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Abstract 

 

This thesis report presents the results of a design and mathematical calculation of a 

mechanical test facility using SolidWorks simulation program to fine the FEM analysis of the 

transducer (part of the measurement device). A simplified shaft’s dynamic model was 

investigated using SimulationX program.  The purpose of this, is to develop the knowledge 

about the rotating shaft and the reaction forces at the boundary condition. 

 

In this thesis, the CBM strategy is based on the model free technique and a continuous 

monitoring of the component(s) during the operation time. An automatic Switch Off program 

has been designed in LabView to prevent further damaging of the test facility. 

 

Functionalities from three different directions of measurement equipment (strain gages); X, Y 

and Z, have been considered to create a CBM strategy for the test-bearing effective lifetime 

by measuring the equivalent load. 

 

According to the work load and the time limitation, the building and testing of the test-rig 

have been dropped out of the thesis. This is in the concern of the supervisors. However, later 

in this report one will see the necessary details as concerning the building of test facility.
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1. INTRODUCTION 
 

This master thesis is a research work into the Condition Based Maintenance for rotating 

machinery. The part of the rotating system for data acquisition in this research work is the 

bearings. This thesis is based on the theories acquired and requirement list from an earlier 

project as a lead up to this thesis. The data will be collected from a test facility under 

monitoring. 

 

Condition Based Maintenance (CBM) is a process that requires technologies, people, skills 

and communication to integrate all available equipment condition data. Examples are 

performance data, maintenance histories, operator logs and design data. This is necessary so 

as to make timely decisions about the maintenance requirements of major or critical 

equipments. Condition Based Maintenance uses various process parameters for example 

pressure, temperature, vibration, flow and material samples like air and oil. (1) 

 

Maintenance of rotating machinery which incorporates bearings is expensive. It is of the 

interest of all major industries, be it the chemical or the oil industries to reduce such expenses 

hence the growing interest in condition monitoring. The generation of computer-based 

monitoring is an important tool for the industry where diagnosis of equipment and 

malfunctions can help to improve the quality of the produced items. 

 

SKF have been performing condition monitoring on bearings for a long time, nevertheless it 

is an area of interest to the engineer. Improvements in the design and the optimization of 

equipments and new machines, requires new forms of monitoring. Bearings are being used in 

all types of rotating mechanical, electrical and electromechanical machines. (1 p. 175) 

 

The purpose of this study is to provide an in-depth knowledge in Condition Based 

Maintenance (CBM) on mechanical rotating systems. The Mechatronic Engineer with a vast 

knowledge in mechanical, control or automated and electrical systems is the right person to 

work with today’s maintenance situation which is Condition Based Maintenance. Condition 

based maintenance is a condition-driven preventive maintenance program. 
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This thesis is to build a test facility of rotational system. The rotational system is made of four 

bearings, a shaft and a 300W DC motor. The bearing is main focus in this CBM thesis; 

nevertheless the whole mechanical system or structure will also be monitored. 

 

In this task one bearing was run to failure. Out of this the following data was evaluated; 

equivalent load (fixed load), vibration monitoring using the strain gage connected to the 

National Instrument (LabView program). CBM strategies were developed based on the data 

acquired through; Vibration analysis from the bearing and visual observations or physical 

changes in bearings. Then after mathematical and statistical calculations were computed using 

various computer programs.  
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2. LITERATURE REVIEW  
 

This chapter will look at the relevant literature to the project. Firstly, a quick look at 

maintenance in general. Secondly, a brief literature on Condition Based Maintenance (CBM), 

its techniques and advantages. 

 

2.1. MAINTENANCE 
 

Maintenance can be described as a science since its execution relies, sooner or later, on most 

or all of the sciences. Maintenance can also be said to be a philosophy because it must be as 

carefully fitted to the operation or organization it serves. 

 

The two general classifications of maintenance are: primary functions that demand daily work 

by the maintenance function and secondary ones assigned to the function for reasons of 

expediency, know-how, or precedent. Examples of secondary functions are; store keeping, 

chemical or mechanical plant protection, waste disposal, salvage, insurance administration 

and other services. (2) 

 

In the early years, maintenance was only performed when something broke or could not 

function to accomplish the task. This process of addressing equipment failures after the 

occurrence is called corrective maintenance and still exists today in all industries. But 

breakdowns and their subsequent impact on future equipment availability calls for a new 

method or approach to dealing with equipments. (3) 

 

In contrast to corrective maintenance, preventive maintenance is about taking action before 

total breakdown of the equipment. Under preventive maintenance the following are taken in 

consideration; period, replacement of parts, and overhauling of the system is taken in 

consideration. Predictive maintenance or CBM is a part of preventive maintenance. 

 

A side benefit of predictive maintenance is the automatic ability to monitor the meantime- 

between-failures (MTBF). These data provide the means to determine the most cost-effective 
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time to replace machinery rather than continue to absorb high maintenance costs. The MTBF 

of plant equipment is reduced each time a major repair or rebuild occurs. (4 p. 72) MTBF is 

given mathematically as 𝜃 = 1/𝜆 , where θ is the MTBF and 𝜆 is the constant failure rate. (5 

p. 78) 

 

Maintenance within the industry is often built upon a long tradition of a hierarchy in the 

organizational structure with traditional roles in the decision making. Maintenance is built up 

around well proven (tried and tested) work routines which are in principle founded from the 

manufacturers’ original recommendations. A traditional work method with a time-based 

maintenance interval, where the intervals are often founded from conservative 

recommendations from the manufacturer, but which afterwards have changed, based upon 

one’s own operating experience with the equipment. New technology has enabled better 

controls and analysis and have been included with routine work, but often been included in 

already established time-based maintenance programs at the various sites. Condition based 

maintenance will automatically display the reduction of MTBF over the life of the machine. 

(6) 

2.2. CBM TECHNIQUES 
 

Several techniques exist to design a CBM-system. They may be classified as either model-

free techniques or model-based techniques. 

 

• Model-Free Techniques:  
The model-free techniques attempt to find anomalies in a dynamic system by using hardware 

redundancies, limit and trend checking of readings coming from sensors, etc. For example 

methods based on vibration analysis; use information given either from displacement or eddy 

probes, velocity sensors, or accelerometer sensors. (1 p. 98) 

 

• Model-Based Techniques: 
The model-based techniques use models that theoretically represent the behavior of the 

dynamic system to estimate the states and parameters of the model. These theoretical values 

are compared against the actual outputs of the sensors. The resulting values are further 

processed to decide if a fault is present in the system and to identify the fault origin. (1 p. 99) 
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2.3. MONITORING PARAMETERS FOR PLANT MACHINERY 
 

Mechanical equipments which include, all rotating, reciprocating, linear motions and other 

plant equipment or systems related to moving components or process-related dynamic actions, 

can be evaluated using vibration monitoring techniques. 

Many vibration programs are limited to simple machine set ups, such as pumps and fans. 

While appropriate for these simple rotating machines, vibration monitoring and analysis also 

can be used on complex rotating equipment and a variety of continuous-process systems. This 

classification should include pumps, fans, compressors, motor-generators, conveyors and 

many other continuous-process machines. (7) 

 

2.4. RECIPROCATING MACHINERY 
 

Vibration analysis is directly applicable to reciprocating machinery; however, modified 

diagnostic logic must be used to evaluate this type of machine train. Unlike pure rotating 

machines, the vibration patterns generated by reciprocating machines may not be simple 

harmonics of a rotating shaft. (4 pp. 122 - 123) 

 

2.5. LINEAR-MOTION MACHINERY 
 

Linear-motion machinery, such as indexing machines, also has a repeatable pattern of motion 

and forces. Vibration analysis also can be used to evaluate these machines and systems. 

Timing of vibration patterns in relation to the stroke or linear movement is a key to the 

evaluation of linear-motion equipment. All data should be recorded and evaluated with an 

accurate reference to time sequence of the repetitive pattern of movement. (4 pp. 122 - 123) 
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Table 1: Condition-Based Maintenance Technology. (1 p. 24) 

Inputs Sensor readings are the primary source of information about the state of 
the system. 

 Condition-Based Maintenance 

Framework Identification of system malfunctions must be performed while the system 
is operating; i.e. there is no need to stop the system to perform diagnosis. 
CBM neither can stop nor interfere with the operation of the dynamic 
system under observation 

Objectives Provide assessment of the system condition based on interpretation of 
sensor data. 
Provide lead-time and required maintenance prior to predicted failure. 
Fix or replace a faulty component in a timely manner such that the 
operational safety of the system is not compromised. 

Requirements Estimation of states and parameters of the system under observation; 
Detection of system malfunctions, such as component failures or 
variations in operating conditions; 
Identification of the origin of any detected fault, its type and 
characteristics 
Assessment of system condition and description of its variation in 
time; 
Recording of the vital parameters that describe the condition of the 
system; 
Forecast expected conditions of the observed system; 
Suggest repair actions that restore the system to a state in which it can 
perform its required function 

Outputs Alert the operator when a fault is detected. 
Notify of a suspected component. 
Report an assessment of present and future system conditions. 
Suggest corrective actions. 

Benefits 
 

Reduce maintenance costs. 
Increase equipment reliability. 
Reduce equipment downtime. 
Extend service life of the observed system. 
Provide continuous evaluation of system condition. 
Increases operational safety. 
Reduce severity of faults. 
Attempts to totally eliminate catastrophic failures. 
Extend maintenance cycles. 
Reduces technician training requirements 
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3. THE TEST-RIG 
 

This chapter looks at the description of the test facility setup, forces and limitation. In the 

previous chapter it have been discussed that there are basically two methods to implement the 

CBM, namely; 

• Model based technique 
• Model free technique 

 

This project is based on the model free technique. On the other hand the construction has to 

satisfy the requirements list from the pre-project work. (8) 

The test facility includes: 

• The DC motor 

• The shaft 

• Four bearings with three bearing-houses 

• The coupling 

• Bushings 

• Axial and radial load (see Figure 1) 

• The transducer 

 

Figure 1: The setup of the test-rig. 
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3.1. THE DC MOTOR 
 

The DC motor which would be used in test-rig; was produced by Roley Somer with 300 W 

power, 2900 rpm constant speed, 13.5 A current and 22 V voltage. The motor’s outer shaft 

has diameter 12 mm. This DC motor was chosen, based on the pre-estimations done in pre-

project. (8) 

 

3.2. THE SHAFT 
 

The shaft was constructed with varying diameters (stepped shaft) with respect to assemble or 

disassemble the components. The shaft material is E295 (St50-2, Germany standard). (9) 

 

Figure 2: The shaft view. For more details see sheet No. P-01. 
   

3.3. THE BEARINGS 
 

The test-rig contains four different types of bearings: 

• The cylindrical bearing (at A) 

• The ball bearing (at B) 

• The needle bearing (at C) and 

• The cylindrical-thrust bearing (at D) (see Figure 3) 

 

The CBM’s test is about performing destructive test on the ball bearing B. But the needle and 

cylindrical-thrust bearing will endure the radial and axial load respectively. 

626

42286 118

CY

Ga
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Figure 3: A simplified view of the test-rig to show the location of bearings and bearing-houses. 
 

3.4. THE COUPLING 
 

The coupling will attach the shaft to the DC motor by key-joint and screwed to the both 

motor’s outer shaft and the shaft. And the type is an elastic or flexible coupling which has to 

be selected from the catalogue (i.e. TOOLS Fag-Verktøy AS) where the motor’s outer shaft is 

12 mm and the shaft is 30 mm in diameter. (See Figure 1& Figure 4) 

 

Figure 4: The coupling 
 

 
Figure 5: Elastic coupling from SKF.com. 

 

 

Radial Load
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3.5. THE BUSHINGS 
 

The test-rig has two bushings where one is located between the ball and the thrust bearing; the 

other is located between the thrust bearing and the spring. The purpose to have these bushings 

is to transmit an axial load just to the ball bearing not to the shaft or the rest of the system. 

(See Figure 6) 

 

Figure 6: The illustration of the bushing and spring. 
 

3.6. THE LOAD 
 

One of the requirements was to generate enough radial and axial-load to damage at least one 

roller bearing within 2-3 days. The load value will be evaluated in next chapter. 

 
Figure 7: The illustration of the forces (load) and the reaction-forces AY,  BY & BX. 
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3.7. The transducer 
 

The transducer is the part which is fastened beneath of the test-bearing and is constructed to 

attach some strain-gages in center of the thin quadratic walls to capture the forces and forces-

variation in three directions X, Y and Z. 

 

 
Figure 8: The transducer with some of the dimensions. 
 
The test-rig is designed to carry forces in two directions X & Y where the transducer is able to 

detect forces in three directions. The third direction detection Z can be useful in purpose to 

improve the knowledge of the rotational system’s behavior due to CBM research. 

 

 
Figure 9: The transducer with Test-bearing and Bearing house. 
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Figure 10: The radial and axial-load illustration on test-rig. 
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4. THE CALCULATIONS 
 

It is quite obvious that the CBM’s test-rig has to be dimensioned based on engineering 

calculation. The detail calculations are required. This chapter contains the test-rig relevant 

formulas and calculations are based on Master Mechatronic course material, components’ 

supplier catalogue and material properties. 

 

4.1. THE SHAFT 
 

The chosen material due to the shaft is E295. (9) 

 

Figure 11: simplified setup of the shaft and the bearings where D = 35mm and d = 20mm. 
 

Since the construction is meant to be used as a test facility, the safety-factor determined η = 
1.5. 
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4.1.1. The critical speed 
 

The shaft deflection calculation, where the deflection caused by shaft own weight is: 

𝐟𝟎,𝐚 = 𝟓∙𝐆𝐚∙𝐥𝐚𝟑

𝟑𝟖𝟒∙𝐄∙𝐈𝐚
= 𝟓∙𝟑𝟕 𝐍∙(𝟓𝟎𝟎𝐦𝐦)𝟑

𝟑𝟖𝟒∙𝟐𝟏𝟎𝟎𝟎𝟎 𝐌𝐏𝐚∙𝟕𝟑𝟔𝟔𝟐𝐦𝐦𝟒 = 𝟎.𝟎𝟎𝟑𝟗 𝐦𝐦 ( 4-1) 

Where: 

f0,a: The deflection caused by shaft own weight [mm]. 
Ga: The shaft own gravity force [N]. 
la: The shaft length (between two reaction-forces Ay and By) [mm]. 
E: The young modulus [MPa]. 
Ia: The shaft inertia where𝐼 = 𝜋 ∙ 𝑑𝑎4/64 [mm4] and da is the outer massive shaft 
diameter [mm]. 

 

The shaft deflection calculation, where the deflection caused by extern load is: 

𝐟𝟎,𝐥 = 𝐆𝐥∙𝐒𝟐∙𝐂𝟏
𝟐

𝟑∙𝐄∙𝐈𝐚∙𝐥𝐚
= 𝟐𝟗𝟒𝟔 𝐍∙𝟒𝟓𝟎𝟐𝐦𝐦𝟐∙𝟓𝟎𝟐𝐦𝐦𝟐

𝟑∙𝟐𝟏𝟎𝟎𝟎𝟎𝐌𝐏𝐚∙𝟕𝟑𝟔𝟔𝟐 𝐦𝐦𝟒∙𝟓𝟎𝟎 𝐦𝐦
= 𝟎.𝟎𝟔𝟒𝟑𝐦𝐦 ( 4-2)  

Where: 

f0,l: The deflection caused by external load [mm]. 
Gl: The load force; Gl = Ml*g*η [N]. 
S: The distance between cylindrical bearing and the load [mm]. 
C1: The distance between the test bearing and the load [mm]. 

 

The shaft own critical speed can be calculated by the equation below: 

𝐧𝐜𝐫 = 𝟑𝟎
𝛑 �

𝐠
𝐟𝟎
→ �

𝐧𝐜𝐫,𝐆 = 𝟏𝟓𝟏𝟒𝟗 𝐫𝐩𝐦 
𝐧𝐜𝐫,𝐥 = 𝟑𝟕𝟑𝟐.𝟓 𝐫𝐩𝐦 ( 4-3) 

Where: 

ncr: The shaft critical speed [rpm]. 
ncr,G & ncr,l: The shaft critical speed is caused by own gravity & load respectively. 
g: The gravity acceleration (g = 9.81 m/s2). 
f0: The shaft static deflection [mm]. 

 

The total critical speed can be determined by Dunkerleys Method: 

𝐧𝐜𝐫,𝐭𝐨𝐭𝐚𝐥 = �
𝟏

� 𝟏
𝐧𝐜𝐫,𝐬𝐡𝟐

�+� 𝟏
𝐧𝐜𝐫,𝐥𝟐

�
= �

𝟏

� 𝟏
𝟏𝟓𝟏𝟒𝟗𝟐

�+( 𝟏
𝟑𝟕𝟑𝟐.𝟓𝟐

)
= 𝟑𝟔𝟐𝟒 𝐫𝐩𝐦 ( 4-4) 

The actuator rotational speed is nmotor < 0.8· ncr,total  with respect to the safety-factor η=1.5 

and considering a uniform shaft with D = 35 mm  the shaft is OK. 
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4.1.2. The fatigue 

To calculate the shaft’s fatigue, would be carried out in the worst case scenario where the 

shaft’s notch is designed. The calculation of section A-A shows below in detail, but the other 

sections will be represented in Table 2. 

 

The shaft designed with varying diameters and it steps up from the lowest diameter d = 20 

mm to the highest D = 46 mm. But the most critical sections due to the fatigue criteria are 

where the high forces arise (at C and B), so here will be represented by just four sections (A-

A, B-B, C-C and D-D). 

 

Figure 12: The illustration of forces on the shaft with sections location due to fatigue criteria. 
 

The reaction forces are found by: 

∑𝐌𝐀 = 𝟎 → 𝐆𝐋 ∙ 𝟒𝟓𝟎𝐦𝐦 + 𝐆𝐚 ∙ 𝟐𝟓𝟎𝐦𝐦−𝐁𝐲 ∙ 𝟓𝟎𝟎𝐦𝐦 = 𝟎 ( 4-5) 
Where: 

MA: The moment about reaction force at A (AY). 
 

𝐆𝐚 = 𝛑
𝟒
∙ ( 𝐃
𝟏𝟎𝟎

)𝟐 ∙ 𝛒 ⋅ 𝐋
𝟏𝟎𝟎

⋅ 𝐠 = 𝛑
𝟒
∙ (𝟑𝟓𝐦𝐦

𝟏𝟎𝟎
)𝟐 ∙ 𝟕.𝟖𝟓 𝐤𝐠

𝐝𝐦𝟑 ⋅
𝟓𝟎𝟎𝐦𝐦
𝟏𝟎𝟎

⋅ 𝟗.𝟖𝟏 𝐦
𝐬𝟐

=  𝟑𝟕 𝐍 ( 4-6) 

Where: 

D: The shaft diameter [mm]. 
g: The gravity acceleration [m/s2]. 
L: The distance between point A and B [mm]. 
ρ: The material mass density [kg/dm3]. 

And: 

𝐆𝐥 = 𝐌𝐋 ∙ 𝐠 = 𝟐𝟎𝟎𝐤𝐠 ∙ 𝟗.𝟖𝟏 𝐦
𝐬𝟐

= 𝟏𝟗𝟔𝟐 𝐍  ( 4-7) 

Where: 

ML: The mass [kg]. 
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g: The gravity acceleration [m/s2]. 
𝐁𝐲 = (𝐆𝐋∙𝟒𝟓𝟎+𝐆𝐚∙𝟐𝟓𝟎)∙𝛈

𝟓𝟎𝟎
= (𝟏𝟗𝟔𝟐∙𝟒𝟓𝟎+𝟑𝟕∙𝟐𝟓𝟎)∙𝛈

𝟓𝟎𝟎
= 𝟏𝟕𝟖𝟔 ∙ 𝛈 = 𝟐𝟔𝟕𝟔 𝐍 ( 4-8) 

From Newton 2nd law: 

∑𝐅𝐲 = 𝟎 → 𝐁𝐲 + 𝐀𝐲 − 𝐆𝐚 − 𝐆𝐋 = 𝟎 → 𝐀𝐲 = 𝟑𝟎𝟏 𝐍 ( 4-9) 
 

 
Figure 13: The E295 stress characteristic 𝜎𝑁. 

 

The bending momentum and torsion stress at section A-A could be calculated such: 

𝐌𝐛 = 𝐁𝐲 ∙ 𝐚𝐫𝐦 = 𝟐𝟔𝟕𝟔 ∙ 𝟒 = 𝟏𝟎𝟕𝟎𝟒 𝐍𝐦𝐦 ( 4-10) 

 

Knowing that the actuator’s torque is T = 1 Nm, so: 

𝛕 = 𝐓
𝐖𝐩

= 𝟏𝟎𝟎𝟎𝐍𝐦𝐦∙𝟏𝟔
𝛑∙(𝟐𝟎𝐦𝐦)𝟑

= 𝟎.𝟔𝟒 𝐌𝐏𝐚 ( 4-11) 

Where: 

τ: The shear stress [MPa]. 

WP: The polar section modulus [mm3], 𝑊𝑃 = 𝜋∙𝐷3

16
 D is section diameter [mm]. 

 

The torsion stress is constant which means that 𝜏𝑎 = 0 𝑀𝑃𝑎. 

 

Figure 14: The torsion characteristic. 
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The bending stress is then: 

𝛔𝐛 = 𝐌𝐛
𝐖

= 𝟏𝟎𝟕𝟎𝟒 𝐍𝐦𝐦∙𝟑𝟐
𝛑∙𝟐𝟎𝟑𝐦𝐦𝟑 = 𝟏𝟑.𝟔 𝐌𝐏𝐚 ( 4-12) 

Where: 

σB: The bending stress [MPa]. 
Mb: The bending moment [Nmm]. 

W: The section modulus [mm3], 𝑊 = 𝜋∙𝐷3

32
 D is section diameter [mm]. 

 

The reduction factor btot is then determined as: 

𝐛𝐭𝐨𝐭 = 𝐛𝟏 ∙ 𝐛𝟐 ∙ 𝐛𝟑 = 𝟎.𝟗 ∙ 𝟎.𝟗𝟑 ∙ 𝟏 = 𝟎.𝟖𝟑𝟕 ( 4-13) 
Where: 

b1: The dimension effect factor. 
b2: The surface effect factor. 
b3: The fiber-direction factor. 
btot: The total reduction factor. (10 p. 49 & 50) 

 

The notch factor Kfb: 

𝐊𝐟𝐛 = 𝟏 + 𝛈(𝐊𝐭 − 𝟏) = 𝟏 + 𝟎.𝟔𝟖(𝟏.𝟕 − 𝟏) = 𝟏.𝟒𝟕𝟔 ( 4-14) 
The Kt and η could be read from the tables. (10 p. 51 & 54) 

 
The equivalent stress amplitude can be calculated by the equation: 

𝛔𝐚𝐞 = �(𝐊𝐟𝐛∙𝛔𝐛)𝟐 + 𝟑(𝐊𝐟𝐯 ∙ 𝛕𝐯)𝟐 = �(𝟏.𝟒𝟕𝟔 ∙ 𝟏𝟑.𝟔 𝐌𝐏𝐚)𝟐 + 𝟑(𝟎)𝟐 = 𝟐𝟎 𝐌𝐏𝐚   ( 4-15) 
 

And the equivalent middle stress: 

𝛔𝐞𝐦 = 𝛔𝐦 ( 4-16) 
 

Since the test-rig is constructed to run continuously so the torsion will be constant then 

𝝉𝒗 = 𝟎 𝑴𝑷𝒂(see Figure 14), and the symmetry will lead to an alternating stretch-pressure 

stress concentration at the notch area on the shaft, and at the shaft surface will be the highest 

stress concentration which means that the equivalent amplitude stress equation can simplified 

to: 

𝛔𝐚𝐞 = 𝐊𝐟𝐛 ⋅ 𝛔𝐛 = 𝟐𝟎 𝐌𝐏𝐚 ( 4-17) 
 

The amplitude stress from the material characteristic: 
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𝛔𝐚 = ±𝟐𝟔𝟎 𝐌𝐏𝐚 ( 4-18) 
(10 p. 47) & (see Figure 13) 

 

So the safety factor due to fatigue is then: 

𝐧𝐮 = 𝛔𝐚(𝐫𝐞𝐝)

𝛔𝐚𝐞
= 𝐛𝐭𝐨𝐭⋅𝛔𝐚

𝐊𝐟𝐛⋅𝛔𝐛
= 𝟎.𝟖𝟑𝟕∙𝟐𝟔𝟎 𝐌𝐏𝐚

𝟐𝟎 𝐌𝐏𝐚
= 𝟏𝟎.𝟗 ( 4-19) 

 

The fatigue safety factor at section A-A is nu = 6.2 so the shaft is OK. 

 

Figure 15: The distances between the sections with reaction force By. 
 

The calculation of the other sections has been carried out on the same way shown above and 
the results are represented in the table below. 
 

Table 2: The shaft fatigue results 

Sections 
d  

mm 

D 

mm 

r 

mm 

arm 

mm 

Mb 

Nmm 

σb 

MPa 
Kfb 

σae 

MPa 

τ   

MPa 
btotal 

σa(red) 

MPa 
nu 

A-A 20 35 1 4 10704 13.6 1.47 35 0.637 0.837 217.6 10.9 

B-B 35 40 2 37 104130 24.7 1.63 40.3 0.119 0.697 181.4 4.5 

C-C 40 46 1 62 165540 39.3 1.90 74.9 0.079 0.651 169.6 2.26 

D-D 40 46 3 72 192240 30.6 1.55 47.3 0.079 0.651 169.6 3.58 

 

The fatigue level at the notched area near of the cylindrical bearing, is relatively much lower 

than the calculated areas and that because of lower reaction force Ay = 300 N and the 

diameter d = 30 mm in comparison with the A-A section. (See Figure 12)   

Section D-D
72

Section A-A62

37
4

By

Section B-B

Section C-C
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4.2. THE BEARINGS 
 

The test-rig is designed to have four bearings. Two of the bearings (cylindrical and load) are 

fastened to the shaft at A & C. Where the others are just attached to the shaft at B & D (see 

Figure 16). The selection of bearings due to the test-rig is based on the SKF’s electronic 

catalogue. From the actuator side the bearings are as follows: (11), (12) 

 

A: The cylindrical bearing 
B: The test bearing 
C: The load bearing 
D: The thrust bearing 

 

Figure 16: The simplified setup of test-rig where the position of each bearing is shown by same letter 
mentioned before. 
 

To select the bearings the radial, the axial and the equivalent load (force) for each bearing 

location has to be determined. 

 

Figure 17: The shaft’s free body diagram. 
 

Compute some of the data: 

∑𝐌𝐀 = 𝟎 →  𝐆𝐚 ⋅
𝐋
𝟐

+ 𝐆𝐥 ⋅ 𝐒 − 𝐁𝐲 ∙ 𝐋 = 𝟎  ( 4-20) 

Where: 

MA: The sum moment at A [Nmm]. 
Ga: The shaft own gravity load [N]. 

A B
C

D

MNeedle
Mthrust

Mball

DXBX

BY

CY

Ga

AY

Mmotor
MCyl



32 
 

GL: The radial load [N]. 
S: The distance from point A to the load [mm]. 
L: The distance from point A to point B [mm]. 
By: The reaction force at point B [N]. 
 

And it is assumed that the shaft is a uniform shaft with D = 35 mm:  

𝐆𝐚 = 𝛑
𝟒
∙ ( 𝐃
𝟏𝟎𝟎

)𝟐 ∙ 𝛒 ⋅ 𝐋
𝟏𝟎𝟎

⋅ 𝐠 = 𝛑
𝟒
∙ (𝟑𝟓𝐦𝐦

𝟏𝟎𝟎
)𝟐 ∙ 𝟕.𝟖𝟓 𝐤𝐠

𝐝𝐦𝟑 ⋅
𝟓𝟎𝟎𝐦𝐦
𝟏𝟎𝟎

⋅ 𝟗.𝟖𝟏 𝐦
𝐬𝟐

=  𝟑𝟕 𝐍 ( 4-21) 

Where: 

D: The shaft diameter [mm]. 
g: The gravity acceleration [m/s2]. 
L: The distance between point A and B [mm]. 
ρ: The material mass density [kg/dm3]. 

 

And: 

𝐆𝐥 = 𝐌𝐋 ∙ 𝐠 = 𝟐𝟎𝟎𝐤𝐠 ∙ 𝟗.𝟖𝟏 𝐦
𝐬𝟐

= 𝟏𝟗𝟔𝟐 𝐍  ( 4-22) 

Where: 

ML: The mass [kg]. 
g: The gravity acceleration [m/s2]. 

 

𝐆𝐋 ∙ 𝟒𝟓𝟎𝐦𝐦 + 𝐆𝐚 ∙ 𝟐𝟓𝟎𝐦𝐦− 𝐁𝐲 ∙ 𝟓𝟎𝟎𝐦𝐦 = 𝟎  ( 4-23) 

 

So: 

𝐁𝐲 = 𝟏𝟕𝟖𝟔 ≈ 𝟏𝟖𝟎𝟎 𝐍       ( 4-24) 

 
𝐁𝐱 = 𝐃𝐱 = 𝟎.𝟒 ∙ 𝐁𝐲 = 𝟕𝟐𝟎 𝐍  ( 4-25) 

 

∑𝐅𝐲 = 𝟎 → 𝐀𝐲 − 𝐆𝐚 − 𝐆𝐥 + 𝐁𝐲 = 𝐀𝐲 − 𝟏𝟗𝟔𝟒 − 𝟑𝟕 + 𝟏𝟖𝟎𝟎 = 𝟎  ( 4-26) 
Where: 

Fy: The sum of forces in Y direction [N]. 
𝐀𝐲 = 𝟐𝟎𝟎 𝐍 ( 4-27) 

𝐂𝐲 = 𝐆𝐥 = 𝟏𝟗𝟔𝟐 𝐍  ( 4-28) 

 

The Ay & Cy are the radial forces at point A & C respectively with safety factor η = 1.5, but 

By is the reaction force at B considering the safety factor η = 1. (See Figure 17) 
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The desired lifetime due to the bearings, is 100 test-bearing’s life time such: 

𝐋𝟏𝟎,𝐫𝐞𝐪 = 𝐧𝐦𝐨𝐭𝐨𝐫 ⋅ 𝐭𝐦 ⋅ 𝐭𝐡 ⋅ 𝐭𝐝 ⋅ 𝐤 = 𝟐𝟗𝟎𝟎 ∙ 𝟔𝟎 ∙ 𝟐𝟒 ∙ 𝟐 ∙ 𝟏𝟎𝟎 = 𝟖𝟑𝟓.𝟐 𝐌𝐫𝐞𝐯 ( 4-29) 
Where: 

L10,req: The desired test-rig’s lifetime [Mrev]. 
nmotor: The motor’s rotational speed nmotor = 2900 rpm. 
tm: One hour’s minutes m = 60 min/hour. 
th: One day*s hour h = 24 hour/day. 
td: The test-bearing required lifetime d = 2 days. 
k: The test-rig required lifetime (except test bearing) k = 100∙d. 

 

4.2.1. The cylindrical bearing 

To select the cylindrical bearing (at A, Figure 16), the equivalent bearing load is calculated to 

be: 

 𝐏𝐮 = 𝐀𝐲 ∙ 𝛈 = 𝟐𝟎𝟎 𝐍 ∙ 𝟏.𝟓 = 𝟑𝟎𝟎 𝐍 ( 4-30) 

 

The bearing is selected from SKF’s catalogue NU 1007 ECP. (13) 

 

Then check the cycle number: 

𝐋𝟏𝟎 = � 𝐂
𝐩𝐮
�
𝟏𝟎
𝟑 = �𝟑𝟓𝟖𝟎𝟎 𝐍

𝟑𝟎𝟎 𝐍
�
𝟏𝟎
𝟑 = 𝟖𝟑𝟔𝟔 𝐆𝐫𝐞𝐯 ( 4-31) 

 

To check the system’s life time requirement: 

𝐋𝟏𝟎
𝐋𝟏𝟎,𝐫𝐞𝐪

= 𝟖𝟑𝟔𝟔 𝐆𝐫𝐞𝐯
𝟖𝟑𝟓.𝟐 𝐌𝐫𝐞𝐯

= 𝟏𝟎𝟎𝟏𝟕  ( 4-32) 

 

From the calculation, the cylindrical bearing’s life time L10,cylindrical > >100 L10,test-bearing (test 

bearing life time), hence the selected bearing is OK. 
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4.2.2. The load bearing 

The bearing at point C is carrying the payload (see Figure 16). At point C, the equivalent load 

is then the radial force on the shaft at C (there is no axial load). 

 𝐏𝐮 =  𝐂𝐲 · 𝛈 = 𝟏𝟗𝟔𝟒 𝐍 ∙ 𝟏.𝟓 =  𝟐𝟗𝟒𝟔 𝐍 ( 4-33) 

 

The needle bearing NA 4908.2R/W64 is selected from SKF catalogue. (14) 

 
Then check the cycle number: 

𝐋𝟏𝟎 = � 𝐂
𝐩𝐮
�
𝟏𝟎
𝟑 = �𝟑𝟔𝟗𝟎𝟎 𝐍

𝟐𝟗𝟒𝟔 𝐍
�
𝟏𝟎
𝟑 = 𝟒𝟓𝟔𝟑.𝟕 𝐌𝐫𝐞𝐯  ( 4-34) 

Check the system’s lifetime requirement: 

𝐋𝟏𝟎
𝐋𝟏𝟎,𝐫𝐞𝐪

= 𝟒𝟓𝟔𝟑.𝟕 𝐌𝐫𝐞𝐯
𝟖𝟑𝟓.𝟐 𝐌𝐫𝐞𝐯

= 𝟓.𝟓  ( 4-35) 

 

From the calculation, the cylindrical bearing’s lifetime L10,cylindrical > 100 L10,test-bearing (test 

bearing lifetime), hence the selected bearing is OK. 

 

4.2.3. The test bearing 

The test bearing (at C, see Figure 16) is the only bearing selected: 

• To carry both radial and axial forces. 

• With safety factor 𝜂 ≤ 1. 

The equivalent load Pu can be calculated such: 

𝐏𝐮 = 𝐅𝐫 when 𝐞 ≤ 𝐅𝐚
𝐅𝐫

 ( 4-36) 

𝐏𝐮 = 𝐗 ∙ 𝐅𝐫 + 𝐘 ∙ 𝐅𝐚when 𝐞 > 𝐅𝐚
𝐅𝐫

 ( 4-37) 

Where: 

e, X & Y: SKF factors. 
Fr & Fa: The radial and axial force respectively [N]. 

 

The values of the X & Y depend on the e and the relationship f0Fa/C0, where f0 is a 

calculation factor and C0 is the basic static load rating. (15) 

The selected bearing is 61804. (16) 
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Then from SKF’s data: C0 =32200 N, f0 = 15, but Fa = 714.45 N from calculation; so the SKF 

factors: X = 1 & Y = 0. Where the equivalent load Pu = Fr = By at B. (See Figure 11) 

 

The number of revolution is controlled by the equation: (14) 

𝐋𝟏𝟎 = � 𝐂
𝐩𝐮
�
𝟑

= �𝟒𝟎𝟑𝟎𝐍
𝟏𝟖𝟎𝟎𝐍

�
𝟑

= 𝟏𝟏.𝟐𝐌𝐫𝐞𝐯  ( 4-38) 

 

Additionally, the number of estimated operating hours can be calculated by this equation: 

𝐭 = 𝐋𝟏𝟎
𝐫𝐞𝐯

= 𝟏𝟏.𝟐 𝐌𝐫𝐞𝐯
𝟏𝟕𝟒𝟎𝟎𝟎𝐫𝐞𝐯/𝐡

= 𝟔𝟒.𝟒 𝐡𝐨𝐮𝐫𝐬 ( 4-39) 

Where: 

rev: Number of motor revolutions per one hour [rev/h]. 
t: The estimated operation time [hour]. (17) 

 

Based on the calculation above the ball bearing (test bearing) estimated to break within 3 

days (72 hours operating time) which is acceptable approach according to the requirements. 

 

4.2.4. The thrust bearing 

The thrust bearings are constructed to endure only the axial load (Dx = Bx = 714.5 N). The 

bearing is selected based on the bore diameter (d = 20 mm): K 81104 TN (18) 

 

The bearing’s lifetime is controlled wherePu = Bx ∙ η = 720 ∙ 1.5 =   1080 N: 

𝐋𝟏𝟎 = � 𝐂
𝐩𝐮
�
𝟏𝟎
𝟑 = �𝟏𝟖𝟔𝟎𝟎 𝐍

𝟏𝟎𝟖𝟎 𝐍
�
𝟏𝟎
𝟑 = 𝟏𝟑𝟏𝟗𝟐 𝐌𝐫𝐞𝐯 ( 4-40) 

 

The test-rig design criterion is checked: 

𝐋𝟏𝟎
𝐋𝟏𝟎,𝐫𝐞𝐪

= 𝟏𝟑𝟏𝟗𝟐 𝐌𝐫𝐞𝐯
𝟖𝟑𝟓.𝟐 𝐌𝐫𝐞𝐯

= 𝟏𝟓.𝟖  ( 4-41) 

 

L10,req: The test-rig design criteria is based on motor cycles’ number L10,req = 806 Mrev. 

The selected bearing is OK. 
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The summary of the bearings’ selection, designation and price are represented in Table 3. 
 

Table 3: The bearings type, designation and prices are illustrated. 
 Bearing Type SKF Designation Tools Ref. Price [NOK] 

A Cylindrical Bearing NU 1007 ECP 6109-4885 250,- 

B Ball Bearing 61804 9019-0365 112,- 

C Needle Bearing NA 4908.2R/W64 6174-0370 444,- 

D Thrust Cylindrical Bearing K 81104 TN - 220,- 

 

4.3. The Bushing: 
 

The bushings are exposed to relatively low axial load altitude Fa = 720 N and the stress level 

assumed to be low enough to accept the design without any further calculation. (See Figure 6) 

 

4.4. The Motor Holder: 
 

The DC motor is fixed to the motor holder with four M6×1.25 – SAE 8.8 bolts and the motor 

holder can be fixed to the board by four angular holders. Since the DC motor torque is T = 1 

Nm so the mentioned parts concluded to be OK. (See Figure 10 & Sheet No. P-03)  
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4.5. THE FRICTIONAL MOMENT 
 

The frictional moment could be calculated by the following equation: 

𝐌 = 𝟎.𝟓 𝛍 𝐏𝐮 𝐝 ( 4-42) 
Where: 

M: The estimated frictional moment [Nmm]. (19) 
µ: Constant coefficient of friction for bearing. (20) 
Pu: Equivalent dynamic bearing load [N]. 
d: Bearing bore diameter [mm]. 
When for needle roller bearings use F or Fw instead of d. 
F: Inner ring raceway diameter [mm]. 
Fw: Diameter under rollers [mm]. 

 

The total estimated frictional moment is the sum of the estimated frictional moment for each 

bearing: 

𝐌𝐟𝐫,𝐭𝐨𝐭𝐚𝐥 = 𝐌𝐛𝐚𝐥𝐥 + 𝐌𝐜𝐲𝐥 + 𝐌𝐧𝐞𝐞𝐝𝐥𝐞 + 𝐌𝐭𝐡𝐫𝐮𝐬𝐭 ( 4-43) 
Where: 

Mfr,total: The total estimated frictional moment [Nmm]. 
Mball: The estimated frictional moment for ball bearing [Nmm]. 
Mcyl: The estimated frictional moment for cylindrical bearing [Nmm]. 
Mneedle: The estimated frictional moment for needle bearing [Nmm]. 
Mthrust: The estimated frictional moment for cylindrical thrust bearing [Nmm]. 

 

Table 4 represents the results of the estimated frictional moment calculation of each bearing. 

 

Table 4: The calculation of the estimated frictional moments 
Bearing type μ Pu [N] d [mm] M [Nmm] 

Cylindrical 0.002 300 35 10.5 

Needle 0.0025 1964 F = 48 117.8 

Ball 0.0015 1800 20 27 

Thrust 0.005 720 20 36 

 

𝐌𝐟𝐫,𝐭𝐨𝐭𝐚𝐥 = 𝟏𝟎.𝟓 𝐍𝐦𝐦 + 𝟏𝟏𝟕.𝟖𝐍𝐦𝐦 + 𝟐𝟕𝐍𝐦𝐦+ 𝟑𝟔𝐍𝐦𝐦 = 𝟏𝟗𝟏.𝟑 𝐍𝐦𝐦 ( 4-44) 
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To check the motor’s ability to run the system, the peak time has to be computed by this 

equation: 

𝐭𝐩𝐞𝐚𝐤 = 𝛚
𝛂

 ( 4-45) 

Where: 

α: Angular acceleration [rad/s2]. 
ω: Angular speed ω = nmotor/(60∙2π) [rad/s]. 

 
And 

𝐌𝐦𝐚𝐱 −𝐌𝐟𝐫,𝐭𝐨𝐭𝐚𝐥 = 𝐉𝐭𝐨𝐭𝐚𝐥 ∙ 𝛂 ( 4-46) 
Where: 

Mmax: The motor max torque [Nm]. 
Mfr,total: The total estimated frictional moment [Nm]. 
Jtotal: The total mass moment of inertia  𝐽𝑡𝑜𝑡𝑎𝑙 = ∑1

2
∙ 𝑚𝑖𝑟𝑖2 [kg-m2]. 

 

The selected DC motor MBTE type is produced according to a special order which means out 

of the producer’s catalogue, and there is no access to its data. The maximum torque Mmax 

value has been estimated based on the knowledge in limitation of heat exchanging due to DC 

motor. And the Mmax value is estimated to be 4 times larger than the continuously torque T = 

1 Nm. 

 

𝛂 = 𝐌𝐦𝐚𝐱−𝐌𝐟𝐫,𝐭𝐨𝐭𝐚𝐥
𝐉𝐭𝐨𝐭𝐚𝐥

= 𝟑.𝟖𝟎𝟖𝟕𝐍𝐦
𝟎.𝟎𝟏𝟗𝟑𝟔𝐤𝐠𝐦𝟐 = 𝟏𝟗𝟕.𝟑 𝐫𝐚𝐝

𝐬𝟐
 ( 4-47) 

 

The angular speed: 

 𝝎 = 𝟐𝟗𝟎𝟎∙𝟐𝝅
𝟔𝟎

= 𝟑𝟎𝟒 𝒓𝒂𝒅
𝒔

  ( 4-48) 

 

The peak time: 

 𝐭𝐩𝐞𝐚𝐤 = 𝛚
𝛂

= 𝟑𝟎𝟒
𝟏𝟗𝟕.𝟑

= 𝟏.𝟓 𝐬 ( 4-49) 

 
The peak time 1.5 s shows that the DC motor is powerful enough to run the test.  
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4.6. The transducer: 
 

The design of the transducer requires the determination of the stresses level (shear-stress, 

normal-stress) at the critical segments such the center of the thin walls where the strain 

gauges will be located on both sides of the thin wall. So the following quantities; the shear 

forces, normal-forces and bending moment at each point is to be computed. 

 

 
Figure 18: a) The transducer setup with blue marked segment 1, b) The shear-forces V = Fv, normal-
forces FN = F’N and moment Mb at the thin wall of segment 1, c) the segment’s profile. 
 

So we need to find the profile’s 2nd moment of area “I” such: 

𝐈𝟏 = 𝐛𝐟 ∙𝐡𝐟
𝟑

𝟏𝟐
= 𝟓∙𝟑𝟎𝟑

𝟏𝟐
= 𝟏𝟏𝟐𝟓𝟎 𝐦𝐦𝟒

𝐈𝟐 = 𝐛𝐰∙𝐡𝐰
𝟑

𝟏𝟐
= 𝟐𝟎∙𝟏𝟑

𝟏𝟐
= 𝟏.𝟔𝟕 𝐦𝐦𝟒    

𝐈 = 𝟐 ∙ 𝐈𝟏 + 𝐈𝟐  =  𝟐𝟐𝟓𝟎𝟎 𝐦𝐦𝟒    

  ( 4-50) 

Where: 

I: The profile’s 2nd moment of area [mm4]. 
bf & hf: the width and height of the flange [mm]. 
bw & hw: The width and height of the web [mm]. (See Figure 19 - a) 
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Figure 19: The profile with dimensions’ detail at cross section 1, a) the 2nd moment of area’s 
illustration, b) the 1st moment of area’s illustration. 
 

The normal stress at segment 1 can be computed by the Navier’s equation: 

𝛔𝐍 = 𝐅𝐍
𝐀

+ 𝐌𝐛
𝐈
𝐲 = 𝟏𝟖𝟎𝟎𝐍

𝟑𝟐𝟎𝐦𝐦𝟐 + 𝟕𝟐𝟎𝐍∙𝟕𝟓𝐦𝐦
𝟐𝟐𝟓𝟎𝟎𝐦𝐦𝟒 ∙ 𝟏𝟓𝐦𝐦 = 𝟒𝟏.𝟔 𝐌𝐏𝐚 ( 4-51) 

Where: 

σN: The normal stress [MPa]. (21 p. 221) 
FN: The normal forces = Radial forces [N]. 
A: The profile or cross-section area [mm2]. 
Mb: The bending moment at the section [Nmm]. (See Figure 18 - b) 
y: The distance from the profile center of mass to the top of the flanges [mm]. 

 

The1st moment of area at the flange of segment 1: 

𝐒𝟏′ = 𝐲𝟏′ ∙ 𝐀𝟏 = 𝟕.𝟓 𝐦𝐦 ∙ (𝟓 𝐦𝐦 ∙ 𝟑𝟎 𝐦𝐦) = 𝟏𝟏𝟐𝟓 𝐦𝐦𝟑  ( 4-52) 
Where: 

y1’: The distance from flange center of mass to the fragment center of mass [mm]. 
A1’: The flange area [mm2]. 

 

The maximum shear stress at segment 1 (See Figure 19 - b): 

𝛕𝟏 = 𝐕∙𝐒𝟏
′

𝐈∙𝐭𝐟
= 𝟕𝟐𝟎 𝐍∙𝟏𝟏𝟐𝟓 𝐦𝐦𝟑

𝟐𝟐𝟓𝟎𝟎 𝐦𝐦𝟒∙𝟏𝟎 𝐦𝐦
= 𝟑.𝟔 𝐌𝐏𝐚 ( 4-53) 

Where: 

τ1: The shear stress [MPa]. (21 p. 207) 
V: The shear force V = Fv [MPa]. 
tf: The width/thickness of the flange [mm]. 
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The calculation of stresses at segment 2: 

 

Figure 20: The transducer setup with blue marked segment 2, b) The shear-forces V = Fv, normal-
forces FN and moment Mb at the thin wall of segment 2, c) the segment’s profile. 
 

The 2nd moment of area “I” due to segment 2: 

𝐈𝟏 = 𝐛𝐟 ∙𝐡𝐟
𝟑

𝟏𝟐
+ 𝐲𝟐𝟐 ∙ 𝐀 = 𝟑𝟎∙𝟓𝟑

𝟏𝟐
+ 𝟏𝟐.𝟓𝟐𝐦𝐦𝟐 ∙ 𝟏𝟓𝟎𝐦𝐦𝟐 = 𝟐𝟑𝟕𝟓𝟎 𝐦𝐦𝟒

𝐈𝟐 = 𝐛𝐰∙𝐡𝐰
𝟑

𝟏𝟐
= 𝟏∙𝟐𝟎𝟑

𝟏𝟐
= 𝟔𝟔𝟕 𝐦𝐦𝟒                                                                    

𝐈 = 𝟐 ∙ 𝐈𝟏 + 𝐈𝟐 = 𝟒𝟖𝟏𝟔𝟕 𝐦𝐦𝟒                                                                   

  ( 4-54) 

Where: 

y2: The distance from the profile center mass to flange center mass [mm]. 
A: The cross section area [mm2]. 

 

The normal stress at segment 2 can be computed: 

𝛔𝐍 = 𝐅𝐍
𝐀

+ 𝐌𝐛
𝐈
𝐲 = 𝟏𝟖𝟎𝟎𝐍

𝟑𝟐𝟎𝐦𝐦𝟐 + 𝟕𝟐𝟎𝐍∙𝟏𝟏𝟓𝐦𝐦
𝟒𝟖𝟏𝟔𝟕𝐦𝐦𝟒 ∙ 𝟏𝟓𝐦𝐦 = 𝟑𝟏.𝟒 𝐌𝐏𝐚  ( 4-55) 

 

The 1st moment of area for the flange of segment 2: 

𝐒𝟏′ = 𝐲𝟏′ ∙ 𝐀𝟏 = 𝟏𝟐.𝟓 𝐦𝐦 ∙ (𝟑𝟎 𝐦𝐦 ∙ 𝟓 𝐦𝐦) = 𝟏𝟖𝟕𝟓 𝐦𝐦𝟑  ( 4-56) 
Where: 

y1’: The distance from flange center of mass to the fragment center of mass [mm]. 
A1’: The flange area [mm2]. 
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Figure 21: The profile with dimensions’ detail at cross section 2 and 3, a) the 2nd moment of area’s 
illustration, b) the 1st moment of area’s illustration. 
 

The maximum shear stress at segment 2 (See Figure 21 - b): 

𝛕𝟏 = 𝐕∙𝐒𝟏
′

𝐈∙𝐭𝐟
= 𝟕𝟐𝟎 𝐍∙𝟏𝟖𝟕𝟓 𝐦𝐦𝟑

𝟒𝟖𝟏𝟔𝟕 𝐦𝐦𝟒∙𝟓 𝐦𝐦
= 𝟓.𝟔 𝐌𝐏𝐚 ( 4-57) 

 

The 1st moment of area due to web: 

𝐒𝟐′ = 𝐲𝟏′ ∙ 𝐀𝟏 + 𝟏
𝟐
∙ 𝐭𝐰 ∙ �

𝐡𝐰𝟐

𝟒
− 𝐲𝟐𝟐�  

𝐒𝟐′ = 𝟏𝟖𝟕𝟓 + 𝟏
𝟐
∙ 𝟏𝐦𝐦 ∙ (𝟏𝟎𝟎 − 𝐲𝟐𝟐) �

𝐲𝟐 = 𝟎 → 𝐒𝟐,𝐦𝐚𝐱
′ = 𝟏𝟗𝟐𝟓𝐦𝐦𝟑

𝐲𝟐 = 𝐡𝐰
𝟐
→ 𝐒𝟐,𝐦𝐢𝐧

′ = 𝟏𝟖𝟕𝟓𝐦𝐦𝟑  ( 4-58) 

Where: 

y2’: The distance from web center of mass to the flanget [mm]. 
tw: The web thickness [mm]. 

 

The maximum shear stress at segment 2 (See Figure 21 - b): 

𝛕𝟐,𝐦𝐚𝐱 = 𝐕∙𝐒𝟐
′

𝐈∙𝐭𝐰
= 𝟕𝟐𝟎 𝐍∙𝟏𝟗𝟐𝟓 𝐦𝐦𝟑

𝟒𝟖𝟏𝟔𝟕 𝐦𝐦𝟒∙𝟏 𝐦𝐦
= 𝟐𝟗 𝐌𝐏𝐚  ( 4-59) 
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The calculation of stresses at segment 3: 

 

Figure 22: The transducer setup with blue marked segment 3, b) The shear-forces V = FN, normal-
forces Fv and moment Mb at the thin wall of segment 3, c) the segment’s profile. 
 

The 2nd moment of area “I” due to segment 3: 

𝐈𝟏 = 𝐛𝐟 ∙𝐡𝐟
𝟑

𝟏𝟐
+ 𝐲𝟐𝟐 ∙ 𝐀 = 𝟑𝟎∙𝟓𝟑

𝟏𝟐
+ 𝟏𝟐.𝟓𝟐𝐦𝐦𝟐 ∙ 𝟏𝟓𝟎𝐦𝐦𝟐 = 𝟐𝟑𝟕𝟓𝟎 𝐦𝐦𝟒

𝐈𝟐 = 𝐛𝐰∙𝐡𝐰
𝟑

𝟏𝟐
= 𝟏∙𝟐𝟎𝟑

𝟏𝟐
= 𝟔𝟔𝟕 𝐦𝐦𝟒                                                                    

𝐈 = 𝟐 ∙ 𝐈𝟏 + 𝐈𝟐 = 𝟒𝟖𝟏𝟔𝟕 𝐦𝐦𝟒                                                                   

  ( 4-60) 

Where: 

y2: The distance from the profile center mass to flange center mass [mm]. 
A: The cross section area [mm2]. 

 

The normal stress at segment 3 can be computed: 

𝛔𝐍 = 𝐅𝐯
𝐀

+ 𝐌𝐛
𝐈
𝐲 = 𝟕𝟐𝟎𝐍

𝟑𝟐𝟎𝐦𝐦𝟐 + (𝟏𝟖𝟎𝟎𝐍∙𝟒𝟎𝐦𝐦+𝟕𝟐𝟎𝐍∙𝟏𝟔𝟎𝐦𝐦)
𝟒𝟖𝟏𝟔𝟕𝐦𝐦𝟒 ∙ 𝟏𝟓𝐦𝐦 = 𝟔𝟎.𝟓 𝐌𝐏𝐚  ( 4-61) 

 

The 1st moment of area for the flange of segment 3: 

𝐒𝟏′ = 𝐲𝟏′ ∙ 𝐀𝟏 = 𝟏𝟐.𝟓 𝐦𝐦 ∙ (𝟑𝟎 𝐦𝐦 ∙ 𝟓 𝐦𝐦) = 𝟏𝟖𝟕𝟓 𝐦𝐦𝟑  ( 4-62) 
Where: 

y1’: The distance from flange center of mass to the fragment center of mass [mm]. 
A1’: The flange area [mm2]. 
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The maximum shear stress at segment 3 (See Figure 21 - b): 

𝛕𝟏 = 𝐕∙𝐒𝟏
′

𝐈∙𝐭𝐟
= 𝟏𝟖𝟎𝟎 𝐍∙𝟏𝟖𝟕𝟓 𝐦𝐦𝟑

𝟒𝟖𝟏𝟔𝟕 𝐦𝐦𝟒∙𝟓 𝐦𝐦
= 𝟏𝟒 𝐌𝐏𝐚 ( 4-63) 

 

The 1st moment of area due to web: 

𝐒𝟐′ = 𝐲𝟏′ ∙ 𝐀𝟏 + 𝟏
𝟐
∙ 𝐭𝟐 ∙ �

𝐡𝟐
𝟐

𝟒
− 𝐲𝟐𝟐�  

𝐒𝟐′ = 𝟏𝟖𝟕𝟓 + 𝟎.𝟓 ∙ 𝟏𝐦𝐦 ∙ (𝟏𝟎𝟎 − 𝐲𝟐𝟐) �
𝐲𝟐 = 𝟎 → 𝐒𝟐,𝐦𝐚𝐱

′ = 𝟏𝟗𝟐𝟓𝐦𝐦𝟑

𝐲𝟐 = 𝐡𝐰
𝟐
→ 𝐒𝟐,𝐦𝐢𝐧

′ = 𝟏𝟖𝟕𝟓𝐦𝐦𝟑  ( 4-64) 

Where: 

y2’: The distance from web center of mass to the flange [mm]. 
A2’: The web area [mm2]. 
t2: The web thickness [mm]. 

 

The maximum shear stress at segment 3 (See Figure 21 - b): 

𝛕𝟐,𝐦𝐚𝐱 = 𝐕∙𝐒𝟐
′

𝐈∙𝐭𝐰
= 𝟏𝟖𝟎𝟎 𝐍∙𝟏𝟗𝟐𝟓 𝐦𝐦𝟑

𝟒𝟖𝟏𝟔𝟕 𝐦𝐦𝟒∙𝟏 𝐦𝐦
= 𝟕𝟐 𝐌𝐏𝐚  ( 4-65) 

 

 

Figure 23:  a) The transducer, b) the shear forces diagram, c) the normal forces diagram, d) the 
bending moment diagram. 
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The Strain: 
The expected strain at the thin walls is calculated by the equation: 

𝛜𝟒𝟓° = 𝛕𝐦𝐚𝐱
𝟐∙(𝐆= 𝐄

𝟐(𝟏+𝛎))
= 𝟏

𝟐∙𝛄
  ( 4-66) 

Where: 

ε45:̊ The measured strain. (22 p. 258) 
τmax: The maximum shear stress at the thin wall [MPa]. 
G: The modulus of rigidity [GPa]. 
E: The modulus of elasticity [GPa]. 
ν: Poisson’s ratio. 
γ: The shear deformation angle [ ̊ ]. 
 

The transducer’s selected material is SS 4338-06. (23 pp. 376 - 377) 

 

The force F can also be determined from the measured strain ε45.̊ The following relationship 

applies: (22 p. 260) 

𝑭 = 𝟐𝝐𝟒𝟓°∙𝑮∙𝑨
𝒄𝑨

= 𝝉𝒎𝒂𝒙∙𝑨
𝒄𝑨

  ( 4-67) 

Where: 
F: The force [N]. 
cA: The cross sectional shape factor of the beam. 
A: The cross sectional area [mm2]. 

 

But the expected measured strain for the full bridge circuit can be computed by following 

equation: (22 p. 258) 

𝛆𝐢 = 𝟐∙𝛕𝐦𝐚𝐱
𝐆

= 𝟒 ∙ 𝛆𝟒𝟓°  ( 4-68) 

Where: 

εi: The measured strain from the full bridge strain gages circuits. 
 

Table 5: Some of the transducer and SS 4120-24 data 
A [mm2] E [GPa] G [GPa] ν 

320 70 27 0.29 
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Table 6: The summary of calculated stresses and strains in the segments 
Segment σN [MPa] τ1,max [MPa] τ2,max [MPa] ε45̊ 

1 41.6 3.6 - - 

2 31.4 5.6 29 5E-4 

3 60.5 14 72 0.001 

 

4.7. The FEA of the Transducer: 
 

The SolidWorks Simulation program from Dassault Systems is FEA software which can 

calculate the deflections, the equivalent stresses, the natural frequency and etc. with high 

accuracy by using FEM. In this project, the transducer has been investigated by Simulation 

program in purpose to control both the equivalent stresses and the strain levels at the 

segments area (thin walls) where the strain gages will be attached to. 

 

The transducer will be expanded for static analysis, and the volume elements type of 2nd order 

has been selected to achieve higher accurate results. The material properties were defined 

such as Young modulus E, the mass density, the Poisson’s ratio and the Yield’s strength of 

SS4338-06 in Simulation. (23 pp. 376 - 377) Then by applying the forces (radial and axial 

loads) by choosing the Force option for the radial load and the Remote load for axial load. 

The Fixed Geometry option was selected to define the constraint or the boundary conditions 

at the fixture screws locations. (See Figure 24) 

 

Figure 24: The loads and constraint application in SolidWorks Simulation. 
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Then the mesh have been applied by selecting moderate mesh size to reduce the computation 

time, and applying finer mesh at the thin walls’ area to achieve better results, even though the 

mesh generates statistically 66505 nodes, 41915 elements and 197859 degrees of freedom. 

(See Appendix B - Figure 50) 

 

Figure 25: The mesh distribution. 
 

Finally the program has been run to gain the simulation analysis results. 

 

Note that the welding area between the top bracket and the transducer is not considered in this 

simulation. 

  

Figure 26: The strain and equivalent stress simulation results. 
 

The equivalent stress level is about 112 MPa at the thin walls of the segments which is below 

the yield’s stress, so therefore the transducer is OK. 
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4.8. The Bolts: 
 

4.8.1. The Axial-bolt: 

The axial-blot generates the axial load due to test bearing according to the system’s load 

requirements. This chapter will present the leading calculation to select the bolt’s type and 

dimensions based on NS 1074 part 1 standard. (10 pp. 157 - 173) 

 

Figure 27: The illustration of the spring, the Axial and Fixture-bolt(s). 
 

The axial bolt will be exposed to an axial force and the stress can be calculated where the bolt 

is M16 due to metric standard: 

 𝐀𝐭 = 𝛈∙𝐅
𝐒𝐏

= 𝟔∙𝟕𝟐𝟎 𝐍
𝟑𝟏𝟎 𝐌𝐏𝐚

= 𝟏𝟒 𝐦𝐦𝟐  ( 4-69) 

Where: 

SP: The proof strength with SAE class 4.8 [MPa]. (24 p. 408) 
Fa: The axial force [N]. 
η: The safety factor η = 6. 
At: The bolt stress area [mm2]. 

 

The selected bolt is 𝐌𝟏𝟔 × 𝟐 –  𝐒𝐀𝐄 𝟒.𝟖. 
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4.8.2. The Fixture-Screws: 

The transducer will be fastened by four fixture-bolts to the disk frame to hold the test-bearing 

house in its position. 

 

Figure 28: The transducer’s screws locations with some of dimensions. 
 

To select the screws, the forces FU & FL has to be calculated and that is done by computing 

the sum of moment at point M such: 

∑𝐌𝐌 = 𝟎  

𝐅𝐫 ∙ 𝟏𝟎𝟓𝐦𝐦 ∙ 𝛈 + 𝐅𝐚 ∙ 𝟏𝟕𝟓𝐦𝐦 ∙ 𝛈 = 𝟐 ∙ 𝐅𝐔 ∙ 𝟒𝟎𝐦𝐦 + 𝟐 ∙ 𝐅𝐋 ∙ 𝟏𝟎𝐦𝐦  ( 4-70) 
 𝟏𝟐𝟔𝟎𝟎𝟎𝟎 = 𝟖𝟓 ∙ 𝐅𝐔 → 𝐅𝐔 = 𝟏𝟒𝟖𝟐𝟒 𝐍 

Where: 

Fr: The radial force [N]. 
Fa: The axial force [N]. 
η: The safety factor η = 4. 
FU: The load to upper screws [N]. 
FL: The load to lower screws [N]. 
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The stress area was found: 

𝐀𝐭 = 𝐅𝐔
𝐒𝐩

= 𝟏𝟒𝟖𝟐𝟒𝐍
𝟔𝟎𝟎𝐌𝐏𝐚

= 𝟐𝟓 𝐦𝐦𝟐  ( 4-71) 

Where: 

At: The stress area [MPa]. 
Sp: The proof strength [MPa]. 

 

The selected screw is 𝑴𝟖 × 𝟏.𝟐𝟓 − 𝑺𝑨𝑬 𝟖.𝟖. (24 p. 388 & 408) 

 

4.9. The Welding: 
 

The top bracket and the transducer are welded together by convex fillet welds along the sides, 

each of which is l = 30 mm long with a = 4 mm throat length.  

 

Figure 29: The convex welding location on transducer. 
 

The throat area can be calculated: 

𝐀𝐬 = 𝐥𝐞 ∙ 𝐚𝐞 = 𝟐 ∙ 𝟏𝟖 𝐦𝐦 ∙ 𝟔 𝐦𝐦 = 𝟐𝟏𝟔 𝐦𝐦𝟐   ( 4-72) 
Where: 

As: The throat area to the both sides [mm2]. (10) 
le: The length of throat area le = l – 2a [mm]. 
ae: The width of throat area ae = 0.75 ∙ (a + 2) [mm]. (See Figure 30) 
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Figure 30: The illustration of the welding throat area. 
 

The throat area’s normal stress can calculate such: 
 

𝛔⊥ = 𝛕⊥ = 𝛔𝐍+𝛔𝐛
√𝟐

= 𝟏
√𝟐
∙ �𝐅𝐫

𝐀𝐬
+ 𝐌𝐛

𝟐∙𝐖
� = 𝟏

√𝟐
∙ � 𝟏𝟖𝟎𝟎𝐍

𝟐𝟏𝟔 𝐦𝐦𝟐 + 𝟕𝟐𝟎𝐍∙𝟒𝟓𝐦𝐦∙𝟔
𝟐∙𝟔𝐦𝐦∙(𝟏𝟖𝐦𝐦)𝟐� = 𝟒𝟏.𝟐 𝐌𝐏𝐚  ( 4-73) 

Where: 

σ┴: The throat area’s normal stress [MPa]. 
τ┴: The throat area’s normal shear stress [MPa]. (10) 
σN: The normal stress [MPa]. 
σb: The bending stress [MPa]. 
Mb: The bending moment [Nmm]. 
W: The section modulus 𝑊 = 1

6
∙ 𝑎𝑒 ∙ 𝑙𝑒2 [mm3]. 

Fr: The radial or normal force [N]. (See Figure 29) 
 

But the throat area’s parallel shear stress calculates: 

𝛕∥ = 𝐅𝐚
𝐀𝐬

= 𝟕𝟐𝟎𝐍
𝟐𝟏𝟔 𝐦𝐦𝟐 = 𝟑.𝟑 𝐌𝐏𝐚  ( 4-74) 

Where: 

τ||: The throat area’s parallel shear stress [MPa]. (10) 
Fa: The axial force [N]. 

 

The static equivalent stress is then: 

𝛔𝐚𝐞 = �𝛔⊥𝟐 + 𝟑 ∙ 𝛕⊥𝟐 + 𝟑 ∙ 𝛕∥𝟐 = �(𝟒𝟏.𝟐)𝟐 + 𝟑 ∙ (𝟒𝟏.𝟐)𝟐 + 𝟑 ∙ (𝟑.𝟑)𝟐 = 𝟖𝟐.𝟔 𝐌𝐏𝐚  ( 4-75) 

 
The obtained equivalent stress with material yield strength is checked by: 

𝛈 = 𝐑𝐩𝟎.𝟐

𝛔𝐚𝐞
= 𝟑𝟖𝟎 𝐌𝐏𝐚

𝟖𝟐.𝟔 𝐌𝐏𝐚
= 𝟒.𝟔  ( 4-76) 

Where: 

η: The safety factor. 
Rp0.2: The yield strength [MPa]. 

The wilding’s safety factor η = 4.6, is OK.  

l=30 mm

||σ||τ||σ

⊥τ

a

⊥τ⊥σ

Nσ

 

ea
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4.10. The Spring: 
 

As shown in the Figure 27 there is a helical compression spring between the bushing which 

attached to the thrust bearing and the axial-bolt. The spring will be useful during the 

calibration of the axial load to run the CBM test. The spring’s requirement data is sets up as 

follows: 

The inner diameter is Di = 16 mm. 
The demand compression δ = Lo – Ln = 10 mm. 
The force S = 720 N. 
 

  

Figure 31: The compression spring drawing from Lesjøfors AS. 
 

The spring was selected from Lesjøfors AS catalogue. (25 pp. 44 - 45) 

A compression spring SF-TFX Art. No. 2747. 
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5. THE DYNAMIC MODEL OF THE SHAFT 
 

This chapter will present the simulation of the dynamic model of the shaft and the main focus 

is what the test bearing will be experiencing during the operation in purpose to improve the 

knowledge in the dynamic model analysis. The dynamic model analysis is carried out in 

SimulationX 3.3 program with a simplified shaft model. 

 

5.1. The Dynamic Model: 
 

The test-rig’s shaft has been presented early in this report (see sub-chapter  3.2). The shaft 

model was built in SimulationX by verifying the interest criteria such that the model includes 

just the part of shaft between the reaction-forces (between point A and B in Figure 3). The 

modeled shaft is divided to the ten Cylinder elements with L = 50 mm in length except 

for the yellow ring has LR = 25 mm, the blue elements’ which have diameter DB = 35 mm, the 

green and orange elements’ diameter DG,O = 40 mm and the yellow ring has inner diameter dY 

= 40 mm and outer diameter DY = 46 mm.  

 

 

Figure 32: The modeled shaft in SimulationX. 
 

Between every two elements placed three Revolute Joints  element type from MBS 

Mechanics tool box for every direction X, Y, & Z each and one Spring-Damper  (the 

red circles in the figure above represent the spring-damper in SimulationX). The damper 

values considered to be low and same value in all directions but the spring stiffness 

coefficients are calculated based on the element’s diameter and torsion or bending stiffness. 

The torsion spring stiffness is applied in X direction where the shaft is rotating about X-axis. 

But the bending spring stiffness is applied in Y & Z directions. Constraint element 

type from MBS Mechanics has been used in the other end of the modeled shaft and fixed in 

the Translative Constraint in Y & Z direction.  
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The spring bending-stiffness coefficient can be calculated by the supervisor’s handed out 

equation: 

𝒌𝑩 = 𝟐∙𝑬∙𝑰
𝑳

  ( 5-1) 

Where: 

kB: The spring bending-stiffness coefficient [Nm/rad]. 
E: The material’s young’s modulus [MPa]. 

I: The 2nd moment of inertia 𝐼 = 𝜋∙𝐷4

64
 [mm4], D is the element’s diameter [mm]. 

L: The element’s length [mm]. 
 
 
 

The spring torsion-stiffness coefficient can be computed by supervisor handed out equation: 

 

𝒌𝑻 = 𝟐∙𝑮∙𝑰𝑷
𝑳

  ( 5-2) 

Where: 

kT: The spring torsion-stiffness coefficient [Nm/rad]. 
G: The material’s shear modulus 𝐺 = 𝐸

2(1+𝜈)
 [MPa], ν is the material’s Poisson ratio. 

IP: The polar 2nd moment of inertia [mm4], 𝐼𝑃 = 𝜋∙𝐷4

32
. 

 

The equivalent spring stiffness coefficient which the springs are in series can calculate: 

 

𝟏
𝒌𝒆𝒒

= 𝟏
𝒌𝟏

+ 𝟏
𝒌𝟐
→ 𝒌𝒆𝒒 = 𝒌𝟏∙𝒌𝟐

𝒌𝟏+𝒌𝟐
  ( 5-3) 

Where: 

keq: The equivalent spring stiffness coefficient [Nm/rad]. 
k1: The spring stiffness coefficient for one element [Nm/rad]. 
k2: The spring stiffness coefficient for the next element [Nm/rad]. 

 

The calculation of the spring stiffness carried out one time for the bending and the other time 

for torsion, the results will be presented in the following tables. 
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Table 7: The elements and material data. 

L [mm] ν E [MPa] G[MPa] 

50 0.3 210,000 80770 

 

Table 8: The profile calculation. 
D [mm] I [mm4] IP [mm4] 

35 73661.8 147323.5 

40 125663.7 251327.4 

 
 
Table 9: The spring stiffness coefficients results. 

Spring stiffness k35 

[Nm/rad] 

k40 

[Nm/rad] 

keq,40-40 

[Nm/rad] 

keq,40-35 

[Nm/rad] 

Bending 618,759 1,055,575 527,788 390,093 

Torsion 475,968 811,981 25,374 300,072 

 

The shaft’s model is exposed for radial load in the simulation but the axial load is ignored. 

The radial load is applied by Spherical Body  element type from MBS Mechanics tool 

box with radius r = 1.5 mm and mass m = 200 kg in value in the center of the local coordinate 

of yellow ring (see Figure 32) which represent the inner ring of the Needle-bearing. 

  



56 
 

5.2. The Angle of Deflection: 
 

The angle of deflection is one of the interested criteria to compare the modeled shaft in 

SimulationX with the designed shaft. The angle of deflection of the designed shaft was 

calculated at the points A & B and the shaft was assumed as uniform with diameter D = 35 

mm.  

 

Figure 33: Illustration of the shaft and angle of deflection. 
 

First the angle of deflection which caused by the shaft own gravity forces: 

 

𝝓𝑨,𝒒 = 𝝓𝑩,𝒒 = 𝒒𝑳𝟑

𝟐𝟒𝑬𝑰
= (𝝆𝒈𝑨)𝑳𝟑

𝟐𝟒𝑬𝑰
=

𝟕.𝟖𝟓∙𝟏𝟎−𝟔 � 𝐤𝐠
𝐦𝐦𝟑

�  ∙𝟗.𝟖𝟏�𝐦
𝐬𝟐
�∙𝟏𝟐𝟓𝟕𝐦𝐦𝟐∙𝟓𝟎𝟎𝟑𝐦𝐦𝟑

𝟐𝟒∙𝟐𝟏𝟎𝟎𝟎𝟎 𝐌𝐏𝐚∙𝟕𝟑𝟔𝟔𝟐 𝐦𝐦𝟒 = 𝟎.𝟎𝟎𝟏𝟖° ( 5-4) 

Where: 

φA,q & φB,q: The angle of deflection caused at constraint A & B [°]. (21 p. 531) 
q: The load distribution per length [N/m], 𝑞 = 𝜌𝑔𝐴. 
ρ: The steel mass density [kg/mm3]. 
g: The gravity acceleration [m/s2]. 
A: The cross section area [mm2], 𝐴 = 𝜋𝑟2. 
r: The cylindrical shaft radius [mm]. 
L: The length of uniform shaft or beam [mm]. 
E: The Young’s modulus [MPa]. 

I: The 2nd moment of inertia [mm4], 𝐼 = 𝜋𝑟4

4
. 
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A
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Next the angle of deflection which is caused by the radial load: 

�
𝝓𝑨,𝑭 = 𝑭𝒂𝒃(𝒂+𝟐𝒃)

𝟔𝑳𝑬𝑰
= 𝟏𝟖𝟎𝟎𝑵∙𝟒𝟓𝟎𝒎𝒎∙𝟓𝟎𝒎𝒎∙(𝟒𝟓𝟎𝒎𝒎+𝟐∙𝟓𝟎𝒎𝒎)

𝟔∙𝟓𝟎𝟎𝒎𝒎∙𝟐𝟏𝟎𝟎𝟎𝟎𝑴𝑷𝒂∙𝟕𝟑𝟔𝟔𝟐𝒎𝒎𝟒 = 𝟎.𝟎𝟑°

𝝓𝑩,𝑭 = 𝑭𝒂𝒃(𝟐𝒂+𝒃)
𝟔𝑳𝑬𝑰

= 𝟏𝟖𝟎𝟎𝑵∙𝟒𝟓𝟎𝒎𝒎∙𝟓𝟎𝒎𝒎∙(𝟐∙𝟒𝟓𝟎𝒎𝒎+𝟓𝟎𝒎𝒎)
𝟔∙𝟓𝟎𝟎𝒎𝒎∙𝟐𝟏𝟎𝟎𝟎𝟎𝑴𝑷𝒂∙𝟕𝟑𝟔𝟔𝟐𝒎𝒎𝟒 = 𝟎. 𝟎𝟓𝟏°

  ( 5-5) 

Where: 

φA,F & φB,F: The angle of deflection caused at constraint A & B [°]. (21 p. 531) 
F: The radial load [N]. 
a: The distance between constraint A to the radial force [mm]. 
b: The distance between constraint B to the radial force [mm]. 

 

Then the total angle of deflection at the constraint A & B is: 

𝝓𝒕𝒐𝒕𝑨 = 𝝓𝑨,𝒒 + 𝝓𝑨,𝑭 = 𝟎.𝟎𝟎𝟏𝟖° + 𝟎.𝟎𝟑° = 𝟎.𝟎𝟑𝟏°
𝝓𝒕𝒐𝒕𝑩 = 𝝓𝑩,𝒒 + 𝝓𝑩,𝑭 = 𝟎.𝟎𝟎𝟏𝟖° + 𝟎.𝟎𝟓𝟐° = 𝟎.𝟎𝟓𝟑°  ( 5-6) 

Where: 

φtot,A: The total angle of deflection at constraint A [°]. 
φtot,B: The total angle of deflection at constraint B [°]. 

 

The angle of deflection results from SimulationX is illustrated in following figures: 

 

Figure 34: the angle of deflection at constraint A. 
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Figure 35: The angle of deflection at constraint B. 
 

In comparison of the designed shaft with the dynamic model, there is some deviation. The 

deviation could be caused firstly by the assumption made earlier where the shaft is uniform. 

Secondly the location of the simulated angle of deflation is in the center of the cylinder 

element which means 25 mm from the constraint. Therefore the model is acceptable.  

 

5.3. The Critical Speed  
 

The next criterion is to investigate the critical speed of the dynamic model. Add in to the 

model Preset  element type from Rotational Mechanics tool box which is connected to 

the shaft model by an Actuated Revolute Joint   element type within driving flange 

CtrR2 connector, and apply an angular speed as a function of time t with initial value 

𝜔 = 3000 𝑟𝑝𝑚 and with relatively smooth slope increasing the speed up to critical speed 

area. The observed critical speed is about 𝜔𝑐𝑟 = 5200 𝑟𝑝𝑚. 
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Figure 36: The illustration of the shaft’s bending occurs because of the critical speed. 

 

Figure 37: The deflection of the shaft at the critical speed. 
 

The calculated natural frequency for the designed shaft is 𝜔𝑁 = 3624 𝑟𝑝𝑚 and the simulated 

of the dynamic model is 5200 rpm. The deviation is caused by the assumption which has been 

made in the calculation as the uniform shaft. 

 

5.4. The Reaction Force at Test-bearing 
 

The reaction forces at constraint which is representing the test-bearing in the designed test-rig, 

can be analyzed by the dynamic model to improve the knowledge in purpose to establish 

CBM for rotating machinery. The motion was applied by External Torque  element 

type from Rotational Mechanics tool box with fixed angular speed 𝜔 = 3000 𝑟𝑝𝑚 about X 

direction. (See Appendix C - Figure 56) 
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Figure 38: The kinematic analysis results at Constraint (B). 

 

Figure 39: The steady state results of the kinematic analysis at Constraint (B). 

 

The Dynamic model simulation shows that the reaction forces FY & FZ reach the steady state 

value about t = 5s with FZ = 1739.9 N where the calculated reaction force was By = 1786 N.   
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6. THE LABVIEW 
 

Since this project, is about  performing destructive test to estimate the bearing’s effective 

lifetime, and to shorten the test duration to be able to run the test several times; so it requires 

to design an automatic Switch Off program to prevent further damage to the entire test facility 

when nobody monitoring the test equipment. The figures below shows an automatic switch 

off control panel of the electric actuator which is programmed in LabView program. 

 

 
Figure 40: The illustration of an automatic switch off control panel in LabView. 
 

The mechanism of the program works in this way, the program read the strain gages’ signals 

as Input and it monitors the signals developments until the signals reach a specific level which 

is an indication of bearing failure. The specific level has been already defined in the program. 

So the DC motor will be switched off automatically. Further on when the log bottom (red 

arrow in Figure 40) is ON during the test it will note the strain gages’ signals with resolution 

100 samples per second and store them in shift register (temporary) until the save bottom 

(blue arrow in Figure 40) is clicked then all the data will be stored or saved on the C disk of 

the PC for further analysis and usage. (See Appendix A) 

 

The communication between the Switch Off program and the sensors (strain gages) are taking 
place by an I/O card NI USB-6008 model and HEXFET power MOSFET (IRF3415) circuit. 
(See Figure 41)  



62 
 

 
Figure 41: The three ports MOSFET circuit. A) The built circuit, B) The correct circuit.  
 
The Switch Off program has been tested to check the functionality. The results were 

satisfying the demand such monitoring, collecting and storing of data (Input signal) and 

automatic disconnecting of DC motor. During the test, the MOSFET circuit A has been used. 

In circuit A the DC motor is connected parallel which can lead to continuous running of the 

DC motor. But the reason that the circuit A worked properly was because of the power 

supplier. The power supplier was not powerful enough. But in the MOSFET circuit B, the DC 

motor is in series, and the problem is solved.  

DC

+5 V +8 V

MOSFET DC

MOSFET
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7. THE TEST PROCEDURE 
 
In purpose to run the CBM test, there are some steps which have to be taken into 
consideration, so as to obtain acceptable and reliable results. The recommended steps are as 
the following: 

• Calibrating the strain gages which attached to transducer and this step is necessary just 

for 1st time up running the test. To calibrate the strain gages, the radial and axial load 

have to be removed and then set the input signals from the strain gages (transducer) to  

zero. 

• Connecting the DC motor and the strain gages signals to the DC motor Switch-OFF 

control program and testing the functioning of it. (See Chapter  6) 

• Assure the log bottom is clicked on during the test otherwise it will be no access to the 

required information (strain gages’ signals) of the test. (See Figure 40) 

• Clicking the save bottom (in LabView) at the end of the every test which will be saved 

automatically in the C hard disk. (See Figure 40) 

• Taking good care and storing of the destroyed bearing when is being removed from its 

location, to make it possible for damage investigation and analysis. And the new test-

bearing does not require any lubrication unless the goal is to perform the test with new 

specifications. 

•  Adjusting the reference signal in the LabView program based on the analysis of the 

stored data and the damaged bearing’s disclosure to improve the CBM prediction. 

• To be aware of that to modify the monitoring technique if it is necessary in purpose to 

gain better result (CBM). The monitoring technique can be modified by including 

different types of sensors (e.g. accelerometer, infrared heat detector camera, X-ray 

scanner and etc). 
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8. FURTHER WORK 
 
The effort have been done during this project and the time have been spent, let me realize that 
the test rig can be modified even better if some changes take place. Among the other 
recommendations: 
 

• Replace the load mechanism per today design with hydraulic actuators where the 

benefits are: 

1. To drop the lifting of the heavy steel blocks during the setup of the test-rig, and the 
replacement of the test-bearing when the failure occurs. 

2. To simplify the work when vary loads altitude is required. 
3. To be able to apply vary loads altitude during the test (by increasing or decreasing 

the load). 
 

• Adding different type of sensors to the system to compare the most effective type of 
sensors according to the applications and the environment (e.g. Bearing, shaft, gear or 
offshore, onshore, airspace etc). 

• To design a new program for the electrical actuator where to be able for applying vary 
speed and switch ON/OFF during the test in purpose to investigate the transient effect 
on the components life time, and nevertheless replacing the electrical motor with 
suitable one. 

• Developing (programming) of dynamic model due to Shaft, Bearing and shaft-bearing 
for further analysis and investigation to improve the knowledge.  
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9. THE CONCLUSION 
 
The goal of this thesis was initially to fulfill the design and building of nominated concept 

from the early stages of the project, and establishing the CBM for rotating machinery, it 

became clear however that, the building of test facility was beyond the scope of this master 

thesis. The project became focused on fulfillment of the design, calculation and dynamic 

model analysis of the rotating shaft. The results that have been achieved are highly relevant 

and enable the advancement of further works in the area of CBM for rotating machinery. 

 

To compliment the design and calculation of the mechanical component were carried out, 

based on the Bachelor and Master Mechatronic course materials or the producer’s own 

methods, data and formulas. The missing information has been covered by a conservative 

assumption or supervisors’ guidance. The engineering drawings of the designed components 

were done. The static FEM analysis of the transducer due to investigation of the equivalent 

stresses level was done as well with satisfying results. 

 

The dynamic model of the simplified shaft reveals what the test-bearing is experiencing 

during the operation especially at the transient part of the simulation. The equivalent load 

value can be doubled which means the operation sequence affects the bearing’s lifetime.  
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11. APPENDICES 

Appendix A 

The Switch OFF of electrical actuator program 

 

Figure 42: The block diagram of the motor Switch-OFF program with true condition in sub-loop. 
 

 

Figure 43: block diagram of the motor Switch-OFF program with false condition in sub-loop. 
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Figure 44: The block diagram with false condition in sub-sub-loop. 
 

 

Figure 45: The setup of Input signal. 
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Figure 46: The setup of Output signal. 
 

 

Figure 47: The acquire signal for Input. 
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Figure 48: The acquire signal for Output. 
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Appendix B 

The FEM analysis of the transducer 

 

Figure 49: The Transducer views in Simulation, with Loads and constraints (left), plus mesh (right). 
     

 

Figure 50: The generated nodes elements and degrees of freedom in Simulation due to Transducer’s 
FEA. 
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Figure 51: Different angles of view of Transducer with the simulated stresses in Simulation. 
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Figure 52: Different angles of view of Transducer with the simulated strain in Simulation. 
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Appendix C 

The dynamic model of the shaft 

 

Figure 53: The setup of dynamic model due to angle deflection criterion. 

 

Figure 54: The deflection results for the elements from M1 to M5. 

 

Figure 55: The deflection results for the element from M6 to M10. 
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Figure 56: The setup of dynamic model due to kinematic analysis. 
 

 

Figure 57: The connection of Kinematic drive and with 1st body element (M1). 

 

Figure 58: The connection of the constraint with the 10th body element (M10) and the radial 

load (sphere1). 
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