
1. INTRODUCTION 
 

In the last few years, synchronization in chaotic 

dynamical systems has received a great deal of 

interest among scientists from various fields [1, 2]. 

The results of chaos synchronization are utilized in 

biology, chemistry, secret communication and 

cryptography, nonlinear oscillation synchronization 

and some other nonlinear fields. The first idea of 

synchronizing two identical chaotic systems with 

different initial conditions was introduced by Pecora 

and Carroll [3], and the method was realized in 

electronic circuits. The methods for synchronization 

of the chaotic systems have been widely studied in 

recent years, and many different methods have been 

applied theoretically and experimentally to 

synchronize chaotic systems, such as feedback 

control [4-10], adaptive control [11-15], backstepping 

[16] and sliding mode control [17-21]. 

One of the most attractive dynamical systems is the 

second-order systems which capture the dynamic 

behaviour of many natural phenomena, and have 

found applications in many fields, such as vibration 

and structural analysis, spacecraft control, electrical 

networks, robotics control and, hence, have attracted 

much attention (see, for instance, [22-32]). It has 

been proved that in special situations a second-order 

system may show chaotic dynamics. A second-order 

linear plant containing a relay with hysteresis is 

analyzed in [33], showing the chaotic nature of its 

dynamical behavior. Complex dynamical behavior of 

second-order linear plants controlled with 

conventional controllers is investigated in [34, 35]. 

On the other hand, in view of the time-delay 

phenomenon, which is frequently encountered in 

practical situations, this delay may induce complex 

behaviors (oscillation, instability, bad performances) 

for the systems concerned (see for instance the 

references [36-41] and the references therein). Up to 

now, to the best of the authors’ knowledge, no results 

about the synchronization of second-order master-

slave systems with time-varying delays using delayed 

output-feedback control are available in the literature, 

which remains to be important and challenging. This 

motivates the present study. 

In this paper, we make an attempt to develop an 

efficient approach for ∞H  synchronization problem 

of second-order neutral master-slave systems with 

time-varying state delays. The main merit of the 

proposed method lies in the fact that it provides a 

convex problem via introduction of additional 

decision variables such that the control gains can be 

found from the LMI formulations without 

reformulating the system equations into a standard 

form of a first-order neutral system. By using a 

Lyapunov-Krasovskii method and some free 

weighting matrices, new sufficient conditions are 

established in terms of a delay-dependent LMI for the 

existence of desired delayed output-feedback control 

such that the resulting closed-loop system is 

asymptotically stable and satisfies a prescribed ∞H  

performance. A significant advantage of our result is 

that the desired control is designed directly instead of 

coupling the model to a first-order neutral system and 

then designing the control law in a higher 

dimensional space. Therefore, our result can be 
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implemented in a numerically stable and efficient 

way for large-scale second-order neutral systems. 

Furthermore, as pointed out in [25], retaining the 

model in matrix second-order form has many 

advantages such as preserving physical insight of the 

original problem, preserving system matrix sparsity 

and structure, preserving uncertainty structure and 

entailing easier implementation (feedback control can 

be used directly). Finally, the simulation results are 

given to illustrate the usefulness of our results. 

 

The notations used throughout the paper are fairly 

standard. nI  and n0  represent, respectively, n  

by n  identity matrix and n  by n  zero matrix; the 

superscript ''T  stands for matrix transposition; 
nℜ  

denotes the n-dimensional Euclidean space; 
mn×ℜ  

is the set of all real m  by n  matrices. The 

matrices Î  and I
~

 are defined, respectively, as 

]0[:ˆ II =  and ]0[:
~

II = . .  refers to the 

Euclidean vector norm or the induced matrix 2-norm 

and }{Ldiag  represents a block diagonal matrix.  

)(min Aλ  and )(max Aλ  denote, respectively, the 

smallest and largest eigenvalue of the square matrix 

A . The operator }{Asym  denotes
TAA + . The 

notation 0>P  means that P  is real symmetric 

and positive definite and the symbol ∗  denotes the 

elements below the main diagonal of a symmetric 

block matrix. In addition, ),0[2 ∞L  is the space of 

square-integrable vector functions over ),0[ ∞ . 

Matrices, if the dimensions are not explicitly stated, 

are assumed to have compatible dimensions for 

algebraic operations. 

 

I. Problem description  

Consider a model of second-order neutral master-

slave systems in the form of 
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where )(),( txtx sm  are the 1×n  state vector of the 

master and slave systems, respectively; )(tu  is the 

1×r  control input; )(tw  is the 1×q  external 

excitation (disturbance), )(),( tztz sm  are the 1×s  

controlled output and )(),( tyty sm  is the 1×l  

measured output. The coefficient matrices 

BAAMM ,,,,
11

 and 1B  are square and real 

matrices, and the matrices 1N , 2N , 2B , 1C , 2C , 

3C and D  are real matrices with appropriate 

dimensions. The time-varying vector valued initial 

functions )(tφ and )(tϕ  are continuously 

differentiable functionals, and the time-varying 

delays )(td  and )(tr  are functions satisfying, 

respectively, 





≤≤<

<≤≤<

.)(,)(0

,1)(,)(0

DM

DM

rtrrtr

dtddtd

&

&

     (3) 

 

Assumption 1: The nonlinear functions 
nn

gf ℜ→ℜ:,  are continuous and satisfy 

0)0()0( == gf  and the Lipschitz condition, i.e., 

)()()( 0000 yfxfyxf −≤− )( 00 yxf −≤  and 

)()()( 0000 ygxgyxg −≤− )( 00 yxg −≤  for all 

n
yx ℜ∈00 ,  and ggff ,,,  are known constants. 

 

Remark 1: The dynamical system (1) arises naturally 

in a wide range of applications, including: 

teleoperator systems, mechanical multi-body systems 

and robotics control (see for instance [20, 27-30] and 

the many references therein). In mechanical systems 

the matrices ),(),,( 11 AAMM  and ),( 1BB , 

respectively, correspond to the mass, damping 

(viscous friction coefficient), and stiffness matrices. 

)(tx , )(tx&  and )(tx&& , respectively, are position, 

velocity and acceleration vectors. The matrix 2B  

distributes the force input to the correct degrees of 

freedom (see [22-24]). 

Now, the synchronization error of the master and 

slave systems (1) and (2) is defined as 

)()()( txtxte ms −= , then the error dynamics 



between (1) and (2), namely synchronization error 

system,  can be expressed by 
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where )()()( tztztz mse −= ,

))(())((:))((ˆ txftxftef ms −= and

)))(((:)))(((ˆ trtxgtrteg s −=− )))((( trtxg m −− . 

 

The problem to be addressed in this paper is 

formulated as follows: given the second-order neutral 

master-slave systems (1) and (2) with any time-

varying delays satisfying (3) and a prescribed level of 

disturbance attenuation 0>γ , find a delayed output-

feedback control )(tu  of the form 

))(()(:))((

))(()()()(

4
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trtCKtCKtrtyK
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(5) 

where ][: 21 KKK = , ][: 43 KKK r = ,

},{: 33 CCdiagC = , )}(),({)( tetecolt &=ξ  and the 

matrices 
4

1}{ =iiK  are the control gains to be 

determined such that  

1) the synchronization error system (4) is 

asymptotically stable for any time delays 

satisfying (3);  

2) under zero initial conditions and for all non-zero 

],0[)( 2 ∞∈ Ltw , the ∞H  performance measure, 

i.e., ∫
∞

∞ −=
0

2 )()()()( dttwtwtztzJ
T

e

T

e
γ , 

satisfies 0<∞J  (or the induced 2L –norm of 

the operator form )(tw  to the controlled outputs 

)(tz  is less than γ ); 

in this case, the second-order neutral master-slave 

systems (1) and (2) are said to be robustly 

asymptotically stable with ∞H  performance 

measures.  

 

III. Main results 
In this section, sufficient conditions for the 

solvability of the delayed output-feedback control 

design problem are proposed using the Lyapunov 

method and an LMI approach. Before proceeding 

further, we give two technical lemmas, which are 

useful in the proof our main results. 

 

Lemma 1 ([42]): For any arbitrary positive definite 

matrix H  and a matrix W  the following 

inequality holds: 
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Lemma 2 ([43]): For a given 
np×ℜ∈Μ with 

nprank <=Μ)( , assume that 
nn

Z
×ℜ∈ is a 

symmetric matrix, then there exists a matrix 
pp

Z
×ℜ∈ˆ  such that Μ=Μ ZZ ˆ if and only if  

T
V

Z

Z
VZ 








=

2

1

0

0
, 

T
UZUZ

1
1

ˆˆˆ −ΜΜ= , 

where
pp

Z
×ℜ∈1 ,

)()(
2

pnpn
Z

−×−ℜ∈ and the singular 

value decomposition of the matrix Μ  is  

represented as 
T

VU ]0ˆ[Μ=Μ with the unitary 

matrices 
pp

U
×ℜ∈ ,

nn
V

×ℜ∈ and a diagonal matrix 

pp×ℜ∈Μ̂ with positive diagonal elements in 

decreasing order. 

 

We firstly present a delay-dependent condition for the 

stability and ∞H  performance of the 

synchronization error system (4) for any time-varying 

delays satisfying (3) in the following theorem. 

 

Theorem 1: For given scalars 0, >
MM

rd , 

DD
rd ,1<  and 0>γ , the second-order neutral 

master-slave systems (1) and (2) with any time-

varying delays satisfying (3) is robustly stabilizable 

by (5) and satisfies the ∞H  performance measure, if 

there exist some matrices 
2

P ,
3

P , W ,
1

F ,
2

F , 

positive-definite matrices 
1

P , ,1Q 2Q  , H  and 

positive-definite diagonal matrices 
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,, ΛΛΛ , such 

that the following matrix inequality is feasible,  
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where CKBIAAIBA 211

~
)(ˆ:ˆ −++=  and 

CKBBA r212 ]0[:ˆ −= .  

Proof: Firstly, we represent the synchronization error 

system (4) in an equivalent descriptor model form as 
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Also, differentiating the second to forth Lyapunov 

terms in (8) give 
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and the time derivative of the last term of )(tV  in 

(8) is 
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Moreover, from the Leibniz-Newton formula 
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equation holds for any matrices 21 , FF with 
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On the other hand, using Assumption 1 for any 

positive scalars
3
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Using the obtained derivative terms (9)-(15) and 

adding the right-hand sides of equation (16) into, we 

obtain the following result for )(tV& , 
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where the vectors )(tϑ and N  are, respectively, 

)}()),(()),((),(),({:)( twtdttrtttcolt −−= ηξηξϑ ,   

                                        (18) 

}0,0,,0,{: 21 FFcolF = .          (19) 

The ∞H  performance measure can be rewritten as 
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and upper bound of )(tV&  in (17) results in (20) 

being less than the integrand )()( tt
T ϑϑ Π  where 

the matrix Π , by Schur complement, is given in (6). 

Now, if 0<Π , then 0<∞J  which means that the 

2L –gain from the disturbance )(tw  to the controlled 

output )(tz  is less than γ . This completes the 

proof.  ■ 

 

Remark 2: It is easy to see that the inequality (6) 

imply 011 <Π . Hence by Proposition 4.2 in the 

reference [44], the matrix P  is nonsingular. Then, 

according to the structure of the matrix P , the 

matrix 1: −= PX  has the form 









=

23

1 0

XX

X
X ,                                                                 

where 
1−= ii PX ( 2,1=i ) and 1323 XPXX −= . 

 

Remark 3: According to structure of matrix C , i.e., 

},{: 33 CCdiagC = , with nlCrank <=)( 3 , 

Lemma 2 proposes that an equivalent condition on 

matrix equation CXCX 11
ˆ=  is 
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)(2)(2
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lnln
X

−×−ℜ∈ and

T
VCUC ]0ˆ[= (the singular value decomposition 

of the matrix C ), with lCrank 2)( = , 
ll

U
22 ×ℜ∈ , 

nn
V

22 ×ℜ∈  and 
ll

C
22ˆ ×ℜ∈ . 

 

Theorem 2: Consider the second-order neutral 

master-slave systems (1) and (2) with any time-

varying delays satisfying (3). For given scalars 

0, >MM rd , DD rd ,1<  and 0>γ , there exits an 

output-feedback control in the form of (5) such that 

the resulting closed-loop system is robustly 

asymptotically stable and satisfies ∞H  performance 

measure in Definition 1, if there exist a scalar α , 

matrices 1F̂ , 2F̂ , 1

~
X , 2

~
X , 2X , 3X , positive-definite 

matrices 11X , 22X , 21
ˆ,ˆ QQ , H  and positive-definite 

diagonal matrices 321 ,, ΛΛΛ , satisfying the 

following LMI 
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The desired control gain in (5) is given by 

1
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1
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ˆ~
,ˆ~ −− == XXKXXK r  from LMI (21), 
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where the matrices 1X  and 1X̂  follow from 

Remark 3. 

 



Proof: By introducing HWPT =:  as a new decision 

variable and applying the Schur complement to the 

matrix inequality (6) in Theorem 1, we obtain 
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and considering IXT α=  to eliminate the 

nonlinearities in the matrix inequality with 

11
ˆ:

~
XKX = , 11

ˆ XQXQ i
T

i =  and 11
ˆ XFXF i

T
i = , 

we obtain (by Schur complement) the LMI (21). This 

completes the proof. ■ 

 

Remark 4: If nlCrank ==)( 3 , the matrix C  is 

non-singular, it is clear that the matrix equation 

CXCX 11
ˆ=  is solvable on 

1
X̂ , i.e., 

1

11
ˆ −= CXCX . In this case, the results of Theorem 2 

are true for a full (non-diagonal) matrix
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X , i.e., 
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XX
X , and the desired control gains in 

(5) are given by 
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~ −−= CXCXK
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.   

                                        

IV. Numerical example 
Consider the second-order neutral master-slave 

systems (1) and (2), where the system matrices are 

given by  
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Figure 1. The disturbance signal. 

 

The delays )1()1()()( tt
eetdtr

−− +−==  are 

time-varying and satisfy 1)()(0 ≤=≤ tdtr  and 

5.0)()( ≤= tdtr && . For simulation purpose, a 

uniformly distributed random signal, shown in Fig. 1, 

with minimum and maximum -1 and 1, respectively, 



 

as the disturbance is imposed on the response system. 

With the above parameters, the neutral master-slave 

systems (1) and (2) exhibit chaotic behaviours such 

the 21 mm xx −  and 21 mm xx && −  planes with initial 

conditions }2.0,3.0,6.0,4.0{)0( −−= colξ  and 

}1.0,1.0,7.0,8.0{)0( −= colζ , respectively, are 

shown in Fig. 2. 
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   (b) 

Figure 2. The phase trajectories: a)
21 mm

xx −  plot 

and b) 
21 mm

xx && −  plot. 

 

It is required to design the control law (5) such that 

the closed-loop system is asymptotically stable and 

satisfies the ∞H  performance measure. To this end, 

in light of Theorem 2, we solved LMI (21) with the 

disturbance attenuation 2.0=γ  and obtained the 

following control gains by using Matlab LMI Control 

Toolbox [45] 

[ ]30.0309-37.11019.0207-8.9681=K , 

[ ]2.1808-0.51520.18960.0250-=rK . 

 

 
Figure 3. The synchronization errors. 

 

 
Figure 4. Control law for system. 

 

 
Figure 5. Comparison of the controlled outputs:  a) 

closed-loop system (solid line) and b) open-loop 

system (dashed line). 
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Now, by applying the delayed state feedback 

controller (5) with the parameters above, the 

synchronization error between the drive system and 

response system is shown in Fig. 3. It shows that the 

synchronization error converges to zero. The curve of 

output-feedback control is also shown in Fig. 4. To 

observe the ∞H  performance, the response of the 

controlled output, i.e., )(tze , is depicted and 

compared with the output signal in the open-loop 

system under the disturbance in Fig. 5, which shows 

the delayed output-feedback controller (5) reduces 

the effect of the disturbance input w(t) on the 

controlled output error.  

 

 

V.  Conclusion 

This paper presented the ∞H  synchronization 

problem of the master and slave structure of a second-

order neutral chaotic system with time-varying delays. 

Delay-dependent sufficient conditions for the design 

of a delayed output-feedback control were given by 

Lyapunov-Krasovskii method in terms of an LMI. A 

controller guaranteeing asymptotic stability, and ∞H  

synchronization of the master and slave structure 

using some free weighting matrices was developed 

directly instead of coupling the model to a first-order 

neutral chaotic system. A numerical example has been 

given to show the effectiveness of the method.  
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