
beongTaysem rtedCaugeTag ' \
\ | \
\ ' { Singletiote
o= -P FirlaterSystemPump 0R7C 512 CFO01

Figure 47 Instances of “Flaming”, “EffectTagOfFireAndGas”, and “SingleVote”

69

5.1.7 Relate Fire&Gas with ESD

ESD Fire&Gas
Partd:Emergency Part4:Emergency PartA Flaming Part7:EffectTag

|
I
I
I
|
I
ShutDownValve ShutDown !
I
I
I
I
|
I

l) l - l r T l
oty |/ nitialby . i Part7:087C_U5L_2

Part7-Valvel Part7:CoincidentFir o5
e v _

involvedin

Part7:Emergency

ShutDownOfValvel | i

|
|
|
|
|
|
|
|
|
|
|
|
:
Part7:ValveCloseTi Part7:ValveOpenTi | |
|
|
|
|
|
|
|
|
|
|
n

\00

!

Part7:BeginingTime Part7:EndingTime

me me

=8 subClassOf
» ObjectPropety

intinTime

Figure 48 Sample of integration between Fire&Gas and ESD

Figure.48 shows the sample of modeling creation for data integration between Fire&Gas and ESD
system. We can get the following information from the definition of the model. The upper
ontology class definition and template specification can be found at 1SO15926-2 [23] and
1SO15926-7 [30].

“Valvel” involved in activity: "EmergencyShutdownofValvel”
“EmergencyShutdownofValvel” has beginning time and ending time
“EmergencyShutdownofValvel” is initialed by activity “CoincidentFire”
“CoincidentFire” has beginning time and ending time

“CoincidentFire” related with a “EffectTag” named O87C_U51 2 ESD

Base on this model the use can query the status and historical activity of the “valvel” by getting
all the “involedIn” activity. The user of ESD system can get the following information from the
Fire&Gas system: what kind of “Flaming” is happing? It happens in which area? When does it
happen? When does it end? Which valve is related to that firing? The user of Fire&Gas system
also can get the following information from the ESD system: Is the valve related to the

70

“Flaming”closed? When the flaming is happening? When is the valve closed?

5.2 Mapping the real-time data into data source

ontology

As we have manually mapped the Cause&Effect matrix to the 1SO15926 standard, the real-time
data need to be mapped to the data source ontology as we created above. Therefore, the data
source can be accessible for the user through a more intelligent querying. The intelligent querying
is queried by the user and reasoned by the data source ontology.

The mapping implementation uses the SQL to query the database, and use Jena API to map the
data element to the class in the ontology and create the OWL instance. Figure.49 shows the real
time data in relational database. It stores the status of the Tags within a time range. The Value is
the status of the tag, “0” means false,”1” means true. The data type of Tag Name is Varchar,
From_Date and To_Date is Datetime, Value is Boolean, and Is_inhibit is Char(1).

Tag Mame From_Date To Date Valug |3_Inhibit
{ Us1_DFODt {2007-05-07 15:44:11 20070507 15:44:17 0 M
1151_DFO0T 2007-05-07 15:44:17 20070507 15:44:30 1 N
151_DFO02 2007-05-07 15:44:30 2007-05-07 15:44:40 0 M
1J51_DFO02 2007-05-07 15:44:50 20070507 15:44:55 1 N
151_DGO03 2007-08-06 11:25:55 2007-08-06 11:25:57 1 N
151_DGO04 2007-08-06 11:25:55 2007-08-06 11:25:57 1 N

Figure 49 real time data in relational database

As it introduced in the design specification, the first step is to get the data from the relational
database. This step includes: querying of the database, storing the result in the value object
“Activity”, and using iterator to put the value object into the list. The next step is getting the
ontology from ontology database. This step is implemented by the OntologyModelCreation class.
We mainly focus on the mapping implementation in this chapter. As it shows below, for the
mapping a new ontology model need to be create at first. The ontology is specified to OWL
language by the “OntoModelSpec.OWL_MEN”. The namespace prefix need to be specified when
the ontology model is initialed.

//Create new ontology model

OntModel realtimeData =
ModelFactory.createOntologyModel (OntModelSpec.OWL MEM) ;
//set prefix mapping

realtimeData.setNsPrefix ("part7", NSI);
realtimeData.setNsPrefix ("RTD", NS2);

The following code shows the mapping method. For each element in the real time database, a new

71

individual should be created with a unique name in the OWL instance document. The “oc” in the
createIndividual method is the ontology class “Activity”. It means the new created individual is
the instance of the “Activity”. The real time element is also the instance of the tag in the ontology.
So we get the tag “ocl”as an individual, and set the new created individual “activity” to rdf:type
of “ocl”. The individual “activity” inherits the property from the super class. To set the property
of the individual, it needs to get the property from super class by a full URI address of the property.
The full URI address includes namespace prefix and property name. The addProperty method adds
the content to the specified property.

public void mapping (Activity act) {

// create individual for the class "Activity"

Individual activity=realtimeData.createlIndividual

(NS2+ act.getTagName ()+" "+act.getBeginingTime (), oc);

//set rdf:type of the individual

Individual ocl

=ontModel.getIndividual ("http://www.owl-ontologies.com/CauseAndEff
ectl.owl#"+act.getTagName ()) ;

activity.addRDFType (ocl) ;

//set property hasBeginingTime for the individual

Property hasBegining=ontModel.getProperty (NSI+ "hasBeginingTime") ;
activity.addProperty (hasBegining, act.getBeginingTime());

//set property hasEndingTime for the individual
Property hasEnding=ontModel.getProperty (NSI+ "hasEndingTime") ;
activity.addProperty (hasEnding, act.getEndingTime()) ;

//set property hasState for the individual

Property hasState=ontModel.getProperty (NSI1+ "hasState");

activity.addProperty (hasState, act.getStatus().toString());
}

The following code is the mapping result. It is the OWL in XML/RDF format.

72

<rdf :RDF
xmlns:RTD="http://www.owl-ontologies.com/RealTimeData.owl#"
xmlns:part7="http://www.owl-ontologies.com/CauseAndEffectl.owl#"
<part7:Activity
rdf:about="http://www.owl-ontologies.com/RealTimeData.owl#U51 DF002 2007-05-07
15:44:50">
<rdf:type
rdf:resource="http://www.owl-ontologies.com/CauseAndEffectl.owl#U51 DF002"/>
<part7:hasBeginingTime>2007-05-07 15:44:50</part7:hasBeginingTime>
<part7:hasEndingTime>2007-05-07 15:44:55</part7:hasEndingTime>
<part7:hasState>true</part7:hasState>
</part7:Activity>
<part7:Activity
rdf:about="http://www.owl-ontologies.com/RealTimeData.owl#U51 DF001 2007-05-07
15:44:17">
<rdf:type
rdf:resource="http://www.owl-ontologies.com/CauseAndEffectl.owl#U51 DF001"/>
<part7:hasBeginingTime>2007-05-07 15:44:17</part7:hasBeginingTime>
<part7:hasEndingTime>2007-05-07 15:44:30</part7:hasEndingTime>
<part7:hasState>true</part7:hasState>
</part7:Activity>

</rdf :RDF>

73

6. Prototype implementation

6.1 Semantic reasoning implementation

Jena API is used as programmatic environment, and Pellet is used as reasoner in the semantic
reasoning implementation. As it shows in figure.50, the ModelFactory is used to associate a model
to a reasoner in order to get a new model. The new model has the inference data that inferred by
the Pellet Reasoner. The OntModel API provides methods to find the graph in the InfGraph.

Y

ModelFactory OntModel API

find
\ 4
InfGraph
\ 4 A
Resoner Registry » Pellet Reasoner
A
Binding Ontology
Ontology

Cause&Effectl.owl

Figure 50 Jena inference methodology, cited from [31]

The following code shows the creation of a Pellet reasoner, associating it to the OntModel. And
store the new created model in the infModel.

Reasoner pellet = new PelletReasoner();

OntModelSpec spec = new OntModelSpec (OntModelSpec.OWL MEM) ;

spec.setReasoner (pellet);

infModel = ModelFactory.createOntologyModel (spec, ontModel
.getBaseModel ()) ;

The following code gives an example of reasoning of the state of the tag. The state of the tag is
evaluated by checking if this tag is the member of the Active Tag class. There are two kinds of
Active Tag class on the model created in this project that are “ActiveCauseTag” and
“ActiveEffecTag”. The “contains” method is used here to find if the infModel contains the given

axioms. It returns a Boolean value, “True” means it contains the axiom, while “False” means not.

74

Boolean statusl;
statusl = infModel.contains (individual, RDF.type, ActivecauseTagqg);
Boolean status2;
status2 = infModel.contains (individual, RDF.type, ActiveEffectTag);

status =statusl| |status2;

6.2 Semantic query implementation

The semantic query system here is a simple implementation for proof of the theory. It only support
querying of instance, class and instance with timestamp. The Spargl is mainly used as query
language. Jena API is used for realization of the instance, and manipulating of the ontology model.

As it show in figure.51, when the user query the instance on the user interface, the Jena Reasoning
system find out the class, to which the instance belong. And then match the predefined Sparql
guery method of the class.

Spargl Query

Jena Reasoning | »| QueryOfArea

If (x, rdf:type, Area);
QueryOfTagFrom
Voting

If (x, rdf:type, TagFromVoting)

If (x, rdf:type, TagFromFireAndGas)
T~ | QueryOfTagFrom
If (x, rdf:type, EffectTag) ™ FireAndGas

N QueryOfEffectTag

Figure 51 Query of instance

The following code is the Sparql query for the member of “TagFromVoting” class. Given a tag
that is an instance of “TagFromVoting”. The query gets the Area of the tag located. And also get
the EffectTag related with this tag. To find the area of the tag, it follows the searching route
(tag—system—Room—Area).

75

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX CE: <http://www.owl-ontologies.com/CauseAndEffectl.owl#>

SELECT ?area ?effectTag
WHERE {
CE:"+causeTag +" CE:belongToSystem :System
:System CE:systemLocatedAt :Room
:Room CE:locatedAt ?area

CE:"+causeTag+" CE:causeOfEvent ?effectTag

Figure.52 shows the query of the class. It uses the Pellet reasoner to provide inferred model of the
given class, and also infer the status of the tags. The query will list all the instance of the given
class. And use the method in Jena API to get the description and local name of each instance. If
the instance is a kind of tag, it will also give the status of the tag.

Jena AP

/ GetOntClass(x) <\7 Pellet Reasoner

X earch (4 | Y 1
. reason
ListInstances
/ \ Y
. Ontology
tD tStat
GetDescrption Y geolLs CauseAndEffectl.owl
getLoalName

Figure 52 Query of class

76

7. Proof of concept

7.1 Reasoning verification

As it shows in figure.53 the Prot&é provides an embedded reasoning tool for verification and
testing of the OWL ontology. In the theoretical background we has introduced that there are three
functions of reasoning: check consistency, classification of taxonomy, and realization of instances.
In figure.53 we mark the three buttons that related to each function with red circle on the top of
the Protégéuse interface. The figure.53 shows the model after the reasoning step. The numbers
behind the classes are the number of asserted instance and inferred instance. For example, behind
the “CauseTag” there is a number “(0/13)”, which “0” is the number of asserted instance of
“CauseTag”, “13” is the number of inferred instances of “CauseTag”. The window on the middle
of the user interface shows both the asserted and inferred instances of each class. In the following

we will verify each aspect of the OWL ontology we created.

Check
consistency

Classify
taxonomy

Realization of
instance

<4 CauseAndEffectl Protégé 3.4 beta (ﬂ\e:\C:\Users»Kangli\masterp@ﬁ&manticSearchG\@; eAndEffectlpprj, OWL / RDF Files)

File Edit Project CWL Reasoning Code Tools

NeR tBE wd

indoy]
N
X)[>

<épmtégé

r. Metadata(Cause AncEffect! owl) r OWLClasses ’/. Properties r’ Indiividuals r/ = Forms |

For Project: @ CauseAndEffect!

Asseried | Inferred

B) Event
b O Nate:
[3 PhysicalObject (0/1)
Room (171
¥ @ System (0/6)
CortrolSystem (1./1)
FireDetectionSystem (2172)
A FireFightingSystem (0 1)
Firewstersystem (1,
GasDetectionSystem [/11)
ProtectionSystem (7/71)
SatetyVetilationgystem
¥ @ Tag (0718)

BTagy (1/0)
CauseTagsOfESD (1/1)
NondctiveCauseTag (0/1)
TagFromFirednoiGas (£ 6
TagFromvating (5 /6)

¥ (O EffectTag (0/5)
ActiveEftectTay (0/5)
EffectTagOfESD

¥ 0 Woling (073
» CoincicdertYote (0/2)
A Single/ote (1 71)
SingleVoteTrue (001

EffectTagOtFireAndGas (5/5)

INSTANCE BROWSER

seTag

ndividual:

INDIVIDUAL EDITOR for 087C_51_2_CF001 (instance of TagFromVoting)
hitp: itwww owl-otologies comiCauseAndEffect! owl#087C_51_2_CFO01

CH el O

Property

| WValue

& 0a7/51_2 CGHOO2
& pfiTc 512 sFont
U1 _DFO0t

& Us1_DFom2

& Us1_DGo0d

4 Us1_DGa0s

relfs:comment

Coincident Fire

3

¢ € & couseorient

¢ et

mvolvedin

¢t

& o700_xa_n72_2
& 071028
& 057C_US1_FWe

LR RS

& Flamenres

¢4t

LR NS

‘ DoubleCoincidentFlame:

oting

’ CoincidertFire

o e

4]

Figure 53 Protégé reasoning

77

7.1.1 Check consistency

Figure.54 shows the ontology we created for Cause&Effect has been checked without any
inconsistency. If there is any consistency definition in the ontology, it will be marked as red color
and showed on the screen. In the following paragraph we will show an example of inconsistency.

< Pellet 1.5.2 (direct)

Computing inconsistent concepts: Querying reasoner for inconsistent concepts and updating Protege-OWL ...

Reasoner log

T ¥ Check concept consistency
i L@ Timeto update Protege-OWL = 0.013 seconds

“-- @ Total time: 0.016 seconds

Figure 54 Check consistency

disjointClass

SaftyVentilationSystem .
Y y GasDetectionSystem

GasVentilationSystem

Figure 55 Inconsistency class definition

As it shows on figure.55 we define the “GasVentilationSystem” as subclass of both
“SaftyVentilationSystem” and “GasDetectionSystem”. However, the “GasVentilationSystem” and
“GasDectectionSystem” are disjoint class. Therefore, the class “GasVentilationSystem” is
unsatisfiable. No instance can be realized as the member the “GasVentilationSystem”. This
inconsistency can be found out by the Pellet reasoner as it shows in figure.56. To solve this kind of
inconsistency, we can either delete the disjoint relationship or delete one of the subclass
relationships.

78

<4 pellet 1.5.2 (direct) X]

Computing inconsistent concepts: Querying reasoner for inconsistent concepts and updating Protege-OWL ...

Reasoner log

¥ # Synchronize reasoner

W # Check concept consistency

¥ Time to clear knowledgebase = 00010 seconds

- Time to update reasoner = 0.063 seconds

=i Time ta synchronize = 0.066 seconds

T ¥ Inconsistent concepts

------ @ Gasz\/etilationSystem is inconsistent

- Time to update Protege-OWL = 0.106 seconds

----- # Total time: 0177 seconds

Figure 56 Inconsistency example

7.1.2 Classify taxonomy

The classify taxonomy function usually used to classify undefined class when the knowledge
engineer create a new class. The reasoning system helps the engineer to modify the super type of

the

undefined class automatically. We will show an undefined class example as it shows in

figure.57.

CauseTag

UndefinedClass:

. CauseTag
ol Thimg
6' haszstate has true

UndefinedClass

Figure 57 the “UndefinedClass” definition

As the definition of “ActiveCauseTag”, we know that the “CauseTag”, which has state true, is the
“ActiveCauseTag”. Therefore, the “UndefineClass” should be subclass of “ActiveCauseTag”.
After we push the “classify taxonomy” button, the following message shows out in the changed
list. We get the inferred model in figure.58. The result is shows as figure.59.

Class Changed direct superclasses

'. UndefineClass Moved from owl Thing, CauseTag to ActiveCauseTag

Figure 58 result of the classify taxonomy

79

CauseTag

UndefinedClass

ActiveCauseTag

Figure 59 result of the model

7.1.3 Inferring the states of the Tag in Fire&Gas and ESD

This chapter gives an example of inferring the state of the tag automatically without human
interaction. As it shows in the scenario, if we assume that some “Activity” happens in the offshore,
the sensors will send the real-time data to the Fire&Gas System. The Fire&Gas system will map
the real-time automatically to data source ontology. Therefore some tags in the Fire&Gas system
related with the activities are setting to be true. Then through a voting system and matching of the
Cause&Effect matrix, the machine finds out some “Effect Tag” should set to be true. These
“Effect Tag” are related with some actions, such as the “O87 US51 ESD” in figure.60. If
“087 US51 ESD” are set to be true, it will initialize the Emergency Shutdown system
automatically.

80

0700_XA 072 0700_XA 072
2 2 2
~ |atedCauseTag elatedcauV
causeOfEve causeOffvent Caus nt
/ U51_DF001 s | 4 relatedCauseTag
Oter —hasCandidate»
g] DoubleCoincidentFlameVoting _ 087C_51.2 CFO
N e—candiateOfF—| 01
‘&\‘ “as\’O\QYZ
U51_DF002 Hiftvoe
' P :
auseTagFromFire
AndGas . DoubleComc@ TagFromVating
fdftype— 51 DGOO ‘
g /73s rdf:type
%0\ USL_DF00S P%']
% - hasVOterz\ —hasCandidate® 087C 51 2 CG
DoubleCoincidentGas\Voting le—candiateOf— HO0?
el |
has\/0]
U51 DF006 causeOfEvent
- ‘ relatedCauseTag
s 87c.003A 8 | MUACBY ™ 067 st S
—initia——
instance .
rdf:type rilftype

Q class

FffectTagFromFireA
(Gas

0700 XA 072

CauseTagFromESD

EffectTagFromFireAl
dGas

Figure 60 instances definition in the ontology

As shown in Figure.60, the instances relates to each other by the defined object property.

There are two kinds of “DoubleCoincidentVoting” that related with their voters and candidates.
The “hasCandidate” and “candidateOf” are inverse properties. The instances of “TagFromVoting”
relates with the “EffectTagFrommFireAndGas” by “causeAndEffet” property. The instance of
“EffectTagFromFireAndGas” “O87C 51 ESD” initials the “ES 87C 003A B”, which is the

“CauseTagFromESD”.

If we set the following datatype property:

(U51_DF001, hasState, true)
(U51_DF002, hasState, true)
(U51_DGO004, hasState, true)
(U51_DGO005, hasState, true)

Then all the tags above will be inferred as the member of “ActiveCauseTag” as it show in

figure.61.

81

< Pellet 1.5.2 (direct) =i

Getting types for individual: Finished

Reasoner log

W @ Synchronize reasoner

----- # Time to clear knowledgebase = 0.0010 seconds
---- # Time to update reasoner = 0.194 seconds

----- # Time to synchronize = 0.203 seconds

W-- @ |nfarred types for: US1_DFOO1

----- awl:Thing

----- # Total time: 0.242 seconds

Figure 61 Compute type of U51_DF001

According to the definition of the “DoubleCoincidentVoting”, if two of the voters are
“ActiveCauseTag”, the voting will be inferred to be true. Therefore, the
“DoculeCoincidentGasVoting” and “DoculeCoincidentFlameVoting” will be inferred as the
member of “DoubleCoiincidentVoteTrue”

<4 Pellet 1.5.2 (direct) (-

Getting types for individual: Finished

Reasoner log

¥ # Inferred types for: DoubleCoincidentGas' ating
L. () DoubleCoincident'ote
0 Coincidentote
o Wating
----- owl: Thing
b 'E' DoubleCaoincident/ oteTrue
----- # Total time: 0.0040 seconds

Figure 62 Compute type of “DoculeCoincidentGasVoting”

According to the definition of the “CauseTagFromVoting”, the “CauseTagFromVoting” which is
the candidate of a true voting will inferred to be ‘“ActiveCauseTag”. Therefore,
“O87C_51_2 CGH002” and “O87C 51 2 CF001” should be inferred as the
“ActiveCauseTag” as shown in Figure.63.

82

Getting types for individual: Finished

Rgasnner log
L 22 Inferred types for: O37C_51_2_ CGHOO2

ActiveCauseTag
Tag
TagFrom/oting
CauseTag

owl: Thing

L @ Total time: 0.0050 seconds

Figure 63 Compute type of “087C_51 2 CGHO002”

Similar to the theory above, all the member of “EffectTagFromFireAndGas” will also inferred to
“ActiveEffectTag”. Therefore, as the definition the “CauseTagFromESD”: If the tag, which initials
the “CauseTagFromESD”, is true, than the “CauseTagFromESD” should set to be true
automatically. As a consequence the Emergency shutdown could be done by the compute
automatically without human interaction. As shown in Figure.64, the “ES 87C 003A B” is
inferred to be the member of “ActiveCauseTag”.

Getting types for individual: Finished

Feasoner log

¥ # Inferred types for: ES_S7C_003A_B
ActiveCauseTag

Tag

CauseTag

awl: Thing

CauseTagsOfESD

- @ Total time: 0.0040 seconds

Figure 64 Compute type of “ES_87C_003A_B”

7.2 Testing of the semantic reasoning and querying

system

The figure.65 shows the user interface of semantic reasoning and querying system. As you can see
there are three types of things that are supported for querying: instance, class, and instance+
timestamp. Due to the time limit the query of instance+ timestamp is not fully implemented.
Therefore, here we will test the query of instance and class. The user needs to select the search
type and input the keyword in the text area. If not, the user interface will show error message.

83

Semantic Search

Searchlype: Instance Class EealTime

Keylord:

Figure 65 Semantic Search user interface

(1) Query of instance

® Given an area (“U51-2”) what are the causes and effects (i.e. Complete sheet). In this way,
the external users of the system could be able to get the information they need without a
domain expert.

hrea

1512

Chart :CanseindEffectChart USl_2

Cauzelag (US1_DGO0S EffectTag :0TO0_XA OT1 2

feem |1|51_2 |Chart CanseAndEffectChart_51_2

CauseTag :08TC_S51_2 CFO01 EffectlTag :0TOO_XA OT1 2

feem |1|51_2 |Chart CanseAndEffectChart_51_2

CauseTag :08TC_S51_2_SFO01 EffectTag :0TOO_XA OT1 2

hrea

1512

Chart :CanseindEffectChart USl_2

Cauzelag (US1_DG006 EffectTag :0TO0_XA OT1 2

hrea

512 |Chart :CanseindEffectChart _USl_2

Cauzelagz (US1 D004 EffectTag (0TO0_XA OT1 2

|p.rea |u51_2 |Chart CausehndEffectChart 51 2

Figure 66 Query result of “U51_2”
® Given a cause (tag) from Fire&Gas what are the related candidate tag of voting

(tagnames+areas). This query illustrates the accessible of the data. Therefore, the internal
software develop could manipulate the data source to get better function of the system.

84

Kepitord: USL_DFOOL

Search
TagFronfirshndGas | US1_DF001 [ares w512
tagfrom¥ating :08TC_S51_2_CFOO1
TagFromFiredndGas | US1_DFO01 |area (512
tagfrom¥ating :08TC_S1_Z_SFO01

Figure 67 Query result of “U51_DF001”
® Given a cause (tag) from voting what are the possible effects (tagnames + areas)

Eeytord: ©8TC_B1_2_CFOO01

dearch

08TC_51_Z_CFO01 ‘ area (1512

AetiveCauselaz

effectTaz (OTID_XYZ25

AetiveCauseTag (08TC_51_2 CFOO1 ‘area B2

affectTaz (05TC_US1_FHF

AetiveCauselag

D&TC_51_2 CFO01 ‘ area (151 _2

effectTag 0700 YA 072 2

Figure 68 Query result of “O87C_51_2 CF001”

® Given an effect (tag) what are the possible Action. As it presents in the scenarios. For
example, if you search the “O87C 51 2 ESD” tag, which should initial the Emergency
shutdown system, it will shows out the related ESD tag and its states at some points of time.
In this way, the safety person of Fire&Gas could able to verify that if the Emergency
shutdown really works as it should be.

85

Fephord: 08TC_US1_2_ESD

Search

activity Chttp:/fwww. owl-ontologies. comfRealTimelata owl#ES_STC_0034_F_200T-08-0T_17:44:30

AetiveEffectTag [03TC_US1_2_ESD

Related ESD Tag: E5 8TC 0034 F point0fTime (2007-0B8-0T7 12:44:30 state true

AetiveEffectTag

08TC_US1_2_ESD

activity ‘http:/fwww. owl-ontologies. comf/RealTimeData. owl#ES_STC_D03A_B_2007-05-07_15:44:30

Related ESD Tag: ES_8TC_O03AE pointOfTime ;2007-05-0T 15:44:30 state :false

ActiveEffectTag

087C_151_2_ESD

activity http:/fwww. owl-ontologies. con/RealTimeDlata, owl#ES_87C_0034_B_2007-05-07_15.45.40

Belated ESD Tag: ES_8TC_O03A_E point0fTime ;2007-05-0T7 15:45:40 state :falze

hetiveEffectTag |08TC_UB1 2 ESD |activity http:/fwww. owl-ontologies. comfRealTimeData, owl#ES_STC 0034 B _2007-08-15_15:24:30

Related ESD Tag: ES 8TC 0034 B point0fTime (2007-08-15 15:24:30 state true

hetiveRffeartTag |08TC_US1_Z_ESD |activity http:/fwww. owl-ontologies. comfRealTimeData owl#ES_STC_0034_F_2007-05-0T7_15:45:30

Related ESD Tag: ES_8TC_003A_B pointOfTime :2007-05-0T7 15:45:30 state :true

AetiveEffectTag

08TC_US1_2_ESD

activity ‘http:/fwww. owl-ontologies. comf/RealTimeData. owl#ES_STC_D034_B_2007-08-08_15:44:30

Related ESD Tag: ES_STC_O03A_E pointOfTime ;2007-06-05 15:44:30 state :false

Figure 69 Query result of “O87C_51 2 ESD”
(2) Query of class
Some state of the tags is defined as it shows in chapter7.1.3. Assumes the tag “U51 DF001”,
“U51_DF002”, “U51_DGO004”, and “U51_DGO005” are set to be true. If you query the class “Tag”
in the query system the result will be show as figure.70. From this query, the internal safety person
and external safety person could able to check the state all the tags at the current time. The Tag
description will give the detail of what happening actually.

HeyHord: Tag
Search
Tag [0BTC_51_2 SFO01 ‘Status: trus
Description: Single Fire
Tag | 0BTC_151 2 EST ‘Status: _
Dezeription: mull
Tag ‘ES_ETC_EIDSJ’._B |Status: _

Deseription; FAG LERI AREAS, FIRE/GAS HAZ. AREAS

Tagz

15116004 |Status: _

Dezeription: mull

Tagz

15116006 ‘Status: e

Figure 70 Query result of the “Tag” class

86

8. Discussion

In this chapter we would like to discuss: Is it possible to map from data source ontology to domain
ontology automatically? As it is described in [8] conceptual layering of ontologies can be divided
into four layers: data sources, data source ontologies, domain ontology, and view. To do the data
integration, two steps are needed. First, implement mapping from data sources to data source
ontology. Usually, this mapping is generated automatically by introducing some mapping pattern.
Second, implement mapping from data source ontology to business ontology. This step is much
more complex than the first step, automatic mapping would be difficult. However, automatic
mapping is the research goal at current stage of semantic data integration.

In this project we have tried an approach as shown in Figure.71, a Cause&Effect matrix represents
the data source ontology, the Oil&Gas ontology is the business ontology, and the real time data is
the data sources. This approach attempts to use the tool IJXML20OWL, which is a mapping tool to
lift the XML to OWL, accomplish the mapping automatically. As we see in figure 71, by defining
the mapping from Cause&Effect XML schemas to Oil&Gas ontology OWL, the Cause&Effect
XML instance can transform to Oil&Gas ontology automatically. Similarly, by defining the
mapping from Real time data XML schemas to Oil&Gas ontology OWL, the real time data XML
instance can transform to real time data OWL instance automatically. In the beginning the Real
time data XML instance is based on the Cause&Effect matrix. After the transformation the real
time data OWL instance is based on the QOil&Gas Ontology OWL instance. The details of each
mapping steps will be described in the following paragraph.

Cause&Effect
XML schemas

>é

Oil&Gas Ontology
OoOWwWL

Syntax definition

A

Mapping

Syntax and semantic definition

y

Cause&Effect
XML instance

Transform

Oil&Gas Ontology
OWL instance

4

Based on

Basedtn

Real Time Data
XML instance

Transform

Real Time Data
OWL instance

A

Syntax|definition

A

Syntax and semantic definition

Real Time Data
XML schemas

Mapping

—

Oil&Gas Ontology
owL

Figure 71 Automatic mapping structure

The figure.72 shows the graphical user interface of JXML20OWL Mapper. This tool enables
graphically creation and modification of the mapping from XML schemas to OWL ontology
utilizing the IJXML20OWL API. The left side is the Cause&Effect XML schemas represented in a

87

tree view. On the right hand side is the Oil&Gas ontology OWL. The mapping zone is in the
middle. Under the mapping zone, there are mapping links between classes and XML item XPath.
And also the object and datatype mapping links is in the bottom.

Class Associations rXSLTPrewew ‘

z A\ LAUSEEFFELL THING
CAUSE
=| f o partd:Thing ?
| DESCRIPTION parté:AbstractObject | ¢
FROM partdClass | | ¢
D partd:ClassOfIndividuad | ¢
INPUTTYPE patdProperty ¢
LER A
?ggi“ﬁ partPossiblelnividual | ¢
VOTi“_; partd:Activity
0 EFFECT partd:Event
ACTION parté:Relationship ?
AREA partd:CauseOfEvent
D directProperty
LER parté:RepresentationOfThings | ¢
A partiDescription
OUTPUTTYPE B
TAGNAME i
partd: \f
¢ | INTERSECTION AT
| CAUSEID
A EffactT)
Class Association XhLitem XPath Id Ed.|+D|+0 | Del
[EffeciD - Even ICAJSEEFFECTINTERSECTIONERECID B s
INTERSECTION - CauseOfEvent ICAUSEEFFECTINTERSECTION [m [mi"
||AREA-NEB ICAUSEEFFECTICAUSEIAREA 7| i [mit =
D - IndirectPraperty ICAUSEEFFECTICAUSEND [|t et | |
Property Name XML Range XPath Type Del
hasReprasented ICAUSEEFFECTICAUSEND Activity =
hasSign ICAUSEEFFECTICAUSEITAGNANE TagName =

Figure 72 Mapping from Cause&Effect schemas to Oil&Gas ontology in OWL

We have got some results from this approach. Unfortunately, the result is not exactly what we
need in this project. This approach is trying to retrieve semantic information from the existing
XML database. It is useful when you are trying to implement a semantic query system within the
homogeneous data sources. On the condition, which data integration within heterogeneous data
sources, this approach has too many limitations. It simply matches the XML tree view to the OWL
graph view by mapping the objectProperty and datatypeProperty of the classes. It is not possible to
add some restrictions in the newly created OWL file. It’s much better to manually map the local
ontology to domain ontology. However, in mapping from data source to data source ontology, the
JXML20OWL works well.

88

9. Conclusion and future work

9.1 Conclusion

As the leading industry of Norway, the Oil&Gas industry has made great effort within Information
and Communication Technology. The efficiency and environment protection are the main
contributions of the technology. The Safety Instrument System (SIS) is used for preventing
accidents. It could save money and reduce pollution if the SIS works efficiently, that requires that
we get information from the processing of the real-time data as soon as possible. The Semantic
Web enables the knowledge representation of the data source, which supports reasoning and
semantic querying. Therefore, the machine could understand the information. The data could be
processed by the machine automatically, which can greatly improve the efficiency. Moreover, The
SIS contains some subsystems. The subsystems need to work together to prevent accident. Thus,
the data integration is necessary. Origo has implemented a prototype for sharing information
between SIS subsystems. The prototype achieves data integration by sharing the same XML
schemas, which cannot fulfill the large scale and across domain data integration. Hence, the
Oil&Gas ontology is introduced to solve the problem. By applying the Oil&Gas ontology based
data integration, the company could get the following advantages: “improved data quality and
accessibility, significant cost reduction with change of software, increased flexibility with
organizational changes, and improved software functionality” [3]

In this project, we analyzed the principles of XML, RDF, OWL, ontology, reasoning, description
logic and Sparql querying of the Semantic Web technology, and 1SO15926 part2 data model, part4
reference data, and part7 implementation methodology. Based on this analysis we introduced a
framework of data integration. We implemented the manual mapping from Cause&Effect matrix
to 1S0O15926 standard, and automatic mapping from real-time data to data source ontology. We
also implemented a prototype of semantic querying and reasoning system. This prototype proves
the concept of reasoning, and shows the improvement of data quality and accessibility by querying
the information. Through all the works above, we would like draw a conclusion that the 1ISO15926
standard and Semantic Web are suitable to use in the SIS system. They work together could great
improve the current system.

9.2 Future work

The prototype in this project is developed for proof of concept and for showing the advantages of
data integration. It is not very suitable for practical use. The following work can be done to
improve the query system:

® Use the Semantic Annotation for all the classes defined in the ontology, and Lucene as the
query engine. Lucene supports the full text search. Jena API has developed a plug-in named

89

ARQ that support Lucene. Therefore, we could query by text match of the annotations, rather
than only by class name and instance name.

Complete the implementation of search through timestamps, so that the safety person could
be able to get the information from offshore of any time or time range.

Improve the search pattern for more general use. The prototype can only search the
information based on predefined pattern. It is not flexible enough for different kinds of search
and not extensible when the system scales up.

90

Reference:

[1] THREE DECADES OF DATA INTEGRATION—ALL PROBLEMS SOLVED?, Patrick
Ziegler and Klaus R. Dittrich

[2] Dittrich, Klaus R. and Jonscher, Dirk (1999). All Together Now — Towards Integrating the
World’s Information Systems. In Masunaga, Yoshifumi and Spaccapietra, Stefano, editors,
Advances in Multimedia and Databases for the New Century, pages 109-123, Kyoto, Japan,
November 30 — December 2. World Scientific Press.

[3] Kari Anne Haaland Thorsen and Chunming Rong, Data Integration in Oil and Gas at
Norwegian Continental Shelf, 22nd International Conference on Advanced Information
Networking and Applications

[4] Guan-yu LI, Wei-li ZHANG, Huan-zhong GENG, Ontology-Based Web Data Integration
Architecture Modeling and Implementation, 2007 IFIP International Conference on Network and
Parallel Computing

[5] Li dong, Huang linpeng, A Framework For Ontology-based Data Integration, 2008
International Conference on Internet Computing in Science and Engineering

[6] Integrated Operation: Methodology and tools for management and control of Safety
instrumented Systems, Internal document of ORIGO Engineering

[7] NORSOK STANDARD 1-002, Rev.2, 2001-05-01, Safety and automation system (SAS)

[8] Jurgen Angele, Michael Gesmann. Data Integration using Semantic Technology: A use case.
Proceedings of the Second International Conference on Rules and Rule Markup Languages for the
Semantic Web (RuleML'06), 2006

[9] Toni Rodrigues, Pedro Rosa, Jorge Cardoso, MAPPING XML TO EXISTING OWL
ONTOLOGIES

[10] Hannes Bohring* and S™0ren Auer, Mapping XML to OWL Ontologies

[11] Tao Huang, Qingtang Liu, Sanya Liu, Shengming Wang, Yong Yang,Design and
Implementation of Semantic Query System based on Ontology Context, 978-1-4244-2108-4/08
©2008 IEEE

[12] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, Chris Wroe. A
Practical Guide to Building OWL Ontologies Using the Protege-OWL Plugin and CO-ODE Tools
Edition 1.0

[13] OWL Web Ontology Language Reference W3C Recommendation 10 February 2004 [cited
2008 13. January]; Available from: http://www.w3.org/TR/owl-ref/

[14] Huhns, Michael N. and Singh, Munindar P. (1997). Agents on the Web: Ontologies for
Agents.IEEE Internet Computing, 1(6):81-83.

[15] Kirwin, Christopher. 1995. 'Reasoning'. In Ted Honderich (ed.), The Oxford Companion to
Philosophy. Oxford: Oxford University Press: p. 748

[16] Markus Krdzsch (AIFB Karlsruhe), Practical Reasoning with OWL and Rules, Half-day
tutorial at the 3rd European Semantic Web Conference, ESWC 2006.

[17] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, Yarden Katz, Pellet: A
Practical OWL-DL Reasoner, Web Semantics: Science, Services and Agents on the World Wide
Web, Vol. 5, No. 2. (June 2007), pp. 51-53.

91

[18] Alessandro Artale, Enrico Franconi, Introducing Temporal Description Logics, Temporal
Representation and Reasoning, 1999. TIME-99. Proceedings. Sixth International Workshop

[19] Daniele Nardi, Ronald J. Brachman, An Introduction to Description Logics, Cambridge
University Press

[20] Franz Baader, lan Horrocks, and Ulrike Sattler. Description Logics. In Frank van Harmelen,
Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge Representation. Elsevier,
2007.

[21] D. Leal , ISO 15926 “Life Cycle Data for Process Plant”: An Overview, Oil & Gas Science
and Technology — Rev. IFP, Vol. 60 (2005), No. 4, pp. 629-637

[22] 1SO 15926-1 (2003) Overview and Fundamental Principles. Industrial Automation Systems
and Integration - Oil&Gas, Part 1.

[23] ISO 15926-2 (2003) Data model. Industrial Automation Systems and Integration - Oil&Gas,
Part 2.

[24] POSC Caesar. [cited 2009 13. March]; Available from: http://www.posccaesar.org/

[25] SPARQL Query Language for RDF. [cited 2009 13. March]; Available from:
http://www.w3.0rg/TR/2008/REC-rdf-spargl-query-20080115/

[26] An Upper Ontology based on ISO 15926, Rafael Batres a *, Matthew Westb, David Lealc,
David Priced, Yuji Nakaa

[27] EPISTLE, OnnoPaap2008 . |[cited 2009 13. March]; Available from:
http://www.infowebml.ws/

[28] Semantic Web Technologies Trends and Research in Ontology-based Systems. John Davies,
Rudi Studer, Paul Warren.

[29] zhisheng Huang, Frank van Harmelen and Annette ten Teije, Reasoning With Inconsistent
Ontologies: Framework, Prototype and Experiment, 19" Joint Conference on Artificial
Intelligence (IJCAI’05), 2005

[30] ISO 15926-4:2007 spreadsheets [cited 2009 1. May]; Available from:
http://rds.posccaesar.org/2008/05/XML/1SO-15926-4 2007/

[31] Jena 2 Inference support [cited 2009 3. May]; Available from:
http://jena.sourceforge.net/inference/

[32] Guan-yu LI, Sui-ming YU, Sha-sha DAI, Ontology-Based Query System Design and
Implementation, 2007 IFIP International Conference on Network and Parallel Computing —
Workshops

[33] Jena — A Semantic Web Framework for Java [cited 2009 3. May]; Available from:
http://jena.sourceforge.net

[34] Renamed Abox and Concept Expression Reasoner [cited 2009 12. May]
http://www.sts.tu-harburg.de/~r.f.moeller/racer/

92

http://www.posccaesar.org/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.infowebml.ws/
http://jena.sourceforge.net/

