

UNIVERSIDAD LIBRE FACULTAD DE INGENIERIA INGENIERIA MECANICA

Autor del proyecto

Apellidos: Nombres: Código: Cédula: Teléfono de contacto: Correo institucional: Deantonio Lamprea Jennifer Carolina 065121040 1026291344 3046262711 Jenniferc.deantoniol@unilibrebog.edu.co

Título del proyecto

DISEÑO E IMPLEMENTACIÓN DE SISTEMA DE CONTROL DE NIVEL PARA TANQUES ACOPLADOS DE ALMACENAMIENTO DE HIPOCLORITO

Director del proyecto

Nombres: Apellidos: Profesión: Correo Institucional: Edilberto Carlos Vivas González Ingeniero Electrónico **Oficina:** L-204 edilbertoc.vivasg@unilibrebog.edu.co

Revisión			
Fecha			

DISEÑO E IMPLEMENTACIÓN DE SISTEMA DE CONTROL DE NIVEL PARA TANQUES ACOPLADOS DE ALMACENAMIENTO DE HIPOCLORITO

Jennifer Carolina Deantonio Lamprea

UNIVERSIDAD LIBRE DE COLOMBIA FACULTAD DE INGENIERÍA INGENIERÍA MECÁNICA BOGOTÁ 2019

DISEÑO E IMPLEMENTACIÓN DE SISTEMA DE CONTROL DE NIVEL PARA TANQUES ACOPLADOS DE ALMACENAMIENTO DE HIPOCLORITO

Jennifer Carolina Deantonio Lamprea

Trabajo de grado presentado como requisito parcial para optar al título de Ingeniera Mecánica

> Director Edilberto Carlos Vivas Gonzalez Msc, Automatización Industrial, Ing. Electrónico

UNIVERSIDAD LIBRE DE COLOMBIA FACULTAD DE INGENIERÍA INGENIERÍA MECÁNICA BOGOTÁ 2019

Dedicatoria Para mi familia, novio, amigos e ingenieros que me apoyaron a lo largo de mi carrera.

AGRADECIMIENTOS

A mis padres Lucia Lamprea y Flavio De Antonio y hermana Laura De Antonio por su amor y apoyo constante durante este proceso y darme la oportunidad de emprender en esta carrera. A mi tio Luis Angel Lamprea y Sandra Dufai Perez por sus consejos y ayuda en cada obstaculo presentado. A mi novio Mauricio Spitta por su paciencia y cariño en cada fase de este proyecto.

A mi director Ingeniero Carlos Vivas por su paciencia y colaboración. A la Universidad Libre y los ingenieros del departamento de Ingenieríá Mecánica por su conocimiento, apoyo, amistad. Al Ingeniero Mauricio Peña por su colaboración y asesoría.

Al Ing. Wilson Suarez, Nelson Gonzalez y Oscar Rojas por su apoyo en la elaboración del proyecto en la planta. A la empresa por brindarme la oportunidad de colaborar en la mejora de sus procesos. A Ronald y Erika por su conocimiento y enseñanza.

Gracias.

RESUMEN

En la mejora de procesos industriales, es requerido disminuir tiempos de producción para que las empresas sean más competitivas. En la planta de producción se desarrolló el sistema de control, un operario supervisaba y controlaba el nivel de líquido de los tanques de almacenamiento de forma manual, por lo tanto, tenía un porcentaje alto de riesgo de sobrepasar los niveles y producir pérdidas económicas para la empresa.

En este trabajo, se desarrolla el modelado del sistema actual con las condiciones de operación de la planta y se compara con los datos experimentales. Además se implementó el sistema de adquisición de datos, conexión de actuadores y sensores, además del diseño del algoritmo de control secuencial implementado en un controlador lógico programado, para realizar la supervisión y control del nivel de los tanques de almacenamiento de hipoclorito.Se describe la planta, la instalación de la instrumentación, el diseño de la interfaz gráfica y la programación del algoritmo de control en el PLC (Controlador Lógico Programable). Se obtiene una aproximación del modelo matemático respecto los datos experimentales siendo 0.43 % para el tanque 1 y 0.86 % para el tanque 2. FALTA PONER INGLESSSSSSS

Palabras claves: CX Programmer, Control ON-OFF con histéresis, NB-Designer, Modelado del sistema, Tanques acoplados.

ABSTRACT

In the improvement of industrial processes, it is required to reduce production times for companies to be more competitive. In the clean product's industry which was developed the control system, an operator supervised and controlled the liquid level of the storage tanks manually, therefore, had a high percentage of risk of exceeding the levels and produce economic losses for the company.

In this work, the system of data acquisition, connection of actuators and sensors was implemented, as well as the design of the sequential control algorithm implemented in a programmer logic controller, to perform the monitoring and control of the level of the hypochlorite storage tanks.

It describes the plant, the installation of the instrumentation, the design of the graphic interface and the programming of the control algorithm in the PLC (Programmable Logic Controller). The practical results obtained from the performance of the level control system of the coupled tank plant are shown.

Key words: CX Programmer, ON-OFF control with hysteresis, NB-Designer, System modeling, Coupled tanks.

CONTENIDO

pág.

1. OBJETIVOS	16
1.1. OBJETIVO GENERAL	16
1.2. OBJETIVOS ESPECÍFICOS	16
2. MARCO REFERENCIAL	17
2.1. ESTADO DEL ARTE	17
2.2. MARCO TEÓRICO	19
2.3. MARCO CONCEPTUAL	24
3. DESCRIPCION DEL SISTEMA	28
4. DESCRIPCIÓN DEL CONTROLADOR	38
5. MODELADO DE LA PLANTA DE TANQUES ACOPLADOS	47
6. CARACTERIZACIÓN DEL SISTEMA	51
7. DESARROLLO DEL ALGORITMO DE CONTROL	61
8. INTERFAZ GRÁFICA DE USUARIO	86
9. CONCLUSIONES	91
10.TRABAJOS FUTUROS	92
11.BIBLIOGRAFÍA	93

LISTA DE FIGURAS

pág.

1.	Control secuencial en un sistema de nivel	19
2.	Sistema de control en lazo cerrado con realimentación	20
3.	Proceso de control en lazo cerrado	21
4.	Diagrama de funcionamiento del Controlador ON-OFF	22
5.	Diagrama de funcionamiento del Controlador ON-OFF con histéresis	23
6.	Sistema de tanques de almacenamiento	28
7.	Tablero de control	30
8.	Esquema del tablero de control	31
9.	Instrumentación instalada en el tablero de control $\ .\ .\ .\ .\ .\ .\ .$	31
10	. Componentes tablero de control	32
11	. Componentes tablero de control	32
12	. Instalación de tubing eléctrico y soportes	33
13	. Nomenclatura de las señales E/S del PLC	33
14	. Sensor de presión con celda cerámica	34
15	. Sensor de presión-Display de configuración	35
16	. Instalación del sensor en los tanques	36
17.	. Válvula de bola de accionamiento neumático	37
18	. Sensor de presión con celda cerámica	37
19	. PLC Omron CP1LEM30DT	38
20	. Componentes PLC	39
21	. E/S digitales del PLC	40
22	. CX-Programmer de OMRON	41
23.	. Tipos de lenguajes gráficos de programación de PLC	41
24	. Módulo de entradas analógicas	42
25.	. Módulo de entrada analógica conectado a PLC por medio de adaptador. $\ .$.	42
26	. Modo de conexión de dispositivo en el módulo analógico	43
27	. Señal que recibe el módulo al conectar una señal de 4 a 20 mA	44
28	. Human-Machine Interface OMRON	45

29. Software de programación HMI NB-DESIGNER
30. Conexión Ethernet para la comunicación PLC-HMI
31. Diagrama del sistema de tanques 44
32. Diagrama de la conexión entre tanques
33. Conversión de corriente del sensor a palabra de resolución (WORD) 51
34. Especificación de resolución de un CP1W-AD041
35. Umbrales de histéresis de la señal recibida del sensor en bits de resolución 53
36. Sistema de tanques en carga
37. Sistema de tanques en carga
38. Caso 2: Válvulas de entrada y salidas abiertas
39. Datos Experimentales en condiciones de caso mostrado
40. Comparación de modelo vs datos experimentales en tanque 1 y 2
41. Diagramas de bloques del sistema. Secuencia del control
42. Diagrama de estados del control del sistema
43. Estructura general del PLC
44. Pulsadores e interruptores del tablero de control
45. Sección de programa: Activar
46. Configuración asignada para los parámetros requeridos
47. Direcciones para asignar parámetros al PLC
48. Parámetros asignados en las direcciones de bit
49. Sección de programa: Configuración
50. Sección de programa: Temporizadores
51. Sección de programa: Comparador
52. Prueba de nivel bajo: Comparador en tanque 1
53. Prueba de nivel en rango: Comparador en tanque 1
54. Prueba de nivel alto: Comparador en tanque 1
55. Sección de programa: Escalado
56. Sección de programa: Reset
57. Visualizador Numérico - HMI
58. Dirección de lectura Visualizador Numérico - HMI
59. Definir decimales del dato recibido - HMI

60. Diagrama lógico del control automático	76
61. Diagrama ladder Modo control automático	76
62. Comportamiento del nivel de líquido en el tanque con el control	77
63. Diagrama lógico del control manual	78
64. Direcciones asignadas desde la pantalla	78
65. Sección de programa: Control - Manual	79
66. Diagrama lógico de activación de válvulas	79
67. Sección de programa: Control válvulas	80
68. Sección de programa: Salida a válvulas	80
69. Sección de programa: Salidas a HMI	81
70. Indicador de nivel - Pantalla HMI	81
71. Selección de PLC y configuración de comunicación	82
72. Panel de configuración IP para PLC OMRON	82
73. Selección de pantalla para configuración	83
74. Panel de configuración IP en HMI OMRON	83
75. Configuración de IP de dispositivos en HMI	84
76. Estado del Ethernet conectado	84
77. Panel de configuraciones de la red Ethernet en computador	85
78. Panel de configuración IP para computador	85
79. Pantalla Inicial HMI	86
80. Pantalla del tanque 1 con accionables	87
81. Asignación variable de lectura	88
82. Configuración alarma de color en barra de nivel	89
83. Configuración de escritura	89

LISTA DE TABLAS

pág.

1.	Lista de instrumentos instalados en la planta	29
2.	Variables enviadas al HMI	74
3.	Lista de objetos utilizado en el desarrollo de la pantalla HMI del tanque 1 .	90

SIMBOLOGÍA

LETRAS LATINAS

- V = voltaje
- A =amperios
- m =metros
- cm = centímetros
- mm = milímetros
- kg = kilogramos
- s =segundos
- min = minutos

LETRAS GRIEGAS

- $\rho = \text{densidad}$
- $\pi =$ número pi = 3.1416
- $\sum =$ sumatoria
- δ = diferencia

ACRÓNIMOS

- PLC =controlador lógico programable
- HMI = interfaz humano-máquina
- *PID* = proporcional, integral y derivativo
- IP = protocolo internet

INTRODUCCIÓN

El presente trabajo se trata sobre el diseño e implementación de un sistema de control en los tanques de almacenamiento de hipoclorito de la planta, ofreciendo un procedimiento del modelado del sistema de nivel, simulación de la planta actual, programación del controlador autómata, y los detalles de la implementación en planta, partiendo de la instalación de instrumentación necesaria, luego con el diseño del tablero de distribución y por último las pruebas del sistema de control en la planta.

Los tanques permiten almacenar hipoclorito para la posterior distribución; sin la supervisión constante de un operario que realice la apertura o cierre de válvulas de los diferentes tanques, el hipoclorito almacenado puede sobrepasar el nivel del tanque, y producir pérdidas económicas para la planta y riesgo para la salud del personal.

Se desarrolló el diseño e implementación de un sistema de supervisión y control ON - OFF con histéresis en los tanques de almacenamiento de hipoclorito, se evaluó teniendo en cuenta el control PID (Proporcional, Integral y Derivativo), debido a los costos generados de la válvula proporcional sobre la válvula ON - OFF. Aunque estudios como ingeniería detallada, modelado y simulación de un sistema de tanques interactuantes no lineales, desarrollado en la Universidad Javeriana", demuestra que el control PID es eficiente, para el control de tanques acoplados. Es importante recalcar el costo de implementación del control PID respecto al control ON - OFF.

En el primer capítulo se presenta el problema y objeto de investigación, justificación y los objetivos del proyecto.

El capítulo dos abarca los conceptos básicos para la lectura del documento.

En el capítulo tres y cuatro, se describe la planta, el controlador y la instrumentación.

En el capítulo cinco y seis, se realiza el modelado de la planta y caracterización de los componentes, aplicando las leyes físicas que rigen el sistema.

En el capítulo siete presenta y explica la programación de control, cargada al autómata programable.

En el capítulo ocho, se presenta la visualización implementada en la pantalla HMI (Interfaz Humano - Máquina).

1. OBJETIVOS

1.1. OBJETIVO GENERAL

Diseñar e implementar un sistema de control de nivel en tanques acoplados de almacenamiento de hipoclorito.

1.2. OBJETIVOS ESPECÍFICOS

- Obtener el modelo matemático del sistema de forma analítica o usar técnicas de identificación de sistemas tomando datos a través de un sensor de presión diferencial.
- Simular la dinámica del sistema de llenado y vaciado.
- Diseñar la ley de control utilizando un control ON-OFF con histéresis.
- Implementar el sistema de control de nivel con el sensor de presión diferencial y visualización del nivel en una pantalla Interfaz Humano-Máquina.

2. MARCO REFERENCIAL

2.1. ESTADO DEL ARTE

A continuación, se muestran algunas referencias, que permiten reconocer el estado de la tecnología actual, para el control de tanques acoplados.

En la universidad de Piura, en Perú, Peter Gutarra desarrolló el control en un sistema de tanques acoplados, se utilizó el control predictivo PI. Se concluyó, que el control PI puede accionar de manera brusca las variables manipulables, pero posee mejor desempeño y ahorro de energía respecto al control PID. (CASTILLO, 2016)

En Cúcuta, Gerson Uribe, de la Universidad Francisco de Paula Santander, desarrolló un control PID para evaluar el desempeño en un sistema de tanques. Para el sistema estudiado, la constante I del PID fue casi despreciable, dando como resultado, un control PD que trabaja con un control ON - OFF.(URIBE, CASTRO, & ERNESTO, 2014)

En Barranquilla, Javier Vargas y otros, de la Universidad de los Llanos, desarrollaron un sistema de instrumentación y control para tanques de almacenamiento de agua donde visualiza la información de altura de los tanques en tiempo real, gracias al software LabView (VARGAS GUATIVA, LÓPEZ VELÁSQUEZ, & CONDE CÁRDENAS, 2017). En este proyecto, se realiza la captura de variables analógicas por medio de un conversor analógico- digital que procesa la señal para ser tomada por el controlador.

En la Universidad Francisco José de Caldas, en Bogotá, Ferney Spitia y Jeyson Ordoñez, desarrolla un sistema SCADA (Supervisión, Control y Adquisición de Datos), para el control de nivel del tanque de mezcla, en este proyecto, se realizó el modelado del sistema e identificación del sistema, se desarrolló e implemento un sistema con control automático. (BERNAL ESPITIA & ORDOÑEZ BELTRAN, 2015)

En la misma institución, Universidad Francisco José de Caldas, Henry Solorzano, desarrolla una implementación de control ON - OFF en tanques de laboratorio, donde

se hace énfasis en la facilidad de implementación de este tipo de control v
s el control PID, debido que el control PID necesita un mayor número de experimentos para la sintonización. (SOLÓRZANO GIL, 2015)

En este trabajo se diseñó el sistema de control y adquisición de datos para una planta de tanques acoplados de almacenamiento de hipoclorito. Los resultados obtenidos muestran que el sistema tiene un buen desempeño al implementar un control ON - OFF con histéresis, pues mantiene el nivel del líquido en el valor establecido y se evita el derrame del líquido.

2.2. MARCO TEÓRICO

En la industria actual se mejoran los procesos para producir productos y servicios a menor costo; por lo anterior, es necesario utilizar nuevas tecnologías para suplir las necesidades. Se han venido desarrollando proyectos de automatización en todas las plantas, debido a que es necesario métodos de control que suplan la necesidad de supervisar todos los equipos que posee. Los procesos de control requieren instrumentos de medición para revisar el estado de los equipos y por otro lado, instrumentos de actuación para controlar los procesos, cumpliendo así las referencias estipuladas de diseño.

PROCESO DE CONTROL El proceso de control esta conformado por una serie de elementos que influyen en el comportamiento del sistema. Mediante la manipulación de las variables de control, se obtiene un dominio sobre las variables de salida, para lograr que estas permanezcan dentro de los umbrales definidos. (BROTONS, 2004)

SISTEMAS DE CONTROL SECUENCIAL Los sistemas de control secuencial son una sucesión de etapas de operación con acciones específicas y condiciones de transición entre ellas. En el sistema de tanques acoplados, existen tres etapas: Espera, Llenado y Vaciado, mostrado en la Figura 1.

Figura 1: Control secuencial en un sistema de nivel

SISTEMAS DE CONTROL EN LAZO CERRADO Los sistemas de control en lazo cerrado alimentan al controlador con la señal de error del compensador, que es la diferencia entre la señal de entrada y la señal de realimentación con el fin de reducir el error y llevar la salida del sistema a un valor deseado. (NÚÑEZ ENRÍQUEZ, 2007)

En la Figura 2 se muestra el diagrama de bloques de un sistema de control en lazo cerrado, donde la variable controlada es la condición que se mide y controla, para este proyecto se controló la altura de los tanques; para este proyecto se utiliza un PLC en el controlador, en él, se realiza una comparación de la altura de los tanques respecto a la señal de referencia establecida que, en presencia de perturbaciones, tiende a reducir la diferencia entre la salida de un sistema y alguna entrada de referencia; El controlador brinda una señal de control, que manipula el funcionamiento de una válvula ON-OFF, haciendo que se encienda o se apague, cambiando las características de la planta, para controlar la variable de altura de los tanques.

En la Figura 3, se muestra el sistema de llenado controlado por un PLC, con la ayuda de un sensor y un actuador que permite la medición y el control de las señales. Este tipo de sistemas es conocido como sistemas de lazo cerrado. El sistema de control de los tanques se trabajó como un sistema de control secuencial, donde la lógica funciona de forma binaria, para actuar en una válvula ON-OFF.

Figura 3: Proceso de control en lazo cerrado

1 000000 00000

CONTROLADOR Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina la desviación y produce una señal de control que reduce la desviación a cero o a un valor pequeño. La manera en la cual el controlador automático produce la señal de control se denomina acción de control. La Figura 3 muestra el diagrama de bloques de un sistema de control que consiste en un controlador automático, un actuador, una planta y un sensor (elemento de medición). El controlador detecta la señal de error, que por lo general, está en un nivel de potencia muy bajo, y la amplifica a un nivel lo suficientemente alto. La salida de un controlador automático se alimenta a un actuador, como un motor o una válvula neumáticos, un motor hidráulico o un motor eléctrico. (OGATA, 2003)

ACTUADOR El actuador es un dispositivo de potencia que produce la entrada para la planta de acuerdo con la señal de control, a fin de que la señal de salida se aproxime a la señal de entrada de referencia. Se puede observar su función en el control, mostrado anteriormente en la Figura 3. (OGATA, 2003) **INSTRUMENTO DE MEDICIÓN** El instrumento de medición para este proyecto es un sensor de presión, es un dispositivo que convierte la variable de salida en otra variable manejable, como un desplazamiento, una presión o un voltaje, que pueda usarse para comparar la salida con la señal de entrada de referencia. Este elemento está en la trayectoria de realimentación del sistema en lazo cerrado. El punto de ajuste del controlador debe convertirse en una entrada de referencia con las mismas unidades que la señal de realimentación del sensor o del elemento de medición. (OGATA, 2003)

CONTROLADOR ON-OFF El control ON-OFF es un tipo de control no lineal y proporciona a su salida, valores fijos que corresponden a conectado/desconectado según la señal de error. Inicialmente el error es positivo y el control activa las válvulas hasta llegar al valor deseado el error se hace negativo y el controlador desactiva las válvulas, Figura 4. El proceso se repite continuamente. Cabe tener en cuenta que una oscilación continua rápida puede provocar un desgaste excesivo del actuador de una válvula. (QUIPE AVILA, 2019)

Figura 4: Diagrama de funcionamiento del Controlador ON-OFF

Para evitar dañar los dispositivos de control finales se le adiciona histéresis al control ON-OFF. De esta manera, la histéresis evitará cambios abruptos debido al cambio de estado del actuador para mantener la señal de referencia, Figura 5. Para el caso, que se desee una mínima diferencia respecto a la referencia solicitada, se disminuye el estado de histéresis usado en controles donde los cambios continuos del actuador no afectan su funcionamiento ni deterioran rápidamente su vida útil.

Figura 5: Diagrama de funcionamiento del Controlador ON-OFF con histéresis

2.3. MARCO CONCEPTUAL

En esta sección, se definen los diferentes conceptos involucrados en el desarrollo del proyecto.

CONTROL REALIMENTADO: El control realimentado se refiere a una operación que, en presencia de perturbaciones, tiende a reducir la diferencia entre la salida de un sistema y alguna entrada de referencia, y lo realiza tomando en cuenta esta diferencia. (OGATA, 2003)

COMUNICACION ETHERNET: Ethernet/IP es un protocolo de red en niveles para aplicaciones de automatización industrial. Basado en los protocolos estándar TCP/IP. (SIEMON, 2013)

CX PROGRAMMER: Software de programación para todas las series de PLC de Omron. (OMRON)

DIAGRAMAS DE BLOQUES: Es una representación gráfica de los componentes, su función, y su relación entre ellos. Se puede representar un sistema con la planta, sus entradas y salidas. (OGATA, 2003)

DIAGRAMA DE BLOQUES DE FUNCIONES (FBD): Un lenguaje de diagramas de bloques secuenciales. (UNED, 2011)

DIAGRAMA DE FUNCIONES SECUENCIALES (SFC): Un lenguaje de bloques de funciones secuenciales. (UNED, 2011)

DIAGRAMAS DE TIPO ESCALERA LAD: Un lenguaje de diagramas de relés (denominado de tipo escalera). (UNED, 2011)

ELECTROVÁLVULAS: Una electroválvula es un dispositivo encargado de controlar el flujo, son consideradas también como válvulas electromecánicas pues éstas son controladas por una corriente eléctrica a través de una bobina solenoidal. (QUIMINET, 2011) HMI: Significa "Human Machine Interface", es decir es el dispositivo o sistema que permite el interfaz entre la persona y la máquina. (COBO, RAUL(2013))

LENGUAJES DE PROGRAMACIÓN: Un lenguaje de programación es un lenguaje formal diseñado para expresar procesos que pueden ser llevados a cabo por máquinas como puede ser un ordenador. (UNED, 2011)

MATLAB: Tambien llamado laboratorio de matrices, es un lenguaje de alto desempeño diseñado para realizar cálculos técnicos. (JAIME ESQUEDA,2002)

MÓDULOS ANALÓGICOS: Dispositivo conectado al PLC que recibe o envía señales de voltaje o corriente de manera analógica.

ENTRADAS ANALÓGICAS: permiten que los PLC tomen lectura de señales de tipo analógico como pueden ser la temperatura, la presión o el caudal y realiza es una conversión A/D, puesto que el autómata solo trabajar con señales digitales. (UNIVERSIDAD DEL PAIS VASCO, 2001)

PERTURBACIONES: Una perturbación es una señal que tiende a afectar negativamente el valor de la salida de un sistema. Si la perturbación se genera dentro del sistema se denomina interna, mientras que una perturbación externa se genera fuera del sistema y es una entrada. (OGATA, 2003)

PI&D: Diagrama de tuberías e instrumentación (DTI) también conocido del idioma inglés como piping and instrumentation diagram/drawing (PID) y es un diagrama que muestra el flujo del proceso en las tuberías, así como los equipos instalados y el instrumental. (PIROBLOC, 2017)

PLANTA: Cualquier objeto físico que se va a controlar. Conjunto de los elementos de una máquina que funcionan juntos, y cuyo objetivo es efectuar una operación particular. (OGATA, 2003)

PLC (controlador logico programable): También conocido como autómata programable es básicamente una computadora industrial la cual procesa las señales de entrada de sensores y envía señales a la salida que controlan diferentes actuadores cumpliendo con una secuencia programada en él. (INGENIERIA MECAFENIX, 2018)

PROCESO: Cualquier operación que se va a controlar. Un proceso como una operación o un desarrollo natural progresivamente continuo, dirigidos hacia un resultado o propósito determinado. (OGATA, 2003)

PROTOCOLO HART DE DOS HILOS HART: Es un estándar de comunicación para equipos de campo usado a gran escala. El estándar HART transforma la señal analógica de 4–20 mA en una señal digital modulada apta para uso industrial. (SIEMENS)

SALIDAS ANALÓGICAS: Los módulos de salida analógica permiten que el valor de una variable numérica interna del autómata se convierta en tensión o intensidad. Lo que realiza es una conversión D/A, puesto que el autómata solo trabaja con señales digitales. (UNIVERSIDAD DEL PAIS VASCO, 2001)

SENSOR DE PRESIÓN: El sensor de nivel es un dispositivo electrónico que mide la altura del material, generalmente líquido, dentro de un tanque u otro recipiente. (OMEGA, 2013)

SEÑAL DE CONTROL: La señal de control o variable manipulada es la cantidad o condición que el controlador modifica para afectar el valor de la variable controlada. (OGATA, 2003)

SIMULINK: Es una toolbox especial de MATLAB que sirve para simular el comportamiento de los sistemas dinámicos. Los modelos SIMULINK se guardan en ficheros con extensión *.mdl. (UNIVERSIDAD POLITECNICA DE CATALUNYA, (2014)

SISTEMAS: Un sistema es una combinación de componentes que actúan juntos y realizan un objetivo determinado. (OGATA, 2003)

SISTEMAS LINEALES: Un sistema puede ser lineal si son proporcionales la entrada con la salida, esto cumple con la forma Y=mx+b. (OGATA, 2003)

TRANSMISOR DE PRESIÓN: Un transmisor de presión convierte la presión en una señal eléctrica analógica. (OMEGA, 2013)

VARIABLE CONTROLADA: La variable controlada es la cantidad o condición que se mide y controla. (OGATA, 2003)

Figura 6: Sistema de tanques de almacenamiento

Fuente: autor - Lucid Chart

En la Figura 6, se muestra la planta de tanques acoplados de almacenamiento de hipoclorito a la que se le diseño e implemento el sistema de control de nivel y adquisición de datos.

El sistema está compuesto por dos tanques verticales de treinta metros cúbicos (30 m^3), los cuales se conectan llegando a una línea principal. Cada tanque cuenta con una válvula ON - OFF usada para cambiar las características de flujo de hipoclorito, dependiendo de la altura de nivel, también cuentan con un sensor de presión que permite el seguimiento de la altura.

Como se puede observar en la Figura 6, las válvulas de alimentación Q_{e1} y Q_{e2} , ubicadas en la parte inferior del tanque. Por otro lado, las válvulas Q_{s1} y Q_{s2} son válvulas de descarga que dirigen el contenido a un proceso diferente por medio de bombas hidráulicas, las válvulas son operadas individual y manualmente.

La línea principal de alimentación hacia los tanques cuenta con un medidor de flujo, el flujo de entrada se mantiene en promedio a 22 m^3/h . Sobre cada tanque se realizó la instalación de un transmisor de presión de 4 a 20 míliamperios mA.

Para el proyecto de control de nivel se realizó la instalación de la siguiente instrumentación:

	Item	
	Dispositivos	Descripción
1	Transmisor de presión	VEGA 82 HART 2 hilos de 4-20 mA
2	PLC	OMRON CP1L-EM30DT-D
3	Módulo de entradas Análogas	OMRON CP1W-AD041
4	Módulo de salidas Análogas	OMRON CP1W-DA041
5	HMI	NB7W-TW01B
6	Fuente de voltaje	Fuente de $24V \ 1.5A$
7	Válvula ON-OFF	GF 233

Tabla 1: Lista de instrumentos instalados en la planta

Fuente: autor

La instrumentación instalada consta de dos sensores de presión, un tablero de distribución que contiene un PLC, un módulo de entrada analógica, un módulo de salida analógica, una pantalla HMI y adaptaciones eléctricas y electrónicas para la instalación de válvulas proporcionales, el detalle de la instrumentación utilizada y la instalación se desarrolla en el presente capítulo.

TABLERO DE CONTROL

El tablero de control consiste en un conjunto de paneles donde se distribuyen los dispositivos, los elementos de conexión y de protección contra sobrecorriente. El tablero se aloja en un gabinete en acero inoxidable instalado sobre la pared (Figura 7) y son accesibles solo por su frente.

Figura 7: Tablero de control

Se realiza el diseño previo para la posterior fabricación del tablero eléctrico, se estima el espacio ocupado por los diferentes dispositivos en el plano adjunto, mostrado en la Figura 8. Las dimensiones estimadas del tablero eléctrico, fue un gabinete de 700 mm x 400 mm x 150 mm de fondo, el material utilizado es acero inoxidable debido al contacto con el ambiente químico.

En el tablero de control se encuentran alojados los equipos utilizados en el control como el PLC, el módulo de entrada analógica, el módulo de salida analógica, los breakers, los relés de estado sólido, las bornes y el respectivo cableado para la conexión de sus partes se puede observar en la Figura 9 y la Figura 10 . Además, se realiza la instalación de bandejas para caminos multicables que permite el paso direccionado de los cables de conexión dentro del tablero.

Fuente: autor

Figura 8: Esquema del tablero de control

Fuente: autor

Figura 9: Instrumentación instalada en el tablero de control

Fuente: autor

Figura 10: Componentes tablero de control

Fuente: autor

CONEXIÓN Y PLANO ELÉCTRICO

La conexión de la instrumentación se realizó basado en el plano eléctrico mostrado en la Figura 11.

Figura 11: Componentes tablero de control

Fuente: autor

Se instala tubería de protección de polietileno, para los cables individuales junto con la instalación de soportes de apoyo y los suministros e instalación de la tornillería necesaria en acero inoxidable mostrado en la Figura 12. Se utilizó un cable de 4 hilos apantallado, que permite, la protección de los cables contra agente externos y se realizó la conexión y nomenclatura por ambos extremos de todos los cables individuales y los multicables a sus respectivos origen y final de recorrido mostrado en la Figura 13.

Figura 12: Instalación de tubing eléctrico y soportes

Fuente: autor

Figura 13: Nomenclatura de las señales E/S del PLC

Fuente: autor

INSTRUMENTO DE MEDICIÓN

Se instaló el sensor de nivel VEGA 82 (Figura 14). La presión del nivel del fluido sobre el sensor provoca una deflexión de la membrana cerámica, y genera como resultado de la presión externa una variación de la capacidad y de la presión del fluido localizado dentro de la celda de medición.

Figura 14: Sensor de presión con celda cerámica

Fuente: VEGA, tomado de https://www.vega.com/-/media/images/company/technology/lp-vegabar80-es.jpg

La deformación es transformada proporcionalmente en una señal eléctrica y emitida como valor de medida de 4 a 20 mA a través de la señal de salida, esto quiere decir que, 0 centímetros de altura equivalen a 4 mA y 400 cm de altura equivalen a 20 mA, tal como se indica en las escalas de nivel de agua ubicadas a lo alto de los tanques.

El sensor vega posee un dispositivo de visualización y configuración llamado DIS - ADAPT el cual permite configurar la visualización de la altura en cm en el display. Se calibró mediante la siguiente configuración:

• Nivel mínimo de nivel: 9 cm

- Nivel máximo de nivel: 380 cm
- Offset mínimo: $0,5\,\%$
- Offset máximo: 100 %
- Densidad: 1100 kg/m^3

<image>

Figura 15: Sensor de presión-Display de configuración

(a) Conexión sensor de presión

(b) Display DIS-ADAPT

Fuente: autor

Figura 16: Instalación del sensor en los tanques

 $Fuente:\ autor$

ACTUADOR DEL SISTEMA DE CONTROL

Se instaló el la válvula de control GF 233 de accionamiento neumático (Figura 17). La válvula se encuentra acompañada de una electroválvula que recibe la señal del PLC; al recibir la señal permite el paso de aire logrando la apertura de las válvulas neumáticas.
Figura 17: Válvula de bola de accionamiento neumático

Fuente: Autor

La electroválvula tiene instalada una unidad de mantenimiento mostrada en la Figura 18 que permite mantener la calidad del aire y protege los dispositivos.

Figura 18: Sensor de presión con celda cerámica

Fuente: Tomado de: http://icohhn.com/producto/f-r-l-unidad-de-mantenimiento-serie-lfc-dos-cuer-ich-02553873/

DESCRIPCIÓN DEL CONTROLADOR 4.

El controlador del sistema se realizó por medio de un dispositivo electrónico programable también llamado PLC o Controlador Lógico Programable que desarrolla de manera secuencial una serie de instrucciones con acciones de control del sistema.

CONTROLADOR LÓGICO PROGRAMABLE

El PLC OMROM CP1L - EM30DTD posee 18 entradas digitales y 12 salidas digitales, también cuenta con dos salidas análogas de voltaje (Figura 19). En el PLC se añade un módulo de extensión analógica CP1W - AD041, que permite la lectura de la señal emitida de corriente brindada por el sensor de presión.

Se instaló un pantalla HMI o Human Machine Inter face que permite la comunicación humano-máquina y visualizar el nivel de altura y volumen del tanque, y realizar la apertura y cierre de las válvulas de llenado de los tanques.

Figura 19: PLC Omron CP1LEM30DT

Fuente: autor

La alimentación del PLC es de 24 V, se alimenta a través de una fuente de 24 V y 1,5A. La protección de la fuente a su vez se realiza por medio de 2 breakers, un breaker

para la protección señal de 110 V de la alimentación externa, y un breaker para la protección de la señal de 24 V dirigida a los equipos del tablero de control.

En las terminales superiores se localizan las entradas digitales, de modo que reciben la señal de los pulsadores y selectores del tablero eléctrico, además poseen dos terminales para la alimentación del dispositivo, el cual va conectado a la fuente, mostrados en la Figura 20. En los terminales inferiores se encuentran las salidas digitales que envían la señal a las válvulas proporcionales, su función es controlar la apertura y cierre.

Figura 20: Componentes PLC

 $\label{eq:Fuence} Fuence: Omron tomado de Manual PLC Omron, https://assets.OMRON.eu/downloads/manual/es/v1/w461_cp1e_cp1l_qetting_started_quide_es.pdf$

Se observa en la Figura 21, la conexión de los contactos físicos con el PLC, el origen y la salida de cada punto.

Figura 21: E/S digitales del PLC

Por medio del software CX programmer de OMRON (Figura 22) se realiza la programación del control utilizando bloques de funciones y ladder.

https://industrial.OMRON.es/es/products/cx-programmer

Actualmente existen lenguajes de programación gráficos que permiten un diseño más ágil que los lenguajes textuales, entre los lenguajes gráficos se encuentran el diagrama escalado ladder y el diagrama de bloques mostrados en la Figura 23.

Figura 23: Tipos de lenguajes gráficos de programación de PLC

Fuente: autor

MÓDULOS DE ENTRADAS Y SALIDAS ANALÓGICAS

Los módulos permiten la extensión de lectura o envío de señales (Figura 24). Los módulos se conectan al PLC por medio de una extensión lateral la cual permite realizar la instalación de varios módulos en serie (Figura 25).

Figura 24: Módulo de entradas analógicas

Figura 25: Módulo de entrada analógica conectado a PLC por medio de adaptador.

Fuente: autor

Para la toma de la señal recibida por el transmisor, se realizó la instalación de un módulo de entrada analógica, que realiza la lectura de 4 a 20 mA. Debido a que el

sensor posee la configuración HART de 2 hilos, se realizó el cableado en serie entre el sensor, el módulo y la fuente. La conexión se detalla en la Figura 26.

	- 1	IN1	VI	N2	со	M2	11	V3	VI	N4	со	M4	A	G	
	V IN1	со	M1	III	12	VI	N3	co	M3	11	N4	N	С		
Analog device							V IN1			Voltage input 1					
output						-	LIN1		(Current input 1					
						COM1					Input common 1				
						١	V IN	12	1	Voli	tage	: inp	out 2	2	
Analog device +					e [2	(Cur	rent	t inp	ut 2		
					(col	M2		Input common 2			2			
					١	V IN	13	1	Voltage input 3)		
							I IN	3	Current input				ut 3		
						(col	М3		Inpi	ut co	omn	non	3	
						١	V IN	4	1	Voli	tage	inp	out 4		
							IN	4	(Cur	rent	: inp	ut 4		
							col	M4		Inpl	ut co	omn	non	4	-

Figura 26: Modo de conexión de dispositivo en el módulo analógico

 $\label{eq:Fuente:Omron tomado de Manual PLC Omron, https://assets.OMRON.eu/downloads/manual/es/v1/w461_cp1e_cp1l_getting_started_guide_es.pdf$

Como lo evidencia el plano, el sensor analógico posee una conexión positiva y una negativa. Para cada sensor, la conexión negativa se conectó directamente a la conexión positiva de la fuente de voltaje, Por otra parte, la conexión positiva se conectó a los puertos V_{IN1} y I_{IN1} del módulo de entrada análogica. Para el caso de la fuente de voltaje, fue necesario realizar la conexión en serie para que la comunicación fuera efectiva entre el sensor y el módulo de entradas analógicas. Por tal razón, se realizó la conexión entre la parte negativa de la fuente de voltaje y el COM o puerto común del módulo de

entrada analógica.

Después de establecida la conexión de la instrumentación, el módulo realiza la transformación de la señal a un lenguaje de computador, explicando de otro modo, la señal del sensor, la cual es, una señal de 4 a 20 mA, se convierte en el módulo de entrada analógica a una señal de 0 a 6000 bits de resolución tal como lo enuncia la Figura 27.

Figura 27: Señal que recibe el módulo al conectar una señal de 4 a 20 mA

 $\label{eq:Fuence} Fuence: Omron tomado de Manual PLC Omron, https://assets.OMRON.eu/downloads/manual/es/v1/w461_cp1e_cp1l_qetting_tarted_quide_es.pdf$

Como se presenta en el siguiente gráfico, la señal que recibe el PLC va desde 0000(HEX) para una señal de corriente 4 mA hasta 1770(HEX) para una señal de corriente de 20 mA.

HMI HUMAN MACHINE INTERFACE

Para la interacción del control con el operador se instala un HMI human machine interface, donde el operario puede visualizar el nivel de los tanques y realizar la apertura y cierre de las válvulas proporcionales. El HMI instalado es un NB7W - TW01B de marca OMRON de conexión Ethernet de pantalla de 7" y alimentación 24V, mostrado en la Figura 28.

Figura 28: Human-Machine Interface OMRON

Fuente: Tomado de: https://es.rs-online.com/web/p/displays-hmi-de- pantalla-tactil/8211807/

Al ser de la serie NB el software diseñado para la programación es el NB – Designer de la marca OMRON (Figura 29).

Figura 29: Software de programación HMI NB-DESIGNER

Fuente: Tomado de: https://1.bp.blogspot.com/, Licencia obtenida por la empresa

Se estableció la comunicación entre HMI y PLC mediante un protocolo Ethernet tal como se observa en la Figura 30.

Figura 30: Conexión Ethernet para la comunicación PLC-HMI

(a) Puerto Ethernet en HMI

(b) Conexión Ethernet entre PLC y HMI Fuente: autor

5. MODELADO DE LA PLANTA DE TANQUES ACOPLADOS

Figura 31: Diagrama del sistema de tanques

La Figura 31 representa la configuración de la planta de tanques acoplados con el cual se realizó este trabajo, a continuación, se describe el modelo matemático. Donde,

- Q_{e1} = Es el caudal de la alimentación del $Tanque_1$
- Q_{e2} = Es el caudal de la alimentación del $Tanque_2$
- Q_{s1} = Es el caudal de salida de la valvula V_{q1}
- Q_{s2} = Es el caudal de salida de la válvula V_{q2}

A partir de la ecuación de Bernoulli se puede determinar la velocidad del fluido, cuando no se encuentran abiertas las válvulas de salida, gracias a la Ecuación de Bernoulli:

$$P_1 + \frac{1}{2}\rho v^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v^2 + \rho g h_2$$
(5.1)

Siendo,

$$\begin{split} P_1 &= \text{presión de entrada del fluido} \\ P_2 &= \text{presión de salida del fluido} \\ g &= \text{constante gravitacional} = 9,8m/s^2 \\ \rho &= \text{densidad del fluido} = 1100kg/m^3 \\ h &= \text{altura de nivel del líquido en el tanque} = m \end{split}$$

Despejando la velocidad de la ecuación de bernoulli, para el caso de un orificio ubicado en la parte inferior del tanque, con una presión atmosférica al inicio y final del trayecto del fluido, y densidad del hipoclorito al 5.5 %, se tiene que:

Velocidad del fluido en un orificio

$$\upsilon = \sqrt{2 \ast g \ast h_1} \tag{5.2}$$

Por otra parte, se define como flujo de volumen (Q) a la cantidad de fluido que pasa en determinado tiempo, se expresa como área (A) por velocidad (v), brindando unidades de metros cúbicos por segundo (m^3/s) .

Caudal Volumétrico

$$Q = A * \upsilon \tag{5.3}$$

Por lo tanto, para los casos caudal de la salida 1 y caudal de la salida 2, el caudal permanece constante:

Caudal de salida tanque $1 = Q_{s1}$ Caudal de salida tanque $2 = Q_{s2}$ Para el caudal en la tubería de conexión mostrada en la Figura 32 se tiene que,

Caudal de interconexión tanque 1 y tanque 2= C1-2 * $a_a^* \sqrt{2g} \sqrt{(h_1 - h_2)}$

Donde,

 $a_a =$ Área de sección de la tubería, esta dimensión no cambia a lo largo de la red de salida.

Siendo,

 $a_a = \frac{\Pi}{4}(0,1016)^2 = 0,0081m^2$

 C_{1-2} = Coeficiente de descarga, entre la conexión existente en el tanque 1 y el tanque 2. Obtenido mediante el análisis de llenado del tanque 2, con alimentación desde el tanque 1.

Siendo, $C_{1-2} \approx 27,87$

Luego, se realizó un cambio de variables, dando como resultado una variable general para cada ecuación que comprenda las variables como lo son, constante de descarga, área transversal del tubo del fluido y la contante gravitacional.

 $C_{1-2} * a_a \sqrt{2g} = C$

Flujo volumétrico a través de la conexión entre los tanques

$$Q_{1-2} = C_{\sqrt{((h_1 - h_2))}} \tag{5.4}$$

En este sistema la acumulación de volúmen es igual a la diferencia de lo que entra menos lo que sale y, los estados son las alturas de los dos tanques h_1 y h_2 .

Entonces,

$$\frac{dM}{dt} = \dot{M}_{in} - \dot{M}_{out} \tag{5.5}$$

$$Acumulación = Entra - Sale \tag{5.6}$$

El volumen almacenado mantiene su área constante por lo que la altura es la variable que cambiaría en el tiempo.

$$Acumulación = A * \frac{dh}{dt} = q_{entrada} - q_{salida}$$
(5.7)

Donde, A = Årea de sección del tanque, representa las dimensiones transversales del tanque, esta dimensión no cambia a lo largo de la altura del tanque.

Siendo,

$$A = \frac{\Pi}{4}(3,0902)^2 = 7,5068 \ m^2$$

6. CARACTERIZACIÓN DEL SISTEMA

En este capítulo se muestra la caracterización del sistema para determinar el valor de los parámetros físicos. Se realizó un proceso de adquisición de datos en la dinámica de llenado y vaciado de los tanques. Finalmente, se comparó la respuesta del sistema real y la respuesta del modelo matemático.

CARACTERIZACIÓN DEL SENSOR

El sensor transforma la señal de presión ejercida por el líquido en el tanque, en una señal eléctrica entre 4 y 20 mA. La presión generada es proporcional al nivel del líquido.

La señal eléctrica es tomada por el PLC por medio de un módulo de entradas analógicas; en el módulo, la señal de corriente es convertida a una señal binaria tipo WORD de valores entre 0 y 6000, tal como lo muestra la Figura 33.

Figura 33: Conversión de corriente del sensor a palabra de resolución (WORD)

Esta resolución es determinada en la ficha técnica del módulo analógico. Tal como se

muestra en la Figura 34.

Figura 34: Especificación de resolución de un CP1W-AD041

Analog I/O Units

Analog Input Unit

CP1W-AD041 Analog inputs: 4 (resolution: 6,000)

Analog Output Unit

CP1W-DA021 Analog outputs: 2 (resolution: 6,000)

CP1W-DA041 Analog outputs: 4 (resolution: 6,000)

Fuente: OMRON

DEFINICIÓN DE LOS UMBRALES DE HISTÉRESIS

Los umbrales de disparo para controlar el nivel en los tanques fueron definidos entre 1.5 m y 3.5 m (Figura 35).

Figura 35: Umbrales de histéresis de la señal recibida del sensor en bits de resolución

CASO 1: LLENADO DEL TANQUE

Se caracterizó la dinámica de llenado del tanque, bajo las condiciones de tener las válvulas de salida cerradas y un caudal de entrada constante. El diagrama pictórico se puede ver en la Figura 36.

Fuente: autor

El presente modelo, se define como:

Modelado: Llenado del sistema

$$\frac{dh_1}{dt} = \frac{Q_e}{A_{tk1}} \tag{6.1}$$

donde,

$$Q_e$$
 = Caudal de entrada $[m^3/min] = 0,1917 \frac{m^3}{min}$
 $A_{tk} =$ Área de sección transversal del tanque $m^2 = 7,5068 m^2$

Integrando la ecuación diferencial del modelo, se obtiene la ecuación de salida que corresponde con la altura en el tanque en función del tiempo expresado en minutos:

Ecuación de salida del modelo de llenado de tanques

$$h_1 = \frac{Q_e}{A_{tk1}}t = 0.0255t + ci \tag{6.2}$$

donde,

ci = Condición inicial del sistema
= 0,1745m

Se compara la salida del modelo (nivel del líquido en el tanque) respecto a los datos experimentales en el rango de tiempo entre 45 y 80 minutos, como se muestra en la Figura 37.

Utilizando una regresión lineal para los datos experimentales, la ecuación de salida h(t) obtenida es:

Ecuación de salida del llenado de tanques real

$$h_{real} = 0.0302t - 0.0434 \tag{6.3}$$

Se calcula el porcentaje de error entre los datos reales y el modelo como:

Cálculo del error en el llenado

$$error = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{h_1 - h_{real}}{h_1} \right| * 100 = 6,14\%$$
(6.4)

donde, N = Número de datos en el intervalo de tiempo

El modelo matemático presenta un error del 6.14% respecto los datos experimentales.

CASO 2: VÁLVULAS DE ENTRADA Y SALIDA ABIERTAS

Figura 38: Caso 2: Válvulas de entrada y salidas abiertas

El área de sección transversal de los tanques y los flujos de entrada son iguales; además, los flujos de salida Q_{s1} , Q_{s2} se asumen constantes debido a que estos son controlados por motobombas. Luego, se tiene

Modelado: Llenado del sistema

$$\frac{dh_1}{dt} = \frac{Q_{e1}}{A_{Tk}} - \frac{Q_{s1}}{A_{Tk}}$$
(6.5)

$$\frac{dh_2}{dt} = \frac{Q_{e2}}{A_{Tk}} - \frac{Q_{s2}}{A_{Tk}}$$
(6.6)

Donde,

- Q_{e1} = Caudal de entrada en el tanque uno $\left[\frac{m^3}{l}\right] = 0,1917 \left[\frac{m^3}{min}\right]$
- Q_{s1} = Caudal de salida en el tanque uno $\left[\frac{m^3}{min}\right]$
- Q_{e2} = Caudal de entrada en el tanque uno $\left[\frac{m^3}{min}\right] = 0,1917 \left[\frac{m^3}{min}\right]$
- Q_{s2} = Caudal de salida en el tanque uno $\left[\frac{m^3}{min}\right]$
- $A_{Tk} =$ Área de sección transversal del tanque =7,5068 m^2

Integrando se obtiene la ecuación de altura en los tanques en función del tiempo expresado en minutos:

Ecuación de altura en los tanques

$$h_1 = \left(\frac{Q_{e1}}{A_{Tk}} - \frac{Q_{s1}}{A_{Tk}}\right)t + ci_1 = \left(0,0255 - \frac{Q_{s1}}{7,5068}\right)t + ci_1[m]$$
(6.7)

$$h_2 = \left(\frac{Q_{e2}}{A_{Tk}} - \frac{Q_{s2}}{A_{Tk}}\right)t + ci_2 = \left(0,0255 - \frac{Q_{s2}}{7,5068}\right)t + ci_2[m]$$
(6.8)

Donde,

 $ci_1={\rm Condición}$ inicial del sistema tanque 1= 2,712m

 $ci_2 = {\rm Condición}$ inicial del sistema tanque 2
= 2,593 m

Ya que la salida de los tanques es forzada mediante bombas que realizan la succión del hipoclorito.

A partir de los datos experimentales, se obtiene la siguiente gráfica (Figura 39).

Figura 39: Datos Experimentales en condiciones de caso mostrado

Utilizando una regresión lineal para los datos experimentales, la ecuación de salida obtenida de cada tanque es:

Ecuaciones de salida según datos experimentales

$$h_{1real} = -0.0113t + 2.7080 \ [m] \tag{6.9}$$

$$h_{2real} = -0.0142t + 2.6066 \ [m] \tag{6.10}$$

A partir de las ecuaciones se tiene que las pendientes de las ecuaciones de salida de cada tanque son: $m_1 = -0.0113 m_2 = -0.0142$

A partir de la Ecuación 6.7 y 6.8, se tiene que,

$$m_1 = \left(\frac{Q_{e1}}{A_{Tk}} - \frac{Q_{s1}}{A_{Tk}}\right) \tag{6.11}$$

$$m_2 = \left(\frac{Q_{e2}}{A_{Tk}} - \frac{Q_{s2}}{A_{Tk}}\right) \tag{6.12}$$

Se despeja los caudales de salida Q_{s1}, Q_{s2} .

$$Q_s 1 = Q_e 1 - (A_{Tk} * m_1) = 0,2979 \frac{m^3}{min}$$
(6.13)

$$Q_s 2 = Q_e 2 - (A_{Tk} * m_2) = 0,2762 \ \frac{m^3}{min}$$
(6.14)

Se compara en la Figura 40 la salida del modelo (nivel del líquido en el tanque) respecto a los datos experimentales en el rango de tiempo entre 0 y 100 *minutos*.

Figura 40: Comparación de modelo vs datos experimentales en tanque 1 y 2

Caso entrada de alimentacion y valvulas de salida activas abiertas

Se calcula el porcentaje de error entre los datos reales y el modelo como:

Cálculo del error en el llenado del tanque 1 y del tanque 2

$$error_{tk1} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{h_1 - h_{real}}{h_1} \right| * 100 = 0.46\%$$
(6.15)

$$error_{tk2} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{h_2 - h_{real}}{h_2} \right| * 100 = 0,865\%$$
(6.16)

donde, N = Número de datos en el intervalo de tiempo

El modelo matemático presenta en el tanque uno, un error del 0.46% respecto a los datos experimentales y en modelo matemático del tanque dos, un error del 0.865% respecto a los datos experimentales.

7. DESARROLLO DEL ALGORITMO DE CONTROL

En este capítulo se describe el proceso de desarrollo del código de control implementado en el PLC mediante el software CX - Programmer de OMRON.

DIAGRAMA DE BLOQUES DEL SISTEMA

Se muestra en la Figura 41, el diagrama de bloques del sistema de control de tanques acoplados. El controlador es un PLC Omron CP1L - EM30DT, se desarrolla el algoritmo de control mediante código de programación ladder y bloques de función, además, se direcciona las señales digitales y analógicas a una pantalla HMI, que visualiza la información en tiempo real.

Figura 41: Diagramas de bloques del sistema. Secuencia del control

Fuente: autor

DIAGRAMA DE TRANSICIÓN DE ESTADOS

El diagrama de transición de estados que se puede ver en la Figura 42 describe el comportamiento secuencial del controlador ON - OFF con *histéresis* para el sistema de control de nivel de líquido en los tanques.

Estado 1: Arranque Se inicializa el sistema y se mide la señal del nivel del líquido en el tanque. Se realiza la transición del estado 0 al estado 1, cuando el nivel de líquido en el tanque se encuentra por debajo del umbral inferior.

Estado 2: Llenado En este estado, se activa la válvula que permite el ingreso de caudal para el llenado del tanque y sólo cambia al estado 3 cuando se alcanza el umbral superior.

Estado 3: Descarga/Vaciado En este estado, se desactiva la válvula de ingreso de caudal y sólo cambia al estado 2 cuando se alcanza el umbral inferior.

Figura 42: Diagrama de estados del control del sistema Arranque

Donde,

LedBaja: Nivel del líquido en los tanques por debajo del umbral inferior LedAlta=Nivel del líquido en los tanques por encima del umbral superior $V \acute{a} lvula$ =Estado de la válvula de alimentación de los tanques

ESTRUCTURA GENERAL DE LA PROGRAMACIÓN DEL PLC

El algoritmo de control está compuesto por 7 secciones que pertenecen al programa general 'Control 2Tks', mostradas en la Figura 43.

Fuente: autor, CX-Programmer

- ACTIVARTAB: Recibe la señal de los pulsadores e interruptores ubicados en el tablero de control.
- CONFIGURACIÓN: Configura la lectura de señales a través del módulo analógico.
- **TEMPORIZADORES:** Establece tiempos de inicialización mientras se estabiliza la lectura de los sensores.
- COMPARADOR: Compara las señales recibidas de los sensores respecto a las señales de referencia.

- **ESCALADO**: Convierte las señales digitales resultado de la conversión analógicodigital al valor de la variable física equivalente (volumen y altura).
- CONTROL: Establece las condiciones para la apertura o cierre de válvulas.
- **SALIDAS**: Dirige la señal de salida a los puertos físicos del PLC.

Se detallan la programación y desarrollo de las diferentes secciones.

Sección ACTIVARTAB En la sección 'ActivarTab', se reciben las señales de entrada de los pulsadores e interruptores alojadas en el tablero de control, ver Figura 44.

Figura 44: Pulsadores e interruptores del tablero de control

Fuente: autor

Para mantener el estado de las señales lógicas generadas por los pulsadores de encendido y apagado, se necesita un bloque de función KEEP.

Las señales recibidas de los pulsadores e interruptores, se asignan a direcciones de memoria interna (w5,00, w11,00 y w12,00) del PLC para su posterior uso.

Figura 45: Sección de programa: Activar

Fuente: autor

Sección CONFIGURACIÓN Para realizar la lectura de las señales analógicas, es necesario configurar los 8 bits menos significativos de los registros 102 y 103 del módulo analógico CP1W - AD041 de acuerdo al tipo de señal recibida; es decir, si es una señal de voltaje o una señal de corriente. La configuración se puede ver en la Figura 46 y Figura 47. Como los sensores de presión generan señales de corriente y se utilizan los canales 'Analog input 1' y 'Analog input 2' la palabra binaria de configuración del registro 102 se puede ver en la Figura 48.

Figura 46: Configuración asignada para los parámetros requeridos

 $\label{eq:Fuence} Fuence: OMRON \ tomado \ de \ Manual \ PLC \ Omron, \ https://assets.OMRON.eu/downloads/manual/es/v1/w461_cp1e_cp1l_getting_started_guide_es.pdf$

Figura 47: Direcciones para asignar parámetros al PLC

 $\label{eq:Fuence} Fuence: Omron \ tomado \ de \ Manual \ PLC \ Omron, \ https://assets.OMRON.eu/downloads/manual/es/v1/w461_cp1e_cp1l_getting_started_guide_es.pdf$

Fuente: autor

Se convierte la palabra binaria [WORD] asignada al registro 102 a sistema hexadecimal [HEX], siendo,

En la sección 'Configuración', se asigna al registro 102 la palabra de configuración mediante el bloque de función MOV.

 $Fuente:\ autor,\ CX\text{-}Programmer$

Sección TEMPORIZADORES En esta sección se añaden 3 temporizadores, donde:

- TIM05 Permite la inicialización del programa automático y la lectura del módulo analógico después de pasados 0.2 s.
- TIM00 Permite la activación de las señales de salidas a las válvulas después de pasados 0.2 s.
- TIM06 Establece el tiempo de 6 s para activar la función de RESET.

[Nombre de Prog	rama : Control2Tk	s]			
[Nombre de Secc	ión : Temporizado	res]			
TEMPORIZADOR IN	ICIO LECTURA DE D	ATOS			
P_On				-	· · · ·
Indicador de				TIM	Temporizador de 100 ms (Temporizador) [tipo BCD]
				0005	Temp_ActivarControl Número de temporizador
				#2	Valor seleccionado
CONTRO ACTIVACI	ON DE SALIDAS			*	
P_On				*	· · · ·
Indicador de				TIM	Temporizador de 100 ms (Temporizador) [tipo BCD]
				0000	Temp_ActivarSalidas Número de temporizador
				#2	Valor seleccionado
					· · · · ·
I: 0.00	I: 0.01			+	r • • •
TAE Stop	TAB Start			TIM	Temporizador de 100 ms (Temporizador) [tipo BCD]
				0006	Reset_6 seg Número de temporizador
				#60	Valor seleccionado
			 		· · · · · · · · · · · · · · · · · · ·

Figura 50: Sección de programa: Temporizadores

Fuente: autor, CX-Programmer

Sección COMPARACIÓN En esta sección se compara la señal correspondiente a la altura de nivel del líquido en los tanques respecto a los umbrales de disparo configurados en el PLC.

Debido a que el PLC contiene los canales 0 y 1 que ocupan las entradas digitales, la señal 'Entrada analógica 1' y 'Entrada analógica 2' del módulo analógico se corresponden con los canales 2 y 3 en la programación del PLC.

El comparador lee la señal del *canal* 2 y el *canal* 3, luego se compara con los umbrales superior e inferior, dando como resultado una señal binaria que indica si el nivel de los tanques supera el umbral superior o se encuentra por debajo del umbral inferior, tal como se muestra en la Figura 51.

El diagrama ladder de la Figura 51, se corresponde con la siguiente estructura de programación.

```
if niveltk1<= umbral_inferior
W80.00 = '1'
else
W80.00 = '0'
end
if niveltk1>= umbral_superior
W80.01 = '1'
else
W80.01 = '0'
end
```

Los umbrales de comparación se definen entre 1,5 m y 3,5 m cuyos valores digitales [WORD] equivalentes son:

$$1,5 \ m = 2252 \ y \ 3,5 \ m = 5255$$

Figura 51: Sección de programa: Comparador

Fuente: autor, CX-Programmer

En la figura 52, 53 y 54 se muestra la activación de las señales cuando el nivel del l'quido en el tanque supera el umbral superior, cuando el nivel está por debajo del umbral inferior y dentro del rango de nivel deseado.

. 0		J -	I		1
[Nombre de Programa : Control2Tks	5]				
[Nombre de Sección : Comparador]					
Comparador en TANQUE 1					
T0005 [°] W5.00 [°]	+	*	*	' w80.00	TK1 ReicNivelLiouida
Temp_ActivarC BIT_StartControl	<- (315)			<u> </u>	INI_DAJONIVEIDIQUIGO
	2 SignalInput +1880				· · ·
	&2252				
T0005 W5. 00	,			w80. 01	
Temp_ActivarC BIT_StartControl	>-(325)			O	TK1_AltoNivelLiquido
	2 SignalInput +1880				
	&5255 ·				

Figura 52: Prueba de nivel bajo: Comparador en tanque 1

Fuente: autor, CX-Programmer

Figura 53: Prueba de nivel en rango: Comparador en tanque 1

Fuente: autor, CX-Programmer

Fuente: autor, CX-Programmer

Sección ESCALADO En esta sección se convierte las señales digitales resultado de la conversión analógico-digital al valor de la variable física equivalente (*volumen* y *altura*).

Para utilizar la señal recibida de la 'Entrada Analógica 1' es necesario re asignar la entrada a la variable interna D2, luego se realiza operaciones aritméticas dando como resultado valores físicos reales para el volumen del líquido en el tanque (Ecuación 7.1)y la altura del nivel del líquido en el tanque (Ecuación 7.2).

Como:

$$6000 (WORD) = 30 m^3 \tag{7.1}$$

Entonces, la señal D2 se divide en 20 para obtener valores entre 0 y 300, porque en la programación de la pantalla HMI se ubica el punto decimal en las unidades lo que permite visualizar los valores entre 00,0 y 30,0 m^3 .

Como,

$$6000 \left(WORD \right) = 4m \tag{7.2}$$

Y se sabe que:

$$altura = h = \frac{v}{A} = \frac{volumen}{area}$$
(7.3)

Entonces, la señal D2 se divide en 2 para obtener valores entre 0 y 3000, y nuevamente se divide en 75 para obtener valores entre 00 y 40. En la programación de la pantalla HMI se ubica el punto decimal en las unidades lo que permite visualizar los valores entre 0,0 y 4,0 metros.

Figura 55: Sección de programa: Escalado
k						
T0005			-			
Temp_ActivarC	>(320)				/ (430)	División binaria con signo
	D60 Variable Int	*			D60	Variable Intermedia Canal de dividendo
	0	*			&75	Canal de divisor
		*			D64	Altura_TK1 Canal de resultado
CONTREPORTON A 12		DIPROTON L DINT	LLL OPNOOD 9			ļ
TOOD5	·	*	+			r · ·
Temp_ActivarC					MOV (021)	Mover
					3	Analog_input2 Canal fuente
					D4	(PLC_In,DEC2) Entrada Analogica 2 Destino
т0005		*			·	· · ·
Temp_ActivarC	>(320)	1			/ (430)	División binaria con signo
	• D4 (PLC_In, DBC2	•			D4	(PLC_In, DEC2) Entrada Analogica 2 Canal de dividendo
	. 0.8	*			&20	Canal de divisor
	*	*			D56	Volumen_TK2 Canal de resultado
T0005	*	•	,	,		· · ·
	>(320)				/ (430)	División binaria con signo
Temp_Activarc	PLC In DBC2	•		•	D4	(PLC_In, DEC2) Bntrada Analogica 2 Canal de dividendo
	<u></u>				<u>&2</u>	Canal de divisor
					D62	Variable Intermedia 2 Canal de resultado
T0005	*	· · · · · · · · · · · · · · · · · · ·	,	-	 	· · ·
Temp_ActivarC	>(320)				/ (430)	División binaria con signo
	D62 Variable Int			+	D62	Variable Intermedia 2 Canal de dividendo
	÷ <u>&0</u>	•		÷	 &75	Canal de divisor
	+				 D66	Altura_TK2
						Canai de resultado

Fuente: autor, CX-Programmer

Se añade la función de RESET que permite borrar los datos almacenados en las direcciones 'D' donde se alojan los datos de palabra doble (DWord), como el volumen y la altura de nivel de líquido en los tanques, mostrado en la Figura 56.

	PERET DE VENOETA						
ſ	T0006					+	
Г	Reset 6 seg					@BSET(071)	Rellenar bloque
			+	+	+	+0	Canal fuente
				*	*	. <u>D0</u>	Canal inicial '
ŀ	*	٠	*	*	*	D19999	Canal final

Fuente: autor, CX-Programmer

Las direcciones D (DWord) del PLC son enviadas a la pantalla HMI, donde el operario puede visualizar el volumen y altura de los tanques, visto en la Tabla 2.

Tabla 2

Dirección	Variable física
D54	Volumen TK1
D64	Altura TK1
D56	Volumen TK2
D66	Altura TK2

Fuente: autor

En la pantalla HMI se asignan los datos al visualizador numérico Figura 57. La configuración del visualizador numérico se puede ver en la Figura 58 y Figura 59; donde se configura la dirección a leer y el número de dígitos enteros y decimales.

Figura 57: Visualizador Numérico - HMI

Fuente: autor, NB-Designer

Figura 5	8: Dirección	de lectura	Visualizador	Numérico	- HMI
----------	--------------	------------	--------------	----------	-------

Dirección	de Lectura	I						
нмі	HMIO	PLC	0	•				
Puerto	Net							
Cambi Nodo	ar No.	1		*				
Área/Etiqu	ueta	D		•				
Dirección	54	Memo	ria de Sis	tema				
Formato	BIN	 Tamaño (words) 	1	Ŧ				
Formato (F	Rango): DE)DDD (032	2767)					
🔲 Usar E	Usar Etiqueta de Dirección							
🗌 Usar 🛙)ireccionar	niento Indire	cto					

Fuente: autor, NB-Designer

Figura 59: Definir decimales del dato recibido - HMI

Básicas	Dat	os Nu	iméricos	Fuer	te Gráfi	cos	Confi	guraci	ión (de la Vi	sualiza	ación
Tipo de	Date	os	Unsign	ed integ	ger	•	Tama	año		w	ORD	•
Entero			2	•	Decimal		1		•			
Ajuste	e del 1	Valor	Máx/M	ín					Sobr	e el lím	iite sup	perior -
Má	áx.	999		Mín.	0				_			
	áx/N	1ín. In	directos)						C	òlor	•

Fuente: autor, NB-Designer

Sección CONTROL Es posible configurar el sistema para que trabaje en modo de control manual o automático.

Control en modo automático: en la Figura 60 se muestra el diagrama lógico equivalente a la sección control 'modo automático'. La variable interna (w110,00) se activa (1 lógico) cuando las señales 'umbral inferior' (w80,00), 'control encendido' (w5,00) e 'interruptor de manual/automático' (w11.00) se encuentren activas; y se desactiva (0 lógico) cuando el nivel del líquido en el tanque se encuentra por encima del umbral superior, detectado por la activación de la variable (w80,01).

Fuente: autor, Simulink

En la Figura 61 se describe en lenguaje ladder la programación del control en modo automático del PLC, expuesto en el párrafo anterior.

, U	0				
[Nombre de Progra	ama : Control2Tks]				
[Nombre de Secció	ón : Control]				
CONTROL DEL TANQU	UE 1 ON OFF CON HISTERESIS				
W80.00	w5.00 W11.00				
TK1_BajoNivel B	IIT_StartControl BitTAB_Man/Auto			KEEP(011) Mantene	r
w80.01				W110.00 Sendout	1
TK1_AltoNivel				510	
CONTROL DEL TANQU	UE 2 ON OFF CON HISTERESIS				
W81.00	w5.00 * w11.00 *				
TK2_BajoNivel B	IIT_StartControl BitTAB_Man/Auto			KEEP(011) Mantene	r
W81.01	• •	•	+	W111.00 Sendout	2
TK1_AltoNivel				510	
TK1_AltoNivel CONTROL DEL TANQU W81.00 TK2_BsjoNivel B W81.01 TK1_AltoNivel	UE 2 ON OFF CON HISTERESIS #5.00 #11.00 IT_StartControl BitTAB_Man/Auto	-	•	w110.00 Sens KESP(011) Mant w111.00 Sens	ene:

Figura 61: Diagrama ladder Modo control automático

Fuente: autor, CX-Programmer

En la Figura 62 se observa el funcionamiento del controlador en modo automático.

Figura 62: Comportamiento del nivel de líquido en el tanque con el control

Fuente: autor

Control en modo manual: En la sección control 'modo manual', el operario puede activar o desactivar las válvulas de alimentación de los tanques desde la pantalla HMI. Las operaciones lógicas mostradas en la Figura 63 muestran la activación manual de la válvula (w3,00) la cual se activa cuando la señal encendido de válvula en la pantalla (w99,00) también se encuentre activo y se desactivada cuando la señal apagado de válvula (w70,00), interruptor de manual automático en pantalla (w90,00) o interruptor de manual automático en el tablero (w11,00) se encuentren activos.

Figura 63: Diagrama lógico del control manual

Fuente: autor, Simulink

Donde las direcciones de las funciones utilizadas se muestran en la Figura 64.

Figura 64: Direcciones asignadas desde la pantalla

Fuente: autor, NB - Designer

En la Figura 65 se describe en lenguaje ladder la programación del control manual del PLC, expuesto en el párrafo anterior.

TIVAR MAN 199 00 -|KEEP (011) Mantener AN Sta alv w90. 00 W3. 00 doManualTK1 PAN Man/Aut TK1 Bit W11.00 n/Auto w70.00 ΗF alve PAN st w99.10 Jd. 1 AN_Star* KEEP (011) Mantener alv. w91.00 W3. 01 nualTK2 Bit PAN Man/Au ut TK2 w11.00 BitTAB_Mar w70. 10 PAN s alve2

Figura 65: Sección de programa: Control - Manual

Fuente: autor, CX-Programmer

Activar señal de salida para válvulas: En la Figura 66 se observa que mientras el paro de emergencia se encuentre inactivo, la activación de las válvulas de alimentación se realiza cuando el conjunto 'modo automático' o el conjunto 'modo manual' se encuentre activo.

Fuente: autor, Simulink

En la Figura 67 se observa el diagrama ladder de la programación para la activación de las válvulas, expuesto en el párrafo anterior.

Figura 67: Sección de programa: Control válvulas

Fuente: autor, CX-Programmer

SECCIÓN SALIDAS

En esta sección, las señales digitales internas se envían a salidas físicas del PLC como se ve en la Figura 68, siendo Q100,00 y Q100,01 bobinas de salida a las válvulas de alimentación para el tanque 1 y para el tanque 2 respectivamente.

Figura 68: Sección de programa: Salida a válvulas

ľ	[Nombre de Programa : Co	ontrol2Tks]					
	[Nombre de Sección : Salidas]						
	SALIDA VALVULAS						
ľ	w40.00	+	+	+		° Q: 100.00	
ſ	Salida_valve1						Salida_Evalveiki
l	w40.01	*	*	*	*	Q: 100.01	Salida EValveTK1
	Salida_valve2					0	carraa_prarroini

Fuente: autor, CX-Programmer

Las señales de nivel de líquido por encima del umbral superior (w80,01 y w81,01) y por debajo del umbral inferior (w80,00 y w80,01), se dirigen a variables internas (w84.00, w85.00, w87.00 y w88.00) para ser usadas por la pantalla HMI, tal como se muestra en la Figura 69.

Donde, se visualiza el estado del nivel respecto las referencias por medio de led's indicativos ubicados en los tanques ilustrativos de la pantalla, como se muestra en la Figura 70.

Figura 69: Sección de programa: Salidas a HMI

[]	Nombre de Programa	a : Control2Tks]					
[N	Nombre de Sección	: Salidas]					
SA	ALIDA VALVULAS						
	w40.00	*	+	+	*	° Q: 100.00	Salida EValvaTK1
Sa	alida_valve1					<u> </u>	Salida_Svalveiki
	w40.01	*	*	*	*	Q: 100.01	Salida EValveTK1
Sa	alida_valve2						

Fuente: autor, CX-Programmer

Figura 70: Indicador de nivel - Pantalla HMI

SENALES VISUALES HMI	
w80.01 w84	
TK1_AltoNivel	Umoralsuperior_iki
	.00 UmbralSuperior_TK2
TK1_AltoNivel	00
	UmbralInferior_TK1
W81.00 W88	00
TK2_BajoNivel	UmbralInferior_TK2

Fuente: autor, NB- Designer

COMUNICACIÓN ENTRE DISPOSITIVOS

Se establece la comunicación, entre el *computador*, el PLC y el HMI los parámetros de configuración descritos, para cargar los archivos de la programación de control y programación de la pantalla HMI a sus respectivos dispositivos.

Se utiliza la dirección IP: 192,168,0.X. Donde, se configuran los dispositivos conectados a la misma red en el último dígito.

Siendo,

- $IP_{PLC} = 192.168.0.1$
- $IP_{HMI} = 192.168.0.2$
- $IP_{PC} = 192.168.0.3$

Comunicación del PLC

Cambiar PLC
Nombre de dispositivo
LevelControlPLC_030219
Tipo de dispositivo
CP1L-E Configuraciones
Tipo de red
Ethemet Configuraciones
Comentario
×
Aceptar Cancelar Ayuda

Figura 71: Selección de PLC y configuración de comunicación

Fuente: autor, CX-Programmer

Figura 72: Panel de configuración IP para PLC OMRON

Configuración de red [Ethernet]	×
Red Unidad	
Tipo de conexión	
Ethemet - Conexión HUB	
Dirección IP: 192 . 168 . 0 . 1 Examinar	
No. de puerto: 9600 +	
Número de nodo de estación de trabajo	
Autodetectar (Generado a partir del último dígito de la direcció n IP del host.)	
Aceptar Cancelar Ayuda	

Fuente: autor, CX-Programmer

La comunicación en el PLC se configuró en la opción "cambiar configuración de comunicaciones", mediante la configuración IP del Ethernet mostrado en la Figura 71 y la Figura 72.

Comunicación del HMI La comunicación en la pantalla HMI, se definió la configuración de la pantalla seleccionada, como el tipo de conexión Ethernet entre el HMI y el PLC y las direc-ciones IP respectivas mostradas en la Figura 73, Figura 74 y Figura 75.

Figura 73: Selección de pantalla para configuración

Fuente: autor, NB-Designer

Figura 74	Panel de	e configura	ción IP	en HMI	OMRON
		000			

Configuración de Niveles de Seguridad	Configuración de los Pe	rmisos de Usuario	Configuración	del Histórico de eventos
Configuración de Impresión Co	nfiguración del COM1	Configuració	n del COM2	Memoria Externa
HMI Barra de Tareas	Propiedades extendidas	HMI Confi	iguración de la in	nformación de sistema
Configuración de Red Dirección IP 192 . 168 . 25	0 2 Config	uración de los nodo	s de la red	
Máscara de Subred 255 . 255 . 25	5 . 0 Puerta de Er	nlace 0.0	. 0 . 0	
Configuración de la Visualización Modo de Visualización O Vertical	l Confi	guración de Bus de	Campo	·
Contraseña de modo de monitorización:	888888	📕 Habilitar el a	acceso múltiple	
Contraseña de modo de operación:	888888			
Habilitar FTP				

Fuente: autor, NB-Designer

Figura 75: Configuración de IP de dispositivos en HMI

Fuente: autor, NB-Designer

Comunicación del computador La comunicación en el computador, se configuró en el "Centro de redes y recursos compartidos", mediante la configuración IP del Ethernet conectado, tal como se muestra en la Figura 76, Figura 77 y Figura 78.

Figura 76: Estado del Ethernet conectado

या	Est	tado de Wi	-Fi		×
General					
Conexión					-
Conec	ividad IPv4:			Internet	
Conec	ividad IPv6:			Internet	
Estado	del medio:		H	Habilitado	
SSID:					
Duraci	ón:				
Velocid	ad:				
Calidad	l de señal:			ألاده	
Deta	Prop	iedades inalámb	vricas		
Actividad					-
	Enviado	os — 💐		Recibidos	
Bytes:		. I			
😗 Proj	oiedades 🔋 🔞	Deshabilitar	Diagnostica	ar	
				Cerrar	

Fuente: autor

Figura 77: Panel de configuraciones de la red Ethernet en computador.

Conectar con:	
Intel(R) Dual Band Wireless-AC 3160	
Configurar	
Esta conexión usa los siguientes elementos:	
🗹 📮 Programador de paquetes QoS	^
A Protocolo de multiplexor de adaptador de red de Micros A Controlador de protocolo LLDP de Microsoft	
 Controlador de E/S del asignador de detección de topo 	
Respondedor de detección de topologías de nivel de v	
 Protocolo de Internet versión 6 (TCP/IPv6) 	
Protocolo de Internet versión 4 (TCP/IPv4)	v
< >	
Instalar Desinstalar Propiedades	
Descripción	
Protocolo TCP/IP. El protocolo de red de área extensa predeterminado que permite la comunicación entre varias redes conectadas entre sí.	

Fuente: autor

Figura 78: Panel de configuración IP para computador propiedades: protocolo de internet version 4 (TCP/IPV...

General	
Puede hacer que la configuración IP se red es compatible con esta funcionalida consultar con el administrador de red cu apropiada.	asigne automáticamente si la d. De lo contrario, deberá uál es la configuración IP
🔵 Obtener una dirección IP automát	icamente
Olympical Usar la siguiente dirección IP:	
Dirección IP:	192.168.0.3
Máscara de subred:	255.255.255.0
Puerta de enlace predeterminada:	

Fuente: autor

8. INTERFAZ GRÁFICA DE USUARIO

En la figura 79 se muestra la interfaz gráfica diseñada e implementada en la pantalla HMI, la pantalla principal indica el volumen de líquido en los tanques $[m^3]$ de modo numérico y la altura mediante una barra de modo gráfico. El tanque central, pertenece a un proceso diferente, por lo tanto no se detalla su comportamiento.

Figura 79: Pantalla Inicial HMI

Fuente: autor - NB Designer

Se visualiza los componentes de cada tanque como: indicador del estado de la válvula de alimentación, volumen actual de los tanques, altura visual en los tanques, alarmas de nivel alto y nivel bajo; además, de las opciones para el control manual o automático del sistema.

Figura 80: Pantalla del tanque 1 con accionables

Fuente: autor - NB Designer

Cada objeto de la interfaz gráfica de usuario tiene un panel de configuración para la asignación de variables de lectura y escritura. Los objetos tienen las propiedades de lectura, escritura o ambas, dependiendo de su naturaleza.

Para leer las variables, es necesario asignar en el panel de configuración la dirección correspondiente en el PLC tal como se observa en la Figura 81. Se toma como ejemplo la lectura de datos para la barra de nivel el cual muestra la altura de líquido en el tanque, tomada de la variable (D64) la cual corresponde al valor físico de altura en el tanque.

Figu	r a 81 : Asig	nación varia	able de lectu	Ira
VG2	Prioridad	Normal	*	
	Dirección	de Lectura -		
	HMI	HMIO -	PLC	0 -
	Puerto	Net		
	Cambia Nodo	ar No.	1	Ŧ
	Área/Etiqu	Jeta	D	-
	Dirección	64	Memoria	a de Sistema
	Formato	BIN -	Tamaño (words)	1 -
3	Formato (F	Rango): DDI	DDD (0327)	57)
	🕅 Usar E	itiqueta de D)irección	

Fuente: autor - NB Designer

La barra de nivel, cuenta con alarma visual cuando la señal del nivel del líquido no se encuentra dentro de los rangos establecidos, la cual se configura en el panel de control tal como lo muestra la Figura 82.

VG2		
	Básicas Color/Forma Escala Gráficos Configuración de la Visualización	
PLCI:1	Tipo de Barra Normal Mostrar dirección Abajo a Aniba Forma de Barra Rectángul	lc
	Normal - Normal - Normal -	
	☐ Valor de Destino	
	☐ Borde Color ▼ 🔽 Fondo Color ▼	
	Parpadeo - Límite superior Parpadeo - Límite inferior	
	Mínimo 0 Máximo 40 Alarma Inferior 25 Alarma Superior 35	
	Máx/Mín. Indirectos	
2	HMI HMIO - PLC 0 - HMI HMIO - PLC 0 -	
9	Puerto Net Puerto Net	
	Cambiar no. de nodo 1 - Cambiar no. de Nodo 1 -	

Figura 82: Configuración alarma de color en barra de nivel

Fuente: autor - NB Designer

Para escribir las variables, es necesario asignar en el panel de configuración la dirección correspondiente en el PLC tal como se observa en la Figura 83. Se toma como ejemplo el pulsador de 'Encendido de Válvula' donde convierte en '1' logico la variable (W99.00).

HMI HMI <th>Dirección de Lectu</th> <th></th> <th>Direcció</th> <th>n de Escritura -</th> <th></th> <th></th> <th>VAI.VIII.A</th>	Dirección de Lectu		Direcció	n de Escritura -			VAI.VIII.A
Puerto Net Cambiar No. 1 Area/Etiqueta LB	HMI HMIO	+ PLC 0	✓ HMI	HMI0 -	PLC 0	•	ENCENDER / APAGAR
Cambiar No. 1	Puerto Net		Puerto	Net			SB0
Área/Etiqueta LB · Área/Etiqueta W bit ·	Cambiar No. Nodo	1	- □ Cam Nod	biar No. o	1	Ŧ	
	Área/Etiqueta	LB	 Área/Et 	iqueta	W_bit	•	
Dirección 0 Memoria de Sistema Dirección 99.00 Registro del Sistema SB1	Dirección 0	Memoria de Sis	tema Direcció	in 99.00 (Registro del	Sistema	SB1

Fuente: autor - NB Designer

Se describe en la siguiente tabla 3 el listado de objetos utilizados en el desarrollo de la pantalla HMI, con su respectiva variables asignada en el PLC.

Objetos HMI	Descripción	Variable del PLC
	Indicador de Umbral Inferior Indicador de Umbral Superior	Lectura W80.00 Lectura W80.01
	Boton Activad Válvula	Escritura W99.00
	Boton Activad Válvula	Escritura W70.00
	Indicador de estado de válvula	Lectura Q100.00
	Interruptor de Manual Automático en pantalla	Escritura W90.00
[Internal LW_0(R)]	Barra de nivel	Lectura D64
####	Visualizador Numérico	Lectura D54

Tabla 3: Lista de objetos utilizado en el desarrollo de la pantalla HMI del tanque 1

Fuente: autor

9. CONCLUSIONES

El desperdicio promedio de hipoclorito en el año 2018 para el proceso de producción, tomando en cuenta el total de hipoclorito utilizado, fue de un 12% debido a errores humanos, por medio del desarrollo del proyecto de control implementado, el desperdicio promedio del presente año disminuyo a un 4% como se muestra en el anexo 1. A partir de estos datos, se puede evidenciar que se logró disminuir los desperdicios de hipoclorito generados por errores humanos en un 8%.

A traves del sistema de supervisión implementado mediante la pantalla HMI, no es necesario el desplazamiento del operario al área de trabajo para revisar el nivel de los tanques; sino que ahora es posible supervisar y controlar en un cuarto de control el estado del sistema de forma centralizada.

El sistema de control implementado mantiene el nivel de hipoclorito en los umbrales establecidos, lo que permitió mejorar la disponibilidad, es decir el tiempo uso efectivo del hipoclorito en el tanque sobre el tiempo de producción total, el cual será usados en los procesos subsiguientes. La disponibilidad mejoró un 5 % evaluado en los 5 meses de operación del sistema de control.

El modelo matemático tuvo un porcentaje de error de 0.43% para el tanque 1 y 0.86% para el tanque 2 respecto a los datos reales, lo que permitió diseñar el algoritmo de control y verificar el desempeño del sistema mediante simulación evitando el uso de recursos innecesarios en la planta real. Además las constantes de integración çi.ºbtenidas en el modelo, trabajan con las condiciones actuales de la planta.

10. TRABAJOS FUTUROS

En este momento para el control del caudal de entrada a los tanques se tienen instaladas valvulas ON-OFF; si estas se cambian por válvulas proporcionales es posible implementar sistemas de control como [Control PID] que prodrían mejorar el desempeño del sistema.

Para el control del caudal de salida se propone implementar una válvula proporcional que permita regular o cerrar la salida en el momento donde el caudal de entrada es menor que el de salida, otra posible solución puede ser la instalación de un caudal de alimentación adicional.

La fabricación del tablero de control se realizó teniendo en cuenta el futuro control en tanques adicionales, se sugiere realizar la instalación de la instrumentación en los tanques de mezclado, logrando a futuro obtener un sistema scada que permita la supervisión y control del área de tanques de la planta.

11. BIBLIOGRAFÍA

[1] COBO, RAUL(2013), HMI, El ABC de la automatización, ASOCIACIÓN DE LA INDUSTRIA ELÉCTRICA, ELECTRÓNICA CHILE, Tomado de: www.aie.cl/files/file/ comites/ca/abc/hmi.pdf

[2] ALVAREZ BROTONS, X. (2004). Control predictivo de canales de riego utilizando modelos de predicción de tipo Muskingum (primer orden) y de tipo Hayami (segundo orden) (Vol. 2240). (U. P. Catalunya, Ed.) Catalunya, España: Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona - Enginyeria de Camins, Canals i Ports. Obtenido de https://upcommons.upc.edu/bitstream/handle/2099.1/3330/34059-5.pdf

[3] BERNAL ESPITIA, F. D., ORDOÑEZ BELTRAN, J. (2015). Diseño e implementación de un sistema scada para el Control de nivel del tanque de mezcla de la planta de procesos análogos (ppa), de la udfjdc. (U. d. Caldas, Ed.) Bogota, Colombia: Repositorio Universidad distrital Francisco Jose de Caldas. Obtenido de http://repository.udistrital .edu.co/bitstream/11349/4247/1/OrdoñezBeltranJeysonAlberto2015.pdf

[4] CASTILLO, P. S. (MARZO DE 2016). Modelacion y control de un sistema de cuatro tanques acoplados. Obtenido de Universidad de Pirua: http://repositorio.concytec.gob. pe/bitstream/CONCYTEC/232/1/Tesis %20- %20Gutarra %20Castillo %20Peter.pdf

[5] ESQUEDA, JAIME (2002) Matlab e Interfaces Gráficas, Instituto tecnologico de ciudad madero, Noviembre Tomado de: //ftp.unicauca.edu.co/Facultades/FIET/DEIC/ Materias/Identificacion/matlab_seminar/docs/Matlab6xConatec.pdf

[6] INGENIERIA MECAFENIX, (2018). Que es y para que sirve un PLC?, La enciclopedia de la ingeniería. Tomado de: https://www.ingmecafenix.com/automatizacion/quees-un-plc/

[7] NÚÑEZ ENRÍQUEZ, F. (2007). Control de movimiento empleando Labview, un enfoque didáctico. (C. UDLAP, Ed.) Puebla, Mexico: Universidad de las Américas.

Obtenido de http://catarina.udlap.mx/u_dl_a/tales/documentos/lep/nunez_e_f/

[8] OGATA, K. (2003). Ingeniería de Control Moderna. Madrid, España: Pearson Educación S.A.

[9] OMEGA, (2013), ¿Qué es un sensor de nivel?, Omega España, Tomado de: https://es. omega.com/prodinfo/sondas-de-nivel-medicion.html

[10]OMEGA, (2013), ¿Qué es un transductor de presión?, Omega España, Tomado de: https://es.omega.com/prodinfo/transductores-de-presion.html

[11] OMRON. (2019), CX-Programmer, OMRON Europa, Tomado de https://industrial. omron.es/es/products/cx-programmer

[12] PIROBLOC (2017) ¿Qué es un PID?, España, Tomado de: https://www.pirobloc. com/blog-es/que-es-un-piping-and-instrumentation-diagram/

[13] QUIMINET, (2011). El uso de las electroválvulas en la industria, México, Quiminet tomado de: https://www.quiminet.com/articulos/el-uso-de-las-electrovalvulas-en-la-industria-2648462.htm

[14] QUIPE AVILA, J. (2019). Controladores On-Off. (U. U. Nacional, Ed.) Santafé, Argentina. Obtenido de https://www.academia.edu/4968029/ Control_On-Off

[15] SIEMENS, HART, Protocolo de comunicación de campo. Tomado de: https://w3. siemens.com/mcms/sensor-systems/es/instrumentacion-de-procesos/ comunicaci %C3 %B3ny-software/pages/hart.aspx

[16] SIEMON. (2013), Ethernet/IP, Watertown, USA, The Siemon Company, tomado de: https://www.siemon.com/la/white_papers/03-10-13-ethernet-ip.asp

[17] SOLÓRZANO GIL, H. A. (2015). Diseño e Implementación de Interfaz Gráfica de Usuario entre el Sistema de Control de Proceso T5554 y un PLC Siemens S7-300.

Bogotá, Cundinamarca, Colombia: Repositorio Universidad distrital Francisco Jose de Caldas. Obtenido de http://repository.udistrital.edu.co/handle/11349/7347

[18] UNED, (2011), Controladores Industriales Inteligentes, UNED, DIEEC, Departamento de infeniería Electrica, Electrónica y de control. Tomado de www.ieec.uned.es/ investigacion/dipseil/pac/archivos/informacion_de_referencia _ise6_1_2.pdf

[19] UNIVERSIDAD DEL PAIS VASCO, (2001) Autómatas programábles, Entradas y salidas, Tomado de: http://www.sc.ehu.es/sbweb/webcentro/automatica/WebCQMH1/ PAGINA %20PRINCIPAL/PLC/ESTRUCTURAS/ESTRUCTURA %20INTERNA/

SECCION %20DE %20ES/seccion_de_es.htm

[20] UNIVERSIDAD POLITECNICA DE CATALUNYA, (2014) MATLAB, Fundamento y aplicaciones. Catalunya, Tomado de: https://ocw.upc.edu/sites/all/modules/ocw/estadistiques/download.php?file=51427/2011/1/54513/tema_{5s}imulink-5156.pdf.

[21] URIBE, G. F., CASTRO, E. F., ERNESTO, O. E. (2014). Controlador PID para nivel de tanque de la unidad didactica RT614 Gunt Hamburg. Bogotá-Colombia: Universidad francisco de paula santander. Obtenido de https://www.academia.edu/26198071, /CONTROL_DE_TANQUE_HIDRAULICO_CON_PID

[22] VARGAS GUATIVA, J. A., LÓPEZ VELÁSQUEZ, J. A., CONDE CÁRDENAS, L. (2017). Sistema de Instrumentación y Control para Tanques de Almacenamiento de Agua Potable (Vols. 1909-2458). Barranquilla, Colombia: Ingeniare. doi:10.18041/1909-2458/ingeniare.17.563

ANEXOS

ANEXO I

Certificado de desperdicios generados 2018-2019

SEÑORES DTO, ING MECANICA UNIVERSIDAD LIBRE DE COLOMBIA

CERTIFICACIÓN

Por medio de la presente se certifica que el proyecto DESARROLLO DE CONTROL EN LOS TANQUES ACOPLADOS DE ALMACENAMIENTO DE HIPOCLORITO coordinado y elaborado por la estudiante JENNIFER CAROLINA DE ANTONIO LAMPREA, se desarrolló según los objetivos planteados y se encuentra finalizado para la fecha. El presente proyecto permitió disminuir los desperdicios de hipoclorito generados en un 8% mensual (915.16 TOM/mes), siendo los desperdicios un 12% (1374.2TON/mes) del hipoclorito total utilizado en el año 2018 comparado con un desperdicio del 4% (458.08 TON/mes) del hipoclorito total utilizado en el año 2018 comparado com aumento de disponibilidad total del proceso de hipoclorito tenemos una mejora en el 5% , pasando del 89% al 94% de disponibilidad de equipos, por el sistema de control implementado y su facilidad de control para el personal operativo, reduciendo las fallas humanas.

Esta certificación se expide en Bogotá D.C. el 25 de Marzo del 2019.

Cordialmente,

Wilson David Suárez Reina Jefe de Mantenimiento Plantas Cuidado de Hogar y Sal Teléfono: +571 8833557 ext. 1432 Celular: +57 3102560193

ANEXO II

Programa de control en CX-Programmer

000000	[Nombre de programa : Control2Tks]		
(000000)	[Nombre de sección : ActivarTab]		
	ENCENDIDO Y APAGADO – TABLERO ELECTRICO		
	1: 0.01	KEEP	BIT StartContro
	TAR Start	(011)	- 1
		VV5.00	<w005.00> a020 a024 a028</w005.00>
			a032 a062 a067
	1: 0.00		
	TAB_Stop	-	-
000001	SWITCH MANUAL Y AUTOMATICO - TABLERO ELECTRICO]
(000003)			
	l: 0.02	W11.00	BitTAB_Man/Auto
	TAB_Man/A	\bigcirc	<w011.00> a063 a068 a073</w011.00>
	uto		a078 a083 a089
000002	PARO DE EMERGENCIA - TABLERO ELECTRICO]
(000005)			
	l: 0.03	W12.00	BitTAB_Paro de - Emergencia
	TAB_Paro	\bigcirc	<w012.00></w012.00>
	ae Emergenci		a085 a091
	a		

000000 (000008)	[Nombre de programa : Control2[ks]				
	Configuracion analoga de 4 a 20 mA para entradas analogas 1 y 2				
	CF113	MOV			
	P_0n	(021) #80EE	[OP2] PagistroConfig		
	Indicador de	102	Registroconrig		
	siempre ON				
			l de la constante de		

000000	[Nombre de programa : Control2Tks]	
(000011)	[Nombre de sección : Temporizadores]	-
	TEMPORIZADOR INICIO LECTURA DE DATOS	l
	CE113	
		Temp_ActivarCon
	P_0n 0005 #2	T0005(bit)
	de	a019 a023 a027
	ON STEMPTE	a031 a036 a038
		a041 a044 a047 a049 a052 a055
		[OP2]
000001	CONTEO ACTIVACION DE SALIDAS]
(000013)		1
		[OP1] Temp_ActivarSal
	P_0n 0000 #2	idas
	de	a082 a088
	siempre ON	[OP2]
000002	RESET, DESDE BOTONES CONJUNTOS	1
(000015)		
	I: 0.00 I: 0.01	[OP1] Reset 6 seg
	TAB_Stop TAB_Start 0006	<t0006(bit)></t0006(bit)>
	#60	a058
		[OP2]

000000	[Nombre de programa	: Control2Tks]		
(000019)	[Nombre de sección	: Comparador]		
	Comparador en TANQU	8-1		
·	T0005 W5.00	<= (315)	W80.00	TK1 UMBRAL INFERIOR
	Temp_Acti BIT_Start varContro Control	2 &2252		<w080.00> a061 a102</w080.00>
	Ţ	[OP1] Analog_In		
		[OP2]		
000001	T0005 W5.00	>= (325)	W80.01	TK1 UMBRAL SUPERIOR
(000023)	Temp_Acti BIT_Start varContro Control	2 &5255	\bigcirc	<w080.01></w080.01>
	1	[OP1] Analog In		auo4 au96
		put1 [OP2]		
000002	Comparador en TANQU	3.2		
(000027)				
	T0005 W5.00	<= (315)	W81.00	TK2 UMBRAL INFERIOR
	Temp_Acti BIT_Start varContro Control	3 &2252		<w081.00> a066 a104</w081.00>
	1	[OP1] Analog_in		
		[OP2]		
000003	T0005 W5.00	>= (325)	W81.01	TK2 UMBRAL
(000031)	Temp_Acti BIT_Start varContro Control	3 85255	\bigcirc	<w081.01></w081.01>
	1	[OP1] Analog in		a069 a 100
		put2 [OP2]		
·				

0000000 Contract per Laware 1	000000	[Nombre de programa : Control2Tks]				
ORTER: DEL TANNE 1 0: UPF (OR HISTERES)S Sondar1 VID.00 WID.00 WID.00 WID.00 VID.00 WID.00 WID.00 WID	(000061)	[Nombre de sección : Control]				
W80.00 W30.00 W10.00 W00.00 W10.00 W00.00 W10.00 W00.00 W00.00<		CONTROL DEL TANQUE 1 ON OFF CON HISTERESIS				
Image: Section 1 Control 1		W80.00 W5.00 W11.00	KEEP	Sendout1		
000001 Control Auto 0001 11 Imperiation Imperiation Imperiation Imperiation 0000001 WORKERLINGLINALING Imperiation Imperiation Imperiation Imperiation 0000001 WORKERLINGLINALING Imperiation <		TK1 BIT Start BitTAB Ma	(011) W110.00	<w110.00></w110.00>		
000000 Total W1000 KEEP Sendout 2 000000 W1000 W1000 W1000 KEEP Sendout 2 000000 W1000 W1000 KEEP Sendout 2 000000 W1000 W1000 KEEP Sendout 2 000000 W1000 W1100 KeEP Sendout 2 000000 W1000 W100 KeEP Sendout 2 W1100 W100 W100 W100 KeEP W1000 W100 W100 W100 W100 W1000 W100 W100 W100 W100 W100 W1000 W100 W1200 W100 W1200 W100 Sendout 1 W1000 W1000 W1200 W100 W100 Sendout 1 Sendu W1000		UMBRAL Control n/Auto		a081		
0000000 W0100 W0100 W0000 W0000 W0100 W0000 W0100 W0000 W0100 W0000 W0100 W0000		W80.01				
000006 Weiton Weiton Weiton Seedout 2 With 00 Seedout 2 With 00 Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weiton Weit		TK1				
0000000 0000000 0000000 0000000 0000000		UMBRAL SUPERIOR				
0000000 WB100 W500 W1100 WB200 W1100 WB200 W1100 WB200 W1100 WB200 W1100 WB200 W1100 W9000 W100 W9000 W100 W9000 W100 W9000 W100 W9000 W100 W1100 W100 W100 W100 W100 W100 W100 W100 W100 W100 W100 W100 W100 W100 W100 W100 W1100 W100 W1100 W100 W1100 W100	000001	CONTROL DEL TANQUE 2 ON OFF CON HISTERESIS				
W81.00 W60.00 W11.00 REP Instant Rep Instant Rep Instant <threp insta<="" td=""><td>(000066)</td><td></td><td></td><td></td></threp>	(000066)					
N2 BIT_Start BiTAB Me 0007 WB1.01 N/RECOR 0007 WB1.01 N/RECOR 0007 WB1.01 N/RECOR 0007 W9.00 N/RECOR 000007 W9.00 N/RECOR 000007 W9.00 N/RECOR 000007 PALSTATE W3.00 0000 W99.10 ModeManualTK2 W003.01> W99.10 ModeManualTK2 W003.01> W99.10 W99.10 W000 W000 W1.00 W91.00 W000 W000.01> W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 W1.00 Salida.valvel <td></td> <td>W81.00 W5.00 W11.00</td> <td>KEEP (011)</td> <td>Sendout2 <w111.00></w111.00></td>		W81.00 W5.00 W11.00	KEEP (011)	Sendout2 <w111.00></w111.00>		
INFERIOR Wei of INFERIOR Model UNING STEREIOR Model Model Model Model <t< td=""><td></td><td>TK2 BIT_Start BitTAB_Ma UMBRAL Control n/Auto</td><td>W111.00</td><td>a087</td></t<>		TK2 BIT_Start BitTAB_Ma UMBRAL Control n/Auto	W111.00	a087		
000002 KEEP 000002 ModoRuma1TK1 W99.00 ModoRuma1TK1 W0003.00> a084 W99.00 KEEP 011 000 000 W90.00 W3.00 a084 W90.00 W3.00 a084 W90.00 W3.00 a084 W10.0 W90.00 W3.00 PAM_Start W3.00 a084 W10.0 W90.10 W3.00 PAM_Start W3.01 a084 W91.00 W91.00 W3.01 PAM_Man/A W3.01 a090 W91.00 W3.01 W3.01 PAM_Man/A W3.01 a090 W10.00 W3.01 W3.01 PAM_Man/A W3.01 a090 W10.00 W1.00 W3.01 PAM_Man/A W3.01 a090 W10.00 W1.00 W1.00 PAM_Start W1.00 W1.00 PAM_Start W1.00 W1.00 PAM_Start W1.00 W1.00 Soddwult Toge_Acti BitTAB_Ma <td></td> <td>INFERIOR</td> <td></td> <td></td>		INFERIOR				
International Superior Model 000002 MTIVAR MANUAL W99.00 KEEP 00001 W90.00 PAR.Start W3.00 ValveTk1 W3.00 W90.00 KEEP 00001 W90.00 PAR.Start W3.00 ValveTk1 W3.00 W90.00 KEEP 00001 W91.00 PAR.Start W03.01 W91.00 W91.00 PAR.MatrA W3.01 W91.00 W91.00 PAR.MatrA W3.01 W91.00 W3.01 PAR.MatrA W3.01 W10.00 W3.01 W3.01 W3.01 W3.01 W3.01 W3.01 W3.01 W3.02 W3.01 W3.03 Salida_valve1 W10.00 W1.00 W1.00 W10.00 W1.00 W1.00 Sendeut1 Temp.Acti BitTAB.Ma BitTAB.Ma BitTAB.Ma Cont BitTAB.Ma BitTAB.Ma Cont Cont BitTAB.Ma Cont BitTAB.Ma Cont Cont Cont BitTA			-	-		
OWDER Source and the second seco		UMBRAL				
0000071 H W98.00 H KEEF W01 W30.00 H ModeManual TK1 W030.00 H	000002	ACTIVAR MANUAL				
W99.00 KEEP (W1) NodoManual TK1 (W000.00) (W3.00) NodoManual TK1 (W000.00) (W3.00) PAN_Mar/A IL W1.00 W3.00 NodoManual TK1 (W000.00) NodoManual TK1 (W000.00) PAN_Mar/A IL W1.00 W3.00 NodoManual TK2 (W000.00) NodoManual TK2 (W000.01) W99.10 W99.10 W3.01 NodoManual TK2 (W000.01) NodoManual TK2 (W000.01) PAN_stort ValveTK2 W91.00 W3.01 NodoManual TK2 (W000.01) NodoManual TK2 (W000.01) PAN_stort ValveTK2 W1.00 W3.01 NodoManual TK2 (W000.01) NodoManual TK2 (W000.01) PAN_stort ValveTK2 W1.00 W2.00 Salida_valve1 (W00.00) NodoManual TK2 (W00.00) W11.00 W1.00 W1.00 W1.00 Salida_valve1 (W000.00) NodoManual TK2 (W00.00) W11.00 W1.00 W1.00 W1.00 Salida_valve1 (W000.00) NodoManual TK2 (W000.00) Sendout1 Tomp_Acti BitTAB_Ma (VarSalida n/Auto Sendout1 W1.00 W1.00 Salida_valve1 (W000.00) NodOManual TK2 (W000.00)	(000071)					
PAN_Start ValverKi W3.00 a084 W9.00 PAN_Mar/A ut TK1 a084 a084 W11.00 BitTAB_Ma n/A uto a084 a084		W99.00	KEEP	ModoManualTK1		
Valvel RL Valvel RL PAN \$80.00 PAN \$Mar/A Ut TK1 W11.00 BitTAB_Ma N/Auto W70.00 PAN \$stopv PAN \$stopv Auto W99.10 (W10.00 PAN \$stopv (W10.00 PAN \$stopv (W10.00 PAN \$stopv (W10.00 PAN \$stopv (W10.00 W11.00 (W10.00 BitTAB_Ma (W10.00 PAN \$stopv (W10.00 W11.00 (W10.00 Sendout1 (W10.00 YarSalida n/Auto (W10.00 YarSalida n/Auto (W10.00		PAN_Start	W3.00	<w003.00> a084</w003.00>		
000003 BitTAB Ma n/Auto Wan/A ut Tk1 W10.00 H W99.10 W99.10 W99.10 W1 vertK2 Weither W3.01 W3.01 W3.01 W3.01 W3.01 W3.00 W3.		W90.00				
ut TK1 W1.00 BitTAB_Ma n/Auto W70.00 PAN_stopv alve W9.10 PAN_start W3.01 ValveTk2 W3.01 W91.00 W3.01 PAN_start W3.01 PAN_start W3.01 PAN_start W3.01 PAN_start W3.01 PAN_stopv a090 ValveTk2 W4.00 PAN_stopv alida_valvel W11.00 W10.00 PAN_stopv alida_valvel W11.00 W10.00 W40.00 Sendout1 Temp_Acti BitTAB_Ma BitTAB_Pa varSalida n/Auto rode s094 Emergenci		PAN_Man/A		-		
000003 BitTAB_Ma n/Auto W70.00 PAN_stopv alve KEPP (01) 000003 PAN_start W91.0 W91.00 PAN_start KEPP (01) 000016 PAN_start W91.00 PAN_start 000017 PAN_stopv alve2 W11.00 PAN_stopv alve2 0000014 W110.00 W11.00 Topoo W110.00 T0000 W110.00 W11.00 For de sendout1		ut TK1 W1100				
D1/Auto W70.00 W70.00 W70.00 W99.10 W000003 W99.10 KEEP (011) W3.01 W003.01> W003.01> W91.00 W91.00 W3.01 W3.01 w0003.01> W91.00 W10.00 W10.00 W10.00 Salida_valve1 W11.00 W11.00 W12.00 W40.00 Salida_valve1 W110.00 Topo de Emergenci Salida_valve1 Salida_valve1			-			
000003 alve W99.10 W99.10 W99.10 W91.00 W91.00 W91.00 W91.00 W91.00 W11.00 W11.00 W70.10 W70.10 W70.10 W70.10 W70.10 W70.10 W70.10 W11.00 W70.10 W70.10 W70.10 W70.10 W11.00 W70.10 W70.10 W11.00 W70.10 W11.00 W70.10 W70.10 W11.00 W70.10 W11.00 W70.10 W11.00 W70.10 W11.00 W70.10 W11.00 W11.00 W10.00 W11.00 W10.00		n/Auto				
PAN_stopv alve ModoManualTK2 (W000006) W99.10 (W003.01> W3.01 PAN_start ValveTK2 W3.01 W91.00 (W11.00) PAN_man/A ut TK2 (W11.00) BitTAB_Ma n/Auto (W10.00) W70.10 (W10.00) PAN_stopv alve2 (W10.00) W11.00 W12.00 W11.00 (W10.00) Sendoutl Temp_Acti BitTAB_Pa ro de Biergenci		W70.00		-		
000003 (000076) W99.10 KEEP (01) ModeManualTK2 (W003.01> a090 W91.00 W3.01 W301 a090 W91.00 W11.00 W11.00 W11.00 a090 BitTAB_Ma n/Auto W11.00 W11.00 Salida_valve1 W110.00 T0000 W11.00 W12.00 W40.00 Sendout1 Temp_Acti BitTAB_Ma BitTAB_Ma n/Auto BitTAB_Pa ro de Emergenci Salida_valve1		PAN_stopv alve				
000004 PAN_Start ValveTK2 W3.01 W3.01 PAN_Man/A ut TK2 W11.00 W11.00 W11.00 BitTAB_Ma n/Auto W70.10 PAN_stopv alve2 Salida_valve1 VALVULAS W110.00 T0000 W11.00 W12.00 W110.00 Tomp_Acti BitTAB_Ma varSalida n/Auto BitTAB_Pa ro de Emergenci W40.00 Salida_valve1	000003	W99.10	KEEP (011)	ModoManualTK2		
W91.00 PAN_Man/A ut TK2 W11.00 BitTAB_Ma n/Auto W70.10 PAN_stopv alve2 VALVULAS W110.00 T00000 W11.00 W110.00 W110.00 T0000 W10.00 Sendout1 Temp_Acti BitTAB_Pa varSalida n/Auto ro de Emergenci	(000070)	PAN_Start ValveTK2	W3.01	<0003.01> a090		
PAN_Man/A ut TK2 W11.00 BitTAB_Ma n/Auto Image: Constraint of the second se		W91.00				
ut TK2 W11.00 BitTAB_Ma n/Auto W70.10 PAN_stopv alve2 VALVULAS W110.00 T0000 W11.00 T0000 W110.00 T0000 W11.00 W12.00 Sendout1 Temp_Acti BitTAB_Ma varSalida n/Auto ro de Emergenci a094		PAN_man/A		-		
000004 W70.10 W10.00 T0000 W11.00 W12.00 W40.00 Salida_valvel 000004 (000081) W110.00 T0000 W11.00 W12.00 W40.00 Salida_valvel Sendout1 Temp_Acti BitTAB_Ma varSalida BitTAB_Pa ro de Emergenci W40.00 Salida_valvel		ut TK2 W11.00				
n/Auto W70.10 PAN_stopv alve2 VALVULAS W110.00 T0000 W110.00 T0000 W110.00 T0000 W110.00 T0000 W110.00 T0000 W110.00 T0000 W110.00 W12.00 Sendout1 Temp_Acti BitTAB_Pa varSalida n/Auto ro de Emergenci		BitTAB Ma	-	-		
W10.10 PAN_stopv alve2 000004 VALVULAS W110.00 T0000 W11.00 W12.00 Sendout1 Temp_Acti BitTAB_Pa varSalida W40.00 Salida_valve1 <w040.00> a094</w040.00>		n/Auto				
W110.00 T0000 W11.00 W12.00 W110.00 T0000 W11.00 W12.00 Sendout1 Temp_Acti BitTAB_Pa ro de s W10.00				-		
000004 (000081) VALVULAS W110.00 T0000 W11.00 W12.00 W110.01 T0000 W11.00 W110.02 Tomp_Acti BitTAB_Pa varSalida n/Auto s Emergenci		PAN_stopv alve2				
W110.00 T0000 W11.00 W12.00 W40.00 Salida_valve1 Sendout1 Temp_Acti BitTAB_Pa varSalida n/Auto ro de a094	000004	VALVULAS				
With too With too With too With too With too Salida_valvel Sendout1 Temp_Acti BitTAB_Ma BitTAB_Pa varSalida n/Auto ro de a094 a094	(00001)	W110.00 T0000 W11.00 W12.00	W/40.00	Salida valvol		
a094 a094 a094 a094 arsan and an		Sandouti Tomo Acti RitTAR Ma RitTAR Da		<w040.00></w040.00>		
s pmergenci		varSalida n/Auto ro de		a094		
		s philet gener				

	I			la	I
	W3.00				
	ModoManua			-	
000005	W111.00	T0000	W11.00	W12.00 W40.01	Salida_valve2
(000087)	Sendout2	───	BitTAB_Ma	BitTAB_Pa	<w040.01></w040.01>
		varSalida s	n/Auto	ro de Emergenci	a096
				a	
	₩3.01				_
	ModoManua 1TK2				
	I				I

000000	[Nombre de programa : Control2Tks]	
(000094)	[Nombre de sección : Salidas]	
	SALIDA VALVULAS	ļ
	Q: 100.00	Salida_EValveTK
	Salida_va	
000001	Q: 100.01	Salida_EValveTK
(000096)	Salida_va lve2	- 1
000002	SENALES VISUALES HMI	1
(000098)		
	W80.01 W84.00	UmbralSuperior_ TK1
	TK1 UMBRAL	
	SUPERIOR	
000003	W81.01 W85.00	UmbralSuperior_ TK2
(000100)	TK2 UMBRAL SUPERTOR	
000004	W80.00 W87.00	UmbralInferior_
(000102)	TK1	- TK1
	UMBRAL INFERIOR	
000005	W81.00	UmbralInferior_
(000104)	ТК2	1K2
	UMBRAL INFERIOR	

Nombre de	e programa	:	Control2Tks]

END (001)

[Nombre de sección : END]

000000 (000107)