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The vibrational contributions to the average polarizability (ᾱ), to the second

harmonic scattering (SHS) first hyperpolarizability (βSHS) and depolarization ratio

(DRSHS), as well as to the third harmonic scattering (THS) second hyperpolariz-

ability (γTHS) and depolarization ratio (DRTHS) have been evaluated for the water

molecule using the Bishop and Kirtman perturbative theory approach, in combina-

tion with finite differentiation techniques to evaluate the higher-order derivatives.

From a hierarchy of Coupled Clusters techniques and extended atomic basis sets,

the CCSD/d-aug-cc-pVTZ level has been selected to assess the importance of the

ZPVA contributions and of the pure vibrational contributions with respect to their

electronic counterparts. This is the first investigation demonstrating electronic and

vibrational SHS and THS responses can be computed for small molecules, with the

perspective of performing comparisons with recent experimental data [Anal. Chem.

89, 2964 (2017) and J. Phys. Chem. C 121, 8510 (2017)]. Numerical results on

the water molecule highlight that i) the vibrational contributions to the dynamic ᾱ,

βSHS, and γTHS are small but non negligible, ii) they amount to respectively 3, 10,

and 4 % at the typical 1064 nm wavelength, iii) the mechanical anharmonicity term

dominates the zero-point vibrational average contribution, iv) the double harmonic

terms dominate the pure vibrational contributions, v) the stretching vibrations

provide the largest contributions to the dynamic (hyper)polarizabilities, and vi)

these conclusions are strongly impacted in the static limit where the vibrational

contributions are much larger, in particular the double harmonic pure vibrational

terms, and even more in the case of the first hyperpolarizability.

Keywords: first and second hyperpolarizabilities, Coupled Cluster methods, elec-

tronic versus vibrational contributions, second and third harmonic scattering

a)Electronic mail: benoit.champagne@unamur.be
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I. INTRODUCTION

The interactions between light and matter constitute a bottomless topic, with scientific,

technological, philosophical, and medical aspects. Among these, nonlinear effects present

their own interest and characteristics. Since their first observations, usually attributed to the

discovery of lasers, many nonlinear optical (NLO) effects have been revealed and their study

has led to the development of analytical or spectroscopic tools for characterizing molecu-

lar structures and for imaging as well as to the elaboration of optics-based devices.1–4 the

present work focuses on the Second Harmonic Scattering4,5 (SHS, also called hyper-Rayleigh

Scattering, HRS) and Third Harmonic Scattering (THS)6,7 phenomena. At the molecular

scale, the NLO effects, including SHS and THS, are described by the first (β) and second

(γ) hyperpolarizabilities and numerous studies have dwelled on their relationships with the

molecular structure.8–13 In parallel to instrumental developments as well as to synthesis and

characterization of highly active compounds, the hyperpolarizabilities have been a topic of

intense theoretical and computational activities to derive structure-property relationships

in order to design compounds with high efficiency but also because the hyperpolarizabilities

are challenging quantities to calculate and to interpret.10,14 In particular, numerous works

have highlighted the large electron correlation effects,15–19 the impact of the surrounding

(solvent, self-assembled monolayer, solid),20–25 the specific frequency dispersion,26,27 and the

importance of the vibrational contributions. This last topic has been the subject of ex-

tended studies, to select reliable computational levels of approximation28–34 as well as to

unravel the structure-property relationships for molecules,35–38 clusters,39,40 solids41, or new

materials.42–44 Owing its small size and omnipresence, the determination of the water elec-

trical properties has always been the subject of numerous investigations and it was often

considered when testing new methods, for instance in the case of the polarizability,45 the

first and second hyperpolarizabilities,46 and their related multipolar properties.47,48

When electron correlation is included at an appropriate level and with a well-chosen

basis set, usually an extended basis set with diffuse functions, accurate electronic (hy-

per)polarizability values are obtained.49–54 Nevertheless, within the Born-Oppenheimer ap-

proximation, along with this electronic contribution, they are additional contributions, called

vibrational contributions. They originate from the electric field-induced nuclear reorganiza-

tions as well as from the electric field dependence of the potential energy surface.55 Within
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the perturbation theory approach, these vibrational responses are divided into pure vibra-

tional and zero-point vibrational average (ZPVA) contributions. Their expressions have

been derived by Bishop, Luis, and Kirtman56–58 by expanding in Taylor series the potential

energy surface and the electrical properties around the equilibrium geometry, leading to

contributions of higher and higher orders in mechanical and electrical anharmonicities.

Previous studies59–68 have shown that, in the static limit as well as for specific NLO

processes involving one or more static field, the correction that originates from the pure

vibrational contributions can be of similar magnitude to the electronic contribution and

cannot be neglected. On the other hand, in the case of “fully” optical phenomena, like SHS

and THS, those contributions are usually neglected. Indeed, the pure vibrational part is

expected to be much smaller at optical frequencies because it is damped by the (ωa/ω)2n

(n ≥ 1) multiplicative factor, where ωa is a vibrational mode (angular) frequency and ω is

the frequency of the incident light. In addition, the ZPVA represents usually only a few

percents of the electronic response and it is, therefore, often neglected. Moreover, there are

fewer results on the ZPVA contributions since it is anharmonic in nature and it requires

computationally expensive calculations of, at least, the cubic force constants as well as

of second-order derivatives of the electrical properties with respect to the normal mode

coordinates. In this paper, we address this simplification by tackling the water molecule

with a hierarchy of Coupled Cluster (CC) methods combined with extended basis sets. The

importance of the different vibrational contributions is then assessed as a function of ω,

while the validity of Kleinmann’s symmetry conditions is checked. Emphasis is also put on

the contributions of the different vibrational normal modes, in relation to their symmetry

representation.

This paper is divided in five sections. After a description, in Section II, of the vibrational

contributions to α, β and γ, and the target quantities, Section III presents the computational

details. Then, in Section IV, the main results are presented and analyzed. First the effects

of the level of approximation and of the atomic basis set are assessed. Then, using a selected

method, the relative amplitudes of the vibrational contributions are discussed at the light of

their electronic counterpart and they are traced back to the contributions of the vibrational

normal modes. Moreover, comparisons are made with previous calculations of both the

electronic and vibrational (hyper)polarizabilities of water. Finally conclusions are draws in

Section V.
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II. THEORETICAL ASPECTS

A. Electronic and vibrational hyperpolarizabilities

At the molecular scale, the frequency-dependent polarizability, first and second hyper-

polarizabilies are the Taylor series expansion coefficients of the molecular induced dipole

moment as a function of external electric fields, ~F , applied along the i, j, . . . directions

(note that lower-case letters stand for coordinates in the molecular frame) and oscillating at

frequencies ω1, ω2, . . . :

∆µi(~F ) =

x,y,z∑
j

αij(−ωσ;ω1)Fj (ω1) +
1

2!

x,y,z∑
jk

βijk(−ωσ;ω1, ω2)Fj (ω1)Fk (ω2)

+
1

3!

x,y,z∑
jkl

γijkl(−ωσ;ω1, ω2, ω3)Fj (ω1)Fk(ω2)Fl (ω3) + . . . (1)

with ωσ =
∑

i ωi. αij is an element of the polarizability tensor, βijk and γijkl are elements of

the first and second hyperpolarizability tensors, respectively. Depending on the combination

of static and dynamic electric fields, different NLO processes arise. The SHS and THS

responses are noted β(−2ω;ω, ω) and γ(−3ω;ω, ω, ω), respectively.

When electric fields interact with a molecule, different phenomena occur. Within the

clamped-nucleus approximation,55 the effects on the electronic and nuclear motions are con-

sidered sequentially, rather than simultaneously. First, the electronic distribution changes,

giving rise to the electronic responses, P e, with P = α, β, or γ. This induces a modification

of the ground state potential energy surface, therefore of the equilibrium geometry and of

the vibrational zero-point energy, leading to the so-called nuclear relaxation and curvature

contributions to the (hyper)polarizabilities, or, globally, the vibrational responses, P v. Note

that, under the application of external electric fields, the molecule can also rotate to align its

(induced) dipole moment on the external field but this contribution is neglected for optical

electric fields because the molecular response time is too slow with respect to the incident

light frequency.

The total electrical property, P tot, reads therefore P tot = P e + P v. To provide tractable

equations, Bishop and Kirtman56 started from the sum-over-states (SOS) perturbation the-

ory expressions of the (hyper)polarizabilities in the adiabatic approximation69, and decom-

posed these into two terms, the electronic [P e(SOS)] and the pure vibrational [P pv(SOS)]
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contributions. These expressions were then further simplified by invoking the clamped nu-

cleus approximation, leading to SOS expressions where the electronic states are employed

instead of vibronic states. As a result, the corresponding electronic contribution [P e(CN)]

involves a zero-point vibrational averaging over the vibrational ground state wavefunction

of the electronic ground state so that it can be written as the sum of the electronic contri-

bution at the equilibrium ground state geometry (P e) and a ZPVA correction (∆PZPV A).

These ZPVA contributions present therefore the same type of frequency dispersion as their

electronic counterparts. For P pv(CN), Bishop and Kirtman56 assumed that, in non-resonant

regimes, optical frequencies can be neglected in comparison to electronic transition frequen-

cies. Note that this approximation holds in the static and infinite frequency limit, but some

corrections would be needed for optical fields, as discussed by Kirtman and Luis.70 Finally,

the treatment of Ref.56 leads to the decomposition of the pure vibrational contributions P pv

into square bracket quantities, involving lower-order electrical properties:

αpv = [µ2], (2)

βpv = [µα] + [µ3], (3)

γpv = [α2] + [µβ] + [µ2α] + [µ4]. (4)

Then, for both P pv and ∆PZPV A quantities, it is assumed that the power series expansions

of the electrical properties around the equilibrium geometry and of the potential energy

are convergent. This allows treating electrical (when second- and higher-order derivatives

of the electrical properties are considered) and mechanical (when third- and higher-order

derivatives of the potential energy are considered) anharmonicities by ordinary double per-

turbation theory and writing the different quantities as sums of harmonic and anharmonic

terms. In the present investigation, the following terms are included:

∆PZPV A = [P ]I, (5)

αpv = [µ2]0 + [µ2]II, (6)

βpv = [µα]0 + [µ3]I + [µα]II, (7)

γpv = [α2]0 + [µβ]0 + [µ2α]I + [α2]II + [µβ]II + [µ4]II, (8)

where [X]0 = [X]0,0, [X]I = [X]1,0 + [X]0,1, and [X]II = [X]1,1 + [X]2,0 + [X]0,2. The [X]m,n

notation associates m with the order of electrical anharmonicity and n with the order of
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mechanical anharmonicity. Still, the expressions for [X]2,0 and [X]0,2 were truncated so

that they do not contain third-order derivatives of electrical properties nor quartic force

constants, respectively. The detailed expressions for those contributions were derived by

Bishop, Luis, and Kirtman56–58 and are used in the present work.

B. Hyperpolarizability tensor components and target quantities

All components of the electronic and vibrational (hyper)polarizability tensors were cal-

culated in order to evaluate quantities that can be extracted from experiment. For the

polarizability, these quantities are its isotropic average (ᾱ) and its anisotropy (∆α), defined

as

ᾱ =
1

3

x,y,z∑
i

αii, (9)

∆α =

[
1

2

x,y,z∑
i,j

3α2
ij − αii αjj

]1/2
. (10)

The higher-order target quantities are the second harmonic scattering first hyperpolarizabil-

ity (βSHS) and the third harmonic scattering second hyperpolarizability (γTHS) as well as

their depolarization ratios (DRSHS and DRTHS):

βSHS =
√
〈β2

ZZZ〉+ 〈β2
ZXX〉, (11)

DRSHS =
〈β2

ZZZ〉
〈β2

ZXX〉
, (12)

γTHS =
√
〈γ2ZZZZ〉+ 〈γ2ZXXX〉, (13)

DRTHS =
〈γ2ZZZZ〉
〈γ2ZXXX〉

. (14)

βSHS and γTHS characterize the scattering intensities for non-polarized incident light and ob-

servation of plane-polarized scattered light made perpendicularly to the propagation plane.

〈β2
ZZZ〉 (〈γ2ZZZZ〉) and 〈β2

ZXX〉 (〈γ2ZXXX〉) are orientational averages of the β (γ) tensor

components describing the SHS (THS) intensities when the incident light is vertically- or

horizontally-polarized, respectively. Their detailed expressions can be found in Refs. 71–74.

Still, owing to its symmetry (water belongs to the C2v point group) and specific NLO pro-

cesses, out of the 27 (β) or 81 (γ) tensor components, only a reduced number of components

have to be calculated. So, the number of non-zero independent tensor components amounts
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to 3 (xx, yy and zz) for the polarizability, to 5 [x(xz), y(yz), zxx, zyy, and zzz, parentheses

indicate permutations that leave invariant the tensor component] for the first hyperpolariz-

ability, and 9 [xxxx, x(xyy), x(xzz), y(xxy), yyyy, y(yzz), z(xxz), z(yyz), and zzzz] for the

second hyperpolarizability.72. In the static limit, Kleinman’s conditions are fulfilled and any

permutation of the tensor indices leave invariant the tensor components so that the number

of non-zero independent tensor components is further reduced to 3 and 6 for the first and

second hyperpolarizabilities, respectively.

Symmetry has also an impact on the number of derivatives to calculate, i.e. the deriva-

tives of the molecular electrical properties with respect to the vibrational normal coordi-

nates (Appendix A). Indeed, the water molecule possesses three vibrational normal modes:

a bending (associated with Q1, of A1 irreducible representation), a symmetric (Q2, A1) and

an anti-symmetric (Q3, B2) stretching.

To assess the importance of the electronic and vibrational contributions on the total

value of a given (hyper)polarizability, a missing-contribution analysis was used, with CA a

measure, in percents, of the A contribution:

CA = 100×
{

1− P (−A)

P tot

}
, (15)

where P (−A) is the property for which the A contribution is missing. For any tensor com-

ponent, the curly bracket is equivalent to PA

P tot . The impact of a vibrational mode on a

given vibrational contribution to P v was assessed in the same way, using the missing mode

analysis:

Ca = 100×
{

1− P v(−a)

P v

}
, (16)

where P v(−a) is the vibrational property computed by using all the normal modes but mode

a. All α, β, and γ quantities are given within the T convention (Eq. 1) in a.u.:

• 1 a.u. of α = 1.648× 10−41 C2 m2 J−1 = 0.14818Å3;

• 1 a.u. of β = 3.6212× 10−42 m4 V−1 = 3.2064× 10−53 C3 m3 J−2 = 8.639× 10−33 esu;

• 1 a.u. of γ = 7.423× 10−54 m5 V−2 = 6.2354× 10−65 C4 m4 J−3 = 5.0367× 10−40 esu.
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III. COMPUTATIONAL ASPECTS

The water molecule lies in the Y Z plane with its C2 axis coinciding with the Cartesian

Z axis (the oxygen atom points in the direction of negative Z). Its geometry was optimized

in gas phase at different levels of approximation (HF, CCS75, CC275, CCSD76) and with

different basis sets ([d-]aug-cc-pVXZ77, with X=D, T). The static and dynamic (at 1500,

1300, 1064 and 694.3 nm wavelengths) electronic properties (polarizability, SHS first hyper-

polarizability, and THS second hyperpolarizability) were computed at the same levels of

approximation for both equilibrium and distorted geometries, using the linear,78 quadratic

(QRF),79,80 and cubic (CRF)81,82 response function methods.

In order to calculate the geometrical derivatives of the electrical properties with respect

to the atomic Cartesian coordinates, the central finite difference method was employed and

combined with the Romberg (or Richardson) quadrature (kmax=4, distortion amplitude =

0.01 a0, common ratio = 2) to remove higher-order contaminations.83–86 These derivatives

were finally projected over the normal coordinates in order to obtain the derivatives with

respect to the vibrational normal mode coordinates. At the Hartree-Fock level, the Hessian

required to compute the vibrational normal modes and frequencies was calculated ana-

lytically, using the coupled-perturbed Hartree-Fock scheme, but the cubic force constants

numerically, as the first-order derivatives of the Hessian using the same method as described

above for the geometrical derivatives of the electrical properties. At the CC levels, both

quadratic and cubic force constants were calculated from the analytical gradients, as their

first- and second-order derivatives, respectively. The masses used for the hydrogen and oxy-

gen atoms in the computation of the mass-weighted Hessian are mH=1.00794 a.m.u. and

mO=15.9994 a.m.u.87

The geometry optimizations and electrical property calculations were performed using

Dalton 201688 while a homemade program was employed to calculate the numerical deriva-

tives and the subsequent vibrational (hyper)polarizabilities. The SCF convergence was set

to 10−11 a.u. and CPHF (or its CC counterparts) QRF and CRF convergences to 10−10 a.u.
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IV. RESULTS AND DISCUSSIONS

A. Geometries and vibrational frequencies

Table S1 describes the impact of the level of approximation and basis set on the equilib-

rium geometrical parameters of the water molecule, which are also plotted in Fig. 1. Changes

from double- to triple-ζ basis sets or from CCS to CCSD leads to concerted variations in

the bond length and valence angle: when R increases, δ decreases. Going from double- to

triple-ζ basis sets increases the valence angle by 0.3-0.4◦ while a decrease of the bond length

by 0.007-0.008Å is observed when going from the CCS to CCSD level. On the other hand,

the addition of a second set of diffuse functions has a much smaller effect. Then, electron

correlation leads to a lengthening of the O-H bond by about 0.02 Å and to a smaller valence

angle by about 2◦. The differences between CC2 and CCSD are smaller.
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FIG. 1: Impact of the level of approximation and basis set (XZ=aug-cc-pVXZ) on the

equilibrium geometrical parameters of water.

The impact of the method of calculation on the vibrational frequencies is presented in

Table I. The effect of the basis set depends on the method and impacts mostly the stretching

modes. While the HF frequencies vary by 5 to 15 cm−1, there is a larger impact at the CC2
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and CCSD levels (up to 50 cm−1 for the stretchings). On the other hand, the additional

set of diffuse functions impacts the frequencies by less than 6 cm−1, the B2 stretching being

mostly affected. Taking CCSD/d-aug-cc-pVTZ as reference, the HF frequencies evaluated

with the same basis set are overestimated by 5 % for the bending and by as much as 8 % for

the stretchings, while the CC2 frequencies are underestimated by less than 2 %.

TABLE I: Basis set and electron correlation effects on the harmonic vibrational frequencies

of water (ω1, A1 bending; ω2, A1 symmetric stretching; ω3, B2 anti-symmetric stretching,

in cm−1).

D T

ω1 ω2 ω3 ω1 ω2 ω3

aug-cc-pVXZ

HF = CCS 1744.2 4130.0 4237.4 1745.0 4120.29 4222.6

CC2 1617.3 3770.6 3907.5 1619.0 3812.5 3935.0

CCSD 1649.8 3823.9 3939.4 1654.7 3880.8 3982.0

d-aug-cc-pVXZ

HF = CCS 1749.8 4130.1 4238.8 1745.8 4121.3 4222.5

CC2 1623.7 3768.6 3907.0 1620.9 3806.1 3929.0

CCSD 1656.3 3822.0 3938.9 1656.5 3874.3 3975.8

B. Polarizabilities and hyperpolarizabilities

The total (electronic + ZPVA + pv) static and dynamic (1064 nm) (hyper)polarizabilities

calculated at the different levels of approximation are given in Tables II-IV. On the basis

of our recent investigations on the first and second electronic hyperpolarizabilities of water,

methanol, and dimethylether,54,74 the CCSD/d-aug-cc-pVTZ results are considered as refer-

ence values. This allows assessing, on the one hand, the contribution of electron correlation

to the (hyper)polarizabilities, i .e. the differences between the HF and CCSD results, as well

as to check how close or different are the more approximate CC2 values. On the other hand,

these reference values are employed to estimate the importance of including a second set of

diffuse functions and of using triple-ζ instead of double-ζ basis sets.
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With respect to CCSD, the HF and CCS response property values are underestimated

(∆α and DRTHS are overestimated), while CC2 overestimates the different quantities (∆α

and DRTHS are underestimated). These results, on both the static and dynamic linear and

nonlinear responses, are consistent with the results on the electronic responses only.54,74

Within the four basis sets employed in this work, basis set effects on the isotropic polar-

izability are of the order of 2%. They increase to about 10% for βSHS. For γTHS these

can attain 50%. Still, like in Ref. 74, the basis set effects on the depolarization ratios are

much larger. These are also stronger on the polarizability anisotropy than on the average

polarizability.

The vibrational contribution to the average polarizability range between 5 and 7 % in the

static limit and decreases to about 3 % at 1064 nm. Changing the basis set has a negligible

influence on these percentages whereas changing the method leads to variations of the order

of 1 % with respect to the Hartree-Fock case. The impact of including the vibrational

contributions to the polarizability anisotropy is much stronger, with contributions between

25 and 60 %, as a function of the method and basis set. Using CCSD/d-aug-cc-pVTZ, the

static vibrational counterpart amounts to 50 % of the total anisotropy value whereas, at

1064 nm, it still represents one third of the total response.

For static quantities, the vibrational contribution is detrimental to the βSHS amplitude.

At the reference level, it amounts to −16 % of the total value but it reaches as much as 50 %

at the HF and CCS levels. The impact of including vibrational contributions to the static

DRSHS depends strongly on the method and is rather negligible at the reference level. The

situation is opposite for the dynamic βSHS (at 1064 nm) since the vibrational contribution

increases the response by about 10 %. Again the relative vibrational counterpart gets larger

at the HF and CCS levels. The contribution of the vibrations is modest on the dynamic

DRSHS, being of the order of −5 %. Like for its static analog, changing the method leads to

substantial variations of the vibrational contribution but, percentagewise, it remains small.

Finally, for γTHS, at the reference level, the vibrational contribution amounts to 13 % in

the static limit and to 4 % at 1064 nm. These are a rather small contributions, smaller than

for the first hyperpolarizability. The vibrational contributions have a much larger effect on

the static DRTHS and they lead to an increase by about 50 %. The latter presents also a

substantial dependence on the method and basis set. Note that owing to its large DRTHS

values, γTHS of the water molecule is typically dominated by its isotropic rather than by its
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quadrupolar and hexadecapolar components. At 1064 nm, the vibrational contribution to

DRTHS is small, of the same order of magnitude as the contribution to γTHS.

These results have evidenced that the vibrational contributions to the dynamic α, β, and

γ are small but not negligible, and non-systematic. Then, owing to the large effects of the

method and basis set, it turns out that the CCSD/d-aug-cc-pVTZ level is mandatory for

investigating the impact of vibrational contributions on the (hyper)polarizabilities of water.

Owing the larger computational cost of the vibrational contributions, a hybrid approach

has been tested, where the electronic contribution is evaluated at the CCSD level, while

the vibrational ones are calculated at the HF or CC2 levels of approximation (Table S9).

If reliable, this hybrid method would be an efficient alternative to grasp most of the vibra-

tional contributions. For instance, the resulting hybrid ᾱ are in close agreement with the

reference full CCSD value for the dynamic responses, and especially for the pure vibrational

contributions, which are negligible. However, the differences amount to about 10 % for the

static ∆α. The agreement for the dynamic β is less good because of the differences between

the ZPVA contributions, which can be larger than 50 %. For instance, the vibrational con-

tribution to the β||(−2ω;ω, ω) response is overestimated by 50 % at the CC2 level, raising

question about the reliability of this hybrid scheme. On the other hand, the pure vibrational

contribution are small for the dynamic responses. In the static limit, both the ZPVA and

the pure vibrational contributions to the first hyperpolarizabilities varies substantially from

one method to another. Finally, in the case the dynamic second hyperpolarizability, neither

the HF, nor the CC2 method represent a good alternative to evaluate the vibrational con-

tributions because the former underestimates these by about a factor of 3, while the latter

underestimates it by more than a factor of 2. Again, the pure vibrational contributions are

negligible.
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TABLE II: Basis set and electron correlation effects on the total (αe + ∆αZPV A + αpv)

static (top) and dynamic (bottom, 1064 nm) isotropic polarizability of water and its

anisotropy. The amplitude of the vibrational counterpart (Cv, %) is given in parentheses.

HF CCS CC2 CCSD

ᾱ(0)

aug-cc-pVDZ 8.54 (6.7) 8.98 (6.5) 10.49 (5.6) 9.85 (5.5)

aug-cc-pVTZ 8.81 (6.6) 9.26 (6.4) 10.73 (5.6) 10.01 (5.5)

d-aug-cc-pVDZ 8.94 (6.6) 9.39 (6.4) 11.20 (5.5) 10.43 (5.4)

d-aug-cc-pVTZ 8.93 (6.6) 9.38 (6.4) 10.99 (5.6) 10.20 (5.5)

∆α(0)

aug-cc-pVDZ 1.84 (26.9) 2.02 (25.0) 1.44 (27.2) 1.52 (26.2)

aug-cc-pVTZ 1.62 (34.2) 1.78 (31.5) 1.16 (42.8) 1.26 (39.1)

d-aug-cc-pVDZ 1.45 (39.5) 1.60 (35.9) 0.85 (58.0) 1.01 (49.5)

d-aug-cc-pVTZ 1.50 (39.0) 1.66 (35.5) 0.93 (61.4) 1.09 (50.6)

ᾱ(1064 nm)

aug-cc-pVDZ 8.23 (2.7) 8.67 (2.7) 10.30 (3.1) 9.64 (2.9)

aug-cc-pVTZ 8.49 (2.6) 8.93 (2.6) 10.52 (3.0) 9.78 (2.7)

d-aug-cc-pVDZ 8.62 (2.6) 9.07 (2.7) 11.01 (3.1) 10.23 (2.8)

d-aug-cc-pVTZ 8.61 (2.6) 9.06 (2.6) 10.78 (3.0) 9.97 (2.7)

∆α(1064 nm)

aug-cc-pVDZ 1.59 (15.7) 1.78 (15.1) 1.27 (20.2) 1.35 (19.2)

aug-cc-pVTZ 1.30 (18.6) 1.47 (17.6) 0.87 (27.7) 0.99 (24.7)

d-aug-cc-pVDZ 1.11 (22.4) 1.28 (20.9) 0.56 (42.9) 0.74 (35.1)

d-aug-cc-pVTZ 1.15 (20.9) 1.32 (19.6) 0.55 (42.1) 0.75 (32.2)
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TABLE III: Basis set and electron correlation effect on the total (βe + ∆βZPV A + βpv)

static (top) and dynamic (bottom, 1064 nm) SHS hyperpolarizability of water and of its

depolarization ratio (DR). The amplitude of the vibrational counterpart (Cv, %) is given in

parentheses.

HF CCS CC2 CCSD

βSHS(0)

aug-cc-pVDZ 5.28 (-42.7) 6.31 (-44.6) 12.42 (-20.0) 9.52 (-21.9)

aug-cc-pVTZ 4.96 (-51.0) 6.26 (-46.9) 13.75 (-16.0) 9.66 (-21.2)

d-aug-cc-pVDZ 4.11 (-51.8) 5.30 (-46.3) 12.64 (-10.1) 8.66 (-15.4)

d-aug-cc-pVTZ 4.47 (-51.3) 5.85 (-44.9) 14.32 (-10.1) 9.49 (-16.3)

DRSHS(0)

aug-cc-pVDZ 1.93 (-77.2) 2.38 (-76.3) 3.90 (-38.7) 3.24 (-50.6)

aug-cc-pVTZ 3.46 (-35.4) 4.32 (-30.2) 6.55 (-10.6) 5.76 (-16.1)

d-aug-cc-pVDZ 3.08 (-24.7) 4.00 (-21.9) 6.67 (-3.5) 5.52 (-15.4)

d-aug-cc-pVTZ 4.64 (-10.9) 5.64 (-10.0) 8.20 (-1.1) 7.55 (-2.4)

βSHS(1064 nm)

aug-cc-pVDZ 9.64 (18.4) 11.31 (16.1) 17.91 (10.7) 13.84 (10.6)

aug-cc-pVTZ 9.59 (17.9) 11.45 (16.0) 18.97 (9.4) 13.89 (9.9)

d-aug-cc-pVDZ 8.27 (20.4) 10.09 (19.2) 17.02 (10.1) 12.14 (10.9)

d-aug-cc-pVTZ 8.81 (18.8) 10.69 (16.6) 18.90 (8.9) 13.19 (9.5)

DRSHS(1064 nm)

aug-cc-pVDZ 3.71 (3.0) 3.96 (-11.5) 5.98 (-4.4) 5.30 (-5.6)

aug-cc-pVTZ 4.77 (-3.2) 5.62 (-5.3) 7.69 (-4.9) 6.96 (-5.9)

d-aug-cc-pVDZ 4.03 (0.7) 4.95 (-2.4) 7.07 (-4.7) 6.15 (-3.9)

d-aug-cc-pVTZ 5.09 (-5.3) 6.05 (-6.9) 8.43 (-3.5) 7.76 (-5.8)
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TABLE IV: Basis set and electron correlation effect on the total (γe + ∆γZPV A + γpv)

static (top) and dynamic (bottom, 1064 nm) THS hyperpolarizability of water and of its

depolarization ratio (DR). The amplitude of the vibrational counterpart (Cv, %) is given in

parentheses.

HF CCS CC2 CCSD

γTHS(0)

aug-cc-pVDZ 759 (22.2) 885 (21.4) 1690 (18.8) 1303 (18.2)

aug-cc-pVTZ 910 (20.2) 1064 (19.2) 2012 (16.8) 1506 (16.3)

d-aug-cc-pVDZ 1103 (17.2) 1274 (16.5) 2871 (14.5) 2084 (13.6)

d-aug-cc-pVTZ 1190 (16.3) 1371 (15.7) 2938 (14.0) 2101 (13.3)

DRTHS(0)

aug-cc-pVDZ 660 (70.0) 699 (64.3) 309 (66.9) 416 (71.8)

aug-cc-pVTZ 1465 (88.0) 1820 (88.4) 290 (65.5) 417 (72.7)

d-aug-cc-pVDZ 312 (74.0) 380 (74.9) 100 (46.9) 126 (53.5)

d-aug-cc-pVTZ 411 (74.9) 504 (76.2) 127 (46.8) 166 (54.3)

γTHS(1064 nm)

aug-cc-pVDZ 728 (4.2) 792 (-2.9) 1904 (5.3) 1406 (3.9)

aug-cc-pVTZ 891 (3.9) 976 (-2.9) 2276 (5.3) 1635 (3.9)

d-aug-cc-pVDZ 1127 (3.5) 1301 (3.5) 3486 (6.1) 2402 (4.1)

d-aug-cc-pVTZ 1226 (3.6) 1410 (3.6) 3497 (6.0) 2387 (4.2)

DRTHS(1064 nm)

aug-cc-pVDZ 132 (22.4) 68 (-81.6) 38 (0.9) 50 (5.6)

aug-cc-pVTZ 128 (20.6) 178 (32.3) 46 (1.3) 60 (5.7)

d-aug-cc-pVDZ 69 (14.5) 80 (14.9) 32 (0.6) 39 (3.7)

d-aug-cc-pVTZ 86 (13.9) 99 (14.3) 42 (0.7) 51 (3.8)
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C. Frequency dispersion and decomposition into the different vibrational

contributions

Now, we focus on the impact of each vibrational contribution to the total value and

we describe their frequency dispersions. The results are listed in Tables V-VII. Additional

details are provided in Tables S2-S4 where the independent non-zero tensor components are

listed.

Like its electronic counterpart, the ZPVA contribution to the isotropic polarizability

increases slightly with the optical frequency. From 694 nm to the static limit, it amounts

to roughly 3 %. The mechanical anharmonicity contributes the most to the (first order)

ZPVA correction, in a 2:1 ratio with respect to the electrical anharmonicity term. The

pure vibrational term has, in the static limit, a similar amplitude to the ZPVA correction

but it drops strongly in the dynamic regime. Note that the harmonic term is the main

pure vibrational contribution, much larger than the second-order anharmonicity term. For

the polarizability anisotropy, in the static limit the ZPVA correction and pure vibrational

term are again of the same order of magnitude but in the dynamic regime the ZPVA term

dominates again the whole vibrational response. Moreover, the mechanical anharmonicity

term is also the largest and about twice bigger than the electrical anharmonicity one. The

frequency dispersion of the harmonic term is characterized by a decrease of its amplitude

with the frequency (like for the isotropic average) whereas the second-order anharmonic term

presents a non-monotonic frequency dispersion, due a resonance in those terms, between

the optical frequency and the sum of the two stretching vibrational frequencies close to

1300 nm. Analyzing the tensor components (Table S2), the largest static and dynamic

ZPVA component is αyy and, in the static limit, αpv is determined by the αzz component.

Note that there is no pure vibrational contribution to αxx since, ∀a,
(
∂µx
∂Qa

)
0

= 0.

The frequency dispersion of the first hyperpolarizability presents similarities to that of

the polarizability, though it is naturally exalted owing to its SHG character. The ZPVA

correction evolves smoothly with the frequency, as does the electronic contribution. Again,

the mechanical anharmonicity term is the largest, with a 3:1 ratio with respect to the elec-

trical anharmonicity. In the pure vibrational contribution, the [µα]0 harmonic term is the

largest, followed by [µα]II, and they both fade out when the optical frequency increases. On

the other hand, the static βpv is much larger than the dynamic one. It is of the opposite sign
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TABLE V: Electronic and vibrational contributions to the average polarizability and

polarizability anisotropy as computed at the CCSD/d-aug-cc-pVTZ level at different

wavelengths.

ZPVA Pure vibrational

Total Electronic C[α]1,0 C[α]0,1 CZPV A C[µ2]0 C[µ2]II Cpv Cv

ᾱ

∞ 10.20 9.64 0.9 1.9 2.8 2.8 -0.1 2.7 5.5

1500 nm 9.92 9.67 0.9 2.0 2.9 -0.4 0.0 -0.3 2.6

1300 nm 9.96 9.68 0.9 2.0 2.9 -0.3 0.2 -0.1 2.8

1064 nm 9.97 9.70 0.9 2.0 2.9 -0.2 0.0 -0.2 2.7

694.3 nm 10.08 9.79 0.9 2.0 2.9 -0.1 0.0 -0.1 2.9

∆α

∞ 1.09 0.54 7.9 12.1 19.6 25.6 -1.1 26.7 50.6

1500 nm 0.74 0.52 12.9 22.0 34.8 -6.4 1.1 -5.3 29.7

1300 nm 0.78 0.52 12.3 20.9 33.1 -4.0 4.7 0.7 34.0

1064 nm 0.75 0.51 13.0 21.9 34.8 -2.5 -0.3 -2.7 32.2

694.3 nm 0.72 0.47 13.7 22.8 36.3 -0.9 0.0 -1.0 35.4

to the electronic counterpart and it dominates the vibrational response. The inclusion of

vibrational contributions modifies DRSHS by at most 10 % with a non-monotonic frequency

dispersion that originates from the pure vibrational (harmonic) contribution. The ampli-

tudes of the three non-zero independent βe(0; 0, 0) tensor components (Table S3) satisfy the

βxxz < βyyz < βzzz ordering. The pure vibrational contribution is also dominated by βzzz,

followed by βzyy, which are much larger than βzxx. For these dominant tensor components,

contrary to the electronic and ZPVA contributions, the harmonic contribution to βpv is pos-

itive but it is partly canceled by the [µ3]I first-order anharmonic term. On the other hand,

for the ZPVA correction, the largest component is βyyz, followed by βzzz, and both are also

much larger than βxxz. The small β(xxz) contributions are again explained by the zero
(
∂µx
∂Qa

)
0

quantities. For both βe and ∆βZPV A, these relative amplitudes remain when considering the

dynamic responses, with small differences between the Kleinman-related tensor components
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TABLE VI: Electronic and vibrational contributions to the SHS first hyperpolarizability

and DR as computed at the CCSD/d-aug-cc-pVTZ level at different wavelengths.

ZPVA Pure vibrational

Total Electronic C[β]1,0 C[β]0,1 CZPV A C[µα]0 C[µα]II C[µ3]I Cpv Cv

βSHS

∞ 9.49 11.04 1.9 5.8 7.6 -36.1 -5.2 15.5 -24.2 -16.3

1500 nm 13.22 11.47 1.6 4.5 6.1 8.3 -1.2 0.1 7.2 13.2

1300 nm 12.91 11.62 1.7 4.7 6.3 5.7 -2.0 0.0 3.7 10.0

1064 nm 13.19 11.93 1.7 4.7 6.4 3.4 -0.2 0.0 3.2 9.5

694.3 nm 14.51 13.37 2.0 4.8 6.8 1.2 -0.1 0.0 1.1 7.9

DRSHS

∞ 7.55 7.73 -0.9 -1.5 -2.3 -7.6 1.0 17.7 0.7 -2.4

1500 nm 7.26 7.96 -1.0 -1.8 -2.8 -6.6 0.2 0.1 -6.2 -9.6

1300 nm 7.30 8.04 -1.0 -1.8 -2.8 -4.3 -2.2 0.0 -6.6 -10.0

1064 nm 7.76 8.21 -1.1 -1.9 -3.0 -2.6 0.1 0.0 -2.6 -5.8

694.3 nm 8.72 9.06 -1.0 -1.9 -2.8 -1.0 0.0 0.0 -1.0 -3.9

[e.g. βx(xz) and βzxx]. Finally, it is interesting to note that, at 1064 nm, deviations with

respect to Kleinman’s conditions are much larger for the pure vibrational contribution than

for the ZPVA correction. Indeed, if one compares e.g. the βzyy and βyyz components, the

difference attains 22 % at 1064 nm for [µα]0, while 0.6 % for ∆βZPV A.

The ZPVA correction to γTHS increases with the frequency, from 4 % in the static limit

to 6 % at 694.3 nm (Table VII). Again, it is dominated by the mechanical anharmonicity

term, though the electrical anharmonicity term increases faster with the frequency. The

pure vibrational contributions to γTHS are small, even in the static limit where it attains

only 10 %. At optical frequency, the whole γpv as well as any of its components contribute to

less than 1 % and can therefore be considered negligible. Note that the largest contribution

to γpv comes from the [α2]0 Raman term. Vibrational contributions are larger on DRTHS,

in particular for the static value, which is strongly enhanced by the harmonic [α2]0 and

[µβ]0 terms. At optical frequencies, the pure vibrational contribution to DRTHS is small
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whereas its ZPVA correction is slightly larger. At 694.3 nm, both vibrational contributions

are strongly reduced. Contrary to the lower-order properties, the largest electronic com-

ponent (in amplitude) is γxxxx, then γzzzz and γyyyy (Table S4). In the static limit, the

dominant tensor components to γpv satisfy the following ordering: γyyyy > γzzzz > γyyzz

whereas for the ZPVA correction it is γxxxx > γyyyy > γzzzz. Owing to their negligible val-

ues, the γpv(−3ω;ω, ω, ω) tensor components are not discussed. For ∆γZPV A(−3ω;ω, ω, ω)

γxxxx is still the largest component whereas the amplitudes of the two other diagonal com-

ponents are in reverse order. For those components that satisfy Kleinman’s conditions in

the static limit, the differences amount to about 10 % for the electronic and pure vibrational

contributions while it can be twice larger for the ZPVA correction.

20



TA
B
LE

V
II
:E

le
ct
ro
ni
c
an

d
vi
br
at
io
na

lc
on

tr
ib
ut
io
ns

to
th
e
T
H
S
se
co
nd

hy
pe

rp
ol
ar
iz
ab

ili
ty

an
d
D
R

as
co
m
pu

te
d
at

th
e

C
C
SD

/d
-a
ug

-c
c-
pV

T
Z
le
ve
la

t
di
ffe

re
nt

w
av
el
en
gt
hs
.

ZP
V
A

P
ur
e
vi
br
at
io
na

l

T
ot
al

E
le
ct
ro
ni
c

C [
γ
]1

,0
C [
γ
]0

,1
C Z

P
V
A

C [
α
2
]0

C [
α
2
]I

I
C [
µ
β
]0

C [
µ
β
]I

I
C [
µ
2
α
]I

C [
µ
4
]I

I
C p
v

C v

γ
T
H
S

∞
21

01
18

21
1.
1

2.
5

3.
5

7.
3

1.
7

-0
.5

0.
0

0.
9

0.
5

9.
8

13
.3

15
0
0

n
m

21
08

20
33

1.
3

2.
8

4.
1

-0
.6

0.
0

0.
1

0.
0

0.
0

0.
0

-0
.5

3.
6

13
0
0

n
m

21
95

21
13

1.
3

2.
9

4.
2

-0
.4

0.
0

0.
1

0.
0

0.
0

0.
0

-0
.4

3.
8

10
6
4

n
m

23
87

22
88

1.
4

3.
0

4.
4

-0
.3

0.
0

0.
0

0.
0

0.
0

0.
0

-0
.2

4.
2

69
4
.3

n
m

36
22

34
01

2.
4

3.
8

6.
2

-0
.1

0.
0

0.
0

0.
0

0.
0

0.
0

-0
.1

6.
1

D
R
T
H
S

∞
16

6
76

4.
7

1.
6

6.
3

42
.3

13
.3

-5
.1

-0
.9

5.
9

3.
0

50
.7

54
.3

15
0
0

n
m

64
61

3.
9

2.
3

6.
2

-3
.9

-0
.2

1.
7

-0
.1

0.
0

0.
0

-2
.3

4.
0

13
0
0

n
m

60
57

3.
7

2.
0

5.
8

-2
.7

-0
.2

1.
1

-0
.1

0.
0

0.
0

-1
.8

4.
1

10
6
4

n
m

51
49

3.
3

1.
5

4.
8

-1
.5

-0
.1

0.
6

0.
0

0.
0

0.
0

-1
.1

3.
8

69
4
.3

n
m

23
24

-0
.4

-1
.3

-1
.8

-0
.3

0.
0

0.
1

0.
0

0.
0

0.
0

-0
.2

-2
.1

21



D. Contributions of the vibrational normal modes

An analysis of the vibrational normal mode contributions is provided in Fig. 2 as well as

in Table S5. At 1064 nm, the symmetric stretching vibration contributes most to the linear

and nonlinear optical responses, followed by the antisymmetric stretching and finally the

bending mode. In the static limit, the percentage contributions of modes 2 and 3 change

but mode 2 still provides larger contributions than mode 3. On the other hand, for ᾱ and

βSHS, the bending mode contributes substantially with contributions of the same (ᾱ) or

opposite (βSHS) signs. In details, on the one hand, the large cubic force constant of the A1

stretching explains the large []0,1 contributions in both the static and dynamic cases. On the

other hand, a large
(
∂µz
∂Q1

)
0
is at the origin of the large P pv contributions of the A1 bending

mode, in the static case.
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FIG. 2: Missing mode analysis [Ca, %] (ω1, A1 bending; ω2, A1 symmetric stretching; ω3,

B2 antisymmetric stretching) to the static (top) and dynamic (λ = 1064 nm, bottom) total

vibrational contributions to ᾱ, βSHS, and γTHS), as computed at the

CCSD/d-aug-cc-pVTZ level.
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E. Comparison with other theoretical investigations

Comparisons with previous works focusing on the whole responses and their contributions

are given in Tables VIII (polarizability) and IX (first and second hyperpolarizabilities). A

selection of additional data are listed in Tables S6-S8 for the electronic counterpart. In the

case of the vibrational responses, in order to provide a more detailed comparison between

levels of approximation, in Table IX, the more common (static and dynamic) β||(−2ω;ω, ω)

quantity is considered instead of βSHS while γTHS is replaced by the static γ|| since no dy-

namic third harmonic γ values were available. Note that in several cases, the listed quantities

were calculated from the different tensor components reported in the corresponding original

investigations.

The analysis of the electronic contributions (Tables S6-S8) reminds several known or less

known effects, including (i) basis set effects are stronger for computing the hyperpolariz-

abilities than the polarizability, (ii) the impact of the triple excitations is rather small, as

estimated by comparison with the CCSD(T) results of Maroulis89 and the CC3 ones due to

Christiansen80, (iii) electron correlation effects are large and increase with the order of the

response, (iv) the MP2 approach provides a good agreement with higher-level calculations

(though this agreement worsens at the MP3 and MP4 levels) and the QED-MP2 method of

Kobayashi et al.90,91 quantitatively reproduces the frequency dispersion of the first hyper-

polarizability, (v) the MR-CI approach of Spelsberg et al.92 slightly overestimates the first

hyperpolarizabilities, (vi) most reported DFT results overestimate the molecular responses

and their frequency dispersion, though the use of hybrid exchange-correlation functionals

(like mPW91PW91) improves the agreement and the exact exchange functional formalism

of Bokhan and Bartlett93 gives results close to the Hartree-Fock ones, (vii) these limitations

of DFT with conventional exchange-correlation functionals are exalted in the case of the

higher-order response properties,

The first reports on the ZPVA contributions to the polarizability of the water molecule94–97

have employed the HF level and the POL basis set.98 They predict that, in the static limit,

∆αZPV A amounts to a few percents of the electronic polarizability (3 %) and that it increases

by less than one percent at 694.3 nm, which whom values are in good agreement with more

recent correlated results, thought slightly smaller (15 %). In the case of the polarizability

anisotropy, the HF values are typically 25 % larger than at the CCSD level. Moreover, the
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ZPVA contributions to the polarizability as estimated at the MP2 level by Cohen et al.99

after including higher-order derivatives are similar to those obtained using the sum of the

two first contributions, [α]1,0 + [α]0,1. In the case of the first hyperpolarizability, the HF

ZPVA values are larger than those obtained at correlated (MP2 and CCSD) levels so that

their relative contribution to the total first hyperpolarizability increases by about a factor

of two since, at the same time, the electronic contributions are underestimated. We note

also that there is a nice consistency between the MP2 and CCSD ∆αZPV A and ∆βZPV A

values while the MP2/POL ∆γZPV A values are smaller than the CCSD/d-aug-cc-pVTZ

results, by about 30 %. The agreement between the vibrational CI results of Christiansen

and co-workers100–103 and ours, for the polarizability, first and second hyperpolarizabilities,

employing the same electronic structure method, is excellent.

Considering now the pure vibrational counterpart, Bishop et al.104 already reported in

1993 its contributions to the first and second hyperpolarizabilities of the water molecule

(without the [µα]0,2 and [µ4]0,2 terms). In the static limit, they found that the HF Cpv values

attain as much as 47 % (17 %) for the first (second) hyperpolarizabilities, and that these

percentages decrease to 11 % (16 %) at the MP2 level. Later,105 they detailed the different

contributions to the second hyperpolarizability tensor at the HF level, and pinpointed the

importance of the [α2] term over the other ones. Moreover, Cohen et al.99 investigated the

impact of the third-order derivatives of µ to the pv contributions and found it to be small.

Also, the nuclear relaxation approach due to Luis et al.95 predicted very similar results to

those obtained with perturbation theory. Static MP2 results have later been calculated

by Reis et al.106, showing that the pure vibrational contribution amounts to 3 % of the

polarizability, 27 % of the first hyperpolarizability (note that the difference with respect

to Ref. 104 can be explained by the inclusion of the [µα]0,2 term) and 13 % of the second

hyperpolarizability (in close agreement with our results). More recently, Thorvalsend et

al.107 studied the impact of the basis set on the HF vibrational contributions (only including

the so-called double harmonic, m=n=0 terms) and advocated the use of d-aug-cc-pVTZ or

POL. Finally, the VCI approach of Christiansen and co-workers102 provides similar results to

those of the present study in the static limit as well as for the SHS first hyperpolarizability

at 694.3 nm.
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TABLE VIII: αe, ∆αZPV A, and αpv contributions to the static and dynamic (at 694.3 nm)

isotropic polarizability (ᾱ, a.u.) and polarizability anisotropy (∆α, a.u.) of the water

molecule, as calculated at different levels of approximation.

Method Basis set Frequency Contributions Reference

P e ∆PZPV A P pv

ᾱ(−ω;ω)

HF POL static — 0.247 — 94

HF POL static — 0.247 0.333 95

HF POL static 8.362 0.247 — 96

HF POL 694.3 nm 8.461a 0.266a — 96

HF d-aug-cc-pVTZ static 8.602 — 0.378 107

MP2 POL static — 0.292 — 94

MP2 POL static 9.944 0.292 0.286 106

CCSD + VCI d-aug-cc-pVTZ static 9.638 0.285 0.295 100 and 101

CCSD d-aug-cc-pVTZ static 9.638 0.286 0.276 This work

CCSD + VCI d-aug-cc-pVTZ 694.3 nm 9.788 0.296 -0.006 100 and 101

CCSD d-aug-cc-pVTZ 694.3 nm 9.788 0.296 -0.006 This work

∆α(−ω;ω)

HF POL static — 0.268 — 94

HF POL static — 0.268 0.348 95

MP2 POL static — 0.242 — 94

MP2c POL static 0.527 0.242 0.722 106

CCSD + VCI d-aug-cc-pVTZ static 0.537 0.265 0.743 100 and 101

CCSD d-aug-cc-pVTZ static 0.536 0.262 0.664 This work

CCSD + VCI d-aug-cc-pVTZ 694.3 nm 0.467 0.270 0.009 100 and 101

CCSD d-aug-cc-pVTZ 694.3 nm 0.466 0.264 0.009 This work

a Interpolated using the frequency dispersion.
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TABLE IX: Static (and dynamic, at 694.3 nm) electronic, ZPVA, and pure vibrational

contributions to β||(−2ω;ω, ω) and γ|| (in a.u.) of the water molecule, as calculated at

different levels of approximation.

Method Basis set Frequency Contributions Reference

P e ∆PZPV A P pv

β||(−2ω;ω, ω)

HF POL static — — 3.983 104

HF POL static — -1.397 4.141 95

HF POL static -7.53 -1.397 — 97

HF POL 694.3 nm -8.97a -1.687a — 97

HF d-aug-cc-pVTZ static -11.01 — 9.351 107

MP2 POL static — — 1.472 104

MP2 POL static -13.59 -0.95 3.73 106

CCSD + VCI d-aug-cc-pVTZ static -17.70 -1.039 2.645 102

CCSD d-aug-cc-pVTZ static -17.70 -1.101 3.647 This work

CCSD + VCI d-aug-cc-pVTZ 694.3 nm -21.68 -1.438 -0.243 102

CCSD d-aug-cc-pVTZ 694.3 nm -21.68 -1.488 -0.237 This work

γ||

HF POL static — — 150.1 104 and 105

HF POL static — — 148.9 95

HF d-aug-cc-pVTZ static 999 — 144.6 107

MP2 POL static 1400 — 235.2 50 and 104

MP2 POL static 1447 51 187 106

CCSD + VCI d-aug-cc-pVTZ static 1736 75.8 171.6 103

CCSD d-aug-cc-pVTZ static 1745 75.6 240.4 This work

a Interpolated using the frequency dispersion expressions.
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V. CONCLUSIONS

Second harmonic scattering (SHS) first hyperpolarizability (βSHS) and third harmonic

scattering (THS) second hyperpolarizability (γTHS) are all-optical nonlinear optical pro-

cesses. For such processes, theoretical models predict that the pure vibrational contributions

are small while the zero-point vibrational averages (ZPVA) are modest, which explains why

they are neglected in most quantum chemical investigations. In addition, THS has mostly

been ignored until the last three years and the publication of two experimental papers.6,7

This gives the incentive for investigating, by employing quantum chemistry methods, the

vibrational contributions to SHS and THS of the water molecule and for comparing these to

their electronic counterparts. Thus, this paper has reported on the vibrational contributions

to the average polarizability (ᾱ), to βSHS and its depolarization ratio (DRSHS), as well as to

γTHS and its depolarization ratio (DRTHS) by using the Bishop and Kirtman perturbative

theory approach in combination with finite differentiation techniques to evaluate the higher-

order derivatives. This has been performed by employing a hierarchy of Coupled Clusters

techniques and extended atomic basis sets, from which the CCSD/d-aug-cc-pVTZ level has

been selected to assess the importance of the ZPVA contributions and of the pure vibrational

contributions with respect to their electronic counterparts. Numerical results on the water

molecules highlight that i) the vibrational contributions to the dynamic ᾱ, βSHS, and γTHS

are small but still not negligible, ii) they amount to respectively 3, 10, and 4 % at the typical

wavelength of 1064 nm, iii) the mechanical anharmonicity term dominates the zero-point

vibrational average (ZPVA) contribution, iv) the double harmonic terms dominate the pure

vibrational contributions, v) the stretching vibrations provide the largest contributions to

the dynamic (hyper)polarizabilities, and vi) these conclusions are strongly impacted in the

static limit where the vibrational contributions are much larger, in particular the double

harmonic pure vibrational terms, and even more in the case of βSHS. It was further in-

teresting to observe that the relative vibrational contributions to the optical responses do

not increase with the order of the response. Still, confirmations about their absolute and

relative amplitudes deserve investigating other compounds, from small reference systems

like those studied in Ref. 74 to NLO active molecules like (push-pull) π-conjugated molecules.
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Appendix A: Non-zero components of the tensors

Owing to the C2v symmetry of the water molecule, group theory72,108 ensures that

(
∂µi
∂Qa

)
0


6= 0 if Qa belongs to A1 and i = z.

6= 0 if Qa belongs to B2 and i = y.

= 0 otherwise.

(A1)

(
∂αij
∂Qa

)
0


6= 0 if Qa belongs to A1 and ij = xx, yy or zz.

6= 0 if Qa belongs to B2 and ij = (yz).

= 0 otherwise.

(A2)

(
∂βijk
∂Qa

)
0


6= 0 if Qa belongs to A1 and ijk = x(xz), y(yz), zxx, zyy, zzz.

6= 0 if Qa belongs to B2 and ijk = x(xy), yxx, yzz, yyy, z(zy).

= 0 otherwise.

(A3)

(
∂γijkl
∂Qa

)
0



6= 0 if Qa belongs to A1 and ijkl = xxxx, x(xyy), x(xzz), y(xxy),

yyyy, y(yzz), z(xxz), z(yyz), zzzz.

6= 0 if Qa belongs to B2 and ijkl = x(xyz), y(xxz), y(yyz), yzzz,

z(xxy), zyyy, z(yzz).

= 0 otherwise.

(A4)

Additionally,

(
∂2P

∂Qa∂Qb

)
0

∈


A1 if Qa and Qb are A1 modes,

A1 Qa = Qb is the B2 mode,

B2 otherwise.

(A5)

So that, out of the 9 second-order derivatives, 5 belong to the A1 irreducible representation

(irrep) and 4 to the B2 irrep. The non-zero components are thus the same as the first-order

ones, for the corresponding P and irrep.
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