
Thesis for the degree of Doctorate of Engineering

Collisional transport in edge

transport barriers and stellarators

Stefan Buller

Department of Physics
Chalmers University of Technology
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Collisional transport in edge transport barriers and
stellarators
Stefan Buller
Department of Physics
Chalmers University of Technology

Abstract

Nuclear fusion has the potential to generate abundant and clean energy.
In magnetic confinement fusion, the temperatures needed to achieve fu-
sion are obtained by confining a hot plasma with magnetic fields. To
maintain these hot temperatures and realize the potential of fusion, an
understanding of transport mechanisms of particles and energy in these
plasmas is needed. This thesis theoretically investigates two aspects of
collisional transport in magnetically confined fusion plasmas: the col-
lisional transport in tokamak transport barriers and of highly-charged
impurities in stellarators.

The tokamak and the stellarator are the two most developed solu-
tions to magnetically confining a plasma. Tokamaks frequently operate
in a regime (the H-mode) with a transport barrier near the edge of the
plasma, in which turbulence is spontaneously reduced. This leads to
reduced energy and particle transport and sharp temperature and den-
sity gradients. These sharp gradients challenge the modeling capabilities
based on the conventional theory of collisional transport, which relies on
the assumption that the density, temperature, and electrostatic poten-
tial of the plasma do not vary strongly over a particle orbit. This thesis
explores an extension of the conventional theory that accounts for these
effects, by means of numerical simulations.

Another limit that challenges the conventional assumptions is when
the density of an impurity varies along the magnetic field. This hap-
pens for heavy impurities, such as iron or tungsten, which can enter the
plasma from interactions with the walls of the reactor. Due to their
high charge, these impurities are sensitive to even slight variations in
electrostatic potential in the plasma, which causes their density to vary
along the magnetic field. This density variation can qualitatively affect
how the impurities are transported. This is explored in the latter half of
this thesis, with an eye towards how this effect could be used to prevent
impurities from accumulating in the core of stellarators, where they are
detrimental.
Keywords: fusion, plasma physics, transport, collisional transport, im-
purity transport, pedestal, tokamak, stellarator
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Chapter 1

Introduction

As energy is conserved, every process – such as reading this text or
even thinking – can be thought of as converting energy from one form
to another. However, when energy is transferred within a system, it is
typically redistributed over more parts of the system, until it is so thinly
distributed that it can no longer be used to perform work. This result
– the second law of thermodynamics – implies that useful energy (“free
energy”) is effectively consumed, and cannot be produced [1, 2].

Although we cannot create energy, we can extract it from systems
which have yet to reach their minimum free energy state. The most
prominent everyday example of such a system is the Sun, which effec-
tively acts as a battery for the entire solar system.

The source of the Sun’s energy lies in the curious fact that the nuclear
binding energy per nucleon increases with mass for light atomic nuclei,
so that energy can be extracted by merging lighter elements together –
the process of nuclear fusion. The binding energy continues to increase
until around 62Ni, which is therefore the heaviest element that can be
formed with a net energy gain [3–5]. Since roughly 75% (by mass) of the
ordinary matter in the universe is hydrogen [6], it would seem that a vast
amount of energy could potentially be extracted by fusion. However, the
fact that the universe is mostly hydrogen also tells us that fusion does
not happen easily: These nuclei have been firmly stuck in local free
energy minima since the early eras of our universe.

The difficulty lies in the fact that atomic nuclei repel each other, so
their energetically favorable union can only occur if their kinetic energy
is sufficiently high to overcome the Coulomb barrier between them. To
put things in perspective, a thermal particle at room temperature has
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Chapter 1. Introduction

a kinetic energy around 25 meV, while an energy of about 0.1 MeV is
required to take advantage of the maximum cross section of the fusion
reaction between deuterium and tritium isotopes [7, 8], the deuterium-
tritium (D-T) reaction1.

Despite the high energies required, fusion is regularly achieved in
nuclear physics experiments with ion beams [9]. However, these exper-
imental setups cannot be utilized as an energy technology. The funda-
mental problem is that beams thermalize due to Coulomb interactions
at a much higher rate than fusion reactions occur, so that the kinetic
energy of the beam thermalizes before a significant amount of fusion
reactions can take place.

To counter such problems, the ions must be prevented from rapidly
leaving the system, and must be energetic enough that their thermalized
velocity distribution has a sufficiently large number of ions with high
enough energies to achieve fusion. For terrestrial fusion, temperatures
around one hundred million Kelvin are required [10], which is about 10
times hotter than the core of the Sun [11].

An attractive way to confine such a hot, ionized gas is to utilize
magnetic fields – an approach known as magnetic confinement fusion.
An ionized gas under these conditions is called a (magnetized) plasma.
A plasma is a gas of charged particles which is dominated by collective
– rather than single particle – effects. A plasma is said to be magne-
tized when the magnetic field is strong enough to dominate the particle
dynamics, which essentially is a requirement for magnetic confinement.

When the plasma is confined, the fusion reactions themselves can
potentially be used to maintain the temperature of the plasma. Consider
the D-T reaction,

D + T → 4He + n+ 17.6 MeV, (1.1)

where energy and momentum conservation demands that 1/5 of the re-
leased energy (3.5 MeV) goes to the helium ion 4He, and 4/5 (14.1 MeV)
to the neutron n. Since the helium ions are charged, they will also be
confined by the magnetic field, and can transfer their kinetic energy to
the fuel. If the heating generated in this way is sufficiently large to com-
pensate for the net energy flux leaving the fusing plasma, it can sustain
itself for as long as it is refueled. The viability of a fusion power plant

1This is the least difficult fusion reaction to extract energy from on Earth, due to
the large amount of energy released in the reaction, its high fusion cross-section at
relatively “low” energies, and the abundance of fuel.
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Figure 1.1: An illustration of the three directions in a toroidal coor-
dinate system: The blue arrow indicates the toroidal direction, the red
arrow the poloidal direction, and the green arrow the radial direction.

thus depends on achieving low energy losses, and hence we need a solid
understanding of these losses in order to design and predict the behavior
of such power plants.

One of the most promising magnetic confinement schemes for a fu-
sion reactor is the tokamak. The tokamak possesses an axisymmetric
magnetic field in the shape of nested toruses, with a large externally
generated magnetic field in the long direction around the torus (in the
toroidal direction, blue in Figure 1.1); and a smaller field along the short
direction around the torus (the poloidal direction, red in Figure 1.1),
generated by currents in the plasma.

The first part of this thesis is concerned with modeling of the trans-
port of heat, particles, and momentum in tokamak fusion plasmas. Specif-
ically, we are interested in transport in a sharp gradient region that is
sometimes found near the edge of tokamaks. These edge transport barri-
ers, and the operating regime in which they appear, are described further
in Section 1.1.

Another scheme for achieving magnetic confinement is the stellara-
tor, which has a less restricted geometry than the tokamak in the sense of
not possessing toroidal symmetry. This makes it possible to generate the
confining magnetic fields without driving a current in the plasma [12] –
which is an advantage for steady-state reactor operation, and for avoid-
ing current-driven instabilities [13] and runaway electron generation [14].

3



Chapter 1. Introduction

The main downside is that the lack of symmetry makes these devices
complicated to design and build. Relevant for this thesis is that the lack
of symmetry causes the transport in the plasma to become sensitive to
inward electric fields [15]. These inward fields are expected at fusion rel-
evant conditions [16, 17], and can pull impurities into the center of the
plasma [15], which makes impurity accumulation especially troublesome
for stellarators.

Impurities are non-fuel ions that can enter the plasma in various
ways, for example through erosion of the wall of the reactor due to
energy flux from the plasma. While any charged particle in a plasma
will emit energy in the form of radiation, impurities radiate much more
strongly than the hydrogen fuel due to their high charge. The walls
of a fusion reactor will likely have to be made out of heat-resistant
materials like tungsten (proton number 74) [18], which cannot be allowed
to accumulate in the middle of the hot plasma.

The tokamak and the stellarator are introduced in more detail at
the end of Chapter 2; in the two following sections, we first outline
relevant details of the edge transport barrier in tokamaks, and introduce
the problem of calculating the transport of highly-charged impurities in
stellarators.

1.1 The high-confinement mode

In order to achieve the hundred million Kelvin required in a magnetic
fusion reactor on our cold planet, large temperature gradients need to
be maintained. With larger gradients, the reactor can be made smaller
and thus more economically attractive.

However, temperature gradients are sources of free energy, and nat-
urally decay unless heating is provided. The rate at which this decay
happens typically increases with the gradients. Large steady-state gra-
dients thus either require large applied heating, or that the heat flux
driven by a given gradient is somehow made small (roughly speaking,
the heat diffusivity should be lowered). The former option is unattrac-
tive for a reactor, which should therefore be designed to minimize the
heat transport.

Unfortunately, the heat transport in modern fusion experiments is
frequently observed to be stiff, i.e., it increases rapidly once the gradient
crosses some threshold known as a critical gradient [19–21]. The ori-
gin of this increase in transport can be attributed to the excitation of

4



1.1. The high-confinement mode
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Figure 1.2: An illustration of radial profiles of temperature T , density n
and electrostatic potential Φ in the edge of an H-mode tokamak plasma,
with the core, pedestal (“Ped”), and Scrape-Off layer (“SOL”) regions
highlighted. See the text for an explaination of the different regions.

small-scale turbulent structures, which give rise to a sizable turbulent
transport [22]. This turbulent transport effectively limits the gradients
to the critical values, which thus implies a minimum size for a plasma
with fusion relevant temperatures.

As larger reactors imply a larger capital cost, understanding and
suppressing plasma turbulence would be a major step towards econom-
ically viable fusion power. In fact, turbulence is routinely suppressed
in so-called edge transport barriers, in fusion devices operated in the
high-confinement mode [23, 24], often called simply the H-mode. The
reduction in turbulent transport allows for sharp gradients to develop in
the edge of these H-mode plasmas, a feature known as the pedestal [25].
This is illustrated in Figure 1.2, which schematically shows radial pro-
files of temperature (T ), density (n), and the electrostatic potential (Φ)
in the edge of an H-mode tokamak plasma, with different radial regions
highlighted.

The sharp gradients in the pedestal will likely be useful for future
fusion reactors: All current plans for magnetic fusion reactors feature
at least an edge transport barrier [26, 27], and sometimes additional
internal transport barriers [26]. Transport barriers are also interesting
to study theoretically, as the sharper gradients challenge some of the
assumptions typically used to study transport in fusion plasmas. In the
context of the core and pedestal transport, these assumptions may be
stated as follows:

In the core region, the radial transport is predominantly turbulent
and the gradients are thus limited. In this region the plasma profiles

5



Chapter 1. Introduction

vary weakly over a particle orbit and over the typical size of coherent
turbulent structures, which means that the transport can be described
by a conventional radially local theory, in which the transport at a given
radius can be described in terms of plasma parameters at that radius.

The typical arguments used to derive a local theory can be sketched
as follows: Confined particle orbits in tokamak magnetic fields are typ-
ically close to periodic. If a particle moves very little radially during
its approximately periodic orbit, we can average over multiple periods
to obtain an effective force acting at the average radial location of the
particle, r. To illustrate this, we expand a plasma profile X around r

X(r + ∆r) = X(r) + ∆r
∂X

∂r

∣∣∣∣
r

+O
(
∆r2

)
, (1.2)

where ∆r is the difference between r and the actual radial position of the
particle. If the second term is small, ∆r ∂X

∂r

∣∣
r
� X(r), only a low order

approximation to ∆r will be needed, so that we can approximate X(r+
∆r) ≈ X(r) for the purpose of calculating ∆r itself. This approximation
yields a radially local description of the plasma, as the X felt by the
particle over its orbit (1.2) can be expressed entirely in terms of the
value and derivative(s) of X at r.

On the other hand, in the pedestal region (“Ped” in Figure 1.2), the
profiles can vary significantly over an orbit width, so that the derivative
terms in (1.2) will not be small, and a local theory is not valid. This
complicates the understanding of the H-mode, as the transport at a
given radius r does not only depend on the plasma properties at r: the
transport is radially global.

Due to the radially global nature of the pedestal transport, it will also
be affected by the outermost region depicted in Figure 1.2, the scrape-off
layer (“SOL”). This is a comparatively sparse region located outside the
confined region. Here, the magnetic field connects directly to the wall,
so plasma is no longer confined. This region will not be treated in this
thesis, but ought to be included in more complete pedestal models.

In general, the modeling presented in the tokamak pedestal part of
this thesis is not meant to be predictive of pedestal transport, as ac-
counting for all the relevant processes (collisional and turbulent trans-
port, instabilities, SOL physics – such as wall-plasma interactions, etc.)
in a radially global setting is both conceptually and computationally ex-
tremely difficult. Instead, we study the reduced problem of collisional
transport in a sharp gradient region, which is theoretically interesting
as a simple model for investigating global effects, and experimentally

6



1.2. Transport of highly-charged impurities in stellarators

relevant, as the pedestal transport is often found to be comparable to
predictions of naive, radially local collisional transport models [28–32].

1.2 Transport of highly-charged impurities in
stellarators

The second topic of this thesis is on the transport of highly-charged
impurities in stellarator plasmas. Any charged particle in a plasma will
radiate energy, and it is thus useful from an energy balance point of view
to minimize the presence of non-fuel ions. Since the emitted radiation
scales strongly with charge [33], the problem becomes much more severe
for highly-charged impurities. At worst, the strong cooling due to impu-
rities may cause the plasma to disrupt by driving thermal instabilities.

Although their high charge makes these impurities a threat to energy
confinement, it also means that they interact more strongly among them-
selves and with other species in the plasma through Coulomb collisions.
This is beneficial from a modelling point of view, as it causes the impu-
rities to quickly reach a local thermodynamic equilibrium, which means
that their velocity distribution will be very close to a Maxwellian.

On the other hand, the high charge of the impurities also makes them
susceptible to slight variations in the electrostatic potential. Normally in
a fusion plasma, most of the particles are free to move along the magnetic
field uninhibited, and thus any significant variation in the electrostatic
potential would quickly be evened out. This cancellation will however
not be exact, as there are forces beside the electric force acting on the
particles – such as collisional friction or the magnetic mirror force (to
be discussed in Chapter 2). As these other forces typically are small,
the uncancelled electrostatic potential variation will also be small, and
only highly-charged particles will be sensitive to these variations. This
picture applies to both tokamaks and stellarators, and is known to affect
the transport of impurities in tokamaks [34, 35]. Only recently has
this effect been studied for stellarators [36], where it was hoped that
the effect could explain the absence of impurities in so called impurity
hole discharges in the Japanese stellarator LHD (Large Helical Device).
While this effect does not appear to be able to explain the impurity hole,
it nevertheless has been found to have a large effect on the impurity
transport in the scenarios where it has been investigated [36, 37].

The effect of flux-surface variation of the potential is of potential
interest, not only to increase the predictive power of impurity transport

7



Chapter 1. Introduction

modelling, but also for the development of methods to control impurities:
The electrostatic potential variation can be affected by tailoring the
plasma heating [38], which thus provides a potential method for affecting
the impurity transport. Chapter 4 describes a derivation of a semi-
analytic expression for the collisional transport of impurities, which may
be useful for optimizing the plasma heating so that impurities are not
accumulated in the plasma, and can be useful for calculating bounds on
collisional impurity transport if the potential variations are not measured
or controlled.

1.3 Thesis outline

The rest of this thesis is structured as follows. The upcoming chapters
present the concepts needed to understand the work done as part of this
thesis, the unifying theme being collisional transport.

In Chapter 2, we introduce the basic concepts needed to describe how
to confine plasmas with magnetic fields, starting with single-particle mo-
tion, proceeding through the kinetic equation, and finally ending with
the drift-kinetic equation. In Chapter 3 and Chapter 4, we simplify
the drift-kinetic equation in the limits of large gradients or large impu-
rity charge. These are the limits of interest to describe the distribution
function in the pedestal of tokamaks, and the transport of heavy impu-
rities in a stellarator, respectively. In the final chapter, Chapter 5, we
summarize the results obtained using these equations; these results are
presented in detail in the included papers.

8



Chapter 2

Basics of magnetic
confinement

In this chapter, we describe the basic concepts underlying most of mag-
netic fusion research, including the work done in this thesis. We start by
describing single particle orbits in constant magnetic fields, which pro-
vides a simple example of how magnetic fields can be used to confine a
particle. In this context, we introduce the concept of the guiding-center,
which is then used to derive approximate solutions to the equations of
motion in more general fields, allowing us to address the shortcomings of
the constant field scenario and fully confine a particle. We then discuss
how a particle is confined in the toroidal fields used in tokamaks and
stellarators, which is one of the central results needed as a background
to understand this thesis.

To describe a plasma – rather than just a single particle – the in-
teractions between the plasma particles also need to be taken into ac-
count. In Section 2.2, we sketch a statistical approach for describing
the evolution of a distribution of N -particles interacting via long-range
Coulomb collisions and macroscopic electromagnetic fields, resulting in
the Fokker-Planck equation that is fundamental to most kinetic descrip-
tions of plasma.

The particle distribution function can then be used to calculate par-
ticle, heat and momentum fluxes, which are the quantities needed to
evaluate the quality of our magnetic confinement system in the presence
of collisions. These calculations would most generally involve solving
the Fokker-Planck equation, which is often difficult. By combining the
Fokker-Planck equation with the results of single particle motion de-

9



Chapter 2. Basics of magnetic confinement

rived in this chapter, we simplify the Fokker-Planck equation, yielding
the drift-kinetic equation, which is the starting point for most theoretical
studies of collisional transport in magnetized plasmas.

2.1 Magnetic confinement of a single particle

Magnetic confinement relies on the Lorentz-force to confine charged par-
ticles,

F = Ze(E + v ×B), (2.1)

where F is the force acting on a particle with charge Ze, where e is the
elementary charge; v is the particle velocity, E is the electric field, andB
is the magnetic field. In general, the fields depend on position and time –
although we will not consider time variations in this thesis. In addition,
the charged particles themselves generate electromagnetic fields, which
couple the dynamics of different particles and greatly complicate the
problem.

As a starting point, we first consider the motion of a single particle in
a stationary, homogeneous B with E = 0. In the direction perpendicu-
lar to the field (which we denote by a subscript ⊥), the particle will circle
a magnetic field-line with a radius given by the gyroradius ρ = v⊥/Ω,
where Ω = ZeB/m is the gyrofrequency, m the particle mass, and v⊥
its velocity perpendicular to the magnetic field. Specifically, the perpen-
dicular motion is given by

x⊥ = X⊥ + ρ, (2.2)

v⊥ = v⊥[e1 cos(Ωt)− e2 sin(Ωt)] ≡ v1e1 + v2e2, (2.3)

where e1, e2 are unit-vectors that form an orthonormal basis together
with b, which is the unit vector in the B direction; X⊥ is a constant
vector that gives the position of the center of gyration in the plane
perpendicular to B. The gyro-radius vector, ρ, is the time-integral of
v⊥, and can thus be written

ρ = ρ[e1 sin(Ωt) + e2 cos(Ωt)] =
b× v⊥

Ω
. (2.4)

As time evolves, only the gyrophase,

γ = Ωt = − arctan
v2

v1
, (2.5)

10



2.1. Magnetic confinement of a single particle

B

ρX

Figure 2.1: The movement of a charged particle (red dot) in a constant
magnetic field B, where X denotes the position of the center of gyration
(blue dot), and ρ is the gyroradius-vector.

changes, and the particle is thus confined within a radius ρ in the direc-
tion perpendicular to the magnetic field. This is the basis of magnetic
confinement, and is illustrated in Figure 2.1.

However, in the direction parallel to the magnetic field (which we
denote by a subscript ‖), the particle moves with a constant velocity, v‖,
and is thus not confined to a finite region.

If we introduce a constant force F in the constant magnetic field
case – due to, for example, a constant electric field – the particle will
accelerate indefinitely due to any component of F parallel to B. Any
perpendicular component F⊥ will cause the particle to execute an addi-
tional drift motion perpendicular to the magnetic field

vd =
F ×B
ZeB2

. (2.6)

Hence the addition of a constant F causes the particle to drift away
from a given field-line.

The above discussion suggests that an infinite, straight magnetic
field with no external forces can confine a particle. Unfortunately, such
a configuration is not practically realizable, and we thus have to consider
more general fields.

To prepare for the discussion of more general fields, we devote the re-
mainder of this section to introducing the concept of the guiding-center.
In magnetic fusion, it is often convenient to consider the position of the
center of the gyrating motion – the guiding-center – rather than the
particle position. There are numerous reasons for this: As shown in the
following section, it will allow us to construct approximate analytical
solutions for the motion in more general fields that remains accurate
over times much longer than 1/Ω [39, 40]. In simulations of particle
orbits, it alleviates the burden of having to resolve the short time and
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Chapter 2. Basics of magnetic confinement

length-scales associated with the gyromotion. Finally, in kinetic theory,
it allows for the elimination of the gyrophase γ as a phase-space coor-
dinate, which reduces the dimensionality of the problem [41] – a result
that we will demonstrate in Section 2.3.

As suggested by the notation in (2.2), we denote the guiding center
position by X. We define the gyroaverage of a quantity A as

〈A〉X =
1

2π

∮
dγA(X, v‖, v⊥, γ), (2.7)

where X, v‖ and v⊥ are kept fixed during the average. For the constant
magnetic field case, this is equivalent to performing an average over
a period of the perpendicular motion. From this definition, it follows
that 〈ρ〉X = 0, 〈v⊥〉X = 0, and 〈x〉X = X. The velocity of the guiding-
center is given by Ẋ = v‖b+vd, with vd given by (2.6) – again reflecting
the fact that constant fields will not confine particles in the presence of
external forces. Having rephrased this result in terms of the guiding-
center, we are now ready to move on to considering magnetic fields with
spatial variations.

Of particular interest are magnetic fields with weak variations over
the spatial and temporal scales of the gyration, as this class of fields turns
out to be sufficiently general to confine particles, and can be treated
perturbatively in a manner that yields analytic solutions to the parti-
cle motion that remain accurate over reactor relevant time-scales. We
consider single-particle motion in such fields in the following section.

2.1.1 Nearly-constant magnetic fields

If we assume that the magnetic field felt by the particle changes little
during a gyration, we can view this change as a small perturbation to the
constant field case, and use perturbation theory to calculate corrections
to the motion in the constant field.

To see this, we expand the magnetic field around the guiding-center
X:

B(x) = B(X + ρ) = B(X) + ρ · ∇B(X) +O
(
ρ2
)
. (2.8)

Here, we take x = X +ρ, which is only exact in the constant field case,
but is sufficient for our present purposes, as we will see1.

1For deriving the equation of guiding-center motion accurate to arbitrary order,
see e.g. Refs. [42, 43].
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2.1. Magnetic confinement of a single particle

If the magnetic field changes little on the gyroradius scale, in the
sense that the magnitude of the gradient term in (2.8) is much smaller
than the first term, we can view it as giving a small correction to the
force acting on the particle. The ratio between the magnitude of the
first and second terms in (2.8) is of the order of ε ≡ ρ|∇B|/B, which
will be treated as the small parameter in our perturbation expansion,
ε � 1. For a thermal ion in a typical fusion reactor, ε ∼ 10−3, which
justifies the above treatment.

To lowest order in ε, the particle experiences the force due to a
constant magnetic field B = B(X), so the lowest order motion of the
particle is given by a constant motion along the field line and a gyration
around the field line, as obtained in the previous section. This is the
unperturbed motion.

Using the unperturbed solution, we can calculate corrections to the
particle motion perturbatively. The magnetic field felt by the particle
along its unperturbed trajectory, is given by the terms written out in
(2.8), which hence are sufficient to calculate the motion to order ε.

A subtle issue arises from the fact that we need our approximate
particle orbit to be valid for many gyrations. The theory of nearly-
periodic systems [39] tells us that we obtain a perturbative description
of the motion, which is valid for much longer than the gyroperiod, if we
average the velocity and force felt by the particle over the unperturbed
periodic orbit, and treat these averages as giving an effective velocity
and acceleration of the center of the periodic orbit. In the context of
nearly-constant magnetic fields, this procedure yields an equation of
motion where the guiding-center responds to the average force felt by
the particle over its gyro-orbit [39].

The effective gyroaveraged force felt by the guiding-center due to the
first order term in (2.8) is

Feff = 〈Zev × (ρ · ∇B(X))〉X . (2.9)

Evaluating this integral gives

Feff = −mv2
‖κ− µ∇B, (2.10)

where κ = −b×(∇×b) = b ·∇b is the curvature of B; µ = mv2
⊥/(2B) is

the magnetic moment. Note that here the fields are evaluated atX. The
two contributions to the effective force can be interpreted physically as
follows: The curvature term can be understood as a centrifugal force due
to the local radius of curvature of the magnetic field. The second term
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Chapter 2. Basics of magnetic confinement

can be recognized as the force acting on a current ring with magnetic
moment µ.

The fact that the motion of the guiding-center remains accurate
over many gyrations is closely related to the concept of adiabatic in-
variance [44, 45]. When formulated in a Lagrangian framework, the
independence of the gyroaveraged Lagrangian with respect to γ can be
used to derive an invariant [46]. This is an adiabatic invariant if it
remains approximately constant over long times, even when a small per-
turbation is added to the averaged system, i.e. the contribution of the
small perturbation does not accumulate. Kruskal [39] has shown that for
a Hamiltonian system with only periodic solutions, the Poincaré invari-
ant [47] of the unperturbed system over its period becomes an adiabatic
invariant. For the perpendicular motion in a constant magnetic field,
this invariant is the magnetic moment µ [45].

Since µ is an adiabatic invariant, it can be viewed as an internal
property of the guiding-center, analogous to a particle’s spin. Since the
particle’s kinetic energy can be written as mv2

‖/2 +µB, we can consider
U = µB as a contribution to an effective potential energy of the guiding
center. From this potential, we can calculate a force F = −∇U , which
gives an intuitive derivation of the second term in (2.10). This term is
known as the mirror force, as it reflects particles that have insufficient
parallel velocities to overcome the effective potential.

Given the effective force (2.10), a drift-velocity vd may be calculated
from (2.6). If we now let E 6= 0 and assume that E is also nearly
constant over the particle orbit in the same manner as B, the total
velocity of the guiding-center becomes

Ẋ = v‖b+ vd, (2.11)

where v‖ evolves according to the parallel component of F = ZeE+Feff

and the drift-velocity vd is calculated from F according to (2.6),

vd =
E ×B
B2

+
v2
⊥

2Ω
b×∇ logB +

v2
‖

Ω
b× κ. (2.12)

The first term is the E × B drift, while the last two terms in (2.12)
are the magnetic drifts associated with the effective force (2.10). The
magnetic drifts are small in ε compared to v⊥, since we assume weakly
varying fields, while the E×B drift in principle can be large. However,
the E × B drifts are usually small compared to the typical velocities
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2.1. Magnetic confinement of a single particle

of hydrogen ions or electrons in modern magnetic confinement systems2

[42], so we assume that the E×B drift is also small in ε, and hence the
drift motion corresponds to a small correction to the parallel motion.

Although the drift is small in comparison to the motion parallel to
the field line, it must be accounted for to confine particles on reactor-
relevant time-scales. In the following section, we explore magnetic field
configurations capable of confining the drift-motion of the guiding cen-
ters.

2.1.2 Magnetic fields for confinement

In the previous sections, we saw that magnetic fields confine particles in
the perpendicular direction, but field inhomogeneities result in a perpen-
dicular drift vd. In addition, the particle is not confined in the parallel
direction.

There are two approaches for remedying the lack of confinement in
the parallel direction: One is to have a straight magnetic field of fi-
nite extent, where the field crosses a material surface. Such systems are
known as open systems, since particles traveling along magnetic field-
lines have open trajectories which leave the system by hitting the wall.
To prevent this, the magnetic field strength can be modulated along the
magnetic field-line, so that the mirror force traps particles in low field
regions away from the walls. Machines based on this principle are known
as mirror machines, and remain an active area of research [49]. A more
successful approach to fusion energy uses a second method, in which the
magnetic field itself is confined to a bounded region, without intersecting
any material surfaces. Such systems are known as closed systems, since
particles traveling along the field-lines remain in the system. For the
magnetic field to not vanish at any point on the boundary of this region,
the Poincaré-Hopf theorem states that the boundary has to be topolog-
ically equivalent to a torus [50, 51]. This thesis is concerned with closed
toroidal systems, and the rest of this section describes the requirements
on toroidal systems to confine the drifting guiding-centers.

We will start by considering the simplest toroidal configuration, which
is a purely toroidal field, for example the field around a wire with cur-

2There are exceptions to this, such as Spherical Tokamaks [48] and potentially the
pedestal, although we will take a different approach to modeling the electric field in
the pedestal in this thesis, see Chapter 3. Also, since the E ×B velocity is the same
for all species, it may be comparable to the thermal speed for heavy impurities, which
are notably slower than the hydrogen isotopes.

15



Chapter 2. Basics of magnetic confinement

����
����
����
����

I

B

R

Figure 2.2: An illustration of a purely toroidal magnetic field, generated
by a current I flowing in a restricted region of space, such as a wire.

rent, see Figure 2.2. Such a field does not confine the drift orbits of
the guiding centers, but illustrates how these deficiencies can be over-
come, which allows us to formulate general requirements for a confining
toroidal magnetic field.

Lack of magnetic confinement in a purely toroidal field

To describe a toroidal geometry, we introduce a cylindrical coordinate
system, {Z,R, ϕ}, see Figure 2.3. The radial coordinate R describes
the distance from the axis of symmetry, Z is a distance along the axis of
symmetry, ϕ is the azimuthal angle. We also define a toroidal coordinate
system {ζ, r, θ} where r is a distance along the minor radius of the torus,
θ is a poloidal angle, and ζ = −ϕ is known as the toroidal angle in this
context – it is defined with the opposite sign of ϕ to make the toroidal
coordinate system right-handed.

We first consider a purely toroidal magnetic field, B = Bζ̂. From
symmetry consideration and Ampère’s law, the field strength must have
the form

B =
µ0I

2πR
, (2.13)

where I is the current flowing through an imagined circle of radius R
centered around the origin. This situation is illustrated in Figure 2.2.
In a radial region where I is independent of R, the magnetic field thus
decays as B ∝ R−1.

We now seek to calculate a particle’s orbit in the magnetic field
(2.13). If B is sufficiently large, so that the gyroradius ρ(R) for a particle
at R is much smaller than R, the above field can be approximated as
nearly-constant for the purpose of calculating the particle’s orbit, and
guiding center theory applies. The effective force on the guiding center
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2.1. Magnetic confinement of a single particle

(2.10) then becomes

Feff =

(
mv2
‖

R
+ µ

B

R

)
R̂ (2.14)

which results in the drift

vd =

(
v2
‖ +

v2
⊥
2

)
m

ZeB

ẑ

R
. (2.15)

For v‖ ∼ v⊥, the above drift will be small in ε = ρ/R, and the guiding
center follows the magnetic field to zeroth order in ε. As this zeroth-
order motion now again is periodic, we can again apply the theory of
nearly-periodic motion to derive an effective velocity and force on the
center of the drift orbit. If these averages were zero, the drift orbit would
be trivially confined, and we would have achieved confinement. Clearly,
the purely toroidal field does not achieve this, as the drift experienced
by the guiding-center as it travels along the magnetic field is always in
the ẑ direction.

We can rectify the problem of the purely toroidal magnetic field by
adding a poloidal component to twist the field, so that the field-lines are
wound helically around nested toroidal surfaces, known as (magnetic)
flux-surfaces. Such a helical field-line is illustrated by the black curve
in Figure 2.3. If the poloidal component is small, the drift will still
approximately be in the ẑ direction, but the ẑ directed drift will then
bring the particle closer to z = 0 when the field-line is at z < 0, and
away from z = 0 when z > 0, resulting in the particle returning to its
original minor radius.

To mathematically describe the motion along the twisted field lines,
it is convenient to introduce a coordinate system aligned with the mag-
netic field. We thus define a new radial coordinate, a flux-surface label ψ
which is constant on a given flux-surface and varies across them. A com-
mon choice is to use the poloidal or toroidal flux of the magnetic field
inside the given magnetic surface. To then label field-lines on a flux-
surface, we introduce a second label α, which is constant for a field-line
and varies between them. Finally, we introduce l as the distance along
the magnetic field-line. Thus, ψ specifies a flux-surface, the pair (ψ, α)
specifies a field-line on a flux-surface and the three numbers (ψ, α, l)
specify a point on the flux-surface3. These coordinates are illustrated in
Figure 2.4.

3On irrational flux-surfaces in a confinement device (i.e. those that do not return
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r

Figure 2.3: An illustration of a toroidal magnetic field with a small
poloidal component, resulting in a field-line (depicted in black) being
twisted around nested magnetic surfaces, which are highlighted for a
section of the torus. The cylindrical coordinates {Z, R, ϕ} and toroidal
coordinates {ζ = −ϕ, r, θ} are defined by arrows in the direction of
increasing values of the coordinates. This is the magnetic field of a
tokamak.

ψ

α

l

Figure 2.4: An example illustration of field-aligned coordinates (ψ, α, l),
where ψ specifies the toroidal flux-surface, α specifies a given field line,
and l the distance along the field-line.
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2.1. Magnetic confinement of a single particle

To describe the effective particle motion on time-scales longer than
the time it takes for a particle to complete its periodic orbit along the
field-line, we average the motion of the particle over a period in l. The
requirement for confining the drift orbit to the magnetic surface is to
have no net drift in the ψ-direction during an orbit∫

vd · ∇ψ dl = 0. (2.16)

To achieve the above condition, the magnetic field strength can no longer
be constant along the field-line. Mathematically, ∇B · dl 6= 0, which
implies a mirror force parallel to the field-line. This force will reflect
particles with insufficient parallel velocity, mv2

‖ < µBmax, where Bmax

is the maximum field strength along the field-line. This leads to two
classes of orbits in l: passing orbits with mv2

‖ > µBmax complete a full-

lap along the field-line, (2.16) is taken along a full-circuit. For particles
with mv2

‖ < µBmax, (2.16) is taken between bounce-points. Both classes
of orbits are periodic, which lets us define a second adiabatic invariant

J =

∫ l2

l1

v‖ dl, (2.17)

which is constant for the drift-motion over many parallel orbit periods.
This second adiabatic invariant allows us to succinctly formulate the

condition in (2.16). If
∂J

∂α
= 0, (2.18)

then orbits preserving the second adiabatic invariant will on average
stay on a fixed flux-surface ψ, and the drift orbits are confined [13].
The following sections will describe various strategies for satisfying this
condition.

Magnetic confinement in tokamaks

We start our discussion on confining magnetic fields by considering the
tokamak, as this allows us to calculate explicit expressions for the width

to the same point after a finite number of toroidal laps), each field-line gets arbitrarily
close to a given point on the flux-surface, so that a given point on the surface ψ can
be specified (to any arbitrary precision) by any of an infinite number of (ψ, α, l) so
that the mapping from from (ψ, α, l) to a point on the flux-surface is not invertible.
This is not a problem for describing the lowest order particle dynamics in l, since
both ψ and α are then constant.
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Chapter 2. Basics of magnetic confinement

of the drift-orbit; this orbit width is an important concept for under-
standing the collisional transport in any toroidal magnetic field.

In tokamaks, the condition (2.18) is satisfied by having the magnetic
field be symmetric in the toroidal direction. Such a magnetic configu-
ration is depicted in Figure 2.3, and can only be achieved by driving a
current in the plasma itself.

In fact, toroidal symmetry simplifies the treatment to the extent
that it becomes unnecessary to perform any orbit-averages, as we can
directly deduce the radial extent of particle orbits from the Lagrangian
of a single particle in a magnetic field: According to Noether’s theorem,
each continuous symmetry of the Lagrangian corresponds to a conserved
quantity. In toroidal symmetry, this conserved quantity is the toroidal
component of the canonical momentum

pζ = Rmvt + eRAt = Rmvt − Zeψp. (2.19)

Here, vt is the toroidal component of the velocity. The poloidal flux
ψp = −RAt is a flux-surface label, and from (2.19), we thus see that
the change in ψp over a particle orbit, ∆ψp, is related to the change
in kinetic toroidal angular momentum over charge, ∆(Rmvt/e). Thus,
unless a particle is able to gain kinetic energy indefinitely, the particle
cannot stray too far from its initial magnetic surface, and is confined.
This result is known as Tamm’s theorem [52].

This confinement is for a single particle. In a plasma, particles will
interact with each other, and can thus gain or lose energy and angu-
lar momentum. Particle interactions will be the subject of Section 2.2
– naively, we can think of the particle interactions as discrete events
(collisions) resulting in the particle taking a step ∆ψp to a nearby flux-
surface. The rate of collisional transport will depend on the size of this
step.

Collisional transport due to deviations ∆ψp from a flux-surface is
known as neoclassical transport, to differentiate it from so-called clas-
sical transport, which is due to the deviations ρ between particle and
guiding-center position. As neoclassical transport typically dominates
over classical transport, the term is sometimes used synonymously with
collisional transport in a toroidal magnetic field.

We now set out to calculate ∆ψp. However, we first note that (2.19)
involves the exact toroidal velocity of the particle – including gyration
that we do not wish to resolve. The contribution from the gyration
can be removed by instead considering the motion of the guiding-center.
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2.1. Magnetic confinement of a single particle

By gyroaveraging the Lagrangian used to derive (2.19), we obtain a
Lagrangian for the guiding-center motion [46], at which point Noether’s
theorem tells us that

〈pζ〉X =
RBtmv‖

B
− Zeψp (2.20)

is conserved for the guiding-center motion. As an order of magnitude
estimate, the change in ψp is thus comparable to

∆ψp ∼
mRBt
ZeB

v‖ ∼ ρRB. (2.21)

The corresponding width in real-space can be obtained by

∆r ∼ ∆ψ

|∇ψp|
∼ B

Bp
ρ, (2.22)

where we have used B = ∇×A =⇒ |∇ψp| = RBp, with Bp being the
poloidal magnetic field. We define the poloidal gyroradius

ρp ≡
B

Bp
ρ, (2.23)

which according to the above estimate sets the size of the orbit width in
a tokamak.

With the above results, we are now in a position to revisit the qualita-
tive discussion regarding global and local transport in the introduction,
which will be relevant for treating the sharp gradients in the tokamak
pedestal. First, we rephrase the guiding-center formalism in terms of the
language of Section 1.1. Comparing (1.2) with (2.8), and identifying ∆r
with ρ, we see that the guiding-center formalism is local. However, ρp
can be much larger than ρ if Bp/B is small, as in conventional tokamaks.
It is thus possible to have situations which are local to a field-line – i.e.
when ρ is small and guiding-center motion applies – but still non-local in
the radial coordinate ψ due to a large ∆r ∼ ρp, compared to the length-
scale of radial variations in the plasma. We will consider such a scenario
in Chapter 3, where we derive an equation describing the distribution of
a large-number of guiding-centers in the presence of sharp density and
electrostatic potential gradients.

Magnetic confinement in stellarators

The stellarator, unlike the tokamak, does not have a strong internal
current in the plasma, which means that it is impossible to achieve
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Chapter 2. Basics of magnetic confinement

the helically twisted toroidal field while having a symmetric magnetic
field [12]. Even without a symmetry in the magnetic field, there are
several ways to satisfy the symmetry condition of the second adiabatic
invariant, (2.18), to a high degree of accuracy.

The conceptually simplest method is known as quasi-symmetry, where
the magnetic field strength B, rather than the magnetic field B, is kept
symmetric with respect to the Boozer angles [13, 53]. Such fields can
be generated analytically through the Garren-Boozer formalism [54], or
numerically by minimizing the symmetry breaking components of B.
A more general class of magnetic fields are omnigenous fields that di-
rectly minimize (2.18). It is possible to derive analytical expressions for
the collisional transport in fields that are either quasisymmetric [55] or
omnigenous [56].

There are more aspects that go into designing magnetic fields, both
for tokamaks and stellarators: The magnetic field has a dynamics of
its own, and will respond to the pressures and currents in the plasma,
which can lead to instabilities [57]. In this thesis, we will assume that
such magnetohydrodynamic (MHD) optimizations – in addition to the
optimization for single particle confinement described in this section –
have been adequately performed, so that it becomes meaningful to study
the weaker effects that degrade the confinement on time-scales longer
than the time it takes for the magnetic field to disrupt. This weaker
degradation of confinement is the collisional transport that we briefly
sketched at the end of the previous section.

To facilitate a quantitative description of particle interactions and
collisions, the next section describes how interactions between the large
number of particles in a plasma can be treated statistically.

2.2 Kinetic theory and collision operators

In the previous section, we considered the motion of a single charged par-
ticle in a magnetic field. In this section, we will account for interactions
among the many particles of a fusion plasma.

In a plasma, particles interact with each other through long-range
electromagnetic forces. The result is an electromagnetic N -body prob-
lem. For a fusion plasma, number densities are typically of the order
1020 m−3, which means that N will be a very large number. This makes
it practically impossible to solve for the motion of individual particles,
as we have done above.
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2.2. Kinetic theory and collision operators

However, because N is so large, we can make use of the machinery
of statistical mechanics and consider a smooth distribution function in
phase-space, that captures the large-scale behavior of our system.

For a statistical treatment, it is useful to express theN -body problem
in terms of a Klimontovich equation

∂

∂t
fexact(t,x,v) + v · ∂

∂x
fexact(t,x,v) +a · ∂

∂v
fexact(t,x,v) = 0, (2.24)

where fexact =
∑N

i δ
3(x−xi)δ3(v−vi), is an exact distribution function

for N point-particles, with δ the Dirac delta-function and xi and vi the
position and velocity of particle i; a is the acceleration at phase-space
coordinates (x,v) – itself a functional of fexact as the particles themselves
generate electromagnetic fields.

We can identify the differential operator in the Klimontovich equa-
tion as the convective derivative in phase-space d

dt ≡
∂
∂t +

∑6
i=1 żi

∂
∂zi

,
where z = {x,v} denotes the position in 6-dimensional phase-space.
With this identification, (2.24) follows directly from Liouville’s theo-
rem [58].

The N -particle system can be equivalently expressed in terms of n-
body distribution functions through the Bogoliubov–Born–Green–Kirk-
wood–Yvon (BBGKY) hierarchy [59]. These n-body distribution func-
tions give the joint probability of finding n particles in infinitesimal
regions around n given points in phase-space, and are thus smooth func-
tions. The calculation of such probabilities relies on assigning proba-
bilities to appropriate microstates, typically by assuming the ergodic
hypothesis to hold. The equation for the n-body distribution function
involves the (n+1)-body distribution function, and thus we still have N
coupled differential equations, as required for this system to be equiva-
lent to the N -particle problem.

The advantage of the BBGKY hierarchy is that, under certain con-
ditions, it can be truncated to yield an equation for a smooth 1-particle
distribution function f . The argument is similar to the multiple time-
scale expansion we will perform in the following section, and can be
sketched as follows:

In the scenario of interest, where collective effects dominate, the
dynamics of the (n > 1)-body functions is much faster than that of the
1-body function. The 1-body dynamics can then be neglected for the
purpose of solving for the (n > 1)-body functions – in particular, the
2-body function can be expressed solely in terms of the instantaneous
value of the 1-body function. Thus it becomes possible to rewrite the

23



Chapter 2. Basics of magnetic confinement

2-body term in the equation governing the 1-body function f in terms
of the 1-body function itself, yielding a single equation for the 1-body
probability distribution function known as the kinetic equation:

∂

∂t
f(t,x,v) + v · ∂

∂x
f(t,x,v) + a · ∂

∂v
f(t,x,v) = C[f ]. (2.25)

Equation (2.25) has essentially the same form as (2.24), but with f a
smooth, macroscopic 1-particle distribution function, and with an extra
term C[f ] that is due to the statistical description of the particle inter-
actions. All many-particle effects depending on the detailed trajectories
of the particles are accounted for by a collision operator C acting on f .

In general, the plasma consists of more than one species of particles,
and we label each species by a subscript. In this case, the collision
operator also produces a coupling between species; the net effect on
species a from all species is then

C[fa] =
∑
b

Cab[fa, fb]. (2.26)

As (2.25) can be written as dfa/dt = C[fa], it follows that C[fa]
can be interpreted as the rate of change in fa due to particle interac-
tions. In magnetic fusion, during normal operation – i.e. not considering
runaway phenomena [60] – the particle interactions are dominated by
non-relativistic, small-momentum exchange Coulomb collisions. In this
case, Cab is well-approximated by a Landau Fokker-Planck collision op-
erator [61]

Cab[fa, fb] = (2.27)

ln Λ

8πma

Z2
aZ

2
b e

4

ε20

∂

∂vk

∫
u2δkl − ukul

u3

[
fa(v)

mb

∂fb(v
′)

∂v′l
− fb(v

′)

ma

∂fa(v)

∂vl

]
d3v′,

where u = v − v′ is the relative velocity; δkl is the Kronecker-delta;
summation over repeated indices is implied; and ln Λ ≈ ln (nλ3

D) is the
Coulomb logarithm, with λD =

√
ε0T/(ne2) the Debye length, where ε0

is the permittivity of free space, T the temperature, and n the density
of the plasma. With C given by (2.27), the kinetic equation (2.25) is
known as the Fokker-Planck equation, which is fundamental to many
kinetic studies in magnetic fusion.

In the scenario considered above, the condition that collective effects
dominate can be conveniently expressed in terms of the number of par-
ticles in a sphere of radius λD. If this number is much greater than
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one, a charge in the plasma is effectively screened on distances longer
than λD, so that the plasma looks neutral on macroscopic scales. As
λD is typically 10−4 m or smaller in a fusion plasma, the plasma is ef-
fectively neutral on length-scales relevant for transport phenomena, and
the distribution functions thus obey the neutrality condition∑

a

Za

∫
d3vfa = 0, (2.28)

a relation known as quasi-neutrality. Here Za is the charge of species a
given in terms of the elementary charge.

The Fokker-Planck collision operator (2.27) satisfies the conservation
of particles, momentum and energy in collisions between particles a and
b, which can be expressed as∫

d3vCab[fa, fb] = 0, (2.29)∫
d3vmavCab[fa, fb] = −

∫
d3vmbvCba[fb, fa], (2.30)∫

d3v
mav

2

2
Cab[fa, fb] = −

∫
d3v

mbv
2

2
Cba[fb, fa]. (2.31)

These relations are useful to simplify analytic calculations and to verify
that simulations are conservative. In this thesis, (2.30) will be used to
relate the friction force on impurities colliding with bulk hydrogen ions
to the friction force on bulk hydrogen ions colliding with impurities.

Although the Fokker-Planck equation is a vast simplification over the
N -body problem, the collision operator (2.27) is often too complicated
to allow analytic solutions or for implementation in codes. In the limit
where a species a with temperature Ta is much lighter than a species b
with temperature Tb ∼ Ta, their collision operator Cab can be simplified
by expanding in their mass-ratio. The resulting mass-ratio expanded
collision operator

Cab = νDab(v)

(
L(fa1) +

mav · Vb
Ta

fa0

)
, (2.32)

is frequently used to simplify calculations where electrons collide with
ions, or when ions collide with much heavier ions – such as hydrogen col-
liding with heavy impurities in fusion plasma. Here, νDab(v) is a velocity
dependent deflection frequency

νDab(v) =
nbZ

2
aZ

2
b e

4 ln Λ

4πm2
aε

2
0v

3
, (2.33)
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Chapter 2. Basics of magnetic confinement

where n and e are the density and charge of the species indicated by the
subscript; L is the Lorentz differential operator [61]; and Vb is the flow
velocity of species b (to be defined in Section 2.2.1).

Another frequently employed simplification of the Fokker-Planck equa-
tion is to order the collision operator large or small compared to other
terms in (2.25). To quantify the size of the collision operator, it is useful
to define a typical collision frequency

νab =
nbZ

2
aZ

2
b e

4 ln Λ

4πm2
aε0v

3
Ta

, (2.34)

which is simply the deflection frequency νDab(v) for a particle at the ther-
mal speed vTa ≡

√
2Ta/ma, where Ta is the temperature of fa. We will

discuss both the limits where νa ≡
∑

a νab is much larger or smaller than
the frequency of a drift-orbit in Section 2.3.2. In the next section, we
show how the distribution function f can be used to calculate transport
of particles, momentum and energy.

2.2.1 Transport moments

From the macroscopic distribution function f , we can calculate any
macroscopic plasma quantity by taking velocity moments. Some of the
most often used moments are,

Density n =

∫
d3v f, (2.35)

Particle flux Γ =

∫
d3v vf, (2.36)

Momentum flux Π~

~

=m

∫
d3v vvf, (2.37)

Heat flux Q =
m

2

∫
d3v vv2f. (2.38)

From the particle flux, we also define the flow velocity V ≡ Γ/n.
Often, a distinction is made between velocity moments taken in the

“lab frame” (as above), and moments taken in the frame moving with
the plasma fluid-flow velocity of each species, v → v−V . The pressure
is defined relative to the flow velocity

p =
m

3

∫
d3v (v − V )2f, (2.39)
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2.2. Kinetic theory and collision operators

from which we define the temperature as T ≡ p/n. The conductive heat
flux is defined as

q =
m

2

∫
d3v (v − V )|v − V |2f. (2.40)

which can be related to the heat flux Q by

q = Q− 5

2
pV − 1

2
nmV 2V − (Π~

~

· V − pV ) ; (2.41)

note that the (Π~

~

· V − pV ) term often is small in a confined plasma.
We will consider scenarios when the flow is small compared to the

thermal speed, so the distinction between lab frame and fluid-flow frame
is mostly unimportant, except for the heat flux, where the first two terms
in (2.41) are comparable in size, so that q ≈ Q− 5

2pV .
The goal of transport theory is often simply to calculate the above

moments to evaluate the confinement of particles, momentum and heat.
We can get equations directly relating the moments among themselves
by taking moments of the kinetic equation (2.25). The first few moments
obey:

∂n

∂t
+∇ · Γ =0 (2.42)

m
∂Γ

∂t
+∇ ·Π~

~

− e (nE + Γ×B) =Fc (2.43)

3

2

∂

∂t

(
p+

mV 2

2

)
+∇ ·Q =Wc + eΓ ·E, (2.44)

which describe the conservation of particles, momentum and energy.
Here, we have introduced the moments of the collision operator Fc =∫

d3vmvC[f ] and Wc =
∫

d3v m2 v
2C[f ] – the friction force density and

the collisional energy exchange.
The collision operator acts as an effective source-term in (2.43) and

(2.44): Since the collisions we consider do not convert particles between
different species, there is no source of particles due to collisions in (2.42).
Likewise, since energy and momentum are conserved in each collision
(2.30)-(2.31), the sum of the friction force and collisional energy ex-
change over all species is zero. If the plasma is fueled with particles and
energy externally – or if fusion reactions occur – we add source terms
to the kinetic equation, which will contribute to the moment equations
above.
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Chapter 2. Basics of magnetic confinement

The moment equations are more convenient than the kinetic equa-
tion, as they are expressed in 3-dimensional real-space – rather than
6-dimensional phase-space – and directly describe the fluxes of particles,
momentum, heat, etc. However, they cannot be evaluated without a
closure. Specifically, each moment equation in (2.42)–(2.44) couples to
higher moment equations, analogously to the n-body distribution func-
tions in the BBGKY hierarchy. Thus we need to evaluate or approximate
one of the higher moments to close the set of equations.

A rigorous closure is difficult to find in general. When collisions dom-
inate, the Chapman-Enskog method [62] can be employed, yielding the
Braginskii fluid equations [63]. However, this closure is not applicable
to the hundred-million degrees center of a tokamak plasma, and thus we
have to face up to the kinetic equation (2.25). In the next section, we will
approximate and simplify the kinetic equation in a manner appropriate
for quiescent magnetized plasmas, the result of which is the drift-kinetic
equation. The moment equations can then be used to relate the differ-
ent moments of the distribution function in (2.35)-(2.40), and even to
calculate moments of the distribution function to higher precision than
that which is possible through the drift-kinetic equation alone.

2.3 The drift-kinetic equation

In Section 2.1, we described how the motion of a particle in magnetic
fields that vary weakly over the gyroradius scale can be decomposed into
gyration and guiding-center motion, where the latter was found to be
approximately independent of the gyrophase. The same is also true for
the distribution function, provided that the gyration is faster than all
other time-scales of interest.

To connect our single-particle results to the kinetic description, we
first note that the left-hand side of the kinetic equation (2.25) is invariant
under coordinate transformations on phase-space z → z′, so that we can
use the guiding-center coordinates

X =x− ρ, (2.45)

W ≡mv
2

2
+ ZeΦ, (2.46)

µ =
mv2
⊥

2B
, (2.47)

γ =− arctan

(
v2

v1

)
, (2.48)
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2.3. The drift-kinetic equation

where ρ = b(X)×v
Ω(X) is the gyro-radius vector evaluated at X. W is the

energy of a particle at point x,v in velocity space, µ is the magnetic
moment; γ is an azimuthal angle in velocity space. These definitions are
essentially the same as in Section 2.1, except that v⊥ here is the exact
perpendicular velocity, unlike (2.3) and (2.5) which exclude the drifts.

Performing the change of coordinates

{x,v} → {X,W, µ, γ}, (2.49)

the kinetic equation (2.25) becomes

ḟa =
∂

∂t
fa + Ẋ · ∂

∂X
fa + Ẇ

∂f

∂W
+ µ̇

∂f

∂µ
+ γ̇

∂f

∂γ
= C[fa], (2.50)

where a dot represents a time derivative along a phase-space trajectory

Ȧ =
∂A

∂t
+ v · ∂A

∂x
+ a · ∂A

∂v
, (2.51)

with a the acceleration at {x,v}.
Just as in the single particle case, the guiding-center dynamics will

provide a simplification if the gyration dominates over all other time-
scales of interest. When that is the case, (2.50) becomes, to lowest order,

γ̇
∂f

∂γ
= 0, (2.52)

which tells us that the distribution function is approximately indepen-
dent of γ. This is a central result, although a less crude approximation
to the kinetic equation is needed to find the dependence of f on the
other variables.

2.3.1 Approximations and ordering assumptions

To apply a perturbation analysis to the kinetic equation, we need to in-
troduce a formal small parameter ε. As in Section 2.1.1, we assume that
the magnetic field varies little on the gyroradius-scale, ε ≡ ρ/LB � 1,
where LB = |∇ logB|−1 is the gradient scale-length of B. We here use ρ
to denote the (bulk ion) thermal gyroradius ρ = mvT /(eB), which rep-
resents a typical gyroradius in the plasma4. In this section, we will order

4This assumes a low flow velocity, so that vT is representative of a typical particle
velocity. The same expansion parameter can also be used in plasma with sonic flows,
but the transformation to a frame rotating with the flow velocity introduces some
additional terms, see Ref. [64, 65].
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Chapter 2. Basics of magnetic confinement

Table 2.1: Orderings assumed when deriving the drift-kinetic equa-
tion. Definitions of the various quantities are standard and introduced
throughout the thesis.

Length-scale of B LB ≡ |∇ logB|−1

Expansion parameter ε ≡ ρ/LB � 1
Parallel gradients v‖b · ∇ = O (εΩ)

Perpendicular gradients v⊥ · ∇ = O (εΩ)
Collision operator C[f ] ∼ νf = O (εΩf)
Parallel electric field e

mE‖ = O (εΩvT )

Perpendicular electric field e
mE⊥ = O (εΩvT )

Time derivatives ∂
∂t = O

(
ε3Ω
)

the other quantities in (2.50) in terms of this ε. We quantify the state-
ment that gyration dominates other time-scales by ordering the transit
frequency ωt ≡ vT /LB ∼ εΩ, which is the characteristic frequency at
which a thermal particle travels a distance on which B may have order
unity variations (typically the size of the magnetic confinement device).
We also order the effects of collisions, quantified by a collision frequency
ν, as ν ∼ εΩ, and assume that the Lorentz force due to the electric field
is weaker than that of the magnetic field E ∼ εvTB ∼ εme ΩvT . These
requirements essentially state that the magnetic field dominates the par-
ticle dynamics, which is practically a requirement for magnetic confine-
ment. We will also assume steady-state, in the sense that ∂

∂t = O
(
ε3Ω
)
,

so that we can neglect all time-derivatives. We summarize these as-
sumptions in Table 2.1. For a more detailed derivation, see, for example,
Ref. [42].

To relate these orderings to (2.50), we rewrite the velocity-space
time-derivatives in terms of the electromagnetic fields [42]

µ̇ = −µ

εΩ︷ ︸︸ ︷
1

B
v · ∇B−

v‖

B
v⊥ ·

εΩ︷ ︸︸ ︷
(v · ∇)b+

εΩµ︷ ︸︸ ︷
Ze

mB
v⊥ ·E

(2.53)

Ẇ =
Ze

m
v · ∇Φ +

Ze

m
v ·E =

Ze

m
v ·

ε3ΩA︷︸︸︷
∂A

∂t

(2.54)

γ̇ = Ω +
v‖

v⊥
ρ̂ ·

εΩ︷ ︸︸ ︷
(v · ∇)b+e3 ·

εΩ︷︸︸︷
ė2 −

εΩ︷ ︸︸ ︷
Ze

mv⊥
ρ̂ ·E,

(2.55)
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2.3. The drift-kinetic equation

where v̂⊥ = v⊥/v⊥ and ρ̂ = ρ/ρ and the order of the different terms are
indicated with an overbrace.

As shown in Chapter 2, the velocity of the guiding-center is given by

Ẋ =

εΩLB︷︸︸︷
v‖b +

ε2ΩLB︷ ︸︸ ︷
E ×B
B2

+

ε2ΩLB︷︸︸︷
vm , (2.56)

where the third term, vm, is the magnetic drift due to the mirror and
centrifugal forces.

2.3.2 Hazeltine’s recursive drift-kinetic equation

From the orderings of the previous section, one can derive the drift-
kinetic equation (DKE). Following Hazeltine’s recursive derivation [42,
66] the DKE takes the form

(v‖ + vd + ud) · ∇f̄ +
dµ

dt

∣∣∣∣
gc

∂f̄

∂µ
= C[f̄ ], (2.57)

where vd is the perpendicular drift-velocity (2.12), ud is a parallel drift,

dµ

dt

∣∣∣∣
gc

=
v‖µB

Ω
b · ∇

(
v‖b · ∇ × b

B

)
, (2.58)

is the change in magnetic moment as seen by the guiding-center; f̄ is
the gyroaveraged distribution keeping the exact particle position fixed,
rather than the guiding-center. In (2.57), partial derivatives are taken
with x, W , µ and γ as coordinates.

From f̄ , the gyrophase-dependent distribution function can be ob-
tained from [42]

f = f̄−ρ ·
[
∇f̄ + Zeb× vd

∂f̄

∂µ

]
+
v‖µ

Ω

∂f̄

∂µ

[
ρ̂v̂⊥ : ∇b− 1

2
b · ∇ × b

]
+O

(
ε2f̄
)
,

(2.59)

where ρ̂ and v̂⊥ are the unit vectors in the gyroradius direction and in the
v⊥ direction. Solving (2.57) for f̄ thus gives the gyrophase-dependent
distribution function to order εf̄ through (2.59).

Equation (2.57) is not derived through a perturbation series, and thus
contains terms of different order in ε; it is accurate to order ε but cap-
tures some additional O

(
ε2f
)

terms [67]. The presence of these higher
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Chapter 2. Basics of magnetic confinement

order terms makes (2.57) a convenient starting point for constructing a
radially-global, linearized DKE suitable for describing the sharp gradi-
ent regions in a tokamak, which is the subject of the next chapter. For
other purposes, the higher order terms can be neglected, which yields
the more commonly used DKE

(v‖ + vd) · ∇f̄ = C[f̄ ]. (2.60)

Solving this equation order-by-order in ε, the lowest order equation
states that

v‖ · ∇f̄0 = C[f̄0], (2.61)

which implies that the zeroth-order distribution is a Maxwell-Boltzmann
distribution constant on the flux-surface

fM (ψ,W ) = η(ψ)

(
m

2πT (ψ)

)3/2

e−
W
T

= n

(
m

2πT (ψ)

)3/2

e−
mv2

2T ,

(2.62)

where n is the density of the Maxwellian, T the temperature, and η(ψ) =
neZeΦ/T is the pseudo-density, that is more convenient when Φ varies on
the flux-surface, or for evaluating derivatives with W held fixed. The
above Maxwell-Boltzmann distribution is not completely general, as it
does not contain any flow-velocity, which is consistent with the low-flow
ordering we adopted in our derivation of the DKE, where we assumed
that the flows are small compared to the thermal speed, |V | ∼ εvT.

To next order in ε, we find that

v‖ · ∇f̄1 + vd · ∇f̄0 = C[f̄1], (2.63)

which is the equation that will be used to derive the transport of a
highly-charged impurity species in a stellarator in Chapter 4.

Collisionality regimes

Even after expanding the drift-kinetic equation in ε, the resulting equa-
tion (2.63) is generally too difficult to solve analytically. To make
progress, an additional expansion is typically performed in collision-
ality, which measures the relative size of the right-hand and left-hand
sides of (2.63). Specifically, the collisionality ν̂ is defined as the ratio
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2.3. The drift-kinetic equation

of the collision frequency and the frequency at which a thermal particle
completes an orbit along the field line

ν̂a =
νa

vT/L‖
, (2.64)

where L‖ is an effective length-scale for variations in the plasma along
the magnetic field-line. The collision frequency, νa, is the sum of the
collision frequencies with all species νa =

∑
b νab, where νab is the a-b

collision frequency (2.34).

High-collisionality regime For ν̂ � 1, we are in the high-collisionality
or Pfirsch-Schlüter regime, where collisions dominate the single-particle
dynamics. In this regime, we expand the distribution function in 1/ν̂ [68],

f̄1 = f̄
(−1)
1 + f̄

(0)
1 +O

(
f̄

(0)
1 /ν̂

)
(2.65)

where the (1/ν̂a)
−2-order equation gives C[f̄

(−1)
1 ] = 0 so that f̄

(−1)
1 is in

a local thermodynamic equilibrium, meaning that it has a Maxwellian
distribution, which unlike f̄0, is not necessarily constant on the flux-

surface. To determine how f̄
(−1)
1 varies on the flux-surface, the (1/ν̂)−1

and (1/ν̂)0 order equations are needed: The lowest order f̄1 is not fully
specified by the lower order equation, but as they enter as source-terms
to the higher-order equations, they are constrained by the requirements
that these equations should have solutions. Such requirements are known
as a solvability conditions – see for example Ref. [69].

Low-collisionality regime For ν̂a � 1, we are in a low-collisionality
regime. Here, the distribution function is expanded in ν̂ as

f̄1 = f̄
(−1)
1 + f̄

(0)
1 +O

(
f̄

(0)
1 ν̂

)
, (2.66)

where a O
(
ν̂−1f̄

(0)
1

)
term is needed to describe magnetic configurations

that are not omnigenous. At O
(
ν̂−1

)
, the collision operator can be

neglected, and we have

v‖∇‖f̄
(−1)
1 = 0, (2.67)

which merely states that f̄
(−1)
1 is constant along field-lines. The O

(
ν̂0
)

equation is

v‖∇‖f̄
(0)
1 + vd · ∇f̄0 = C[f̄

(−1)
1 ], (2.68)
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where the drift term vd ·∇f̄0 explains why f̄
(−1)
1 is needed: For magnetic-

field configurations that are not omnigenous, the orbit-average of vd ·
∇f̄0 does not vanish for trapped particles, and the collision operator

term containing f̄
(−1)
1 is needed to balance this term. From the O

(
ν̂1
)

equation,

v‖∇‖f̄
(1)
1 = C[f̄

(0)
1 ], (2.69)

we obtain the solvability condition for f̄
(0)
1 .

2.3.3 Transport moments revisited

In Section 2.2.1, we introduced fluxes and other fluid quantities, in terms
of moments of f , and derived equations directly describing the evolution
of these moments. We now rephrase these results in terms of the gy-
roaveraged distribution function f̄ obtained from the drift-kinetic equa-
tion (2.60) – adapted to the magnetic geometry of toroidal confinement
systems – to calculate the particle, momentum, and heat fluxes in the
confinement system.

Inserting (2.59), the relation between f̄ and f , into the expressions
for the fluxes (2.36)-(2.38) yields the neoclassical particle, toroidal an-
gular momentum, and heat fluxes

Particle flux Γ =

∫
d3v vdf̄ , (2.70)

Toroidal angular momentum flux Πζ =m

∫
d3v vdRζ̂ · v‖f̄ , (2.71)

Heat flux Q =
m

2

∫
d3v vdv

2f̄ , (2.72)

where ζ̂ is the unit-vector in the toroidal direction and Πζ = Rζ̂ · Π~

~

with R the major radius. Note that these differ from the total fluxes
as they lack the magnetization fluxes [42] – which are not important
for transport purposes as they are divergence free – and the classical
transport, which requires a higher order version of (2.59) [70], but is
more easily calculated in a fluid picture as we will show in Chapter 4.

To calculate the total flux escaping from the plasma volume bounded
by the flux-surface labeled by ψ, we project the fluxes onto ∇ψ and
integrate over the flux-surface. For the latter purpose, it is convenient
to define a flux-surface average. This integral needs to be defined with
some care, as a surface is a null-set and thus contains zero particles.
Thus, we define the flux-surface average as the average over the volume
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dV between two infinitesimally separated flux-surfaces labeled by ψ and
ψ + dψ, which we express mathematically as

〈A〉 =
1

dV

∫
dV
AJ dψdθdψ =

1

V ′

∮ ∮
AJ dθdζ (2.73)

where V ′ = dV/dψ and J is the Jacobian of the {ζ, ψ, θ} coordinates.
For a tokamak, the Jacobian is J = 1/|Bp·∇θ|. The flux-surface average
satisfies the following properties

〈∇ ·A〉 =
1

V ′
d

dψ

(
V ′〈A · ∇ψ〉

)
, (2.74)

〈B · ∇X〉 =0, (2.75)

〈(B ×∇) · ∇X〉 =0, (2.76)

where the last two properties hold for any single-valued X, and (2.76)
relies on there being no radial current – a consequence of the momentum
equation (2.43) with the lowest order distribution (2.62), summed over
all species – so that ∇×B · ∇ψ = 0.

In terms of the flux-surface average, the total radial fluxes of parti-
cle, energy, and toroidal angular momentum through a flux-surface thus
become

V ′〈Γ · ∇ψ〉 =V ′
〈∫

d3v vd · ∇ψf̄
〉

(2.77)

V ′〈Q · ∇ψ〉 =V ′
〈∫

d3v vd · ∇ψ
mv2

2
f̄

〉
(2.78)

V ′〈Rζ̂ ·Π~

~

· ∇ψ〉 =V ′
〈∫

d3v vd · ∇ψRζ̂ · v‖f̄
〉
. (2.79)
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Chapter 3

Transport in tokamak
pedestals

The drift-kinetic equation derived in the previous chapter is one of the
most fundamental equations used to study collisional transport in mag-
netized plasmas. In this chapter, we consider a limit that can be used
to derive a linearized drift-kinetic equation that captures some of the
physics of the sharp-gradient regions in tokamaks, such as the pedestal.

3.1 Linear drift-kinetic equation for tokamak
pedestals

We seek to adapt Hazeltine’s recursive DKE (2.57) to the sharp gradient
regions of the tokamak pedestal, while still linearizing the distribution
function around a flux-surface Maxwell-Boltzmann distribution fM , as
in the local drift-kinetic equation, (2.63). The insistence on a linear
equation is motivated by computational convenience: In general, for
sharp gradients, the problem will be nonlinear – although there are ex-
ceptions to this, when the collisionality is low [71]. We will find that for
a particular ordering of the pseudo-density and temperature gradients,
the distribution function nevertheless stays close to fM , and a linear
description is feasible.

To achieve this, we follow Ref. [72] and exploit a separation of scales
between the orbit width and the gyroradius, which was already hinted
at in Section 2.1.2. Such a distinction is not always done, as the orbit
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Chapter 3. Transport in tokamak pedestals

width ρp is proportional to the gyroradius ρ

ρp =
B

Bp
ρ, (3.1)

but by assuming that Bp/B � 1, we can consider the situation where
the distribution function f does not vary strongly on the ρ-scale – as
was required in the derivation of the DKE – but where f1 does vary
appreciably on the ρp scale.

To proceed, we introduce a new small expansion parameter

δ ≡ ρp
LB

, (3.2)

where ρp = mvT /(ZeBp) here denotes the thermal orbit width, up to
some geometric factors. This expansion parameter represents the small-
ness of the orbit width compared to variations in the magnetic field,
which we still assume to hold.

We seek a solution to (2.57) of the form

f̄ = f0 + f1 +O
(
δ2f0

)
, (3.3)

where the subscript here refers to the order in δ: f1/f0 ∼ δ. To facilitate
such a perturbative treatment, we need to order the different terms in
the drift-kinetic equation (2.57) with respect to δ.

As our expansion parameter obeys δ = εB/Bp, the terms of a given
ε order in (2.57) will generally have the same order in δ. However, we
will allow the electrostatic potential and f1 to vary on the orbit-width
scale ρp in the ψ-direction1

|∇ψ|∂Φ

∂ψ
∼ Φ

ρp
∼ Φ

δLB
, (3.4)

|∇ψ|∂f1

∂ψ
∼ f1

ρp
∼ f1

δLB
∼ f0

LB
. (3.5)

As a result, these terms will contribute to lower order in δ than in ε,
which is why it is convenient to start from an equation of mixed order
in ε.

1The fact that f1 is allowed to have sharp variations in (3.5), but not f0 will be
shown to be related to the validity of the linearization in (3.3): The gradient of f0

will act as a source for f1, and thus set the size of f1. An f0 varying on the ρp scale
would cause f1 to violate f1 ∼ δf0 and is thus not allowed.
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The different terms in (2.57) are thus ordered:

vm ∼ ud ∼ δvT , (3.6)

dµ

dt

∣∣∣∣
gc

∼ δµvT /LB, (3.7)

while the E ×B-drift in the θ-direction is an order lower in δ than in ε

θ̂ · vE0 ∼ θ̂ · v‖. (3.8)

Inserting this into (2.57) we have, to order O (δvT f/LB),

(v‖ + vE) · ∇θ∂f0

∂θ
= C[f0]. (3.9)

We can solve this by making the ansatz that f0 is a stationary, flux-
surface Maxwell-Boltzmann distribution, as in (2.62).

The zeroth-order distribution function is thus a flux-function (i.e.
constant on a flux-surface) in the sense that ∇fM is in the ∇ψ direction.
However, these derivatives are taken with W fixed. If Φ varies on a flux-
surface, the density n – which is more experimentally accessible than fM
– will also vary. Such variations have been observed experimentally [73],
but are here assumed to be higher order in δ for the sake of simplicity.

Thus, we also expand the potential, and assume it to be a flux-
function to zeroth-order

Φ = Φ0(ψ) + Φ1(ψ, θ) +O
(
δ2Φ0

)
, (3.10)

where Φ1 ∼ δΦ0. To be specific, we will take Φ0 as the flux-surface
average of Φ. Furthermore, we assume that ∂Φ1/∂ψ ∼ δdΦ0/dψ, so
that Φ1 does not vary on smaller than ρp scales. This is consistent with
Φ1 being set by f1, a result which we prove at the end of this section.

With these definitions, we can eliminate Φ1 by a change of variables
W →W0 = mv2/2 + ZeΦ0 = W − ZeΦ1 +O

(
δ2
)
, which implies

∇f = ∇|W0
f − ∂f

∂W0
Ze ∇|W0

Φ1, (3.11)

where ∇ refers to gradients taken with W fixed, as above, and ∇|W0

refers to gradients with W0 fixed.
In (3.9), contributions from the second term on the right-hand side

of (3.11) are formally small:

− ∂fM
∂W0

Ze ∇|W0
Φ1 ∼

ZeΦ1

T

fM
LB
∼ δ fM

LB
, (3.12)
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where we have assumed ∇‖Φ1 ∼ Φ1/LB and used ZeΦ1/T ∼ δ, which
is a consequence of quasi-neutrality within flux-surfaces. Thus, we can
replace W with W0 in (2.62). Under these assumptions, fM and n are
flux-functions.

To the next order, we have

(v‖ + vE0) · ∇θ ∂f1

∂θ

∣∣∣∣
W0

+ vm · ∇ψ
∂f1

∂ψ

∣∣∣∣
W0

− Cl[f1]

=− (v‖ + vE0 + vm) ·
(
∇|W0

fM −
ZefM
T

∇|W0
Φ1

)
+O

(
δ2
)
,

(3.13)
where vE0 = B−1b×∇Φ0 is the E ×B-velocity due to Φ0; we have re-
tained the drift-terms on the left-hand side due to the sharp ψ-derivatives
in f1 and Φ0; linearized the collision operator C[f1] = Cl[f1] + O

(
δ2
)
;

and performed the change of coordinates to W0, where the corrections
to the f1 derivatives are formally small.

We can eliminate the last Φ1 term in (3.13) by defining the non-
adiabatic response g as

g = f1 +
ZeΦ1

T
fM . (3.14)

To obtain a linear description, we will assume that fM and T vary on
the LB scale. Since fM and T are also flux-functions, we have that

(v‖+vd0)·∇|W0

(
eΦ1

T
fM

)
=
ZefM
T

(v‖+vd0)·∇|W0
Φ1+O

(
δ2
)
, (3.15)

where vd0 = vE0 + vm is the drift velocity excluding the small contribu-
tion from Φ1. Using (3.15) and Cl[fM ] = 0, the equation for g becomes

(v‖ + vd0) · ∇|W0
g − C[g] = −vm · ∇ψ

∂fM
∂ψ

∣∣∣∣
W0

+ S. (3.16)

This is the radially-global, linearized drift-kinetic equation solved in this
work. In (3.16), we have allowed for a source term S to this order; in
general, radially-global transport is inconsistent with steady-state as-
sumptions unless sources are included, as we will see in the next section.
As the source was added at this order, it does not affect the derivation
of (3.16).

A corresponding radially-local equation – appropriate for describing
core transport – can be obtained from (3.16) if we soften the assumptions
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3.1. Linear drift-kinetic equation for tokamak pedestals

on the radial variation in Φ and g, so that they vary on the LB rather
than the ρp scale. The drift term then becomes higher order in δ, and
(3.16) reduces to the standard drift-kinetic equation [61]

v‖ · ∇|W0
g − C[g] = −vm · ∇ψ

∂fM
∂ψ

∣∣∣∣
W0

+ S. (3.17)

In this equation, there is no ∂g/∂ψ term: For the purpose of calculating
g, ψ merely enters as a parameter, and the equation is thus radially-local;
unlike in (3.16), the source term in (3.17) is not needed for consistency.

Another possibility is to retain the strong variations in Φ, but assume
that g varies weakly, so that the radial vm · ∇g term becomes formally
small. This intermediate step between (3.16) and (3.17) has been stud-
ied analytically [74–77] and numerically [72]. However, the presence of
strong Φ variations naturally causes g to develop strong variations un-
less the profiles are specifically choosen to avoid this [72]. The analytic
theory can nevertheless serve as a useful benchmark for global codes,
where terms can be switched off artificially.

The methods used for the numerical solution of (3.16) and (3.17) are
briefly described in Section 3.3. In the remainder of this section, we will
consider two aspects of the above derivation in more detail. To simplify
notation, we drop the W0 subscript on derivatives: All derivatives will
be taken with W0 fixed for the remainder of this chapter.

First, we show that g ∼ δfM . From estimating the size of the terms
in (3.16), we have

vT
Bp
B

g

LB
∼

v2
T

LBΩ

fM
LM

=⇒ g ∼ ρp
LM

fM , (3.18)

where LM is the length-scale of the Maxwellian. If LM ∼ LB, we thus
have g ∼ δfM . As

∇ψ ∂fM
∂ψ

∣∣∣∣
W0

= ∇ψ
[
∂ ln η

∂ψ
+

(
mW0

T
− 3

2

)
∂ lnT

∂ψ

]
fM , (3.19)

the LM ∼ LB assumption implies that the η and T length-scales must
be comparable to LB, but strong n and Φ gradients are possible.

Note that the n (or η), T and Φ0 profiles are effectively inputs to
the equation for g. If they are chosen appropriately, then Φ1 can be
shown to be eΦ1/T ∼ δ. Specifically, by requiring that the zeroth order
densities are quasi-neutral, we can estimate the size of Φ1 by applying
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quasi-neutrality to f1∑
a

∫
d3v

(
ga −

ZaeΦ1

Ta
fMa

)
= 0, (3.20)

so that

Φ1 =
1∑

a
Zaena
Ta

∑
a

∫
d3v ga =⇒ eΦ1

T
∼ g

fM
∼ δ, (3.21)

as we assumed in our derivation.

3.2 Moment equations for the pedestal

From the previous section, we have

f̄ = fM + f1 = fM + g − ZeΦ1

T
fM , (3.22)

whereupon (2.59) gives the gyrophase-dependent f in terms of fM and
g,

f =fM + g − ZeΦ1

T
fM − ρ · ∇(fM + g)

− ρ ·
[
Zeb× vd0

∂g

∂µ

]
+O

(
δ2fM

)
.

(3.23)

Here, we have used that ∂fM/∂µ = 0 and ordered ρ · ∇(fM + g) ∼
v‖|∇b|/Ω ∼ δ, as is appropriate for the global theory.

Note that the Zeρ·b×vm∂g/∂µ term in (3.23) is formally O
(
δ3fM

)
,

but needs to be retained in the divergence-flux terms (∇·Γ, etc.) in the
moment equations (2.42)-(2.44) as it can have strong radial variations
through g. This is a general issue in the global theory, where formally
small terms may have large radial variations, and thus may need to be
retained for the purpose of calculating gradients.

For this reason, it is useful to consider the global fluxes via moment
equations derived from the drift-kinetic equation (3.16), as these equa-
tions contain the derivatives of g and thus do not neglect any required
small terms. These equations will be used to verify that (3.23) contains
all the required small terms.

Taking the density
(∫

d3v
)

moment of (3.16), we find [78]

∇ ·
(∫

d3v [v‖ + vd0]f̄

)
=

∫
d3v S, (3.24)
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where the formally small vm term is included as the only radial compo-
nent in vd0. If we identify the divergence term in (3.24) as ∇ · Γ, this
equation merely restates particle conservation (2.42) for steady state,
∂n/∂t = 0, in terms of the motion of guiding-centers. Similarly, we have
the energy and toroidal angular momentum conservation equations

∇ ·
(∫

d3v [v‖ + vd0]
mv2

2
f̄

)
+

(∫
d3v [v‖ + vd0]f̄

)
· Ze∇Φ0

=

∫
d3v

mv2

2
S,

(3.25)

∇ ·
(∫

d3v [v‖ + vd0]
Imv‖

B
f̄

)
− Ze

∫
d3v f̄vd0 · ∇ψ

=

∫
d3v

Imv‖

B
S.

(3.26)

Transport of toroidal angular momentum is of particular importance,
as the total kinetic toroidal angular momentum (i.e. summed over all
species) is conserved in axisymmetry, so that the plasma can only spin
up or down by transporting angular momentum, or in the presence of
momentum sources. As plasma rotation is important for the transition
into H-mode [79], momentum transport can have important implications
for the confinement properties of a reactor.

The divergence terms in (3.24)-(3.26) practically define the particle,
heat and momentum fluxes. As these fluxes contain vm, we are obliged
to retain this term in (3.23) to properly conserve particles, toroidal an-
gular momentum and energy. These indirect definitions do however not
capture divergence-free contributions to the fluxes. To capture those
terms, we turn to the basic definition of the fluxes, i.e. (2.37). Using
(3.23), the particle flux becomes [42]

Γ =

∫
d3v vf =

∫
d3v [v‖ + vd0]f̄ −∇×

(
b

2Ω

∫
d3v f̄v2

⊥

)
, (3.27)

which contains an additional divergence-free term compared to (3.24).
This term represents the magnetization flow due to the gyration of the
particles around the guiding-centers, given by the −ρ·∇f̄ term in (3.23).
This form of the fluxes is well-known from local theory [42]; the only
difference in the global theory is the ordering of specific terms. In par-
ticular, Ref. [78] shows that, to O (δvTn), the sharp ψ gradients in g
gives a new contribution to the divergenceless magnetization flux, while
the E ×B drift acting on g contributes to the poloidal fluxes.
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Chapter 3. Transport in tokamak pedestals

Although the divergence-free term is of interest for calculating the
fluxes within flux-surfaces, it does not directly contribute to the total
radial transport – as follows from applying Gauss’ theorem to the volume
V (ψ) bounded by that flux-surface ψ. Thus, the fluxes as implicitly
defined by (3.24)–(3.26), are sufficient for calculating the total radial
fluxes.

Moment equations directly involving these total radial fluxes are ob-
tained by taking the flux-surface average of (3.24)–(3.26), and using the
(2.74) property of the flux-surface average. For (3.24), this results in

1

V ′
d

dψ

(
V ′〈Γ · ∇ψ〉

)
=

〈∫
d3v S

〉
. (3.28)

This equation tells us that for V ′〈Γ ·∇ψ〉 to vary radially – which would
naturally occur as a consequence of the sharp radial variation we have
allowed in g – sources are needed.

Physically, this result means that the sharp gradients observed in the
pedestal will drive fluxes that are incompatible with steady-state colli-
sional transport in the absence of sources, which is why we introduced
sources in (3.16).

This incompatibility of steady-state assumptions and radially-global
transport is also observed in gyrokinetic modeling of plasma turbu-
lence [80], where one typically adds sources either to match physical
sources in experiments (referred to as flux-driven simulations), or to
make the profiles remain close to the experimentally observed profiles
(known as profile-driven simulations) [81]. The latter approach is used
in this work; an argument for this approach can be made as follows:

Experimentally observed steady-state profiles are necessarily consis-
tent with the physical total fluxes and sources. If the modeled fluxes are
not consistent, there must be other, unmodeled contributions to the flux
such that the total flux respects the conservation laws, i.e., for particles

∇ · (Γ + Γunmodeled) = Sphysical

=⇒ ∇ · Γ = Sphysical −∇ · Γunmodeled ≡ Seffective,
(3.29)

where Sphysical is the physical source. From this equation, we can define
an effective source-term given by the divergence of the unmodeled fluxes
combined with the physical source. If the model for Γ does not depend
on the unmodeled fluxes, solving for the sources needed for a consistent
steady-state is equivalent to solving for the physical sources combined
with the divergence of the unmodeled fluxes.
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Figure 3.1: Unmodeled and modeled radial steady-state fluxes, for pos-
itive unmodeled fluxes and no physical sources. The difference between
the maximum of the modeled fluxes and the total fluxes is indicated by
∆.

We will discuss how the effective sources are solved for in this work in
the next section, where we describe how we numerically solve (3.16) for
both g and S. Regardless of the solution method, a general issue with
this approach may be noted, namely that the total flux is not determined.
For the radial flux, the situation is illustrated in Figure 3.1 for the case
of no physical sources, so that any radial gradient in the modeled radial
flux must be balanced by the effective sources, here corresponding to a
change in the unmodeled fluxes.

As the typical transport in tokamak plasmas is turbulent, a natural
candidate for the unmodeled fluxes in our collisional transport model is
the turbulent flux. In the pedestal, turbulence is decreased, while the
sharp gradients cause the collisional transport to increase, which sug-
gests a picture similar to Figure 3.1. If the unmodeled, radial turbulent
fluxes are positive – as is typically the case for the turbulent heat flux
– the peak value of the modeled collisional flux gives the best approxi-
mation to the total flux (with the error indicated by ∆ in Figure 3.1).
Furthermore, if the turbulent flux is small – as is suggested by the some-
times good agreement between collisionally modeled and experimental
fluxes [28, 29, 32] – the error in this approximation will be small. Ex-
act estimation of these errors would require radially-global turbulence
simulations, which are beyond the scope of this work.

3.3 The PERFECT code

The Perfect code solves discretized versions of either the local time-
independent linearized DKE (3.17) or the global equation (3.16), taking
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the zeroth order density, temperature and electrostatic potential as in-
puts and returning (moments of) g and the sources S as outputs.

In the global equation, the sources are solved for alongside g, typi-
cally by demanding that the flux-surface averages of the perturbed den-
sity and pressure are zero2 〈∫

d3v g

〉
= 0,〈∫

d3v v2g

〉
= 0.

(3.30)

This provides two ψ-dependent constraints for each species, which allows
us to solve for the ψ-dependence of two kinds of sources – typically
taken to be heat and particle sources in Perfect. The velocity and
θ dependence of the sources can be specified by the user; the former
differentiates particle from heat sources. Perfect allows for flexibility
in specifying sources, and (3.30) can be supplemented or replaced with
other constraints on g. For simulations with zero radial current – which is
a practical requirement for confinement, see the discussion under (2.76)
– we use an additional unknown momentum source with a prespecified
species dependence to balance the additional constraint on the current.

Equation (3.30) also makes it easier to specify the zeroth-order Max-
wellian from experimental data, as it implies that the density and tem-
perature in the Maxwellian should correspond to the flux-surface aver-
ages of those quantities.

Apart from sources, the solution of the global equation is further
complicated by the need to apply radial boundary conditions to the
problem. Perfect has the flexibility to apply three alternative condi-
tions: Dirichlet boundary conditions g(ψ1) = glocal(ψ1) or g(ψ1) = 0,
or Neumann vd0 · ∇g = 0. These are applied at the boundaries where
radially drifting particles enter the domain.

Rather than the W0 and µ used to derive the DKE in the previous
section, Perfect uses x = v/vT and ξ = v‖/v, which allows for a more
convenient representation of the full linearized Fokker-Planck collision
operator. The discretization of the problem is done by finite difference
in ψ and θ, a Legendre polynomial expansion in ξ and by using spectral
collocation in x [72].

2Note that g and f1 have the same flux-surfaced averaged density and pressure,
since 〈Φ1〉 = 0.
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With this discretization, the global DKE (3.16) and the constraints
(3.30) – and also the local DKE (3.17) without constraints – can be
written as a matrix inversion problem. In Perfect, this problem is
solved using PETSc’s Krylov solver [82] with preconditioners based on
simplified forms of the problem, generated by, for example, dropping
off-diagonal terms.

Factorization of the preconditioner matrix is typically the lengthiest
part of the computation, and the often large size of the matrix means
that Perfect needs several hundred gigabytes of memory to solve the
global equation at realistic resolutions. Depending on the tolerance re-
quirement of the Krylov solver, numerous Krylov iterations may also be
needed to obtain a solution.

Once the distribution is obtained, Perfect calculates the fluxes
described in the previous section as outputs. In Chapter 5, we summarize
results obtained by applying Perfect to a range of problems related
to neoclassical pedestal transport, which formed the basis for Paper A,
Paper B, and Paper C.
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Chapter 4

Transport of highly-charged
impurities

The transport of highly-charged impurities is a concern in any magnetic
confinement system, as highly-charged impurities cannot be allowed to
accumulate in the center of the plasma. It is also theoretically chal-
lenging, as their high charge makes them sensitive to small variations
in electrostatic potential that is of little importance to describe the be-
haviour of the bulk hydrogen ions and electrons.

The importance of studying impurity transport was realized already
in the early days of fusion research [83], and the effects of highly-charged
impurities developing density variations along the magnetic field-lines
was investigated in the late 1970’s [84, 85]. A calculation of the self-
consistent variation of impurities along field-lines due to friction, elec-
trostatic potential and centrifugal forces in tokamaks may be found in
Ref. [35]. These effects are not only important because they affect the
self-consistent distribution of impurities, but they also allow for new
methods of affecting the transport of impurities by manipulating the
electrostatic potential in the plasma [86], which can be done by chang-
ing how the plasma is heated [87].

All the above studies were conducted for tokamaks. Recently, these
effects have attracted an interest in the stellarator community [36, 37].
This chapter describes an analytic derivation of the transport of highly-
charged impurities in the mixed-collisionality regime, adapted from Ref. [88]
– see also Ref. [69] for an alternative derivation.
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4.1 Highly-charged impurities

For highly-charged impurities, Z � 1 (where Z here refers to the impu-
rity charge number, and the bulk ions are assumed to be singly charged),
even the lowest order Maxwell-Boltzmann distribution (2.62) gives a

density that varies on the flux-surface, through the e−
ZeΦ
T term. To be

explicit, we write the potential as

Φ = 〈Φ〉+ Φ̃, (4.1)

where Φ̃ is the part of Φ that varies on the flux-surface, and 〈Φ〉 is the
flux-surface average of the potential. In order to be able to neglect the
flux-surface variation of Φ for the bulk hydrogen ions and electrons, we
assume Φ̃ ∼ 1

Z 〈Φ〉 so that eΦ̃/T is small in Z−1.
As collisionality scales with Z2, highly-charged impurities can be

collisional even though the bulk-ions are in a low-collisionality regime.
This is the case in the mixed-collisionality regime. The collisional im-
purities are thus Maxwellian also to higher-order, and we can use the
fluid-equations (2.42)-(2.44) for the impurities with no further kinetic
information.

For a Maxwellian impurity in steady-state, the equations for particle
(2.42) and momentum conservation (2.43) reduce to

∇ · Γz = 0, (4.2)

∇pz − Ze (nzE + Γz ×B) = Fc, (4.3)

while the energy conservation equation (2.44) implies that the impurities
and main ions have equilibrated to the same temperature Tz = Ti =
T (ψ), which is a flux-function.

From (4.3), we obtain the average radial flux of impurities by pro-
jecting the equation onto B×∇ψ and performing a flux-surface average

Ze 〈Γz · ∇ψ〉 =Ze 〈Γz · ∇ψ〉NC + Ze 〈Γz · ∇ψ〉C , (4.4)

〈Γz · ∇ψ〉NC ≡− 〈nzB ×∇ψ · ∇Φ〉 − T

Ze
〈B ×∇ψ · ∇nz〉 , (4.5)

〈Γz · ∇ψ〉C ≡〈B ×∇ψ · Fc〉 . (4.6)

Here 〈Γz · ∇ψ〉C is the classical transport, caused directly by perpendic-
ular friction; 〈Γz · ∇ψ〉NC is the neoclassical transport, caused by the
electric fields and pressure in the B × ∇ψ-direction. The neoclassical
transport is often expressed in terms of parallel friction. To show the
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relation between neoclassical transport and parallel friction, we take the
B projection of (4.3), resulting in

TBnz∇‖
(

lnnz +
Ze

T
Φ

)
= Fc‖,z. (4.7)

To proceed, we introduce the quantity w, which is defined through the
magnetic differential equation

B · ∇(nzw) = −B ×∇ψ · ∇
( nz
B2

)
. (4.8)

Multiplying (4.7) by w and flux-surface averaging, the relation (2.75)
allows us to move the parallel derivative to nzw by partial integration, at
which point (4.8) lets us translate the parallel derivative into a derivative
in the B × ∇ψ-direction. Then, (2.76) and another partial integration
yields

Ze 〈Γz · ∇ψ〉NC =− Ze 〈nzB ×∇ψ · ∇Φ〉 − T 〈B ×∇ψ · ∇nz〉
=Ze

〈
wBFc‖,z

〉
,

(4.9)

showing that the neoclassical transport indeed is related to parallel fric-
tion, and that wB acts as a weighting function for integrating up the
neoclassical transport from the parallel friction. For cases where nz is
constant on the flux-surface, w reduces to the geometric function u

B · ∇u = −B ×∇ψ · ∇
(

1

B2

)
. (4.10)

For magnetic fields with toroidal symmetry, w = −IB−2 up to an inte-
gration constant, where the flux-function I is related to toroidal mag-
netic field Bt and major radius R through I = RBt.

Although (4.9) shows mathematically how parallel friction causes
neoclassical transport, it is non-trivial to evaluate the parallel friction
on the impurities. Since the impurities cannot transfer momentum to
themselves, the friction force is set by collisions with bulk ions and elec-
trons, where the contribution from the more massive ions dominates, see
(2.34), so that

Fc,z ≈ Fc,zi = −Fc,iz. (4.11)

The last step results from the momentum conservation property of the
collision operator, (2.30). Furthermore, since the bulk ions are in the
low-collisionality regime, the friction force is typically smaller than the
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force due to the electric field in the parallel momentum equation (4.7).
We can quantify this smallness by introducing the parameter [34]

∆ ≡ Z2εν̂ii � 1. (4.12)

This is convenient, since it allows us evaluate the friction force to order
∆1 from nz to order ∆0, which will be sufficient to evaluate the transport.

To order ∆0, the impurity density merely responds to the electric
field, reproducing the zeroth-order result in the ε expansion (2.62)

nz0 = Nze
−ZeΦ̃/T =

∫
d3v fMz, (4.13)

where we have defined a new pseudo-density Nz, which is related to
pseudo-density η in previous sections by

Nz ≡ ηze−Ze〈Φ〉/T . (4.14)

The equivalence of the ∆ and ε expansion-results to this order follows
from the fact that Rz‖ = 0 if both the ions and the impurities are
Maxwell-Boltzmann distributed (2.62).

To evaluate the impurity-ion friction force due to the above nz0
(4.13), we require parts of fi1 in the low-collisionality regime, determined
by (2.67)-(2.69). When the impurities are trace, the effect of the impu-
rities on fi1 can be neglected, so that fi1 calculated for a pure plasma
can be used [89]. The non-trace impurity limit is more complicated; for
impurities which are constant on the flux-surface (Φ̃ = 0) the required
parts of fi1 were obtained in Ref. [90]. These results can be generalized
to the case of impurities varying on the flux-surface (Φ̃ 6= 0) by essen-
tially repeating the previous calculations [88]. These calculations all
rely on the mass-ratio expanded collision operator (2.32) to make them
analytically tractable, using the fact that highly-charged impurities are
much heavier than the bulk hydrogen ions. The resulting impurity flux
can be written

〈Γz · ∇ψ〉NC

〈nz0〉
= DNC

Φ

e

Ti

d 〈Φ〉
dψ
− 1

Z
DNC
Nz

d lnNz

dψ
−DNC

ni

d lnni
dψ

−DNC
Ti

d lnTi
dψ

,

(4.15)
where the transport coefficients DNC are

DNC
Φ =−DNz −Dni (4.16)
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DNC
Nz

=
miniTi

Ze2 〈nz0〉nz0τiz0

〈nz0w2
0B

2
〉
−
〈
nz0w0B

2
〉 〈w0B

2
〉

〈B2〉
(4.17)

+

〈nz0w0B2〉
〈B2〉

〈
B2

nz0

〉
−
〈
w0B

2
〉〈

B2

nz0
(1− c4α)

〉 〈
(1− c4α)w0B

2
〉

DNC
ni

=− miniTi
Ze2 〈nz0〉nz0τiz0Ze

〈nz0w0uB
2
〉
−
〈
nz0w0B

2
〉 〈uB2

〉
〈B2〉

(4.18)

+

〈nz0w0B2〉
〈B2〉

〈
B2

nz0

〉
−
〈
w0B

2
〉〈

B2

nz0
(1− c4α)

〉 (
c2 +

〈
uB2

〉
[c1 + 1]

)
DNC
Ti =

miniTi
Ze2 〈nz0〉nz0τiz0

1

2

(〈
nz0w0uB

2
〉
−
〈
nz0w0B

2
〉 〈uB2

〉
〈B2〉

)
(4.19)

−
〈nz0w0B2〉
〈B2〉

〈
B2

nz0

〉
−
〈
w0B

2
〉〈

B2

nz0
(1− c4α)

〉 (
c3 −

3

2
c2 −

〈
uB2

〉 [
c1(1.17− 1) +

1

2

]) ,
where the collision time is τiz = 4

3
√
πνiz

; α = Z2nz/ni; and we have

introduced the flux-surface constants c1, c2, c3, and c4, which depend
on both magnetic geometry and the impurity density, and are defined in
Ref. [88]. The zero subscript on w and τiz indicates that nz0 (4.13) are
used instead of the exact nz.

The transport coefficients (4.16)-(4.19) have several new features
compared to the Φ̃ = 0 case – most notably, DΦ 6= 0, which means
that a radial electric field can drive transport in the mixed-collisionality
regime. The transport driven by the radial electric field grows quite
rapidly with the amplitude of Φ̃ [69, 88], which may be important in
order to explain why stellarator experiments frequently observe accu-
mulation of impurities when operating with inward electric field [15].
This electric field configuration is expected when the electron and ion
temperatures are comparable [16], which is a preferred regime for future
reactors [17].
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The expression for the flux in (4.15) does not include the classical
transport, which is normally smaller than the neoclassical flux. The
classical flux can be readily calculated from the gyrophase varying part
of f in (2.59). For the same mass-ratio expanded collision operator
(2.32), the classical transport is calculated as the friction force resulting
from the lowest-order gyrophase dependent f , resulting in

〈Γz · ∇ψ〉C ≡
1

Ze

〈
B ×∇ψ
B2

· Fc,z
〉

(4.20)

=
mini
Zenzτiz

〈
nz
|∇ψ|2

B2

〉
Ti
e

[
d lnni

dψ
− 1

2

d lnTi
dψ

− 1

ZNz

dNz

dψ

]
.

As was mentioned in Section 2.1.2, while the classical transport is usu-
ally small, it can be dominant for collisional impurities in certain stel-
larators. We can now quantify this statement by comparing (4.20) and
(4.15). Taking the simple Φ̃ = 0 limit, we find the ratio of classical to
neoclassical transport purely depends on the magnetic geometry

〈Γz · ∇ψ〉C

〈Γz · ∇ψ〉NC
=

〈
|∇ψ|2
B2

〉 〈
B2
〉(

〈u2B2〉 〈B2〉 − 〈uB2〉2
) . (4.21)

This ratio can be rewritten in terms of the ratio of perpendicular and
parallel current density,

〈Γz · ∇ψ〉C

〈Γz · ∇ψ〉NC
=

〈
j2
⊥
〉 〈
B2
〉〈

j2
‖

〉
〈B2〉 −

〈
j‖B

〉2
. (4.22)

which has been optimized to be large in the Helias line of stellarators,
including Wendelstein 7-X1. As a result, collisional impurities in these
stellarators can have a sizable ratio of classical to neoclassical transport.

The analytical classical to neoclassical ratio (4.22) is valid for the
mixed-collisionality regime, for impurities with large masses compared
to the bulk ions. These are the assumptions made in the analytical cal-
culation that formed the basis of Paper D and Paper E. To investigate
the ratio of classical to neoclassical fluxes at any collisionality regime,
for the full Fokker-Planck collision operator (2.27), numerical calcula-
tions of the neoclassical fluxes are needed. In Paper F, we performed
such calculations using the Sfincs code, which is described in the next
section.

1The world’s largest stellarator, operated by the Max Planck Institute of Plasma
Physics at Greifswald, Germany.
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4.2 The SFINCS code

The Sfincs code [91] solves the linearized radially-local drift-kinetic
equation (2.63) for stellarator geometry. The lack of a symmetry direc-
tion in a general stellarator means that the equation is 4-dimensional,
in the sense that the terms in the equation generally depend on four
variables: ζ, θ, x = v/vT and ξ = v‖/v. This makes the computational
requirements comparable to those of the radially-global tokamak code
Perfect, which Sfincs was based on. Sfincs thus mostly uses the
same numerical tools as Perfect, including PETSc’s Krylov solver.

Due to the higher computational costs, stellarator calculations have
historically used simplified collision operators retaining only pitch-angle
scattering [91], which Sfincs also supports for the sake of comparison.
This simplified operator is adequate at low collisionality, but becomes
inaccurate for highly-charged impurities, which typically have higher
collisionality [92]. Pitch-angle scattering calculations are nevertheless
routinely done for impurities due to their computational simplicity [93].

Sfincs also has the option to include the effects of variations in the
electrostatic potential on the fluxes for any species. This is done by
including the variation in the electrostatic potential, in Sfincs denoted
by Φ1, in the lowest order distribution function for all species. Here,
Φ1 is calculated through the quasi-neutrality equation, using f0 + f1 to
calculate the density variation on the flux-surface∑

a

Za

∫
d3v(fa0 + fa1) = 0, (4.23)

where Φ1 enters the equation through fa0. This makes the equation
nonlinear, due to the drift velocity multiplying ∇f0 in (2.63). The re-
sulting nonlinear equation is solved by using PETSc’s implementation
of Newton’s method to reduce the nonlinear problem into a sequence of
linear problems, which again are solved using PETSc’s Krylov solver.
The nonlinear problem thus requires an order of magnitude more com-
putational time. To avoid performing such calculations, Paper F makes
use of a small number of nonlinear Sfincs simulations, performed as
part of a different study [37]. As described in Paper F, the calculation
of the classical transport can be performed as a post-processing step to
already existing Sfincs calculations.
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Chapter 5

Summary of papers

In the previous chapters, we introduced a theoretical framework for
studying neoclassical transport in tokamak pedestals and stellarators.
In this chapter, we give an overview of the work we have done in this
framework by summarizing the six attached papers. Papers A-C are con-
cerned with tokamak pedestal transport as described in Chapter 3, while
Papers D-F treat the collisional transport of highly-charged impurities
in stellarators.

In Paper A we looked at changes in transport due to the presence
of trace and non-trace nitrogen impurities in the pedestal. While im-
purities cannot be allowed to accumulate in the hot core of the plasma,
they can also have beneficial effects. As an example of this, when the
tokamak JET1 switched from a carbon to a beryllium-tungsten (“ITER2-
like”) wall, there was a reduction in energy confinement [94–96]. This
decrease in confinement was attributed to a reduction in the impurity
content of the plasma as a result of the new wall, but previous con-
finement levels could sometimes be recovered by injecting nitrogen [95,
97].

To study this, we generated a density and electron temperature pro-
file similar to experimental JET electron profiles (Figure 16 of Ref. [98]),
and complemented this with model potential and ion temperature pro-
files designed to satisfy the assumptions of the global DKE: gentle Ti

1Joint European Torus, the world’s largest tokamak, hosted in the UK on behalf
of EUROfusion.

2ITER: Latin for “the way”, a tokamak currently being built in Cadarache, France,
which upon its completion will be the largest tokamak to date.
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variations – here based on the core Te gradients – and electrostatic ion
confinement.

As a result of the electron temperature pedestal, large electron par-
ticle fluxes developed both in and across flux-surfaces. These fluxes
were well described by the local theory, due to the small orbit width
of the electrons and the low flow of the ions, which otherwise could af-
fect the electrons through collisions. Thus, the parallel current in these
simulations were close to results from the local theory. This has im-
plications for evaluating the performance of a tokamak reactor, as the
poloidal magnetic field – which determines the orbit width – is set by
this current. In addition, stronger parallel current can drive so-called
peeling-modes unstable, which can drive the plasma away from a stable
pedestal configuration and cause large intermittent heat fluxes [98–101].

For bulk and impurity ions, the global effects caused order unity rela-
tive modifications to ion heat and particle fluxes, with impurity particle
fluxes even changing sign compared to the local results. These effects
are not restricted to the pedestal region, but due to the radially global
nature of these effects, they extend a distance into the near-pedestal
core, and this distance was observed to scale with the orbit width of the
species, as expected.

Furthermore, it was found that the momentum transport was strongly
affected by the nitrogen seeding, which could imply that the confinement
improvement due to nitrogen seeding might not be directly related to a
reduction in heat flux, but due to a more efficient suppression of turbu-
lence. The analysis in Paper A did not explicitly enforce intrinsic am-
bipolarity of the particle fluxes, and a non-zero radial current developed
together with a significant radial flux of toroidal angular momentum. In
Paper B, we showed that this non-zero radial neoclassical current can
be replaced with a momentum source to yield a system consistent with
steady-state. Even with this replacement, the radial momentum fluxes
remained non-zero and qualitatively similar to those in the presence of
the radial current.

In Paper B, we used similar input profiles as in Paper A to study
pedestal flows in deuterium (D), helium (He) and mixed D-He plasmas.
The aim of the study was to investigate whether the He flow is a suitable
proxy for the D flow, since the latter is much more difficult to measure
in experiments [102]. Specifically, we investigated to what extent the
flow of He impurities in a bulk D plasmas is similar to the D flow, and
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also if the He flow in bulk He plasma is similar to the D flow in a bulk
D plasma.

We found that the flow of He impurities in a D bulk plasma can be
quite similar to those in a bulk He plasma – i.e. that the species role as
bulk or impurity was not the dominant factor in our study. Specifically,
the extremum values in outboard (θ = 0) and inboard (θ = π) poloidal
flows were within 0.3 km/s absolute and 15% relative difference, which
is within current experimental uncertainties in flow measurements [103,
104]. Likewise, the extremum values of the poloidal D flows in the bulk
and impurity scenario were within 0.5 km/s of each other.

On the other hand, the difference in poloidal flows between the
species were significant, around 10 km/s, which indicates that He flows
may not be a suitable proxy for D flows. Despite difference in magni-
tude, the shape of the D and He flow structures in the radial-poloidal
plane were qualitatively similar to each other, if the thermal orbit width
of the species is interpreted as setting the radial scale of these structures,
and this difference is compensated for.

Furthermore, as the divergence of the radial fluxes can not be ne-
glected in the global theory, since the non-adiabatic response g varies on
the orbit-width scale, there is a potential for interactions between radial
and poloidal fluxes. As a result, radial-poloidal structures in the particle
flux can form near the pedestal. As the fluxes are not divergence free on
a flux-surface – as assumed in the local theory – the poloidal flow coeffi-
cient3 is not a flux-function, and can even change sign between inboard
and outboard side. Thus, changes in the sign of the poloidal flow on
a flux-surface could potentially be an experimental signature of global
effects.

In Paper C, we investigated isotopic effects in the pedestal. The
isotope effect is a phenomenon where the ion heat fluxes do not scale
with the square-root of the ion mass [105–108], which would be the
expected scaling from collisional transport and some models for plasma
turbulence, such as ion-temperature gradient modes [109]. The isotope
effect is typically seen to be stronger for H-mode plasmas [110, 111], and
is thus an interesting topic for radially-global studies. Global effects tend
to reduce the ion heat flux in the pedestal compared to locally predicted

3The poloidal flow coefficient, kp, is essentially the proportionality coefficient be-
tween temperature gradient and poloidal flow Vp, with some additional geometric
factors: Vp = kpBpBtR/(e〈B2〉)dT/dψ.
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values, and these effects are stronger for heavier isotopes due to their
wider orbit-widths.

We also investigated the extent to which global corrections to local
results can be predicted by experimentally measurable density pedestal
parameters: reciprocal pedestal width over orbit width, relative pedestal
density drop and logarithmic gradient times orbit width. The impact of
global effects typically increase with all these parameters, and showed
signs of saturation for higher values. For fixed width and density at the
last-closed flux-surface, the global conductive and convective heat fluxes
become less sensitive to the pedestal gradient as it increases, so that the
difference between local and global convective and conductive fluxes even
may change sign. The trends for the sum of conductive and convective
heat fluxes were in general too complicated to give clear predictions:
Simple empirical models based on polynomials of low degree gave large
residuals (and were thus not included in the published paper).

To summarize the pedestal work: we found that radially global effects
can introduce order unity modifications to particle and heat fluxes, which
extend into the near-pedestal core; the fluxes are no longer divergence
free on flux-surfaces; the ambipolarity of the particle fluxes needs to
be enforced, and momentum transport appears at lower order and is
sensitive to impurities.

Starting in Paper D, we changed focus and considered the transport
of a collisional impurity species in an otherwise pure stellarator plasma,
in the mixed-collisionality regime. In previous stellarator studies, it was
found that the impurity transport of a collisional impurity is independent
of the radial electric-field [90, 112, 113]. This is generally not the case in
stellarators, and goes against the conventional wisdom that an inward
radial electric-field transports impurities into the plasma [92]. However,
when we generalized the previous mixed-collisionality regime calculation
in Ref. [90, 113] to account for flux-surface variation in the impurity
density, we found that the impurity transport once again depends on
the radial electric-field, and often leads to impurity transport in the
direction of the electric field.

Even so, under rare circumstances, an inward radial electric field was
found to transport impurities outwards. These results were also found
independently by Calvo et al. [69], and may be applicable to preventing
impurities from accumulating in stellarators. This potential applica-
tion inspired the optimization effort underlying Paper E. In addition,
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we derived the ratio between classical and neoclassical flux (4.21) in
the mixed-collisionality regime, which strongly indicated that classical
transport of a high-collisionality impurity is relevant in Helias-type op-
timized stellarators such as Wendelstein 7-X (W7-X). This was further
studied in Paper F.

In Paper E, we applied the expression for the transport coefficients
of impurities derived in Paper D to minimize the impurity peaking fac-
tor with respect to the impurity variation on the flux-surface. The
impurity peaking factor is defined as minus the logarithmic impurity
pseudo-density gradient, −d lnNz/dψ, that causes the radial impurity
flux 〈Γz · ∇ψ〉 to be zero, given that all other profiles are fixed. The
peaking-factor determines the steady-state profile of impurities – as set
by the collisional transport and ignoring any source-term – and minimiz-
ing the peaking-factor minimizes the amount of impurities in the middle
of the plasma. For a W7-X standard case (which refers to the choice
of magnetic field configuration) [114], the minimization procedure found
impurity variations that reduce the central impurity density by the fac-
tor 0.89Z , compared to the case when the impurity density is constant on
the flux-surface. For an LHD4 impurity hole case, the optimal reduction
was even more significant (0.75Z). This results in a large reduction for
large Z. Furthermore, as these reductions are compared to a constant
nz, the effect may be even more significant when comparing to unopti-
mized nz variations, as most nz variations appear to be unfavorable for
the purpose of expelling impurities.

This study was merely concerned with finding the optimal impurity
density variation, and did not consider whether or how such optima can
be achieved in experiments. However, an independent simulation study
by Yamaguchi & Murakami [38] on the influence of neutral-beam in-
jection (NBI) heating on the electrostatic potential variation indicates
that impurity density variations qualitatively similar to our LHD opti-
mum could be achieved by neutral-beam injection perpendicular to the
magnetic field. Yamaguchi & Murakami also found a reduction in impu-
rity accumulation under these conditions, using numerical simulations
to evaluate the neoclassical transport.

In Paper F, we looked further into the ratio of neoclassical and clas-
sical impurity transport in stellarators, by considering how this ratio

4Large Helical Devince, a stellarator in Japan.
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varies with collisionality. To calculate the neoclassical impurity trans-
port for any collisionality, we used the Sfincs drift-kinetic solver [91].
In order to have an expression for the classical transport that is directly
comparable to the neoclassical transport calculated with Sfincs, we
generalized the classical calculation in Paper D to use the full Fokker-
Planck collision operator (2.27), using the Braginskii-matrix method
(see, for example, Ref. [115]). For a W7-X standard configuration with
a carbon impurity, we found that the classical transport is not only
important for highly-collisional impurities, but the classical transport
coefficients become comparable to the neoclassical already for impurity
self-collisionalities ν̂CC ∼ 0.1–1. As the classical transport is only dom-
inant for collisional impurities in stellarators optimized for low parallel
current, it is also of interest to compare this to the LHD impurity hole
case, where the classical transport coefficients are smaller than the neo-
classical even at high collisionality. The classical transport can still be
significant compared to the neoclassical in a narrow collisionality range
where the neoclassical coefficients change sign.

The classical transport can be thought of as an irreducible minimum
of collisional transport, as it cannot be optimized away by optimizing
the magnetic field to better confine the drift orbits, but merely depends
on the magnetic field strength. Thus, the fact that optimized stellara-
tors such as W7-X have classical levels of impurity transport indicates
that the overall collisional transport of impurities is low. Hence, other
transport channels – such as turbulence – could be expected to play
a large role in the transport of these impurities. This picture is sup-
ported by recent experimental studies [93, 116], where iron impurity
transport coefficients about a hundred times larger than those predicted
by neoclassical theory were measured. This is a novel situation, as the
typical unoptimized stellarator had such strong neoclassical transport as
to make turbulent transport irrelevant [117].

Thus, further studies into impurity transport in stellarators will likely
need to take turbulence into account. A capability to perform such com-
putations already exist [118, 119], but the simulations are computation-
ally expensive and are thus not routinely performed. Thus, predicting
the impurity transport in Wendelstein 7-X is likely to remain a challenge
in the near future.

Summary and outlook We theoretically investigated collisional trans-
port in tokamak pedestals and the collisional transport of heavy impu-
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rities in stellarators, using models based on the drift-kinetic framework.
In tokamak pedestals, we found that global effects can introduce

order unity changes to heat and particle fluxes. In the global theory,
momentum transport appears at a lower order in the perturbation ex-
pansion, and is sensitive to impurities in the plasma. These effects also
extend into the near-pedestal core. The fluxes are no longer divergence
free within the flux-surfaces, which modifies the toroidal and poloidal
flows.

Concerning impurity transport in stellarators, we found that electro-
static potential variations along the field-line cause the transport of col-
lisional impurities to become sensitive to the radial electric field. These
variations often increase impurity accumulation for cases with inward
radial electric fields, but can in some circumstances lead to impurity
expulsion. We have found electrostatic potential variations optimized
to reduce the accumulation of impurities. These optima are similar to
the variations seen in simulations of neutral beam heating in the LHD,
when the beam is perpendicular to the magnetic field [38].

Future improvements to the pedestal modeling capabilities of Per-
fect can be considered. There still remain questions regarding the basic
equation system in Perfect: The global DKE (3.16) combined with the
constraints (3.30) and boundary conditions. As was mentioned in Sec-
tion 3.1, the global DKE is not consistent without time-dependence or an
effective source-term. This suggests that pedestal neoclassical transport
is best studied in combination with another transport mechanism. For
example, by performing full-f pedestal turbulence simulations, it may
be possible to extract a physics based form for the sources in Perfect.

For the stellarator impurity transport part of this thesis, an obvious
next step would be to compare the analytic expression for the neoclas-
sical impurity flux to Sfincs simulations using the same electrostatic
potential variation along the field line in both calculations. An exciting
next step would be to experimentally compare how impurities accumu-
late with perpendicular or parallel neutral beam injection in LHD. More
generally, our analytical results could be used to investigate how to heat
the plasma in order to reduce impurity accumulation in other machines.

To put the collisional transport discussed in this thesis in a broader
context, we note that there are other relevant transport mechanisms:
turbulence in both pedestals and stellarators [93, 120], regions with
stochastic magnetic field in stellarators [121], transient processes in toka-
mak pedestals [122], can all cause transport. It remains a great chal-
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lenge, both computationally and conceptually, to combine these differ-
ent mechanisms. This is the computational frontier of plasma physics.
Improving our understanding of the different mechanisms and their in-
teractions is key to integrating all these processes, with the ultimate aim
of self-consistently describing the transport in a fusion reactor.

To conclude, collisional transport is one important piece in the puzzle
of plasma transport. The work done in this thesis has given us a better
understanding of this piece, which will allow us to better put together
the picture of transport necessary to build and control a fusion reactor.
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