
1

Semantic Web for Data integration within

Oil&Gas or maritime

By

 Li Kuang

Thesis submitted in Partial Fulfillment of the

Requirements for the Degree Master of Technology in

Information and Communication Technology

Faculty of Engineering and Science

University of Agder

Grimstad

May 2009

http://www.uia.no/no

2

Abstract

The Semantic Web technology has become quite popular recently. The ontology-based data

integration architecture is the important part of Semantic Web technology. It enables the sharing of

concept with common schemas and also enables the representation of the information in machine

understandable way. Therefore, the data source could be processed automatically.

This master thesis is using the Semantic Web technology for data integration within Oil&Gas or

maritime industries. The Norwegian Oil Industry Association (OLF), which takes a leading role in

next generation Integrated Operations, has developed an Oil&Gas ontology for data integration

across multi-domains. The Oil&Gas ontology is based on the ISO15926 standard.

The master thesis devotes to clarify to what extend the Semantic Web technology and ISO15926

standard can be used together to improve the functionality of the Safety Instrument System (SIS),

which is provided by the problem owner. This master thesis introduces a data integration

framework according to the implementation methodology of ISO15926 standard and the

architecture of Ontology based data integration. The framework uses the software Protégé [12] as

a modeling tool to create a model for the Cause&Effect matrix based on the ISO15926 standard.

The Jena API [33] is used to map the real-time data to the data source ontology. This project also

implements a prototype using the Jena API including a querying system and reasoning system.

The implementation of querying system, which gets the information intelligently, shows the

improvement of data quality and accessibility. And the reasoning of the ontology shows the ability

of automatic processing of the real time data, which has obviously improved the software

functionality.

3

Preface

This thesis is proposed by Origo Engineering AS. First of all, I would like to thank for the high

level guidance of my technical supervisor Andreas Prinz. He has given me some good advices

when I went lost in the wrong direction.

And I would also like to thank my supervisor Trond Friisø and his colleague Trond K. Nilsen
from Origo, who helps me to understand the problem of the thesis clearly and gives good

suggestions all the time. At the same time I want to thank Origo for providing me the raw data.

Finally, I would like to thank Terje Gjøsæter, who helped me a lot with language usage in the

report writing. And thanks for the effort of my thesis contact Jan Pettersen Nytun.

Grimstad, May 2009

Li Kuang

4

Table of contents

1. Introduction ... 8

1.1 Background ... 8

1.2 History of Data integration .. 8

1.4 Report outline .. 9

2. Problem description .. 10

2.1 Problem statement ... 10

2.2 Problem delimitations ... 12

2.2.1 Data integration structure ... 12

2.2.2 Advantages of data integration ... 14

2.2.3 Importance of the research on the Ontology .. 14

2.2.4 Environment of data integration ... 15

2.2.5 Level of the data integration... 16

2.2.6 Semantic Web technology used in this project ... 16

2.3 Roles and Scenarios .. 17

2.3.1 Analysis of Cause&Effect matrix ... 17

2.3.2 Roles in the Semantic data integration ... 19

2.3.3 Scenarios of the SIS ... 20

3. Theoretical background ... 24

3.1 Semantic Web .. 24

3.1.1 What is Ontology, what is it used for? ... 25

3.1.2 XML + XML schemas ... 26

3.1.3 RDF+RDF schemas ... 27

3.1.3.1 Distinguish is-a and part-of relations .. 28

3.1.3.2 SPARQL .. 29

3.1.4 OWL (Web Ontology Language) ... 29

3.1.4.1 Syntax of OWL-Full ... 30

3.1.4.2 Reasoning with OWL .. 33

3.1.4.2.1 Reasoning with inconsistency .. 34

3.1.4.2.2 Inference with OWL ... 36

3.1.5 Description Logic ... 38

3.2 ISO15926 Standard ... 39

3.2.1 ISO15926 Part 2: Data model .. 40

3.2.2 ISO15926 Part 4: Reference Data .. 41

3.2.3 ISO15926 Part 7: implementation methodology .. 44

3.2.3.1 ISO15926 implementation hierarchy .. 44

3.2.3.2 Template specification ... 45

3.2.3.3 OIM (Object Information Models) .. 47

3.2.3.4 Data integration in a distributed system .. 47

4. Design specification .. 49

4.1 Mapping the Cause&Effect matrix to ISO15926 Specification .. 50

5

4.2 Mapping the real-time data to data source ontology Specification 51

4.3 Semantic Querying and Reasoning system specification .. 52

5. Mapping Implementation .. 54

5.1 Mapping the Cause&Effect matrix to ISO15926 .. 54

5.1.1 Hierarchy of the Models ... 54

5.1.2 ―System‖ hierarchy .. 55

5.1.3 Restrictions of the classes .. 56

5.1.4 Tag classification .. 59

5.1.5 Voting implementation ... 62

5.1.6 Instance definition .. 66

5.1.7 Relate Fire&Gas with ESD .. 70

5.2 Mapping the real-time data into data source ontology .. 71

6. Prototype implementation ... 74

6.1 Semantic reasoning implementation ... 74

6.2 Semantic query implementation .. 75

7. Proof of concept .. 77

7.1 Reasoning verification .. 77

7.1.1 Check consistency .. 78

7.1.2 Classify taxonomy .. 79

7.1.3 Inferring the states of the Tag in Fire&Gas and ESD ... 80

7.2 Testing of the semantic reasoning and querying system ... 83

8. Discussion ... 87

9. Conclusion and future work .. 89

9.1 Conclusion .. 89

9.2 Future work ... 89

Reference .. 91

List of figures

FIGURE 1 SYSTEM OVERVIEW OF SIS CITED FROM [7] ... 11

FIGURE 2 ARCHITECTURE FOR THE INTEGRATED INFORMATION FRAMEWORK, CITED FROM [3] 12

FIGURE 3 COMPARISON OF THE CONCEPTUAL LAYERING AND PRACTICAL LAYERING OF THE ONTOLOGY

 ... 14

FIGURE 4 CONCRETE DATA INTEGRATION STRUCTURE ... 17

FIGURE 5 CAUSE&EFFECT SHEET OF U51-2 .. 19

FIGURE 6 COLLABORATION OF F&G, ESD AND PCS ... 21

FIGURE 7 CAUSE&EFFECT SHEET OF ESD ... 22

FIGURE 8 A PART OF THE EMERGENCY SHUTDOWN SYSTEM HIERARCHY ... 23

FIGURE 9 SEVEN LAYER CAKE PROPOSED BY TIM BERNERS-LEE ... 25

FIGURE 10 RDF GRAPH EXAMPLE ... 28

FIGURE 11 LINGUISTIC REPRESENTATION ... 29

FIGURE 12 CLASSIFICATION OF SYNTAX OF CLASSES .. 31

FIGURE 13 PROTÉGÉ-OWL SYNTAX .. 32

6

FIGURE 14 VENN CHART OF THE ONTOLOGY .. 35

FIGURE 15 DL ARCHITECTURE .. 38

FIGURE 16 OWL AS DL: AXIOMS. FROM [20] ... 39

FIGURE 17 MODEL DIAGRAMS IN PART 2(FROM [23]) .. 41

FIGURE 18 REFERENCE DATA HIERARCHY.. 42

FIGURE 19 PART 2 RELATED WITH PART 4 .. 43

FIGURE 20 THE ISO 15926 STACK, (FROM [27]) ... 45

FIGURE 21 LONGHAND TEMPLATE SPECIFICATION, CITED FROM [27] .. 46

FIGURE 22 COMPARISON OF LONGHAND TEMPLATE AND SHORTHAND TEMPLATE, FROM [27] 47

FIGURE 23 INFORMATION CHAIN OF FACADES ... 48

FIGURE 24 DATA INTEGRATION SYSTEM ARCHITECTURE .. 49

FIGURE 25 WORK FLOW THE MANUALLY MAPPING .. 51

FIGURE 26 REAL-TIME DATA MAPPING STRUCTURE .. 52

FIGURE 27 SEMANTIC QUERYING AND REASONING SYSTEM STRUCTURE ... 52

FIGURE 28 CLASS HIERARCHY OF THE MODELS ... 55

FIGURE 29 REFERENCE DATA OF THE ―SYSTEM‖ HIERARCHY, FROM [30] .. 56

FIGURE 30 DISJOINT SYSTEMS ... 56

FIGURE 31 ―ACTIVITY‖ AND ―ROOM‖ CLASS DEFINITION .. 57

FIGURE 32 ―SYSTEM‖ AND ―LITLED‖ DEFINITION ... 58

FIGURE 33 ―CAUSEANDEFFECTCHART‖ AND ―AREA‖ CLASS DEFINITION ... 58

FIGURE 34 ―CAUSETAG‖ AND ―TAG‖ CLASS DEFINITION ... 59

FIGURE 35 ―EFFECTTAG‖ AND ―ACTIVEEFFECTTAG‖ CLASS DEFINITION .. 60

FIGURE 36 ―ACTIVECAUSETAG‖ AND ―NONACTIVECAUSETAG‖ CLASS DEFINITION 61

FIGURE 37 ―TAGFROMVOTING‖ AND ―TAGFROMFIREANDGAS‖ CLASS DEFINITION 62

FIGURE 38 ―VOTING‖ CLASS DEFINITION ... 62

FIGURE 39 ―SINGLEVOTINGTRUE‖ CLASS DEFINITION .. 63

FIGURE 40 ―DOUBLECOINCIDENTVOTINGTRUE‖ CLASS DEFINITION .. 64

FIGURE 41 ―TRIPLECOINCIDENTVOTINGTRUE‖ AND ―FULLCOINCIDENTVOTINGTRUE‖CLASS DEFINITION

 ... 65

FIGURE 42 PROPERTY RESTRICTION ... 66

FIGURE 43 INSTANCE OF ―TAGFROMVOTING‖ ... 67

FIGURE 44 INSTANCE OF ―ROOM‖ AND ―CAUSEANDEFFECCHART‖ .. 68

FIGURE 45 INSTANCE OF ―GASDETECTIONSYSTEM‖ ... 68

FIGURE 46 INSTANCE OF ―TAGFROMFIREANDGAS‖ .. 69

FIGURE 47 INSTANCES OF ―FLAMING‖, ―EFFECTTAGOFFIREANDGAS‖, AND ―SINGLEVOTE‖ 69

FIGURE 48 SAMPLE OF INTEGRATION BETWEEN FIRE&GAS AND ESD ... 70

FIGURE 49 REAL TIME DATA IN RELATIONAL DATABASE ... 71

FIGURE 50 JENA INFERENCE METHODOLOGY, CITED FROM [31] ... 74

FIGURE 51 QUERY OF INSTANCE .. 75

FIGURE 52 QUERY OF CLASS .. 76

FIGURE 53 PROTÉGÉ REASONING .. 77

FIGURE 54 CHECK CONSISTENCY .. 78

FIGURE 55 INCONSISTENCY CLASS DEFINITION .. 78

FIGURE 56 INCONSISTENCY EXAMPLE ... 79

7

FIGURE 57 THE ―UNDEFINEDCLASS‖ DEFINITION .. 79

FIGURE 58 RESULT OF THE CLASSIFY TAXONOMY .. 79

FIGURE 59 RESULT OF THE MODEL ... 80

FIGURE 60 INSTANCES DEFINITION IN THE ONTOLOGY ... 81

FIGURE 61 COMPUTE TYPE OF U51_DF001 .. 82

FIGURE 62 COMPUTE TYPE OF ―DOCULECOINCIDENTGASVOTING‖ .. 82

FIGURE 63 COMPUTE TYPE OF ―087C_51_2_CGH002‖ .. 83

FIGURE 64 COMPUTE TYPE OF ―ES_87C_003A_B‖ .. 83

FIGURE 65 SEMANTIC SEARCH USER INTERFACE ... 84

FIGURE 66 QUERY RESULT OF ―U51_2‖ ... 84

FIGURE 67 QUERY RESULT OF ―U51_DF001‖ .. 85

FIGURE 68 QUERY RESULT OF ―O87C_51_2_CF001‖ ... 85

FIGURE 69 QUERY RESULT OF ―O87C_51_2_ESD‖ ... 86

FIGURE 70 QUERY RESULT OF THE ―TAG‖ CLASS ... 86

FIGURE 71 AUTOMATIC MAPPING STRUCTURE ... 87

FIGURE 72 MAPPING FROM CAUSE&EFFECT SCHEMAS TO OIL&GAS ONTOLOGY IN OWL 88

List of tables

TABLE 1 STATE TABLE OF ―1OON‖ VOTING .. 18

TABLE 2 STATE TABLE OF ―2OON‖VOTING ... 18

TABLE 3 SYNTAX OF PROPERTIES ... 32

TABLE 4 DETAIL DESCRIPTION FOR FIGURE.19 ... 43

TABLE 5 DIVIDING OF LEVELS ... 43

TABLE 6 CONDITIONS THAT DOUBLE VOTING TRUE.. 64

TABLE 7 DOMAIN AND RANGE OF OBJECTPROPERTY ... 65

8

1. Introduction

Chapter 1.1 introduces the background of the project, including the domain we work with. Chapter

1.2 introduces the history of data integration. It explains why we need data integration, and why

we need semantic data integration. Chapter 1.3 gives the outline of the rest part of the project and

the report.

1.1 Background

The Oil&Gas industry does more and more rely on the information and communication

technology. It improves the efficiency and safety of the industry. There are large amounts of data

being collected and optimizing the utilization of these could bring great benefit to the economy

and environment protection. Currently, most of the data sharing in the Oil&Gas industry is in

XML format, which provide well-formed rules for data representation. However, XML is still not

well enough, since it does not contain any semantemes of the data. Therefore, the RDF and OWL

schemas are introduced for knowledge representation. These are the basic elements of the

Semantic Web. The Semantic Web is known as the extension of the current web. “It facilitates

navigation and meaningful use of digital resources by automatic process. Searching, requesting,

execution, and payment for services can be accomplished without the need of human

interactions.”[3] The Semantic Web is ontology based, which enables the reasoning of

information.

OLF is a professional body and employer's association for oil and supplier companies. It is the

head organization of developing Integration Operations (IO) for the industry. OLF‘s IO project is

responsible for providing standards, integrated solutions, and technologies for supporting

operational decisions of the onshore control centers for offshore installations. It has developed IO

generation 1, and plans to implement generation 2. “The aim of the first generation (IO G1) is to

integrate processes and ability to support offshore operations. The aim of the second generation

(IO G2) is to help operators utilize the vendors’ competences and services more efficiently than

today [3].” A challenge for IO G2 is data collection across disciplines and dissimilar data systems.

Semantic Web is assumed to play a key role in data integration for integrated operations together

with ISO 15926, SOA/Web Services is also assumed to be an important element. OLF have

facilitated the development of an Oil & Gas Ontology (a defined terminology for oil exploration

and production) to enable this data integration.

1.2 History of Data integration

Data integration is an old research topic, but that does not mean that it is not valuable to research.

Due to the requirement of more and more large scale and deep data integration, there are many

new and complex problems arising, which lead to lots of technologies being developed, like

semantic technology. To better understand the data integration, let‘s start from the beginning.

9

The first question could be why do we need data integration? Actually, there are two reasons: First,

facilitate data access of heterogeneous data sources in a single access point. Second, data from

complementation information systems need to be combined to gain a comprehensive basis [1]. In

fact, many applications can gain advantages of integrated information. For examples, CRM

(Customer relationship management) can improve custom service by integrated custom

information and service information. Integrated information enables transactions and service over

network for e-commerce and e-business [1].

Data integration deals with the data transparency problem of distributed systems. That means it

has to make the users think they are accessing a single information system with homogeneous data

structures. But actually the data is physically distributed over heterogeneous data sources. In this

way all the data has to be represented with the same standard.

Data integration has evolved from structural to semantic integration. Traditional integration is

based on relational and functional data model that integrate with one single global schema [1].

With the development of Internet and web applications, mediator and agent systems have become

popular in the data integration. However, providing explicit and precise semantics is the critical

problem of data integration. In the requirement of integration with heterogeneous data sources, the

one single global schema and mediator or agent system is not possible to fulfill the needs.

Therefore, the ontology is introduced for providing explicit, formal, conceptualized definition of

the data source. Compared with the former integration, the ontology based data integration

reduced the semantic ambiguous by providing shared understanding. For example, the same

syntax may have different meaning in two databases, but in the ontology, it will give more

complete definition to each syntax to avoid the ambiguousness.

One ontology approach is only suitable for the integration within a single domain. It requires all

the data sources mapping to the common ontology. As the multi-domain data integration the single

ontology will have limited abilities to provide precise meaning of the data. Therefore,

multi-ontology approach (e.g. ISO15926) is introduced. Multi-ontology approach divides

ontologies into a hierarchy. The top level (upper) ontology is a highly abstract data model that

provides meta-concept and meta-data for the lower ontology.

1.4 Report outline

The rest of this thesis is organized as follow:

Chapter 2 states the problem, delimitates the problem from different aspects, and presents the

scenarios

Chapter 3 analyzes the principles of Semantic Web technology and the ISO15926 standard.

Chapter 4 shows the design specification of the data integration framework

Chapter 5 shows the mapping implementation both from Cause&Effect matrix to ISO15926 and

from real-time data to data source ontology

Chapter 6 shows the prototype implementation of the querying and reasoning system

Chapter 7 shows the proving of the concept of reasoning and testing of querying.

Chapter 8 discusses the possibility of automatic mapping from data source ontology to domain

10

ontology

Chapter 9 gives the conclusion of the work, and point out the future works.

2. Problem description

The Chapter 2.1 gives the problem statement of this project. It describes the current problem of

Origo Engineering AS and the goal they want to achieve. The Chapter 2.2 delimitates the problem

from different aspects including data integration methodology (Chapter 2.2.1), goal of data

integration (Chapter 2.2.2), research problem (Chapter 2.2.3), data integration environment

(Chapter 2.2.4), level of data integration (Chapter 2.2.5), and semantic web technology in data

integration (Chapter 2.2.6). The Chapter 2.3 gives the roles that can benefit from data integration,

and scenarios of data integration. It also analyzes the Cause&Effect matrix in Chapter 2.3.1．

2.1 Problem statement

Origo Engineering AS is a company that provides safety systems for the customers. Such as

Fire&Gas, Emergency shutdown and Process shutdown systems, which are often used in the

drilling/well maintains. Figure.1 shows an example of a safety system named Safety Instrumented

Systems (SIS). The functions of SIS are to discover and prevent situations that can escalate into

larger accidents. The different systems are independent, and together they form a chain of barriers

to prevent accidents [6].

SIS is passive during normal operation and it has to be verified regularly that they actually will

work on demand. This could be done by explicit full-scale tests. However full-scale test is time

consuming. Alternatively, logged data from unplanned shut-downs could be used to verify

activated functions. Each system in the SIS has a real-time database that stores logged data. In

order to verify the functions, it is necessary to collect data from various sources. These data

sources are mostly heterogeneous. Therefore, data integration is needed to get better functions.

Figure.1 shows an overview of the SIS (Safety Instrument System). According to [7], it contains

the following systems:

 IMS (Information Management System)

(1) Long term storage of alarms and events

(2) Trend data storage

(3) Long term storage of selected measurement values

(4) Alarm analysis

(5) Administrative tasks

 PCS (Process Control System)

 PSD (Process shutdown)

 (1) Process protection

 (2) Equipment protection

 F&G (Fire & gas)

11

(1) Alarm and annunciation

(2) Fire fighting

 ESD (Emergency shutdown system)

(1) Blow down and flare/vent

(2) Ignition source control

(3) Process segregation

Figure 1 System overview of SIS cited from [7]

Origo has developed a prototype of a tool for online analysis of Safety Instrumented Systems (SIS)

in operation. This tool will collect data from various sources, analyze them and report the

goodness of the SIS in operation. However, this tool has been developed without using the Oil &

Gas Ontology. To prepare for a role within IO G2 Origo want to supply this kind of information

with other oil and supplier companies. Therefore, Origo want to clarify that to what extend the

semantic web, the Oil and Gas ontology, and ISO 15926 can be used to optimize the current

system they already have. As we mentioned in Chapter 1.1 the data integration of IO generation 2

is based on Oil&Gas ontology which is the part of ISO15926. And usage of the ontology is the

basic building blocks of Semantic Web.

As it shown in Figure.2, Origo Engineering AS collects data from sensor network. These data

should be integrated based on the ISO standard. Therefore, the incorporation between

heterogeneous data sources could be achieved.

12

This project is devoted to verify if the framework for data integration based on the Oil&Gas

ontology is suitable for useing in Origo Engineering AS, to clarify how the Oil & Gas Ontology

could be incorporated. Based on this framework and the prototype that Origo developed, this

project should suggest a solution for data integration in an IO context. And also implement a

prototype and demonstrate the use of it. A test case will be developed by Origo for use in the test

of the implementation.

Sensor data

Sensor network

datastore

datastore

Middleware. data fusion with reasoning

Drilling&completion Reservoir&Production Seismic

mapping

ISO standard

Logic&policy

mapping mapping

Semantic

layer

Figure 2 Architecture for the integrated information framework, cited from [3]

2.2 Problem delimitations

2.2.1 Data integration structure

As pointed out in [8], the conceptually data integration structure is arranged in four different

layers: data source, data source ontology, domain ontology, and view. The structure has a lot of

advantages. The system is flexible: it is better to react on changing, since the changes of one layer

will not affect other layers. And the system is extensible: it is easy to add a new data source with

new schemas into the system. As it shows on Figure.3, it compares the conceptual layering

presents in [8] and practical layering that is used in this project, similar layering can also be found

at [5]:

 Data sources: the data sources layer stores the raw data. Most of the times the data stores in

the relational database, such as MySQL and Oracle. On this project, the data source is the real

time data from the SIS system.

13

 Data source ontology: the ―data source ontology‖ is not real ontology, since it does not

represents a shared conceptualization of a domain [8]. It is the schemas of the data sources,

such as Cause and Effect Matrix in this project.

 Domain ontology: the domain ontology is the real ontology, which provides the terminology

and taxonomy for the domain. “It describes the shared conceptualization of the domain at

hand. It is a reinterpretation of the data described in the data-source ontologies and thus

gives these data a shared semantics” [8]. This project we have the Oil&Gas ontology as

domain ontology.

 View: this layer could use the common user interface to query for the information. The

semantic querying and reasoning system is defined by the software engineer who is familiar

with the domain ontology and developing tools of ontology.

Each layer is connected to another layer by mapping. These mappings are exactly the objectives of

this project. We need to clarify to what extend the four layers could provide better functionality.

There are three mappings:

 From data sources to data source ontology can be mapped automatically.

 From data source ontology to domain ontology are usually manually created. Although, I

find some papers [9] and [10] that try to research on the automatic mapping, it has been

found not suitable for this project because of the complexity of the domain ontology.

 From domain ontology to view should be defined manually. According to the need, we

specify which kind of information that we need to query. We also need to specify the

methods to reasoning the queries, so that the queries of the users can be understood by the

computers.

The detailed design of each mapping above can be found at the design specification part of this

report (Chapter 4).

14

Conceptual Layering Practical Layering

view

Domain ontology

Data source

ontology

Data source

manually mappings

automatical mappings

Semantic querying and

reasoning system

User interface

Oil and Gas

ontology

manually mappings

automatical mappings

Real time data

Cause and Effect Matrix

view

Figure 3 Comparison of the Conceptual Layering and Practical Layering of the ontology

2.2.2 Advantages of data integration

As [3] concludes: ―Ontology based Data integration provides:

1. improved data quality and accessibility

2. significant cost reduction with change of software

3. increased flexibility with organizational changes

4. improved software functionality”

The four aspects can be used to evaluate the quality of data integration. There are all the goals we

want to achieve in this project. However, the 2 and 3 are not easy to verify as we cannot change

the software and organizational currently. Therefore, we developed a prototype called semantic

querying and reasoning system to prove the 1 and 4. The implementation of querying system,

which gets the information intelligently, shows the improvement of data quality and accessibility.

And the reasoning of the ontology shows the ability of automatic processing of the real time data,

which will obviously improve the software functionality.

2.2.3 Importance of the research on the Ontology

The Semantic Web technology is young. It grows more complex as the domain scales up. The

15

ISO15926 is a standard that could be used across domains. Due to the large scales of the domain,

there are lots of challenges of the ISO15926. As it is noted in [3], ―Research is needed to ensure

ontology that:

− provides meaning to data collected from sensors and agents and thus turns data into

information

− provides a framework for unambiguous exchange of information

− data integration from different domains

− supplies a logical structure that can be used to make deductions about the state of the system

on the basis of the data collected”

This report presents the research work on the theoretical background (Chapter 3). It researches on

the Semantic Web technology on the layering view. It finds out the methodology of representing

the knowledge information with XML, RDF, and OWL. And how to inferring and reasoning the

knowledge based on the ontology we defined. The Semantic Web provides the ability to turn data

into information and unambiguously represent the information. The reasoning ability shows how

to make deductions about the state on the basis of the data collected. Also the reasoning will be

proved in the prototype.

In Chapter 3 it also investigates the ISO15926 standard on the layering view. It finds out how does

the ISO15926 support data integration across domain? How does it provide unambiguous

representation of the data? How does the data turn into information? What kind of information?

How does it reach the robust and complete?

2.2.4 Environment of data integration

Every data source has its own structure and semantics. It is theoretically not possible to solve all

the problems of heterogeneous data sources. Therefore, different kinds of integration may depend

on the specific requirement of the customer. As it was concluded in [2], the particular integration

task depends on: “

(1) The architectural view of an information system.

(2) The content and functionality of the component systems.

(3) The kind of information that is managed by component systems (alphanumeric data,

multimedia data; structured, semi-structured, unstructured data):

(4) Requirements concerning autonomy of component systems,

(5) Intended use of the integrated information system (read-only or write access),

(6) Performance requirements,

(7) The available resources (time, money, human resources, know-how, etc.)”

As for (1), the architectural of the SIS system has been introduced in the Chapter 2.1. For (2), the

function and content of the component system is introduced in the scenarios (Chapter 2.3). For (3),

the kind of information is included in the Cause&Effect matrix. It is introduced in Chapter 2.3.1.

For (4) the autonomy of component system is implemented through the reasoning of the ontology.

The reasoning is implemented in Chapter 5.1.5 Voting implementation, and verified in the Chapter

16

7.1 reasoning verification. For (5), the intended use of the integrated information system, we

focuses on the optimization of querying of the information we need. It means the integrated

system is read-only. The (6) and (7) are not considered in this project, because of time and

resource limitation.

2.2.5 Level of the data integration

According to [1], beside the specific requirement, several kinds of heterogeneity typically have to

be considered. These include differences in: ―(1) hardware and operating systems, (2) data

management software, (3) data models, schemas, and data semantics, (4) middleware, (5) User

interfaces, and (6) business rules and integrity constraints.‖ In this project, we will not consider

too much about the hardware and middleware heterogeneity. Since most of the software is Java

based, which means that they are platform independent, so we don‘t need to deal with the

operating system heterogeneity. We use common ontology language OWL and RDF to represent

and share information, therefore the data management software heterogeneity is not a problem. In

fact, we mainly focus on the (3) data model, schemas, and data semantics and (6) business rules

and integrity constraints. We have also developed a common user interface using JSP.

In [2] the data integration is divided into levels: (1) manual level (2) user interface level (3)

application level (4) middleware level (5) data access level (6) data storage level. In manual level

the user has to combine the information manually. That requires the user to be familiar with

different kinds of user interfaces and query language. Moreover the user has to be a domain expert.

On the user interface level the users utilizes the common user interface. However, the information

integration still has to be done manually, since the data structure is still heterogeneous. The

application level uses the programming to encapsulate the heterogeneous data. It is useful when

the amount of data format is small. As the amount of data increases the application will be

complex and slow. The middleware share the responsibility of applications. The data access level

provides global applications that can access the virtual data for the physically distributed system.

This project we do the data integration in the data storage level. We map the meta-data to a new

format with semantic definition.

2.2.6 Semantic Web technology used in this project

XML, RDF, and OWL are the basic elements of the Semantic Web technology. Currently, most of

the information is shared, transferred and stored in the XML format. However, the XML document

does not provide semantic meaning for the data source. Therefore, to lift the XML document to

RDF or OWL is the only way we can find to introduce semantic concept into the data source. As

we know the POSC Caesar Association (PCA) [24], which is a global, nonprofit member

organization that devotes in improvement of international standard in Oil&Gas industry for

interactive of data [3], has done a lot of job by mapping Oil & Gas ontology into OWL. Therefore,

this project will use the OWL file that PCA provided as the basis. The details of XML, RDF, and

OWL will be analyzed in the theoretical background (Chapter 3).

17

Figure.4 shows a concrete data integration structure of this project. The Sensor network collects

data in the Oil&Gas industry and store in the Origo database in XML format. The XML file

represents the syntax of the metadata. In order to get the semantic of the metadata, you have to use

the Tag name to check the Cause & Effect standard manually. The problem will delimited to

mapping the real-time XML documents to an OWL instance, and the Cause & Effect standard into

OWL. The OWL is based on the Oil&Gas standard. And I will implement a prototype, which

support querying the data model through OWL and reasoning based on OWL. The ISO15926

part2 and ISO15926 part4 is available as meta-model for the user defined ontology.

 XML

 Prototype

Check

manually

Cause &

Effect

Oil & Gas

Ontology

m
ap

p
in

g

m
ap

p
in

g

OWL

instance

Sensor

Network

M
o
d
el

in
g

OWL

q
u
er

y

Based on

Reasoning

Database in

Origo

Figure 4 Concrete data integration structure

2.3 Roles and Scenarios

2.3.1 Analysis of Cause&Effect matrix

Before introducing the mapping approach it is necessary to analyst the Cause&Effect matrix first.

As it shows in Figure.5, it is the Cause&Effect chart for ―SEACABLE TRANSFORMATOR

ROOM AREA-NORTH‖ that is located in area U51-2. It is divided into CauseTag and EffectTag,

they matches by the ―X‖ and ―&‖ symbol. ―X‖ means direct match, while ―&‖ means that an

intersection of the CauseTag and the EffectTag match. CauseTag contains elements ―Description‖,

―Voting‖, ―From‖, ―Input Type‖, ―Note‖, and ―Tag Number‖. Likewise, EffectTag contains

elements ―Tag Number‖, ―Output Type‖, ―Action‖ and ―Note‖. The elements will be described

18

below:

 Tag Number: There are two kinds of tags CauseTag and EffectTag. Every Tag Number is

unique in the whole system. The tag name contains information, for example the tag

―U51_DG001‖ put the area information U51 in the tag number.

 Description: Simple description of the CauseTag. It gives the semantic of the tag. Such as

―Single Gas Low‖ in figure.3 it means a single sensor has detected that there is a gas

concentration above the low alarm limit in the area. The description in bold type are the

classification of the tags, it points out which system the tag belongs to. For example, the tag

―U51_DG004‖ belongs to the ―Gas detection Ventilation‖ system.

 Voting: The voting means that the status of the candidate is evaluated according to the status

of the voter. There are three kinds of voting type in this table: ―1ooN‖, ―2ooN‖, ―NooN‖.

―1ooN‖ means that the voting tag is true if any of the voters is true. Similarly, ―NooN‖ means

the voting tag is true if and only if all the voters are true. The CauseTag who contains the

voting type is the candidate of that voting. Voters are the CauseTags that located above the

candidate CauseTag in the table. For example, the tag ―O87C_U51_2_SGL002‖ has a voting

type ―1ooN‖, than it is a candidate of this voting. And the voters of this voting are tag

―U51_DG004‖, ―U51_DG005‖, and ―U51_DG006‖. As it shows in table.1, only on the

1

3 3C (N=3) conditions the candidate tag ―O87C_U51_2_SGL002‖ is true. Otherwise, it

will be false.

O87C_U51_2_SGL002 U51_DG004 U51_DG005 U51_DG006

true true false false

true false true false

true false false true

Table 1 state table of “1ooN” voting

For the candidate tag ―O87C_U51_2_CGL002‖ which has a voting type of ―2ooN‖, it also has

2

3 3C (N=3) conditions that will be true showing in table.2.

O87C_U51_2_CGL002 U51_DG004 U51_DG005 U51_DG006

true true true false

true true false true

true false true true

Table 2 state table of “2ooN”voting

 From: ―F&G‖ means the tag information is collected from the sensor in the Fire&Gas area.

The ―Voting‖ means the tag is coming from the voting system.

 Input Type and Output Type: The chart contain data type: ―INT‖, ―DI‖, ―AI‖, ―Loop 0‖,

―Loop 1‖, ―Bus‖, ―DO‖. The ―INT‖ is integer, ―DI‖ is digital input, ―AI‖ is analog input, and

19

―DO‖ is digital output. Loop means that several detectors are connected in a loop.

 Action: Simple description of the effect action caused by the activity in the Fire&Gas system.

There are some classifications of the actions on top of the chart, such as ―CAP MARIX‖,

―Fire Protection‖. ―CAP MARIX‖ is the critical alarm panel.

Figure 5 Cause&Effect sheet of U51-2

 Note: The note element indicates that there are some extra restrictions or information

attached to the tag. There are two kinds of notes: general note and specific note. General note

is the notes for all the Cause&Effect chart. Specific notes are only for the chart that contains

them. For example, the tag ―O87C_U51_2_CGL002‖ has the note 5, which is ―Low alarm

limit to be 5%. High alarm limit to be 10% LEL‖

2.3.2 Roles in the Semantic data integration

By introducing semantic data integration based on ISO15926 within the SIS system showed above,

the following roles can get some advantages.

 External developer/ System integrator:

20

 External developer or system integrator could understand the information provided by other

systems without a domain expert, because of the sharing of the same Oil&Gas ontology. The

data based on ISO15926 standard are extensible and reusable. The data does not need to be

modified before it is reused.

 Internal developer

The semantic web technology enables the information to be understood by the computer.

Therefore, the internal software developer could improve the current system. The current

system in F&G uses manual searching or simple matching to get the real time information.

That is not intelligent enough, and usually takes long time because of the redundant

information. The knowledge representation of the data supports intelligent querying of the

real-time data. For example, given an area name ―U51-2‖, the query engine could get all the

states of the sensors at that time. The reasoning could also bring automation of the process

control. For example, in the Cause&Effect matrix of U51-2, if the two voting tags

U51_DG004 and U51_DG005 actually were above alarm level, the reasoning engine will infer

that the ―Confirmed Tag‖ O87C_U51_2_CG002 is set to high. So as the Effect tag is set to

high as well.

 Safety person

The safety person is responsible for quality control and testing of the system. For example, the

safety person in F&G can check the feedback of the alarming. The safety person can check if

the valves are actually closed after the F&G has sent an ESD initial signal to ESD system.

And the safety person from ESD system can check if the ESD receives the alarming

information in time. The ontology can provide explicitly definition of the information, which

is critical for the safety person. A ambiguous information in the integrated system may lead to

disaster.

 Control center

The semantic data integration enables transformation from the real-time data to useful information

as soon as possible. Therefore, the control center could make proper decision in real time. For

example, the IMS system uses a control panel to control the whole system, based on all the

information from F&G, ESD, PCS, and PSD

2.3.3 Scenarios of the SIS

Based on the SIS system described in problem statement, we will have the following subsections.

Figure.6 shows the collaboration of the F&G, ESD and PCS systems. The sensors in area U51-2

collect safety data from off-shore. The Fire&Gas system processes the real time data according to

the Cause&Effect matrix. If some accident (such as a fire) happens in area U51-2, the F&G

system will send a signal to initiate the ESD system. The ESD system will shut down the

21

Emergency Shutdown Valve immediately. The PCS system records the state of the limit switches.

This can be used to calculate the actual time the valve used to close.

Sensors In

U51-2

Real-time data of Fire&Gas

F&G

In
itia

l E
S

D

Real-time data of ESD

shutdown

ESD I/O

ESD

PCS

Real-time data of PCS

PCS I/O

Record

Figure 6 Collaboration of F&G, ESD and PCS

1. Assume that two detectors detect gas in U51-2. See the Cause&Effect sheet in Figure.7.

From the Fire&Gas data the safety person of Fire&Gas want to verify:

a) that two of the voting tags actually were above alarm level

b) that the ―Confirmed gas‖ tag, O87C_U51_2_CG002, was set to true

c) that the intersystem tag for signaling to the ESD system, O87C_U51_2_ESD, was set

to true

22

Figure 7 Cause&Effect sheet of ESD

2. From the Emergency Shutdown System Hierarchy the internal software developer of ESD

need to find out which actions the ESD 2 imply. Among others, all the Emergency

Shutdown Valves should be closed.

3. From the log of the ESD system the safety person would like to check that

a) the signal from the F&G system was received, 87C-ES 003A/B (there are

modifications on going at this platform so there are some inconsistencies, but for

illustration it is good enough)

b) The output signals for closing the valves are set. For illustration we pick one single

valve, e.g. 20C-ESV 815. The output signal is called 20C-EY 815. This goes to a

pilot valve that controls an actuator that closes the valve.

23

Figure 8 A part of the Emergency shutdown system hierarchy

4. A part of the Process and Instrument drawing (P&ID) is shown in figure.6. From the

datasheet for the valve, the closing time is missing. From the NORSOK standard S-001,

we are then guided to use 2 seconds per inch. The valve is 10‘‘, so we assume that the

closing time should be about 20 seconds. Let‘s say between 15 and 30 seconds. From the

documentation system, we see that there are two tags related; 20C-EZSH 815 and

20C-EZSL 815, that are limit switches. The first one is indicating closed valve, whereas

the other is indicating opened valve. From the PCS system the safety person of Fire&Gas

would like to check:

b) The ESV actually closed

c) The time from the gas was detected to the valve was closed

d) The closing time of the valve

24

3. Theoretical background

This chapter covers the research work of the Semantic Web technology and ISO15926 standard.

The Semantic Web is a new technology and ISO15926 is work in progress. Many concepts and

basic elements are necessary to introduce here. Therefore, the design and implementation part can

be more easily to understand. The Chapter 3.1 introduces the concepts of Semantic Web, describes

the ontology, the represents of information with XML, RDF, OWL, reasoning and inferring with

OWL, and also the description logic supporting OWL reasoning. Chapter 3.2 introduces the

ISO15926 standard, describes functions of each part of the standard, and how does each part

related together.

3.1 Semantic Web

The inventor of Semantic Web is Tim Berners-Lee, As he said (cited from [28]): ―a goal of the

Web was that, if the interaction between person and hypertext could be so intuitive that the

machine-readable information space gave an accurate representation of the state of people's

thoughts, interactions, and work patterns, then machine analysis could become a very powerful

management tool, seeing patterns in our work and facilitating our working together through the

typical problems which beset the management of large organizations‖. From his words we can see

that the Semantic Web is considered to be a new generation of the current web. Based on this

technology, it could be possible for the user and machine to understand the content of the web.

The procedure of understanding is executed automatically by the reasoning system. To reach this

goal, firstly we should represent the state of people‘s thoughts, interactions and work patterns in

an explicitly way. Therefore, we use the ontology based development, which is the significant

characteristic of Semantic Web.

The resources in semantic web contain properties and values. The resources and relationships

between them can be caught from statements. The statement is a simple sentence composed of

subject, predicate and object. [3] e.g. consider about statement‖CO2 Release U45-1‖, in which

CO2 is the subject, Release is the predicate, and U45-1 is the object. Based on this structure this

statement can be interpreted by the reasoning system, so that the integration of data could possibly

be done in real-time.

Figure.9 is the famous seven layer cake, which is proposed by Tim Berners-Lee. It simply

describes the hierarchy of components used in the Semantic Web. This master project will use the

ontology vocabulary, RDF+RDF schema, and XML+XML schema. The ontology vocabulary is

represented by OWL (Web Ontology Language), which provide a more extensive vocabulary than

RDF schema. XML provides syntax for the structure of content in the XML document, while

XML schema restricts the structure and element content in it. RDF is a language that expresses the

data model. RDF Schema provides the vocabulary to define the properties and classes of RDF file.

25

Figure 9 Seven layer cake proposed by Tim Berners-Lee

3.1.1 What is Ontology, what is it used for?

Ontology is a concept coming from philosophy. It attempts to describe the concepts of existence,

relationship, taxonomy of entities. The concept is introduced to the computer science by Gruber in

1993. His famous definition is ―An ontology is an explicit and formal specification of a

conceptualization of a domain of interest‖ [28]. As Fensel concluded that ontology covers four

aspects: explicit (unambiguous definition of relationships between entities), formal (precise

mathematical description), conceptualization (abstraction aspect of entity), and share (ontology is

common agreement by all the users). Correspondingly, Staab and Studer used the 4-tuple <C, R, I,

A> to express the ontology, in which ―C‖ represents set of concept, ―R‖ represents set of relations,

―I‖ represents the Instance, and ―A‖ represents the axioms. For example (See figure.10) ―C‖ can

be used to represent a ―Father‖ and ―Son‖ Class. ―Jim Green” and ―John Green‖ are the instances

―I‖ of the Class. The set ―R‖ contains the relation ―hasSon‖. The axioms can be express as (John

Green, hasSon, Jim Green). Due to the explicit, formal, conceptualization characteristic of

ontology, it has more advantages in the data integration. ―Compared with other classification

schemes, such as taxonomies, thesauri, or keywords, ontologies allow more complete and

more precise domain models‖ [14]. There are two kinds of ontology language: Graphical

notations (like Semantic network, UML, RDF) and Logic based (like Description logic, rules, and

first order logic). Currently, the most commonly used language to define an ontology is the OWL

(Web Ontology Language), which is a description logic. Similar description logic can be found as

OIL, DAML+OIL.

26

3.1.2 XML + XML schemas

XML (Extensible Markup Language) is a widely used standard format for data transmission. It‗s

extensible because it enable user to define mark-up element. The elements are defined by XML

schemas which describe the grammar of XML languages. Compared with traditional used HTML,

XML succeed in separating the data from form of expression. XML documents contain the data

set in a tree structure, while XSL (Extensible Stylesheet Language) is responsible for the form of

expression. XML has to be well-formed, if not it would be impossible to parse it. Moreover, the

XML document is valid if all of its elements are defined in XML Schemas or DTD (DTD is an old

version of XML schemas). XML Schemas defines the contents, structure and semantic of XML

documents. Sharing the common XML Schemas allows for data integration. Due to the simplicity

and robustness, this kind of data integration is widely used in the industry. However, the data

integration in this project introduced more semantic concepts, so that it is more complex. In the

following paragraph I will introduce some techniques of XML which are involved in this project.

XML namespace is an important function of XML. It is employed to prevent name conflicts of the

elements by adding prefixes before the names of the elements. To define the prefix of the name,

the attribute of XML xmlns (short for XML namespace) has to be set as follows:

xmlns:prefix="URI". URI is short for Unified Resource Identifier that is used for identifying

internet resources. In the following example the prefix is set to ―part2‖, the URI is set to

―http://www.15926.org/2006/02/part2#‖. OWL inherits this namespace attribute of

XML. It enables one ontology to import another ontology, because the elements of an ontology

can be simply reached by the namespace. In the following example is a reference class definition

OWL code from the ISO15926 part 4, where it imports the ISO15926 part2 as a upper ontology.

The ―RDL-9697922‖ is defined as an instance of class ―ClassOfActivity‖ from the ISO15926

part2.

xmlns:part2=http://www.15926.org/2006/02/part2#

<owl:Ontology rdf:about="">

 <owl:imports rdf:resource="http://www.15926.org/2006/02/part2"/>

</owl:Ontology>

<part2:ClassOfActivity rdf:ID="RDL-9697922">

</part2:ClassOfActivity>

XSD is short for (XML Schemas Definition). In the following is a sample XML schema for

Cause&Effect data. There are two types of elements in XSD: Simpletype and ComplexType. A

simple type element contains only text, like ―CAUSEID‖, ―EffectID‖,‖NOTETYPE‖. A complex

type element can contain other elements or attributes, like ―INTERSECTION‖. The attribute

definition type =”xs:string”define the data type of the element. The attribute definition

minOccurs=”0” restrict the minimum number of the element to zero.

 <xs:schema id="CAUSEEFFECT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

27

<xs:element name="INTERSECTION">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="CAUSEID" type="xs:unsignedByte" minOccurs="0" />

 <xs:element name="EffectID" type="xs:unsignedByte" minOccurs="0" />

 <xs:element name="NOTETYPE" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

</xs:element>

XSLT (XSL Transformation) is a transformation language for XML document. XSLT is part of

XSL. XSL contains three parts: XSLT, XPath (XML navigation language) and XSL-FO (XML

formatting language). XSLT could enable conversion from a XML tree to another tree structure. It

can be used to map XML document to OWL, the implementation is done by a tool called

JXML2OWL. The following code is a sample of XSLT. The basic elements of XSLT are:

<xsl:template>, <xsl: for-each> and <xsl: value-of>. The element <xsl:template> is used to

build template. It contains a attribute ―match‖ that links template with XML element. The element

<xsl: for-each> is used to select XML element of a specified collection of nodes. The element <xsl:

value-of> can get the value of an XML element and put it to the out stream of the transformation.

<xsl:stylesheet xmlns:xsl=http://www.w3.org/1999/XSL/Transform>

 <xsl:template match="/">

 <xsl:variable name="part4Activitys0">

 <xsl:for-each select="/CAUSEEFFECT/CAUSE/ID">

 <ActivityId>

 <xsl:value-of select="translate(normalize-space(.), ' ', '')"/>

 </ActivityId>

 </xsl:for-each>

 </xsl:variable>

 </xsl:template>

</xsl:stylesheet>

3.1.3 RDF+RDF schemas

RDF stands for Resource Description Framework. It is a W3C recommendation data model for

representing metadata. Its data specification is based on the XML syntax and has a graph structure.

It is an ontology language that can express the semantic of the data. The RDF documents can be

understood by the computer. The resources of RDF are organized as statements. The statements

are in the triple form <subject, predicate, object>. RDF schemas are extensions of RDF that

provide user defined elements for knowledge representation. Frequently used elements of RDF

Schemas are listed below:

rdfs:range of rdf:property. It defines the range of the property. (object in the triple)

28

rdfs:domain of rdf:property. It defines the domain of the property (subject in the

triple)

rdf:type It defines an instance has a type of a class

rdfs:subClassOf It defines a class is a subclass of another class

rdfs:subPropertyOf it defines a property is a sub property of another property

Given the following example in figure.10, there are four classes ―Father‖, ‖Child‖, ‖Son‖ and

―Daughter‖, in which ―Son‖ and ―Daughter‖ are subclasses of ―Child‖. And there are three

properties: ―hasChild‖, ―hasSon‖ and ―hasDaughter‖, in which ―hadSon‖ and ―hasDaughter‖

should be the sub property of ―hasChild‖. Moreover, there are two instances: ―John Green‖ and

―Jim Green‖. The triples would be like (John Green, rdf:type, Father) and (Jim Green, rdf:type,

Son). If the domain of property ―hasSon‖ is set to class ―Father‖, and range is set to class ―Son‖,

Then we can get the triple (John Green, hasSon, Jim Green).

Father

Child

DaughterSon

rd
fs

:s
ub

C
la

ss
O

f rdfs:subC
lassO

f

h
asC

h
ild

h
as

S
o
n

hasD
aughter

John Green

Jim Green

rdf:type

rdf:type

h
asS

o
n

Figure 10 RDF graph example

The semantics of RDF is given by RDF Model Theory (MT). MT defines the relationships

between syntax and interpretations. The interpretation is the methodology of how the machine can

understand the meaning of the elements of RDF schemas, like rdf: type and rdfs:subClassOf; The

property rdfs:subClassOf and rdfs:subPropertyOf should be transitive. That means:

(1) if (A, rdfs:subClassOf, B) and (B, rdfs:subClassOf, C)

then (A, rdfs:subClassOf, C)

(2) if (A, rdf:type B) and (B, rdfs:subClassOf, C)

then (A, rdfs:type, C)

3.1.3.1 Distinguish is-a and part-of relations

In RDF syntax, the is-a relation is denoted as rdf:subClassOf, and the part-of relation is denoted as

29

rdf:type. There two relations are easy to confuse. Is-a relationship defines a class that is an

extension of another class. For example, ‗male‘ is-a ‗human‘, and ‗human‘ is-a ‗animal‘. In

contrast, the part-of relationship denotes the part and whole relations between the things. For

example, 'bark', 'trunk' and 'limb' are part-of ‗tree‘. In the figure.11 it shows the linguistic

representations of the is-a and part-of relationships.

hyponym

hypernym holonymy

meronymy{ { oppositeoppositelinguistic

is-a
part-of

Figure 11 linguistic representation

3.1.3.2 SPARQL

Sparql is a RDF query language. It is a W3C standard that is being considered as a component of

semantic Web. It can be used to execute query over large amount of data source, which is stored in

a RDF format. “SPARQL contains capabilities for querying required and optional graph patterns

along with their conjunctions and disjunctions.”[25] There is a Java plug-in developed under Jena

API called Jena ARQ, which supports SPARQL.

The following code is a query of SPARQL. As you can see, the SPARQL support the URI

definition as PREFIX, like ont: <http://protege.com/Ontology#>. The variables are presented by a

symbol ―?‖ or a prefix. The query will search for the set of results that match the triple pattern.

3.1.4 OWL (Web Ontology Language)

OWL is an ontology representation language maintained by Word Wide Web Constitution. It

provides more vocabularies than RDF Schemas to give semantic representation of the information.

We will list some vocabularies that are used in this project in the following paragraph. OWL is

used in the situation where the information should be processed and understood by machines.

Actually, OWL is a logic based language. Its semantic is giving by the logic definition, such as

description logic. And the description logic could be translated to first order logic. The logic based

PREFIX ont: <http://protege.com/Ontology#>

SELECT ?Friend

WHERE {

 ?x ont:hasFriend ?Friend ;

}

30

semantics makes it support reasoning by the computer. There are some open source semantic

reasoners like DIG, Pellet, Racer, and Fact++. In this project Pellet [17] and Racer [34] are used as

reasoner.

OWL has three sublanguages that are: OWL-Lite, OWL-full, and OWL-DL. For building an OWL

ontology, it is necessary to choose a proper sublanguage. According to [12], the OWL-Lite is the

simplest sublanguage. It is suitable to use in the situation where simple classes hierarchy and

simple constrains are needed. Obviously, it is useful for building conceptual simple hierarchy like

thesauri ontology. Furthermore, the OWL-DL is based on the Description Language. The

Description Language is a decidable language, so that automatic reasoning is possible. Therefore,

the ontology based on OWL-DL can use semantic reasoner tools to check consistency and build

class hierarchy automatically. At last, the OWL-full is the most expressive language. It has

different semantic with OWL-Lite and OWL-DL. And it‘s compatible with RDF Schemas. It‘s

used on the situation that OWL-Lite and OWL-DL is not sufficient to represent the semantics. The

disadvantage is that it is not possible for the computer to automatically reason over all the

semantics of OWL-Full until now. In this project we would like to choose the OWL-Full as

ontology description language because of the complex structure of the ISO15926 standard. The

ISO15926 standard requires a highly expressive language and need support for the concept of

meta-classes.

Considering the syntax of OWL, there are two kinds of syntax representation: Abstract syntax and

RDF/XML syntax. RDF/XML syntax is based on both RDF and XML syntax, so that it can be an

extension of RDF and accessed by RDF applications. The abstract syntax is a specific language

that is easier to read and write. It is more similar and related to the description logic language. In

this thesis project, the ontology definitions based on ISO15926 are using the RDF/XML syntax to

support the RDF applications like Sparql query. However, to express the concept more clearly, we

will borrow the abstract syntax of OWL to illustrate the concept in the report writing. The example

of both syntaxes can be found at following webpage.

(Abstract syntax): http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.abs

(RDF/XML syntax): http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf

3.1.4.1 Syntax of OWL-Full

OWL-Lite, OWL-DL, and OWL-Full has different syntax. As we will use OWL-Full in this

project, we will introduce and explain some Syntax of OWL-full that used in this project in this

chapter. As the W3C specification in [13] the Syntax can be basically classified into 5 types:

Syntax of Classes, Properties, Individuals, Datatypes, and Annotations. The following chapters

will introduce each of them separately.

(1) Syntax of Classes

As shown in Figure.12, Syntax of Classes can be divided into class description and class axioms.

Class description syntax is used to build an OWL-class, and specify the structure and axioms of

http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.abs
http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf

31

the OWL-class. The class axioms list the axioms that can be defined in the OWL-class. There are

three kinds of class descriptions: Enumerations, Property Restriction, and AND, OR, NOT logic

description. The property restriction means: given a defined class A, it contains two aspects: the

class A has a property B and the property B has some value constraints and cardinality constraints.

The AND, OR, NOT is a mathematic equivalence of the OWL-syntax. For example, if a class A is

defined as (class B, owl:intersectionOf , class C), that means class A is a collection of individuals

that both is a type of class B and class C. Likewise, if a class A is defined as (class B, owl:

uinionOf , class C), that means class A is a collection of individuals that either a type of class B or

class C.

Basic Class Axioms are rdf:subClassOf, owl:equivelentClass and owl:disjointWith. The

rdf:subclassOf is extended from RDF syntax described above. Class A owl:equivelentClass to

Class B, if all members of A belongs to B and vice versa. Likewise, Class A is owl:disjointWith

Class B, if class A and class B has no common member. For more details and examples of the

Syntax described above please look at [13].

Classes

Class Descriptions

Class Axioms

Enumerations

Property Restriction

AND,OR,NOT

rdfs:subClassOf

owl:equivalentClass

Owl:disjointWith

owl:complementOf

owl:unionOf

owl:intersectionOf

Cardinality constraints

Value constraints

owl:allValuesFrom

owl:minCardinality

owl:maxCardinality

owl:hasValue

owl:someValuesFrom

owl:Cardinality

Figure 12 Classification of Syntax of classes

The Figure.13 is a snapshot cut from the software Protégé. It lists the most frequently used

syntaxes of OWL. And it gives the mathematic symbol that has the same meaning of the syntax.

Moreover, it gives some examples that make it easy to understand.

32

Figure 13 Protégé-OWL syntax

(2) Syntaxes of Properties

Syntaxes of properties are listed in table.3. Some of the syntaxes are inherited from RDF, such as

rdfs:subPropertyOf , rdfs:domain, and rdfs:range, which will not be described here.

Classification Syntax Description

Relations to other

properties

owl:equivalentProperty Properties that has the same ―values‖ but may denote

different concept

owl: inverseOf If the axioms (P1 owl:inverseOf P2), than for every

axiom (x P1 y) that exist (y p2 x) and vice versa

Global cardinality

restrictions on

properties

owl:FunctionalProperty If P is a functional property, than for each instance x it

has unique value y in axiom (x P y)

owl:InverseFunctionalProper

ty

If P is a functional property, than for each instance y it

has unique value x in axiom (x P y)

Logical characteristics

of properties

 owl:TransitiveProperty If P is a transitive property, given axioms (x P y) and (y

P z), than it has (x P z)

 owl:SymmetricProperty If P is a symmetic property, given axioms (x P y) , than

it also has (y P x)

Property

classification

owl:objectProperty properties that relate instance to instance, like hasSon,

may have the axiom (Father hasSon Son)

owl:datatypeProperty Properties that relate instance to data type, like

hasTime, relate a instance to data type dateTime.

Table 3 Syntax of properties

(3) Other syntax of OWL

Considering the syntax of Individuals, there are two aspects: individual definition, and identifier.

Individual can be defined as either named individual or anonymous individual. And there are three

ways to define identifier individual, that are owl:sameAs, owl:differentFrom and owl:AllDifferent.

See [13]. Syntax of owl Datatypes is inherited from RDF and XML. Reasoning with data type is

33

supported in OWL.

Syntaxes of Annotations are listed as follow: owl:versionInfo , rdfs:label, rdfs:comment,

rdfs:seeAlso and rdfs:isDefinedBy. Semantic annotation is a important concept in the semantic

web. It enables the semantic search that is different from traditional search engines. The

full-featured text search engine software Lucene is often used to implement the semantic search.

And in the Jena API there is a plug-in that supports Lucene.

owl:import syntax enable the ontology to import another ontology as references. In the ISO15926

standard the ISO15926-part4 has to import ISO15926-part2. And ISO15926-part7 has to import

both ISO15926-part2 and ISO15926-part4. And so on the user defined ontology based on

ISO15926 has to import all above.

3.1.4.2 Reasoning with OWL

Reasoning is a concept coming from philosophy. As it is defined in [15] ―Reasoning is the

cognitive process of looking for reasons for beliefs, conclusions, actions or feelings‖ Through the

reasoning process, people can distinguish and recognize things. In philosophy the reasoning is

divided into deductive reasoning and inductive reasoning. Formal logic is typical deduction

reasoning that by given premises the conclusion can be drawn through logic inference. For

example:

 Premise 1: All the lions are animals

 Premise 2: Simba is a lion

 Conclusion: Simba is an animal

Relatively, in the RDFS this relation can be defined as follow:

 Axioms 1: (lions, rdfs: subClassOf, animals)

Axioms 2: (Simba, rdf: type, lions)

Implicit Axioms: (Simba , rdf:type, animals)

This implicit semantic of RDFS is defined in the Model Theory, which can be interpreted

automatically by the machine. Compare to deductive reasoning the inductive reasoning is inferring

of the things will happen in the future based on the current situations, inductive statistics, or

common sense. It cannot guarantee that the conclusion is 100% true if the premises are true. The

mathematical induction is the typical inductive reasoning.

In the Semantic Web technology, all the reasoning could be consider as deductive reasoning. It is

defined as: reasoning is the evaluation of ontologies according to their specification. As it noted in

[16] “Reasoning is the essential background technology for knowledge representation.” The

reasoning has three advantages for Semantic Web: (1) ontology management, (2) inferencing, (3)

query answering. Reasoning for inconsistence is a kind of ontology management, and the

consistency is the important requirement for the ontology. So we will discuss it in the following

paragraph. The inferencing is also the critical concept of the ontology building. We will present

some examples to illustrate the inferencing with OWL. The query answering means the when the

users input queries in the user interface, the applications will analyze the query based on reasoning

of ontology and return the inferred answer as result to the user.

34

3.1.4.2.1 Reasoning with inconsistency

As it mentioned in [29], there are 3 important characteristics of the Semantic Web: scalability,

distribution, and joint author-ship. All of these may lead to inconsistencies. Sacrificing the

expressivity of the languages could avoid some inconsistency. However, for most applications the

current languages like OWL are too expressive to implement. Actually, there are two ways to deal

with inconsistency. One is find out the inconsistency and fix it. The reasoner can be used to check

inconsistency, such as Pellet, Fact++, RacerPro and Jena support incomplete consistency checking

for OWL-DL. Another is to tolerate the inconsistency by applying a nonstandard reasoning

method to acquire meaningful answers. The inconsistency we consider about here is the logical

theory inconsistency. A logic theory is inconsistent if it contains a contradiction: Both A and A

are true in the theory. As [29] concludes there are many causes of inconsistency, we will discuss

them will examples as follow:

(1) inconsistency by mis-representation of default

The knowledge engineer may define the fish as follow. It sounds reasonable if there are not any

special animal does not fit with the definition.

fish animal liveInWater (Fish is an animal that live in water)

animal liveInWater fish (Animal that live in water is fish)

For example, when you want to extend the ontology as follow:

whale animal liveInWater (Whale is an animal and whale lives in water)

whale fish (Whale is not a fish)

Then the ontology will be in consistent. Because from the animal liveInWater fish and

whale animal liveInWater , the implicit assert can get that ―whale is a fish‖. However, it

has defined that ―whale is not a fish‖, so that we have the contradiction. Therefore, in this case we

cannot generally define that animal liveInWater fish .

(2) inconsistency by polysemy

Ploysemy represents the words that have multiple meaning. In the paper [29], it gives an example

of a ―marriedWoman‖ which both mean a woman who has a husband and a woman had a husband

but has divorced now.

MarriedWoman Woman (A married woman is a woman)

MarriedWoman Divorcee (A married woman is not a divorcee)

Divorcee HadHusband HasHusband (A divorcee had a husband and has no

husband)

HasHusband MarriedWoman (HasHusband means married)

HadHusband MarriedWoman (HadHusband means married)

35

Figure.14 use a Venn chart to represent the ontology defined above. It would be easy to notice that

the ontology is inconsistency with the implicit assertion: Divorcee Divorcee That is

obviously a contradiction.

Divorcee

woman

MarriedWoman

hasHusband

hadHusband

Divorcee

Divorcee

Figure 14 Venn chart of the ontology

(3) Inconsistency through migration from another formalism

Inconsistency may occur when an ontology is migrated from other data sources [29]. This should

be taken into special consideration when the data integration is conducted. The translation of the

ontology should be strictly analyzed. Take the famous paradox of the court for example, the

ancient Greece philosopher Protagoras who is learned in law, has a pupil, Euathlus. They made a

deal: if and only if Euathlus wins his first court case, the Euathlus would pay the tuitions to

Protagoras. However, the Euathlus seems do not want to receive any case at all, so that he won‘t

have to pay the tuitions. Finally, Protagoras decides to take Euathlus to the court.

Euathlus argued that if he won the case, according to the law, he doesn‘t need to pay the tuition.

And if he lost the case, according to the deal, he doesn‘t need to pay the tuition, because he didn‘t

win a case.

However, Protagoras argued if he lost the case, according to the deal, he should get the tuition

back, because Euathlus had won his first case. Else if he won the case according to the law, he

should also get the tuition back.

Can you judge who should win this case? If we consider the deal as an ontology, and the law as

another ontology, obviously, there is a contradiction between these two ontologies. Let us use the

if-then logic to represent both of them.

(1) The deal:

 if Euathlus win a case, then Euathlus should pay the tuition

 if Euathlus lose a case, then Euathlus don’t need to pay the tuition

36

(2) The law:

if Euathlus win a case, then Euathlus don’t need to pay the tuition

 if Euathlus lose a case, then Euathlus should pay the tuition

As we know for the sentence: if a then b, ―a‖ is the hypothesis and ―b‖ is the conclusion. More

specifically ―a‖ is the sufficient condition for ―b‖, and ―b‖ is the necessary condition for ―a‖. The

ontology will be as follows:

EuathlusWinACase EuathlusPayTuition (1)

EuathlusWinACase EuathlusPayTuition (2)

EuathlusWinACase EuathlusPayTuition (3)

EuathlusWinACase EuathlusPayTuition (4)

The formula (1) and (2) are defined according to the deal between Protagoras and Euathlus, and

formula (3) and (4) are defined according to the law. In the argument of Protagoras, he used the

formula (1) and (4), so that no matter Euathlus win or lose the case, he will pay the tuition fee. To

the contract, in the argument of Euathlus, he used the formula (2) and (3). However, as a

knowledge engineer‘s point of view, this is obviously an inconsistency of the ontology caused by

migration from the formalism of the law to the formalism of the deal. If you look at formula (1)

and (3), the concept EuathlusWinACase is unsatisfiable, because (1) and (3) can be

combined as:

EuathlusWinACase EuathlusPayTuition EuathlusPayTuition =

Likewise, the concept for formula (2) and (4) EuathlusWinACase is unsatisfiable as well.

The problem is which formalism you want to follow as standard to make the decision. In this case

a better reasoning tool is required to make more advanced choices. In [29] it proposed a

methodology for reasoning with inconsistent ontologies.

(4) inconsistency caused by multiply sources

―When a large ontology specification is generated from multiple sources, in particular when these

sources are created by several authors, inconsistencies easily occur” [29] The ISO15926

ontology is a huge ontology specification with multiple sources in multiple domain. Therefore, the

goal of consistency is a big challenge for data integration based on ISO15926. Although,

ISO15926 has a centralized global upper ontology, the lower level ontology still has to cope with

the heterogeneous data sources. A lot of works need to be done to build standardized templates for

each specific domain.

3.1.4.2.2 Inference with OWL

As it noted in [17] the inference with OWL are divided into two kinds:

Classification: Inference with classes to create the complete class hierarchy based on the

subclasses relations assertions. The queries of getting subclass or super class can be answered

through the class hierarchy.

37

Realization: Inference with the instances to find out the direct and indirect classed that the

instances belongs to. The realization step should be done after the classification, because the types

of instances are defined according to the class hierarchy.

The following code is writing in OWL abstract syntax which is used to illustrate classification of

classes. For the meaning of intersectionOf and someValuesFrom please check the OWL syntax in

figure.5. It‘s worth to mention that the axiom (a, partial, b) means ―a‖ is sufficient condition of ―b‖.

And the axiom (a, complete, b) means ―a‖ is sufficient and necessary condition of ―b‖ and vice

versa. From the classes definition we can get the following information:

 A Java programmer is a person who programs with Java.

A Programmer is a person who programs with programming language.

Java is a kind of programming language.

From the assertions above the computer can infer that Java programmer must be a Programmer.

The following code is writing in OWL abstract syntax which is used to illustrate the realization of

individuals. From the classes and individual definition we can get the following information:

 F-22 is a kind of thing.

 Tom is a man who drinks cappuccino and drives F-22.

 Cappuccino is a kind of Coffee

 coffeeLoverMan are the man who drinks Coffee, the man who drinks coffee are

coffeeLoverMan

 coffeeLoverMan drives car.

From the assertions above, the computer can infer that, Tom drinks coffee, so he is a

coffeeLoverMan. And coffeeLoverMan drives car, so Tom can only drives car. So that F-22 here is

a car not a plane.

Individual(a:F-22 type(owl:Thing))

 Individual(a:Tom type(a:male)

 value(a:drinks a: Cappuccino)

 value(a:drives a: F-22))

 Individual(a: Cappuccino type(a:Coffee))

 Class(a: coffeeLoverMan complete

 intersectionOf(a:man restriction(a:drinks someValuesFrom(a:Coffee))))

 Class(a: coffeeLoverMan partial restriction(a:drives allValuesFrom (a:Car)))

Class(a:Java+Programmer complete intersectionOf(a:person

 restriction(a:programsWith someValuesFrom (a:Java))))

Class(a:Programmer complete intersectionOf(a:person

 restriction(a: programsWith someValuesFrom (a: ProgrammingLanguage))))

Class(a:Java partial a:ProgrammingLanguage)

38

3.1.5 Description Logic

As it defines in [18], the description logic is knowledge representation languages. ―It is used for

logical reconstruction of representation tool like frames, Object-Oriented and semantic data

models, semantic networks, type systems, and feature logics.” High expressivity and decidability

enable the description logic to describe most of the concept in the world explicitly. There are many

kinds of description logics which are represented by different naming conventions. Description

logics provide well defined semantics for OWL, OWL.2 supports of the

description logic. Separately, OWL-DL is based on, and for OWL-Lite it is [20].

Description logic is the basis of Semantic Web. It facilitates ontology engineering, reasoning with

ontology, and service description and discovery.

As it shows in figure.15 from [17] the structure of Description logic can be divided into Tbox and

Abox. Tbox defines the schema of the ontology. There are the axioms of the classes, they could be

description of concepts or statement of constrains, such as subclass, equivalent class, intersection

or union of axioms in OWL. Abox defines the data of the schema, which means the assertion of

the individuals. Such as differentFrom, sameIndividualAs, oneOf syntax in OWL. Knowledge base

contains both Tbox and Abox to construct a complete OWL ontology.

Knowledge Base

Tbox(schema) Abox(data)

OlderLady Human female old
 Happy-Man(Franz)

has-child(Franz,Luisa)

has-child(Franz,Julian)

Figure 15 DL Architecture

As introduced in [19] there are some basic constructors of DL:

, , . , . , (), ()C D C r C r C n r n r

In the constructors the ―C‖ and ―D‖ represent classes, ―r‖ represents property, and ―n‖ represents

cardinality. The OWL class constructors and relative DL syntax can be found in Figure.16. DL

syntax also can support OWL axioms as Figure.16 cited from [20]. Relations like subclass,

disjoint class and equivalent class of classes; classify the same and different individuals; sub

property, equivalent, inverse, functional, transitive, reverse functional properties all can be

expressed by DL syntax. As it noted in [20], the following equivalence is obviously true:

39

C D iff both C D and D C

C D x.C(x) D(x) (The statement ―C and D are equivalent class‖ equals to the

statement ―for any instance x type of C, x is also type of D and vise verse‖)

C D x.C(x) D(x) (The statement ―C is the subclass of D‖ equals to the statement

―for any instance x type of C, x is also type of D‖)

Figure 16 OWL as DL: Axioms. From [20]

Mapping OWL to equivalent DL enables the reasoning of OWL. The semantic of DL defines by

the interpretations: I II = (,) , where I
is the domain, and I

 is the interpretation function

that maps concept (class) A , role (property) R and individual i [20].

3.2 ISO15926 Standard

ISO15926 is an international standard with the title: “Industrial automation systems and

integration—Integration of life-cycle data for process plants including Oil&Gas production

facilities‖. It‘s used for data integration, sharing, exchange, and hand-over between computer

systems [22]. The goal of ISO15926 is to enable data integration for process plants, in order to

reduce the redundant and inconsistent information in sharing data between different companies or

organizations. ISO15926 is extremely complete and robust, which differentiates it from other

standards. ISO15926 is introduced because of the requirement for a common terminology for a

huge number of heterogeneous data sources. Also this standard has to be as stable as possible, at

least no substantial changes for decades. The scope of ISO15926 nearly covers the whole process

plant industry, including Oil&Gas industry. It contains 7 parts; each of them is published

separately.

Part 1 is an introduction document to the ISO15926 which gives an overview and describes the

fundamental principles of the standard. Part 2 defines a generic, conceptual data model for

representation of life-cycle of a process plant. Part 3 defines ontology for geometry and topology

40

based on concept of ISO 10303-42 and ISO 10303-104. Part 4 specify reference data that

represents information in a certain domain. The reference data library is commonly used for all the

users. Part 5 specifies the procedures to be followed by a registration authority for reference data.

[22] Part 6 is the methodology for the development and validation of reference data [24], it defines

the abstract syntax of the reference data. Part 7 Implementation methods for the integration of

distributed systems [24]. Part 1, 2, 4 has published as ISO standard, while Part 6, 7 is still under

development. In the thesis we mostly used Part 2, 4, 7, so we will give more details of them in the

following chapter.

3.2.1 ISO15926 Part 2: Data model

ISO15926 Part 2 is an upper ontology, “which define top-level concepts such as physical objects,

activities, mere logical and topological relations from which more specific classes and relations

can be defined” [26] Similar upper ontology can be found as SUMO, Sowa upper ontology, Dolce,

CliP. Upper ontology can be considered as similar to the meta-model concept in UML. The data

model is generic, which means ―atoms‖ can create many statements by different combinations. To

construct a data integration framework based on ISO15926, the engineer must start with part2. At

least some basic principles and methodology should be mentioned as follow.

Data model of Part 2 uses the 4 dimensionalism paradigm, which are 3 spaces and 1 time.

Compare with 3 dimensionalism paradigm, the 4D ontology consider all the individuals as

spatio-temporal extend. In such a way every individual has both spatial part and temporal part.

Only on condition of both of them are equal, an individual is equal to another one. Due to the 4D

characteristic, the ISO15926 can be used to represent life-cycle data for process plants.

There are four basic elements of Data model: Thing, Possible Individual, Class, and Relationship.

Respectively, thing represents anything either real or abstract, Possible Individual denotes

individuals with spatio-temporal extend, Class is a collection of things, and Relationship describes

the relation between things. All the other elements in Part 2 are extends from these basic elements.

Model diagrams in Part2 are using the EXPRESS G diagram as template. The Model diagrams

contain attributes: EXPRESS entity types; EXPRESS sub typing; EXPRESS relationship; and

EXPRESS G symbols. The following figure.17 is an example of model diagram in part 2; it

defines the cause_of_event Relationship which we will use in this project. There are several

elements that have been defined as follows:

Relationship: cause_of_event, temporal_bounding, participation, recognition,

involvement_by_reference, beginning, ending

PossibleIndividual: activity, event, point_in_time

ObjectProperty: part, caused, causer, whole, involved, involver, recognizing, recognized

The point_in_time class is the subclass of event, while the class beginning and ending are the

subclass of temporal_bounding. The ObjectProperty caused has domain cause_of_event and range

event, while the ObjectProperty causer has domain cause_of_event and range activity.

41

Figure 17 Model diagrams in Part 2(from [23])

3.2.2 ISO15926 Part 4: Reference Data

If you consider Part 2 as ―grammar‖ for a sentence, the Part 4 will be the ―words‖ [27]. Such as

―firing‖, ―flaming‖ as you can see from Figure.18 as follow. Part 4 is primarily divided into some

basic spreadsheets, such as activity.xls, piping.xls, property.xls, static_equipment.xls etc. The

reference data is defining the terminology as a general standard used by every company and

organization in a specified domain in order to provide data consistency. The reference data is

arranged in a hierarchy like it shows in Figure.18. It employs the taxonomy mechanism for the

―Activity‖. ―Activity‖ is a genetic meta-class from Part 2, for which the ―Reacting‖ is the subclass

of ―Activity‖. Likewise, the ―burning‖ and ―responding‖ are subclasses of ―Reacting‖. Based on

the taxonomy defined in Part 4, it could be possible to specify the members of the terminology.

For example, the ―firing in U51-2‖ is a kind of ―firing‖ (subclass). The members are specified in

Part 7.

42

Activity

Reacting

responding

blazing

burning

flaming

firing

firing in U51-2

flaming in U51-2

Taxonomy

Member

Figure 18 Reference data hierarchy

The question may arise how the Part 2 and Part 4 are related to each other, what is the modeling

methodology to achieve the completeness and robustness of the ISO15926 standard? As you can

see from Figure.19, it illustrates the composition of Part 2 and Part 4. In figure.19 the object with

red color comes from Part 2, object with green color come from the Part 4, and the black arrow

defines the relation between them. As it is described above in Part 2 there are some basic elements

such as Class, Relationship, and PossibleIndividual. Therefore, in Part 4 it has Class and

Relationship, the Class of Part 4 (in green rectangle) is extended from super class in Part 2 Class

or PossibleIndividual. And there are only two kinds of relationship in Part 4 that is Classification

(green arrow) and Specialization (green line with round end). The Classification means something

is part-of something, while Specialization means something is kind-of something.

43

Part2:Classification

Part2:Specialization

Part4:Functional

physical object
Part4:system Part4:Safety system

Part4:Fire detection

system

Part4:protection

equipment class

Part2:ClassOfClassOfI

ndividual

Part2:Functional

physical object

Figure 19 Part 2 related with Part 4

Figure Type Description

 Instance of Part2:

Specialization

kind of a Relationship (part 2) Individual, with the

objectProperty: SuperClass and SubClass

RDFS property

rdfs:subclassOf

objectProperty with the domain of all class from part 2

and range of all class from part 4

Instance of Part2:

Classification

kind of a Relationship (part 2) Individual, with the

objectProperty: ―classified” and ―classifier”

Table 4 detail description for figure.19

To understand the Classification and Specialization relationship, the dividing levels of ISO15926

part 2 need to be introduced [24]. The basic element ―Class‖ is the collection of things. There are

some subclasses of Class, such as ―ClassOfIndividual‖, ―ClassOfClass‖, and

―ClassOfClassOfIndividual‖. ―ClassOfIndividual‖ is a type of ―Class‖ whose members are

instance of ―PossibleIndividual‖. Likewise, ―ClassOfClassOfIndividual‖ is a type ―ClassOfClass‖

whose members are instances of ―ClassOfIndividual‖. As you see from chart.3 below, there are

three levels have been defined, so that we can get the OWL restrictions in OWL abstract language

in the following code. It restricts the range of the property of each class.

Level ClassName Members

Level_0 PossibleIndividual all individuals

Level_1 ClassOfIndividual all set of individuals

Level_2 ClassOfClassOfIndividual all set of set of individuals

Table 5 dividing of Levels

44

3.2.3 ISO15926 Part 7: implementation methodology

Given ISO15926 Part 2 and Part 4, we still do not know how to do the data integration. Therefore,

in part 7 it specifies the implementation methodology. Including the following questions: How

does each part collaborate as one? How is it related to RDF and OWL? How does the data

integration work in a distributed system?

3.2.3.1 ISO15926 implementation hierarchy

The Figure.20 shows the ISO15926 stack. There are many versions of this kind of stack, for

example in [21] the hierarchy of process industry ontologies is a pyramid. On top of the pyramid

is the ISO 15926 Part 2 that has 200 classes and properties. The layer under the ISO15926 Part 2

is the ISO15926 Part 4 that has thousands of classes. The number of classes and properties

increases as it is going down the pyramid. If we come back to this Figure.20, it gives a clearer

overview of the hierarchy of ISO15926 standard. On the top layer is the main technology of the

Semantic Web. All the classes, properties and restrictions (ontology) in ISO15926 are written in

OWL language, and all the data store (instances) are in the RDF triple. From layer 4 to layer 7 are

defined in ISO15926 standard. Based on ISO 15926 Part 2 and 15926 Part 4, ISO15926 Part 7

specifies Generic Templates and Object Information Models. Layer 2 and 3 are the user layer,

which includes proprietary OIMs and Document Classed (Ontology) and User data in Facades

(instances).

Class (part2:Classification partial

unionOf(

intersectionOf (Restriction (part2:hasClassified allValuesFrom(Level_0))

 Restriction (part2:hasClassifier allValuesFrom (Level_1)))

intersectionOf(Restriction (part2:hasClassified allValuesFrom(Level_1))

 Restriction(part2:hasClassifierallValuesFrom(Level_2)))))

Class(part2:Specialization partial

 unionOf(

intersectionOf(Restriction (part2:hasSubclass allValuesFrom (Level_0))

 Restriction (part2:hasSuperclass allValuesFrom(Level_0)))

 intersectionOf(Restriction (part2:hasSubclass allValuesFrom (Level_1))

 Restriction (part2:hasSuperclass allValuesFrom(Level_1)))

 intersectionOf(Restriction (part2:hasSubclass allValuesFrom (Level_2))

 Restriction (part2:hasSuperclass allValuesFrom(Level_2)))))

45

Figure 20 the ISO 15926 stack, (from [27])

3.2.3.2 Template specification

A template is a standard format for a kind of data sheet to enable common look for every user. It is

a lower level model built upon ISO15926 part2. Someone use the metaphor that considers the

template as lego block that you can use to build anything you like. As I understood, if we regard

the part 2 as ―grammar‖ and part 4 as ―words‖, than the template is the ―phrase‖ of a sentence. The

template is a generic model. And there are specified templates for each field of industry. For

example, there are templates for ―pumps‖,‖ piping‖, in the first step of data integration you have

to find out which templates fit for you.

There are two kinds of templates in ISO15926-7 that are Shorthand Template (ST) and Longhand

Template (LT). ―A Longhand Template is a collector of ISO 15926-2 entity data types that

together capture the representation of the information one wants to exchange.”[27] LT gives a full

definition of information that is based on the ISO15926-2 data model. However, it would be a

waste of resources for storing and processing many objects we do not need at all. Therefore that

Shorthand Template is introduced. ―A Shorthand Template is an n-ary relationship that only points

at the variant "leaves" of the graph of its companion ("isDefinedBy") Longhand Template.”[27] It

is much more efficient to use shorthand template than longhand template. In the case that you may

need Longhand Template you can get it via the ―isDefinedBy‖ property. In an ideal situation, if we

want to do the data integration, all the templates should be created and published by a standard

organization. Since the ISO15926-7 is still under development and not fully published, on this

project I will define some simple example templates according to the methodology when

necessary.

Figure.21 shows an example of Longhand template specification. The LT-1002 is the name of the

longhand template. It inherited the classes and object property from the ISO15926-2.

―Classification‖, ―Beginning‖ and ―TemporalWholePart‖ are subclasses of the basic element

―Relationship‖ in ISO15926-2, which defines the relation between things.

46

―ClassOfTemporalWholePart‖, ―ClassOfRepresentationOfThing‖, and ―ClassOfInformationRepre

sentation‖ are the set of individuals.

Figure 21 Longhand Template Specification, cited from [27]

Figure.22 shows an example of comparison of Longhand Template and Shorthand Template that

cited from [27]. From this figure, we can clearly see the difference of Longhand and Shorthand

Template. The Longhand Template gives the well-form definition of the model LT-1002 according

to the ISO15926, whereas the Shorthand template turns to be developer friendly. It is easy to see

that the ST-1002 is a MultidimensionalObject that has the property: temporalWhole, tempralPart,

context, and beginning. The instance of ST-1002 is showing as follow.

<part2:MultidimensionalObject rdf:ID="ST-12321">

 <rdf:type rdf:resource="http://tpl.rdlfacade.org/data#ST-1002"/>

 <part7:temporalWhole rdf:resource="#ddf2"/>

<part7:temporalPart rdf:resource="#dtss2"/>

<part7:context rdf:resource="http://www.ontology.com/rdl#Cfd"/>

 <part7:beginning rdf:resource="#SDFD"/>

</part2:MultidimensionalObject>

47

Figure 22 comparison of Longhand Template and Shorthand Template, from [27]

3.2.3.3 OIM (Object Information Models)

OIM ontology specifies the template. It is defined by domain experts, which means that each of

the companies that want to use ISO15926 standard has to participate in the development of OIM.

The models in OIM give more specific information of things than the template.

3.2.3.4 Data integration in a distributed system

The Façade concept is introduced to solve the problem of implementation of the above technology

in a distributed system. Façade is a web server that can store triples, and supply an API

(Application Programming Interface) to share information between all the Facades. The following

figure.23 shows the information chain of façade. Each of the system façade hands over its

messages to the Group façade, and the Group façade hands over its information to the Project

façade. In this way all information in the façade can be available to the other façades. The façade

support the Sparql query, the query can retrieve information from one or more façades at one time.

48

Group Facade

System Façade of Fire&Gas

System Façade of ESD

handover

handover

Cause&Effect matrix of Fire&Gas

Casue&Effect matrix of ESD

mapping

mapping

Project Facade

h
an

d
o
v
er

Figure 23 Information chain of Facades

49

4. Design specification

According to the data integration structure (in problem delimitation Chapter 2.2.1), and the

implementation methodology defined in ISO16926 Part 7 (in Chapter 3.2.3), this project would

like to design the data integration system like it shows in figure.24. Similar architecture of

ontology based data integration architecture can be found in [4], [11], and [32]. The users of all the

integrated systems share the same User Interface. The Query Engine and Reasoning engine

separate the users with the data layer. It is usually developed by the integration software engineer

who knows both the requirement of user and the developing tool of Semantic Web. This project

will implement a prototype with the querying and reasoning system. The Cause&Effect matrix,

which is the data source ontology, need to be mapping manually to the System Façade. As it

introduced in the ISO15926 part-7 the system Façade are the web service that can store triples.

The triples are based on the ISO15926 standard. Each system façade should handover its data to a

group façade. The group façade stores the integrated ontology of the whole group. The Reasoning

Engine could reason through the group façade to get the integrated meaning of the query user

input. Then the Reasoning Engine sends the result back to the Querying Engine. Therefore, the

querying engine could use the result from Reasoning Engine to implement semantic query of the

real-time data.

Real Time Data from Fire&Gas

In RDF Fromat

Real Time Data From ESD

in RDF format

 Search

Q
u
e
ry

Q
ue

ry

Group Facade

Reason

Real Time Data from Fire&Gas Real Time Data from ESD

m
a
p
p
in

g

m
a
p
p
in

g

User Interface

System Façade of Fire&Gas

System Façade of ESD

handover

ha
nd

ov
er Cause&Effect matrix of Fire&Gas

Casue&Effect matrix of ESD

mapping

mapping

Project Facade

h
a
n
d
o
v
e
r

Real Time Data From PCS

in RDF format

Real Time Data from PCS

m
a
p
p
in

g

Q
uery

System Façade of PCS Casue&Effect matrix of PCS

mapping

handover

Query Engine&

Reasoning Engine

User

Figure 24 Data integration system architecture

50

There are three systems involved in the data integration. The Fire&Gas system belongs to Origo

Engineering AS. Their database, Cause&Effect matrix and domain experts are available for the

implementation. Therefore, this project mainly focuses on the model design and implementation

of Fire&Gas system. The ESD (Emergency shutdown system) and PCS (Process Control System)

are introduced for testing and verification of the data integration ability of the prototype.

The system contains the following parts:

 Mapping the Cause&Effect matrix to OWL ontology based on the ISO15926 standard. The

OWL ontology is stored in the Façade database. We tried two approaches to implement this

part.

(1) Manual mapping approach: use ontology creation and modification tool Protégé to map

Cause&Effect matrix to OWL ontology based on ISO15926 standard

(2) Automatic mapping approach: Use transformation software JXML2OWL to map

automatically. (Note: Although this approach has proved not suitable for this project, the

automatic mapping problem is valuable for research. It will be discussed in the

discussion chapter)

 Mapping the real-time data to data source ontology: depending on the format of the real-time

data, there are two approaches can be used as follow:

(1) Mapping from relational database to OWL instance: use Jena API to implement.

(2) Mapping from XML to OWL: use JXML2OWL to implement

 Semantic Query engine and Reasoning engine implementation: it contains two parts as

follow:

(1) The query engine receives the query information from the user interface, queries the real

time databases and returns the query results. The query engine is developed based on

Jena API, and the RDF query language Spaqrl is used to query data.

(2) The reasoning engine reasons the queries of the user, get the semantic information

according to the ontology stored in Façade. The reasoning engine is also developed based

on Jena API, and the reasoning tool Pellet is used as reasonor.

 User interface: The user interface should be user friendly. It supports keyword searching and

advanced searching in different conditions. JSP is used to implement the user interface.

4.1 Mapping the Cause&Effect matrix to ISO15926

Specification

As it shows in Figure.25, the manual mapping includes the following steps:

 Analyze the ISO15926 Part 2: Figure out the functionality of classes in the Part 2, find out

the top level classes and relations that could be used in this project.

51

 Analyze the ISO15926 Part 4: Based on the top level classes and relations, find out how are

the Part 2 and Part 4 cohered as a whole, for example the classification and specification

relationships. Besides, figure out the class hierarchy of the Part 4.

 Analyze the Cause&Effect matrix: This step is going on currently with the above two steps.

Find out to what extent the information of Cause&Effect matrix can be expressed by the

ISO15926 standard.

 Mapping the terminology in Cause&Effect matrix to Part 4: Map the terminology based on

the above steps. This step needs to be iterated in order to reach an unambiguous mapping.

 Define ISO15926 Part 7 template specification and design Object Information Model: Based

on the ―words‖ given by Part 4 and ―grammar‖ given by Part 2, it could be possible to

formulate a ―sentence‖. However, without the semantic given by the Cause&Effect matrix,

the ―sentence‖ can make no sense.

Analyze ISO15926-part2 Analyze ISO15926-part4

Classification/

specification

Analyze Cause&Effect

Mapping terminology in

Cause&Effect to part4

term
inology

terminology

iterate

iterate

Define ISO15926 part7 template

specification

Design Object Information Models

s
e
m

a
n

tic

g
ram

m
er

word
s

iterate

Figure 25 work flow the manually mapping

4.2 Mapping the real-time data to data source ontology

Specification

As it shows in Figure.26, the XML2OWLMapping class is the main class of mapping. It gets the

real time data from the database by GetDataFromDatabase class, and create ontology model from

the ISO15926 Part 7 ontology database by OntologyModelCreation class. Then it maps the

elements of real time data to the relative individuals of classes in the ontology, and stores it in

52

RDF format.

Real Time Data

ISO15926 part7

XML2OWLMapping

GetDataFromDatabase

query()

OntologyModelCreation

OntologyModel

Creation()

Real time data in RDF format

mapping()

store

Figure 26 real-time data mapping structure

4.3 Semantic Querying and Reasoning system

specification

Index.jsp

Split_page.jsp

User interface

DAOfactory

Dao Interface

DAOimpl

DataConnection vo

call call

Call/Return valueCallReturn value

Dao Design Pattern

Ontology Real time data in

RDF formate

Query

specification

Sparql query Impl

Query Execution

Result Transfer

Pellet Reasoning Impl

Reasoner

Initialization

ReasoningImpl

Figure 27 Semantic querying and reasoning system structure

As it shows in figure.27, this project uses the DAO (Data Access Object) design pattern to

53

separate the user interface, data access, and service logic. The user interface is designed by JSP.

The main page is written in index.jsp file, it is responsible for interaction between the user and

DAO. The Split_page.jsp file is responsible for constructing the appearance of the user interface.

The index.jsp can initialize the DAO factory class. The methods in DAOFactory class return a

DAOimpl class as A DaoInterface. The DAOimpl implements the DAOInterface. Therefore, in the

index.jsp it can call the methods in DAOInterface, which are implemented by DAOimpl class. The

DAOimpl contains ―Sparqul query Impl‖ part and ―Pellet Reasoning Impl‖ part. The

DataConnection class is responsible for getting data from the database. In this project it gets data

from an ontology database and a real-time database in RDF format. The vo class is short for value

object, it contains all the business values required by the clients.

The ―Sparql query impl‖ part implements the querying of the ontology and real-time data. It

contains three steps. First, the Query specification step specifies the Sparql query as the

requirement of the clients. Second, execute the query. At last, the query result needs to be

transferred into value objects.

The ―Pellet Reasoing impl‖ part implements the reasoning of the ontology by using the Pellet

Reasonor. It contains two steps. First, the reasonor needs to be initialized according to the methods

in the Jena API. Second, the reasoning is implemented by finding graphs in the inferred result

54

5. Mapping Implementation

5.1 Mapping the Cause&Effect matrix to ISO15926

This implementation maps the Cause&Effect matrix to OWL ontology based on ISO15926

standard. We will design ontology based on ISO15926 for Cause&Effect matrix, in which the

―grammar‖ is defined by ISO15926-2 and ―word‖ coming from ISO15926 part-4. The software

Protégé is used as model creation and modification tool. And CMapToolsCOE is used as the graph

representation of the OWL ontology.

5.1.1 Hierarchy of the Models

Figure.28 shows the hierarchy of the models. The models are related by the subclass relations.

Most of the classes are in the yellow color, some of them are in the red color. The classes in red

color have some restrictions that are both sufficient and necessary. For example, assume the class

A has sufficient and necessary restriction X, than if ―a‖ is a instance fulfill the restriction X, than it

is the member of A and if ―a‖ is a member of A, then ―a‖ has the restriction X. The owl:thing is the

root class, all the classes in OWL should extend from it. All the classes in the Figure.28 are

belonging to ISO15926 Part 2, ISO15926 Part 4, or ISO15926 Part 7. The details of them will be

introduced in the following chapters. As you can see from Figure.28, it contains the following

parts:

 Tag: Classification of different kinds of tags. It is defined in Part 7

 Activity: Classification of different kinds of activity. It is defined in Part 4

 Area: set of areas

 Datatype: set of datatypes

 Event: Classification of different kinds of events. It is defined in Part7

 CauseAndEffectChart: set of Cause&Effect charts

 Room: set of rooms

 PhysicalObject: set of physical objects that will be used in this project. It contains some kinds

of detector, LED display and also the alarm panel.

 System: Classification of different kinds of systems. It is defined in Part 4

 Voting: Classification of different kinds of voting. It is defined in Part 7

 Note: Classification of different kinds of notes. It is defined in Part 7

55

Figure 28 Class hierarchy of the models

5.1.2 “System” hierarchy

The Figure.29 shows the system hierarchy defines in the ISO15926 Part 4 [30]. In the

Cause&Effect matrix of U51-2, it contains the ―fire detection system‖, ―fire fighting system‖, ―gas

detections system‖ and ―safety ventilation system‖. All these systems are subclass of ―safety

system‖, which is the member of the ―protection equipment class‖

56

Figure 29 reference data of the “system” hierarchy, from [30]

These four systems are set into disjoint system as it shows in the following figure. Disjoint

relations ship means the two classes has no common members.

Figure 30 disjoint systems

5.1.3 Restrictions of the classes

Constrains defines the relationship, cardinality of classes. In order to give a clear view of the

concept the following figures gives both graph representation and OWL abstract syntax definition.

The ―must be‖ tag in the graph representation equals to the ―only‖ symbol in OWL abstract syntax,

and also equals to the OWL element ―owl:allValueFrom‖. Likewise, the ―can be‖ tag in the graph

representation equals to the ―some‖ symbol in OWL abstract syntax, and also equals to the OWL

57

element ―owl:someValueFrom‖.

Figure.31 gives the definition of ―Activity‖ and ―Room‖ classes. The ―Activity‖ happens in the

offshore area relates to the tag ―CauseTag‖ by the object property ―relatedTag‖. There are should

be some physical object involved in the activity, like ―Flame detector‖ involves the ―Flaming‖

activity. The activity happening may cause some event, that is defined by the ―causeOfEvent‖

relationship. The ―Room‖ here means the rooms in the offshore area, such as control room. Each

room has a related ―CauseAndEffectChart‖, like the ―CauseAndEffectChart‖ in area U51-2 is

related to sea cable transformator room. The cardinality of the object property ―hasChart‖ is

constraint to exactly one. Each room contains at least one system. And the room must be located at

an area.

Figure 31 “Activity” and “Room” class definition

Figure.32 gives the definition of ―System‖ and ―LitLed‖ classes. Each system contains some tags

that used for transferring information. The ―Event‖ ―LitLed‖ uses at least one equipments from

―LedDisplay‖.

58

Figure 32 “System” and “LitLed” definition

Figure.33 gives the definition of ―CauseAndEffectChart‖ and ―Area‖ classes. Each

―CauseAndEfectChart‖ class relates to a room. One ―CauseAndEffectChart‖ contains at least one

―CauseTag‖ and at least one ―EffectTag‖. Each area may contain some rooms.

Figure 33 “CauseAndEffectChart” and “Area” class definition

59

5.1.4 Tag classification

Figure.34 shows the ―CauseTag‖ and ―Tag‖ class definition. Each tag belongs to a system by

―belongToSystem‖ property. And a tag may have a note that gives some extra information. This

definition corresponds to the ―Note‖ element in the Cause&Effect chart. The ―CauseTag‖ is the

subclass of the class ―Tag‖. It inherits all the attributes from ―Tag‖. And it is disjoint with

―EffectTag‖. Each ―CauseTag‖ is involved in an ―Activity‖. The ―CauseTag‖ match to the

―EffectTag‖ by the ―causeOfEvent‖ property. The ―CauseTag‖ has the input type for the input

signal. As it shows in figure.34, the ―CauseTag‖ is classified into ―TagFromFireAndGas‖,

―TagFromVoting‖ and ―TagFromESD‖ according to the ―From‖ element of Cause&Effect chart.

―TagFromFireAndGas‖ is the ―CauseTag‖ which has the ―F&G‖ symbol in the ―From‖ element.

―TagFromVoting‖ is the ―CauseTag‖ which has the ―Voting‖ symbol in the ―From‖ element.

(Please check the ―CauseAndEffect‖ chart in Chapter 2.3.1 if you are not clear about the

description above)

Figure 34 “CauseTag” and “Tag” class definition

Figure.35 shows the ―EffectTag‖ and ―ActiveEffectTag‖ definition. The definition of ―EffectTag‖

is similar to the ―CauseTag‖. The differences are: the ―EffectTag‖ relates to an ―Event‖ rather than

―Activity‖, and the ―EffectTag‖ relates with the ―Datatype‖ class with the ―hasOutputType‖

property. The ―ActiveEffectTag‖ is defined as the ―EffectTag‖ which is related to an

―ActiveCauseTag‖. That means if the ―CauseTag‖ that the ―EffectTag‖ related with is reasoning as

60

the type of ―ActiveCauseTag‖ than the ―EffectTag‖ will be reasoning as the ―ActiveEffectTag‖.

The ―ThingsWhich is define as‖ in the graph representation is equal to the Necessary&Sufficient

definition in the OWL abstract syntax.

Figure 35 “EffectTag” and “ActiveEffectTag” class definition

Figure.36 shows the class definition of ―ActiveCauseTag‖ and ―NonActiveCauseTag‖. It‘s

necessary to note that the ―all of‖ in the graph representation is equal to the OWL syntax

―owl:intersectionOf‖. And ―any of‖ is equal to ―owl:unionOf‖. The ―ActiveCauseTag‖ and

―NonActiveCauseTag‖ are disjoint class. The ―ActiveCauseTag‖ is defined as a ―CauseTag‖ that

has state true or candidate of any kind of voting true. The voting specification will be described in

the next chapter. As it shows in Figure.37, all the members of ―TagFromVoting‖ class are

candidates of one kind of voting. All the members of ―TagFromFireAndGas‖ are voters of one

kind of voting. The state of the member of class ―TagFromFireAndGas‖ is evaluated according to

the real time data collected from the sensors offshore. The state of the ―TagFromVoting‖ is

evaluated according to the voting result. Therefore, both of them can be inferred to be

―ActiveCauseTag‖ if there are active.

The ―NonActiveCauseTag‖ is defined as the ―CauseTag‖ that has state false. Therefore, a member

of ―TagFromFireAndGas‖ can be evaluated to ―NonActiveCauseTag‖ if the has state false. It does

not cover the members of ―TagFromVoting‖ because they are not real time data. It is not necessary

to evaluate them to be non-active state.

61

ActiveCauseTag:

NonActiveCauseTag:

Figure 36 “ActiveCauseTag” and “NonActiveCauseTag” class definition

Figure.37 gives the class definition of ―TagFromVoting‖ and ―TagFromFireAndGas‖. The

restriction in light color is inherited from ―CauseTag‖.

62

Figure 37 “TagFromVoting” and “TagFromFireAndGas” class definition

5.1.5 Voting implementation

Some cause tags from F&G will launch a voting if the tag is active. The voting will decide

whether to initial a candidate or not. There are four types of voting: single vote, double vote, triple

vote, and full vote, which depend on the number of active voter. The Reasoner can infer the voting

result by the assertion of logic

• If a CauseTag x has state true, it will be infer as a ActiveCauseTag

• If x is a voter of a SingleVote y, then the SingleVote y will be infer as a SingleVoteTrue

• If y has a candidate Tag z, then the tag z will be infer as a ActiveCauseTag

Figure.38 gives the definition of “Voting”. The “Voting” has exactly one candidate from

“TagFromVoting”, and at least one voter from “TagFromFireAndGas”.

Figure 38 “Voting” class definition

63

Figure.39 shows the “SingleVotingTrue” class definition. It is defined as a “SingleVoting” class that

has Voter that from “ActiveVotingTrue”. Any classes that are defined as “ActiveVotingTrue” class

should have the property “hasActiveVoter” exactly one from “ActiveCauseTag”. The

“hasActiveVoter” is the sub property of “hasVoter”. The figure also illustrates that the classes

“SingleVotingTrue”, “DoubleCoincidentVotingTrue”, “TripleCoincidentVotingTrue”, and

“FullCoincidentVotingTrue” are disjoint classes. They related to “1ooN”, “2ooN”, “3ooN” and

“NooN” voting types in the Cause&Effect chart.

Figure 39 “SingleVotingTrue” class definition

Figure.40 shows the “DoubleCoincidentVotingTrue” class definition. As a

“DoubleCoincidentVotingTrue” class it is necessarily has exactly two active voters. Assume that

the “DoubleCoincidentVote” has two or three voters. It is defined as the same class as a

“DoubleCoincidentVote” class that fulfills the following formula:

If the voting has two voters, than in
2

2 1C conditions that the voting is true.

(hasVoter_1 some ActiveCauseTag ⊓ hasVoter_2 some ActiveCauseTag)

If the voting has three voters, than in
2

3 3C conditions that the voting is true.

(hasVoter_1 some ActiveCauseTag ⊓ hasVoter_2 some ActiveCauseTag) ⊔

(hasVoter_2 some ActiveCauseTag ⊓ hasVoter_3 some ActiveCauseTag) ⊔

(hasVoter_1 some ActiveCauseTag ⊓ hasVoter_3 some ActiveCauseTag)

64

If the voting has four voters, than in
2

4

4!
6

2!(4 2)!
C

 conditions that the voting is true.

hasVoter_1 hasVoter_2 hasVoter_3 hasVoter_4

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

Table 6 Conditions that double voting true

Figure 40 “DoubleCoincidentVotingTrue” class definition

The graph of ―TripleCoincidentVotingTrue‖ and ―FullCoincidentVotingTrue‖ are similar to the

graph of ―DoubleCoincidentVotingTrue” so we will not show them here. The class

―TripleCoincidentVotingTrue‖ is defined as the same class of a ―TripleCoincidentVote‖ that has

65

the property ―hasAvtiveVoter‖ exactly 3 from ―ActiveCausTag‖. The ―FullCoincidentVotingTrue‖

is defined as the same class as a ―FullCoincidentVote‖ that ―haVoter‖ only from

―ActiveCauseTag‖.

TripleCoincidentVotingTrue

FullCoincidentVotingTrue

Figure 41 “TripleCoincidentVotingTrue” and “FullCoincidentVotingTrue”class definition

The figure.42 defines the restriction of the four properties: ―hasVoter‖, ―hasActiveVoter‖,

―hasVotingTrue‖ and ―Voterof‖. It defines the domain and range of each property as it shows in

the following chart. It also defines the ―hasVoter‖ inverse property of ―Voterof‖ and vice versa,

and ―hasActiveVoter‖ inverse property of ―hasVotingTrue‖ and vice versa. The

―owl:inverseProperty‖ means if you define the axiom (a , hasVoter, b) than it also have the axiom

(b, Voterof, a). Moreover, it defines (hasActiveVoter, owl:subPropertyOf, hasVoter) and

(hasVotingTrue, owl: subPropertyOf, VoterOf).

ObjectProperty Domain Range

hasVoter Voting TagFromFireAndGas

hasActiverVoter Voting ActiveCauseTag

Voterof TagFromFireAndGas Voting

hasVotingTrue

TagFromFireAndGas

SingleVoteTrue or

DoubelCoincidentVoteTrue or

TripleCoincidentVoteTrue or

FullCoincidentVoteTrue

Table 7 Domain and range of ObjectProperty

66

Figure 42 Property restriction

5.1.6 Instance definition

The class definition and restriction above are based on the ISO15926 standard. They could be used

as shorthand template. If they get general approval by the companies, it could be used as common

standard. For all the system that uses the similar Cause&Effect matrix, the template is reusable.

However, the instance definition goes to more concrete level. For example, some of the tags are

only used by the Origo Engineering. Obviously, this instance definition is not reusable for other

situation. We defines the instance for illustration the functions of the classes. And used for the

proving concept of prototype implementation.

The figure.43 shows the definition an instance ―O87C_51_CF001‖, which is a member of

―TagFromVoting‖. This tag belongs to the system ―FlameInArea‖. It matches with effect tags:

―O71_XY228‖, ―O87_U51_FWP‖, and ―O700_XA_072_2‖. It is a candidate of a voting

―FullCoincdientFlameVoting‖. It has input type ―INT‖. It involved in an activity ―CoincidentFire‖

which is a type of ―Flaming‖.

67

Figure 43 Instance of “TagFromVoting”

Figure.44 shows the definition of an instance of the ―Room‖ and the ―CauseAndEffectChart‖. The

room ―SeaCableTranformatorRoomArea-North‖ is a type of ―CableTypeCurrentTransformer‖ that

has a ―CauseAndEffectChart‖ that is ―CauseAndEffectChart_U51_2‖. The room contains a lot of

systems by the ―containsSystem‖ property. This room is located at area ―U51-2‖. The

―CauseAndEffectChart_U51_2‖ has some cause tags and effect tags. And it is related to the room

by ―relatedRoom‖ property, which is the inverse property of ―hasChart‖.

68

Figure 44 Instance of “Room” and “CauseAndEffecChart”

Figure.45 shows an instance of ―GasDetectionSystem‖. This system ―GasDetectionVenidation‖ is

located at room ―SeaCableTranformatorRoomArea-North‖, and it contains some cause tags.

Figure 45 Instance of “GasDetectionSystem”

69

Figure.46 shows an instance of the class ―TagFromFireAndGas‖. The tag ―U51_DF001‖ belongs

to the system ―FlameInArea‖. It is both the voter of ―SingleFlameVoting‖ and

―FullCoincidentFlameVoting‖. It has the input type ―AI‖, which means the analog input. It

involved in the activity ―FlamingDetetorUtilityHandling‖. It has the DatatypeProperty ―hasState‖

which is false. This state should be changed according to the real time data.

Figure 46 Instance of “TagFromFireAndGas”

Figure.47 shows the instance of ―Flaming‖, ―EffectTagOfFireAndGas‖, and ―SingleVote‖. The

―FlamingDetectorUtilityHandling‖ is an activity that relates with tag ―U51_DF001‖ and

―U51_DF002‖. It has involved equipment ―StarEye_2000‖, which is a ―FlameDetector‖.

―O87C_U51_FWP‖ is an ―EffectTagOfFireAndGas‖ that has input type ―INT‖, belongs to system

―FireWaterSystemPump‖, and has a related CauseTag ―O87C_U51_2_CF001‖. The

―SingleFlameVoting‖ is type of ―SngleVote‖ that has some voter and an candidate.

Figure 47 Instances of “Flaming”, “EffectTagOfFireAndGas”, and “SingleVote”

70

5.1.7 Relate Fire&Gas with ESD

Part2:Activity

Part4:Emergency

ShutDown
Part4:Flaming

Part7:Emergency

ShutDownOfValve1

Part4:Emergency

ShutDownValve

Part7:CoincidentFir

e
Part7:Valve1

initialbyinvolvedIn

Part7:EffectTag

Part7:O87C_U51_2

_ESD

relatedEffctT

ag

Part2:PointInTime

Part7:BeginingTime Part7:EndingTime
Part7:ValveOpenTi

me

Part7:ValveCloseTi

me

en
d
in

g

cau
seO

fE
v
en

t

c
a
u
se

O
fE

v
e
n
t

b
e
g
in

in
g

b
e
g
in

in
g

c
a
u
se

O
fE

v
e
n
t

causeO
fE

vent

ending

relatedValve

initial

initial

involvedIn

subClassOf

objectPropety

ESD Fire&Gas

Figure 48 Sample of integration between Fire&Gas and ESD

Figure.48 shows the sample of modeling creation for data integration between Fire&Gas and ESD

system. We can get the following information from the definition of the model. The upper

ontology class definition and template specification can be found at ISO15926-2 [23] and

ISO15926-7 [30].

 ―Valve1‖ involved in activity: ‖EmergencyShutdownofValve1‖

 ―EmergencyShutdownofValve1‖ has beginning time and ending time

 ―EmergencyShutdownofValve1‖ is initialed by activity ―CoincidentFire‖

 ―CoincidentFire‖ has beginning time and ending time

 ―CoincidentFire‖ related with a ―EffectTag‖ named O87C_U51_2_ESD

Base on this model the use can query the status and historical activity of the ―valve1‖ by getting

all the ―involedIn‖ activity. The user of ESD system can get the following information from the

Fire&Gas system: what kind of ―Flaming‖ is happing? It happens in which area? When does it

happen? When does it end? Which valve is related to that firing? The user of Fire&Gas system

also can get the following information from the ESD system: Is the valve related to the

71

―Flaming‖closed? When the flaming is happening? When is the valve closed?

5.2 Mapping the real-time data into data source

ontology

As we have manually mapped the Cause&Effect matrix to the ISO15926 standard, the real-time

data need to be mapped to the data source ontology as we created above. Therefore, the data

source can be accessible for the user through a more intelligent querying. The intelligent querying

is queried by the user and reasoned by the data source ontology.

The mapping implementation uses the SQL to query the database, and use Jena API to map the

data element to the class in the ontology and create the OWL instance. Figure.49 shows the real

time data in relational database. It stores the status of the Tags within a time range. The Value is

the status of the tag, ―0‖ means false,‖1‖ means true. The data type of Tag_Name is Varchar,

From_Date and To_Date is Datetime, Value is Boolean, and Is_inhibit is Char(1).

Figure 49 real time data in relational database

As it introduced in the design specification, the first step is to get the data from the relational

database. This step includes: querying of the database, storing the result in the value object

―Activity‖, and using iterator to put the value object into the list. The next step is getting the

ontology from ontology database. This step is implemented by the OntologyModelCreation class.

We mainly focus on the mapping implementation in this chapter. As it shows below, for the

mapping a new ontology model need to be create at first. The ontology is specified to OWL

language by the ―OntoModelSpec.OWL_MEN‖. The namespace prefix need to be specified when

the ontology model is initialed.

The following code shows the mapping method. For each element in the real time database, a new

//Create new ontology model

OntModel realtimeData =

ModelFactory.createOntologyModel(OntModelSpec.OWL_MEM);

//set prefix mapping

realtimeData.setNsPrefix("part7", NS1);

realtimeData.setNsPrefix("RTD", NS2);

72

individual should be created with a unique name in the OWL instance document. The ―oc‖ in the

createIndividual method is the ontology class ―Activity‖. It means the new created individual is

the instance of the ―Activity‖. The real time element is also the instance of the tag in the ontology.

So we get the tag ―oc1‖as an individual, and set the new created individual ―activity‖ to rdf:type

of ―oc1‖. The individual ―activity‖ inherits the property from the super class. To set the property

of the individual, it needs to get the property from super class by a full URI address of the property.

The full URI address includes namespace prefix and property name. The addProperty method adds

the content to the specified property.

The following code is the mapping result. It is the OWL in XML/RDF format.

public void mapping(Activity act){

 // create individual for the class "Activity"

Individual activity=realtimeData.createIndividual

 (NS2+ act.getTagName()+"_"+act.getBeginingTime(),oc);

//set rdf:type of the individual

Individual oc1

=ontModel.getIndividual("http://www.owl-ontologies.com/CauseAndEff

ect1.owl#"+act.getTagName());

 activity.addRDFType(oc1);

 //set property hasBeginingTime for the individual

 Property hasBegining=ontModel.getProperty(NS1+ "hasBeginingTime");

 activity.addProperty(hasBegining, act.getBeginingTime());

//set property hasEndingTime for the individual

Property hasEnding=ontModel.getProperty(NS1+ "hasEndingTime");

 activity.addProperty(hasEnding, act.getEndingTime());

 //set property hasState for the individual

 Property hasState=ontModel.getProperty(NS1+ "hasState");

activity.addProperty(hasState, act.getStatus().toString());

 }

73

<rdf:RDF

 xmlns:RTD="http://www.owl-ontologies.com/RealTimeData.owl#"

 xmlns:part7="http://www.owl-ontologies.com/CauseAndEffect1.owl#"

 <part7:Activity

rdf:about="http://www.owl-ontologies.com/RealTimeData.owl#U51_DF002_2007-05-07

15:44:50">

 <rdf:type

rdf:resource="http://www.owl-ontologies.com/CauseAndEffect1.owl#U51_DF002"/>

 <part7:hasBeginingTime>2007-05-07 15:44:50</part7:hasBeginingTime>

 <part7:hasEndingTime>2007-05-07 15:44:55</part7:hasEndingTime>

 <part7:hasState>true</part7:hasState>

 </part7:Activity>

 <part7:Activity

rdf:about="http://www.owl-ontologies.com/RealTimeData.owl#U51_DF001_2007-05-07

15:44:17">

 <rdf:type

rdf:resource="http://www.owl-ontologies.com/CauseAndEffect1.owl#U51_DF001"/>

 <part7:hasBeginingTime>2007-05-07 15:44:17</part7:hasBeginingTime>

 <part7:hasEndingTime>2007-05-07 15:44:30</part7:hasEndingTime>

<part7:hasState>true</part7:hasState>

 </part7:Activity>

</rdf:RDF>

74

6. Prototype implementation

6.1 Semantic reasoning implementation

Jena API is used as programmatic environment, and Pellet is used as reasoner in the semantic

reasoning implementation. As it shows in figure.50, the ModelFactory is used to associate a model

to a reasoner in order to get a new model. The new model has the inference data that inferred by

the Pellet Reasoner. The OntModel API provides methods to find the graph in the InfGraph.

ModelFactory OntModel API

InfGraph

Pellet ReasonerResoner Registry

Ontology
Cause&Effect1.owl

Binding Ontology

find

Figure 50 Jena inference methodology, cited from [31]

The following code shows the creation of a Pellet reasoner, associating it to the OntModel. And

store the new created model in the infModel.

The following code gives an example of reasoning of the state of the tag. The state of the tag is

evaluated by checking if this tag is the member of the Active Tag class. There are two kinds of

Active Tag class on the model created in this project that are ―ActiveCauseTag‖ and

―ActiveEffecTag‖. The ―contains‖ method is used here to find if the infModel contains the given

axioms. It returns a Boolean value, ―True‖ means it contains the axiom, while ―False‖ means not.

Reasoner pellet = new PelletReasoner();

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_MEM);

spec.setReasoner(pellet);

infModel = ModelFactory.createOntologyModel(spec, ontModel

 .getBaseModel());

75

6.2 Semantic query implementation

The semantic query system here is a simple implementation for proof of the theory. It only support

querying of instance, class and instance with timestamp. The Sparql is mainly used as query

language. Jena API is used for realization of the instance, and manipulating of the ontology model.

As it show in figure.51, when the user query the instance on the user interface, the Jena Reasoning

system find out the class, to which the instance belong. And then match the predefined Sparql

query method of the class.

x Search

If (x, rdf:type, Area);

If (x, rdf:type, TagFromVoting)

If (x, rdf:type, TagFromFireAndGas)

If (x, rdf:type, EffectTag)

Jena Reasoning QueryOfArea

QueryOfTagFrom

Voting

QueryOfTagFrom

FireAndGas

QueryOfEffectTag

instance

Sparql Query

Figure 51 Query of instance

The following code is the Sparql query for the member of ―TagFromVoting‖ class. Given a tag

that is an instance of ―TagFromVoting‖. The query gets the Area of the tag located. And also get

the EffectTag related with this tag. To find the area of the tag, it follows the searching route

(tag—system—Room—Area).

 Boolean status1;

 status1 = infModel.contains(individual, RDF.type, ActivecauseTag);

 Boolean status2;

status2 = infModel.contains(individual, RDF.type, ActiveEffectTag);

status =status1||status2;

76

Figure.52 shows the query of the class. It uses the Pellet reasoner to provide inferred model of the

given class, and also infer the status of the tags. The query will list all the instance of the given

class. And use the method in Jena API to get the description and local name of each instance. If

the instance is a kind of tag, it will also give the status of the tag.

x Search

Jena API

Pellet Reasonerclass
GetOntClass(x)

Ontology
CauseAndEffect1.owl

getLoalName

reason
ListInstances

getStatusgetDescription

Figure 52 Query of class

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX CE: <http://www.owl-ontologies.com/CauseAndEffect1.owl#>

 SELECT ?area ?effectTag

 WHERE {

 CE:"+causeTag +" CE:belongToSystem _:System

 _:System CE:systemLocatedAt _:Room

 _:Room CE:locatedAt ?area

 CE:"+causeTag+" CE:causeOfEvent ?effectTag

 }

77

7. Proof of concept

7.1 Reasoning verification

As it shows in figure.53 the Protégé provides an embedded reasoning tool for verification and

testing of the OWL ontology. In the theoretical background we has introduced that there are three

functions of reasoning: check consistency, classification of taxonomy, and realization of instances.

In figure.53 we mark the three buttons that related to each function with red circle on the top of

the Protégé use interface. The figure.53 shows the model after the reasoning step. The numbers

behind the classes are the number of asserted instance and inferred instance. For example, behind

the ―CauseTag‖ there is a number ―(0/13)‖, which ―0‖ is the number of asserted instance of

―CauseTag‖, ―13‖ is the number of inferred instances of ―CauseTag‖. The window on the middle

of the user interface shows both the asserted and inferred instances of each class. In the following

we will verify each aspect of the OWL ontology we created.

Check

consistency

Classify

taxonomy

Realization of

instance

Figure 53 Protégé reasoning

78

7.1.1 Check consistency

Figure.54 shows the ontology we created for Cause&Effect has been checked without any

inconsistency. If there is any consistency definition in the ontology, it will be marked as red color

and showed on the screen. In the following paragraph we will show an example of inconsistency.

Figure 54 Check consistency

SaftyVentilationSystem

GasVentilationSystem

GasDetectionSystem

is-a is-a

disjointClass

Figure 55 Inconsistency class definition

As it shows on figure.55 we define the ―GasVentilationSystem‖ as subclass of both

―SaftyVentilationSystem‖ and ―GasDetectionSystem‖. However, the ―GasVentilationSystem‖ and

―GasDectectionSystem‖ are disjoint class. Therefore, the class ―GasVentilationSystem‖ is

unsatisfiable. No instance can be realized as the member the ―GasVentilationSystem‖. This

inconsistency can be found out by the Pellet reasoner as it shows in figure.56. To solve this kind of

inconsistency, we can either delete the disjoint relationship or delete one of the subclass

relationships.

79

Figure 56 Inconsistency example

7.1.2 Classify taxonomy

The classify taxonomy function usually used to classify undefined class when the knowledge

engineer create a new class. The reasoning system helps the engineer to modify the super type of

the undefined class automatically. We will show an undefined class example as it shows in

figure.57.

CauseTag

ActiveCauseTag UndefinedClass

is-a

UndefinedClass:

Figure 57 the “UndefinedClass” definition

As the definition of ―ActiveCauseTag‖, we know that the ―CauseTag‖, which has state true, is the

―ActiveCauseTag‖. Therefore, the ―UndefineClass‖ should be subclass of ―ActiveCauseTag‖.

After we push the ―classify taxonomy‖ button, the following message shows out in the changed

list. We get the inferred model in figure.58. The result is shows as figure.59.

Figure 58 result of the classify taxonomy

80

CauseTag

ActiveCauseTag
UndefinedClass

is-a is-a

is-a

Figure 59 result of the model

7.1.3 Inferring the states of the Tag in Fire&Gas and ESD

This chapter gives an example of inferring the state of the tag automatically without human

interaction. As it shows in the scenario, if we assume that some ―Activity‖ happens in the offshore,

the sensors will send the real-time data to the Fire&Gas System. The Fire&Gas system will map

the real-time automatically to data source ontology. Therefore some tags in the Fire&Gas system

related with the activities are setting to be true. Then through a voting system and matching of the

Cause&Effect matrix, the machine finds out some ―Effect Tag‖ should set to be true. These

―Effect Tag‖ are related with some actions, such as the ―O87_U51_ESD‖ in figure.60. If

―O87_U51_ESD‖ are set to be true, it will initialize the Emergency Shutdown system

automatically.

81

DoubleCoincidentVoting

hasVoter1

hasVoter2

U51_DF001

U51_DF002

U51_DF006

U51_DF005

U51_DG004

hasVoter3
DoubleCoincidentGasVoting

DoubleCoincidentFlameVoting

hasVoter1

hasVoter2

rdf:type

rdf:type

CauseTagFromFire

AndGas

rd
f:t

yp
e

rdf:ty
pe

rdf:type
rdf:typerdf:type O87C_51_2_CG

H002

O87C_51_2_CF0

01

hasCandidate

hasCandidate

TagFromVoting

rdf:type

rdf:type

EffectTagFromFireAn

dGas

O87_U51_ESD

rdf:type

causeOfEvent

O700_XA_072

_2

causeOfEvent

rdf:type

EffectTagFromFireAn

dGas

O700_XA_072

_2

O700_XA_072

_2

rdf:type
rdf:type

causeOfEvent causeOfEvent

ES_87C_003A_B
initialedBy

CauseTagFromESD

rdf:type

candiateOf

candiateOf

relatedCauseTag

relatedCauseTag

relatedCauseTag

relatedCauseTag

initial

instance

class

Figure 60 instances definition in the ontology

As shown in Figure.60, the instances relates to each other by the defined object property.

There are two kinds of ―DoubleCoincidentVoting‖ that related with their voters and candidates.

The ―hasCandidate‖ and ―candidateOf‖ are inverse properties. The instances of ―TagFromVoting‖

relates with the ―EffectTagFrommFireAndGas‖ by ―causeAndEffet‖ property. The instance of

―EffectTagFromFireAndGas‖ ―O87C_51_ESD‖ initials the ―ES_87C_003A_B‖, which is the

―CauseTagFromESD‖.

If we set the following datatype property:

(U51_DF001, hasState, true)

(U51_DF002, hasState, true)

(U51_DG004, hasState, true)

(U51_DG005, hasState, true)

Then all the tags above will be inferred as the member of ―ActiveCauseTag‖ as it show in

figure.61.

82

Figure 61 Compute type of U51_DF001

According to the definition of the ―DoubleCoincidentVoting‖, if two of the voters are

―ActiveCauseTag‖, the voting will be inferred to be true. Therefore, the

―DoculeCoincidentGasVoting‖ and ―DoculeCoincidentFlameVoting‖ will be inferred as the

member of ―DoubleCoiincidentVoteTrue‖

Figure 62 Compute type of “DoculeCoincidentGasVoting”

According to the definition of the ―CauseTagFromVoting‖, the ―CauseTagFromVoting‖ which is

the candidate of a true voting will inferred to be ―ActiveCauseTag‖. Therefore,

―O87C_51_2_CGH002‖ and ―O87C_51_2_CF001‖ should be inferred as the

―ActiveCauseTag‖ as shown in Figure.63.

83

Figure 63 Compute type of “087C_51_2_CGH002”

Similar to the theory above, all the member of ―EffectTagFromFireAndGas‖ will also inferred to

―ActiveEffectTag‖. Therefore, as the definition the ―CauseTagFromESD‖: If the tag, which initials

the ―CauseTagFromESD‖, is true, than the ―CauseTagFromESD‖ should set to be true

automatically. As a consequence the Emergency shutdown could be done by the compute

automatically without human interaction. As shown in Figure.64, the ―ES_87C_003A_B‖ is

inferred to be the member of ―ActiveCauseTag‖.

Figure 64 Compute type of “ES_87C_003A_B”

7.2 Testing of the semantic reasoning and querying

system

The figure.65 shows the user interface of semantic reasoning and querying system. As you can see

there are three types of things that are supported for querying: instance, class, and instance+

timestamp. Due to the time limit the query of instance+ timestamp is not fully implemented.

Therefore, here we will test the query of instance and class. The user needs to select the search

type and input the keyword in the text area. If not, the user interface will show error message.

84

Figure 65 Semantic Search user interface

(1) Query of instance

 Given an area (―U51-2‖) what are the causes and effects (i.e. Complete sheet). In this way,

the external users of the system could be able to get the information they need without a

domain expert.

Figure 66 Query result of “U51_2”

 Given a cause (tag) from Fire&Gas what are the related candidate tag of voting

(tagnames+areas). This query illustrates the accessible of the data. Therefore, the internal

software develop could manipulate the data source to get better function of the system.

85

Figure 67 Query result of “U51_DF001”

 Given a cause (tag) from voting what are the possible effects (tagnames + areas)

Figure 68 Query result of “O87C_51_2_CF001”

 Given an effect (tag) what are the possible Action. As it presents in the scenarios. For

example, if you search the ―O87C_51_2_ESD‖ tag, which should initial the Emergency

shutdown system, it will shows out the related ESD tag and its states at some points of time.

In this way, the safety person of Fire&Gas could able to verify that if the Emergency

shutdown really works as it should be.

86

Figure 69 Query result of “O87C_51_2_ESD”

(2) Query of class

Some state of the tags is defined as it shows in chapter7.1.3. Assumes the tag ―U51_DF001‖,

―U51_DF002‖, ―U51_DG004‖, and ―U51_DG005‖ are set to be true. If you query the class ―Tag‖

in the query system the result will be show as figure.70. From this query, the internal safety person

and external safety person could able to check the state all the tags at the current time. The Tag

description will give the detail of what happening actually.

Figure 70 Query result of the “Tag” class

87

8. Discussion

In this chapter we would like to discuss: Is it possible to map from data source ontology to domain

ontology automatically? As it is described in [8] conceptual layering of ontologies can be divided

into four layers: data sources, data source ontologies, domain ontology, and view. To do the data

integration, two steps are needed. First, implement mapping from data sources to data source

ontology. Usually, this mapping is generated automatically by introducing some mapping pattern.

Second, implement mapping from data source ontology to business ontology. This step is much

more complex than the first step, automatic mapping would be difficult. However, automatic

mapping is the research goal at current stage of semantic data integration.

In this project we have tried an approach as shown in Figure.71, a Cause&Effect matrix represents

the data source ontology, the Oil&Gas ontology is the business ontology, and the real time data is

the data sources. This approach attempts to use the tool JXML2OWL, which is a mapping tool to

lift the XML to OWL, accomplish the mapping automatically. As we see in figure 71, by defining

the mapping from Cause&Effect XML schemas to Oil&Gas ontology OWL, the Cause&Effect

XML instance can transform to Oil&Gas ontology automatically. Similarly, by defining the

mapping from Real time data XML schemas to Oil&Gas ontology OWL, the real time data XML

instance can transform to real time data OWL instance automatically. In the beginning the Real

time data XML instance is based on the Cause&Effect matrix. After the transformation the real

time data OWL instance is based on the Oil&Gas Ontology OWL instance. The details of each

mapping steps will be described in the following paragraph.

Cause&Effect

XML schemas

Oil&Gas Ontology

OWL

Cause&Effect

XML instance

Real Time Data

XML instance

Real Time Data

OWL instance

Oil&Gas Ontology

OWL instance

Real Time Data

XML schemas

Oil&Gas Ontology

OWL

Transform

Transform

Mapping

Mapping

Syntax definition

Syntax definition

Syntax and semantic definition

Syntax and semantic definition

Based on
Based on

Figure 71 Automatic mapping structure

The figure.72 shows the graphical user interface of JXML2OWL Mapper. This tool enables

graphically creation and modification of the mapping from XML schemas to OWL ontology

utilizing the JXML2OWL API. The left side is the Cause&Effect XML schemas represented in a

88

tree view. On the right hand side is the Oil&Gas ontology OWL. The mapping zone is in the

middle. Under the mapping zone, there are mapping links between classes and XML item XPath.

And also the object and datatype mapping links is in the bottom.

Figure 72 Mapping from Cause&Effect schemas to Oil&Gas ontology in OWL

We have got some results from this approach. Unfortunately, the result is not exactly what we

need in this project. This approach is trying to retrieve semantic information from the existing

XML database. It is useful when you are trying to implement a semantic query system within the

homogeneous data sources. On the condition, which data integration within heterogeneous data

sources, this approach has too many limitations. It simply matches the XML tree view to the OWL

graph view by mapping the objectProperty and datatypeProperty of the classes. It is not possible to

add some restrictions in the newly created OWL file. It‘s much better to manually map the local

ontology to domain ontology. However, in mapping from data source to data source ontology, the

JXML2OWL works well.

89

9. Conclusion and future work

9.1 Conclusion

As the leading industry of Norway, the Oil&Gas industry has made great effort within Information

and Communication Technology. The efficiency and environment protection are the main

contributions of the technology. The Safety Instrument System (SIS) is used for preventing

accidents. It could save money and reduce pollution if the SIS works efficiently, that requires that

we get information from the processing of the real-time data as soon as possible. The Semantic

Web enables the knowledge representation of the data source, which supports reasoning and

semantic querying. Therefore, the machine could understand the information. The data could be

processed by the machine automatically, which can greatly improve the efficiency. Moreover, The

SIS contains some subsystems. The subsystems need to work together to prevent accident. Thus,

the data integration is necessary. Origo has implemented a prototype for sharing information

between SIS subsystems. The prototype achieves data integration by sharing the same XML

schemas, which cannot fulfill the large scale and across domain data integration. Hence, the

Oil&Gas ontology is introduced to solve the problem. By applying the Oil&Gas ontology based

data integration, the company could get the following advantages: “improved data quality and

accessibility, significant cost reduction with change of software, increased flexibility with

organizational changes, and improved software functionality” [3]

In this project, we analyzed the principles of XML, RDF, OWL, ontology, reasoning, description

logic and Sparql querying of the Semantic Web technology, and ISO15926 part2 data model, part4

reference data, and part7 implementation methodology. Based on this analysis we introduced a

framework of data integration. We implemented the manual mapping from Cause&Effect matrix

to ISO15926 standard, and automatic mapping from real-time data to data source ontology. We

also implemented a prototype of semantic querying and reasoning system. This prototype proves

the concept of reasoning, and shows the improvement of data quality and accessibility by querying

the information. Through all the works above, we would like draw a conclusion that the ISO15926

standard and Semantic Web are suitable to use in the SIS system. They work together could great

improve the current system.

9.2 Future work

The prototype in this project is developed for proof of concept and for showing the advantages of

data integration. It is not very suitable for practical use. The following work can be done to

improve the query system:

 Use the Semantic Annotation for all the classes defined in the ontology, and Lucene as the

query engine. Lucene supports the full text search. Jena API has developed a plug-in named

90

ARQ that support Lucene. Therefore, we could query by text match of the annotations, rather

than only by class name and instance name.

 Complete the implementation of search through timestamps, so that the safety person could

be able to get the information from offshore of any time or time range.

 Improve the search pattern for more general use. The prototype can only search the

information based on predefined pattern. It is not flexible enough for different kinds of search

and not extensible when the system scales up.

91

Reference:
[1] THREE DECADES OF DATA INTEGRATION—ALL PROBLEMS SOLVED?, Patrick

Ziegler and Klaus R. Dittrich

[2] Dittrich, Klaus R. and Jonscher, Dirk (1999). All Together Now — Towards Integrating the

World‘s Information Systems. In Masunaga, Yoshifumi and Spaccapietra, Stefano, editors,

Advances in Multimedia and Databases for the New Century, pages 109–123, Kyoto, Japan,

November 30 – December 2. World Scientific Press.

[3] Kari Anne Haaland Thorsen and Chunming Rong, Data Integration in Oil and Gas at

Norwegian Continental Shelf, 22nd International Conference on Advanced Information

Networking and Applications

[4] Guan-yu LI, Wei-li ZHANG, Huan-zhong GENG, Ontology-Based Web Data Integration

Architecture Modeling and Implementation, 2007 IFIP International Conference on Network and

Parallel Computing

[5] Li dong, Huang linpeng, A Framework For Ontology-based Data Integration, 2008

International Conference on Internet Computing in Science and Engineering

[6] Integrated Operation: Methodology and tools for management and control of Safety

instrumented Systems, Internal document of ORIGO Engineering

[7] NORSOK STANDARD I-002, Rev.2, 2001-05-01, Safety and automation system (SAS)

[8] Jürgen Angele, Michael Gesmann. Data Integration using Semantic Technology: A use case.

Proceedings of the Second International Conference on Rules and Rule Markup Languages for the

Semantic Web (RuleML'06), 2006

[9] Toni Rodrigues, Pedro Rosa, Jorge Cardoso, MAPPING XML TO EXISTING OWL

ONTOLOGIES

[10] Hannes Bohring* and S ören Auer, Mapping XML to OWL Ontologies

[11] Tao Huang, Qingtang Liu, Sanya Liu, Shengming Wang, Yong Yang,Design and

Implementation of Semantic Query System based on Ontology Context, 978-1-4244-2108-4/08

©2008 IEEE

[12] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, Chris Wroe. A

Practical Guide to Building OWL Ontologies Using the Protege-OWL Plugin and CO-ODE Tools

Edition 1.0

[13] OWL Web Ontology Language Reference W3C Recommendation 10 February 2004 [cited

2008 13. January]; Available from: http://www.w3.org/TR/owl-ref/

[14] Huhns, Michael N. and Singh, Munindar P. (1997). Agents on the Web: Ontologies for

Agents.IEEE Internet Computing, 1(6):81–83.

[15] Kirwin, Christopher. 1995. 'Reasoning'. In Ted Honderich (ed.), The Oxford Companion to

Philosophy. Oxford: Oxford University Press: p. 748

[16] Markus Krötzsch (AIFB Karlsruhe), Practical Reasoning with OWL and Rules, Half-day

tutorial at the 3rd European Semantic Web Conference, ESWC 2006.

[17] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, Yarden Katz, Pellet: A

Practical OWL-DL Reasoner, Web Semantics: Science, Services and Agents on the World Wide

Web, Vol. 5, No. 2. (June 2007), pp. 51-53.

92

[18] Alessandro Artale, Enrico Franconi, Introducing Temporal Description Logics, Temporal

Representation and Reasoning, 1999. TIME-99. Proceedings. Sixth International Workshop

[19] Daniele Nardi, Ronald J. Brachman, An Introduction to Description Logics, Cambridge

University Press

[20] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. In Frank van Harmelen,

Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge Representation. Elsevier,

2007.

[21] D. Leal , ISO 15926 ―Life Cycle Data for Process Plant‖: An Overview, Oil & Gas Science

and Technology – Rev. IFP, Vol. 60 (2005), No. 4, pp. 629-637

[22] ISO 15926-1 (2003) Overview and Fundamental Principles. Industrial Automation Systems

and Integration - Oil&Gas, Part 1.

[23] ISO 15926-2 (2003) Data model. Industrial Automation Systems and Integration - Oil&Gas,

Part 2.

[24] POSC Caesar. [cited 2009 13. March]; Available from: http://www.posccaesar.org/

[25] SPARQL Query Language for RDF. [cited 2009 13. March]; Available from:

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

[26] An Upper Ontology based on ISO 15926, Rafael Batres a *, Matthew Westb, David Lealc,

David Priced, Yuji Nakaa

[27] EPISTLE, Onno Paap 2008 . [cited 2009 13. March]; Available from:

http://www.infowebml.ws/

[28] Semantic Web Technologies Trends and Research in Ontology-based Systems. John Davies,

Rudi Studer, Paul Warren.

[29] Zhisheng Huang, Frank van Harmelen and Annette ten Teije, Reasoning With Inconsistent

Ontologies: Framework, Prototype and Experiment, 19
th

 Joint Conference on Artificial

Intelligence (IJCAI‘05), 2005

[30] ISO 15926-4:2007 spreadsheets [cited 2009 1. May]; Available from:

http://rds.posccaesar.org/2008/05/XML/ISO-15926-4_2007/

[31] Jena 2 Inference support [cited 2009 3. May]; Available from:

http://jena.sourceforge.net/inference/

[32] Guan-yu LI, Sui-ming YU, Sha-sha DAI, Ontology-Based Query System Design and

Implementation, 2007 IFIP International Conference on Network and Parallel Computing –

Workshops

[33] Jena – A Semantic Web Framework for Java [cited 2009 3. May]; Available from:

http://jena.sourceforge.net

[34] Renamed Abox and Concept Expression Reasoner [cited 2009 12. May]

http://www.sts.tu-harburg.de/~r.f.moeller/racer/

http://www.posccaesar.org/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.infowebml.ws/
http://jena.sourceforge.net/

