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Abstract: Future intelligent transport systems depend on the accurate positioning of multiple
targets in the road scene, including vehicles and all other moving or static elements. The existing
self-positioning capability of individual vehicles remains insufficient. Also, bottlenecks in
developing on-board perception systems stymie further improvements in the precision and integrity
of positioning targets. Vehicle-to-everything (V2X) communication, which is fast becoming a
standard component of intelligent and connected vehicles, renders new sources of information
such as dynamically updated high-definition (HD) maps accessible. In this paper, we propose a
unified theoretical framework for multiple-target positioning by fusing multi-source heterogeneous
information from the on-board sensors and V2X technology of vehicles. Numerical and theoretical
studies are conducted to evaluate the performance of the framework proposed. With a low-cost
global navigation satellite system (GNSS) coupled with an initial navigation system (INS), on-board
sensors, and a normally equipped HD map, the precision of multiple-target positioning attained
can meet the requirements of high-level automated vehicles. Meanwhile, the integrity of target
sensing is significantly improved by the sharing of sensor information and exploitation of map
data. Furthermore, our framework is more adaptable to traffic scenarios when compared with
state-of-the-art techniques.

Keywords: vehicular localization; target positioning; high-definition map; vehicle-to-everything;
intelligent and connected vehicles; intelligent transport system

1. Introduction

The intelligent transportation system (ITS) is one of the most indispensable components of the
smart city concept that integrates sensing, control, information, and communication technologies
into transportation [1]. In recent years, with the emergence of cutting-edge applications of ITS,
the positioning of multiple targets, including vehicles and other elements has been playing an
increasingly important role in improving safety, mobility, and efficiency [2–4]. For example, future
intelligent connected vehicles (ICVs) require the positioning of their own real-time location with
centimeter-level precision [5], and the awareness of all objects such as surrounding vehicles and
vulnerable road users with significant integrity and confidence. In ITS, the positioning of vehicles and
other targets are usually referred to as vehicular self-positioning and target localization, respectively.
Although attention has been paid in these topics [6–9], there still exist many limitations that need to
be eliminated.
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1.1. Self-Positioning

Multiple self-positioning technologies are already present in the market, but none are effective
under all road conditions and scenarios [10]. GNSS systems are widely employed in ITS devices, but
they can support only low-precision navigation. Researchers have tried to integrate information from
the base station and on-board sensors for error compensation. However, in dense urban environments
where the signal is disturbed by surrounding buildings [5], even the most accurate GNSS with real-time
kinematic correction and INS fusion schemes [11] cannot provide localization with adequate accuracy
and stability.

Introducing new sources of information is an effective way of improving vehicular self-positioning.
V2X communication, which has drawn increasing interest in recent years, renders information easily
accessible to the vehicles connected [12–14]. The V2X-based (or cooperative) method aids in improving
vehicular localization capability by employing the position information of other vehicles and relative
measurements from their on-board sensors [15,16]. The integration of on-board sensors and V2X
communication is shown to be more cost-effective than approaches based on high-quality sensors [17].
A general framework for multi-vehicular localization using pose graph optimization is proposed
in [18], using vehicle-vehicle (V-V) measurements to improve the precision of vehicular localization.
More recently, an implicit cooperative positioning algorithm that exploits the joint sensing of passive
features is proposed in [19,20], and precludes the use of explicit V-V measurements. In addition to the
use of ranging sensors, angle measurement-based cooperative localization is proposed in [21].

Maps are additional sources of information, and the locations of static elements can be used as
references to improve the vehicular positioning capability [22]. In contrast to simultaneous localization
and mapping (SLAM), in which a map is generated real-time [23], the map-based method assumes
that maps are available in advance and aligns landmarks in the maps with on-board sensors to achieve
independent positioning or as an aid to GNSS with INS system (GNSS/INS). As shown in Table 1, over
the past few years, with the development of V2X, HD maps, which are characterized by high-accuracy
and real-time updates, have grown to become standard and indispensable components of intelligent
vehicles [4]. This also enables centimeter-level precision to be achieved in map-based localization [24].

Table 1. Maps for different levels of Intelligent Connected Vehicles.

Grade Title Map Accuracy Typical
ConditionDRIVER SCENARIO

1 (DA) Driver
Assistance ADAS Submeter Optional

2 (PA) Partial
Autopilot ADAS Submeter Optional

AUTOMATIC DRIVING SYS. SCENARIO

ADAS + HD Submeter
Centimeter

Optional3 (CA) Conditional
Autopilot

4 (HA) High-Level
Automated Driving ADAS + HD Submeter

Centimeter Essential

5 (FA) Completely
Automated Driving HD Centimeter

Essential
(auto updated)

The HD map-based method benefits from the high precision of the map used. For example,
the digital map used in [25–27] is created from light detection and ranging (LiDAR) data and has a
precision of up to 10 cm. A high-accuracy localization technique using urban environment maps for
vehicles in motion is proposed in [28], and these maps are generated by integrating GNSS, LiDAR
data, and on-board sensors. In addition, more features are used in the process of map alignment,
which contributes to higher self-positioning precision. Traffic lights and visual lane markers are used
as landmarks in [5,29], respectively. In a more recent study [26], a unified framework using more
references in addition to the abovementioned features (lamp poles, traffic signs, etc.) is proposed, and
self-localization with an accuracy of within 30 cm is achieved with merely a low-cost camera. While the
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abovementioned studies conduct map-based localization independently, there is much research that
integrates it with other on-board sensors. A lane determination system that fuses on-board sensors,
GNSS, and commercially available road network maps is proposed in [30]. A proof-of-concept study
using INS and maps for vehicular localization in GNSS-denied environments is conducted in [31].

1.2. Target Localization

Apart from vehicular self-positioning, the relative localization of targets in the surrounding
environment is another fundamental technology underpinning ICVs. This task is mainly undertaken
by vehicle perception modules, and the positioning result is obtained in the vehicular coordinate
instead of in the world coordinate. Although the recent decades have witnessed the rapid development
of on-board sensors, the current on-board sensing technology still faces the following problems [4].
First, there is a trade-off between localization accuracy and cost. For example, low-cost cameras and
radars can achieve accuracies of only several centimeters, while LiDAR systems with centimeter-level
ranging accuracy are expensive [32]. Second, all sensors have limited sensing ranges, and the occlusion
of sensors by other vehicles and objects is a frequent occurrence [33]. Irrespective of the number of
sensors equipped in the vehicle, the perception of the environment remains incomplete. Attempts to
improve the perception of bicycles have already encountered bottlenecks to a certain extent.

Studies using the perceptual information of other vehicles to improve the integrity of target
localization have proven to be effective. This is because other vehicles in the network may have
seen a target that cannot be seen by the ego-vehicle because of occlusion or limited field of view.
A vehicle-to-vehicle (V2V) communication and map merging-based cooperative perception system
to extend the perception range beyond line of sight and field of view is proposed in [34]. In [35],
the results of the awareness of other vehicles are integrated into the ego-vehicle’s perception system
as virtual sensors to achieve perception enhancement. In [36], a multi-vehicle perception framework
combining image and semantic features is proposed, and experiments have proved that the problem of
front-vehicle occlusion can be solved. In these studies, the problems of self-positioning and localization
of other targets were considered separately, which rendered the effect of the fusion very sensitive
to their relative positioning. In addition, these articles do not provide quantitative analyses of the
integrity of the results perceived.

Maps also contribute to the relative positioning of targets. For example, the geometry of
intersection can be directly extracted from a HD map for motion planning and control [37]. This
reduces the pressure on the vehicle-mounted sensing system, but relies on vehicular self-positioning.
Incorrect self-positioning greatly affects decision-making. Other works integrate the semantic and
geometric prior knowledge in HD maps with the on-board sensing system to improve positioning
confidence. In [38,39], a prior probability map is generated in a bird’s-eye view or image plane to aid
understanding of the scene. Recently, a neural network incorporating prior knowledge with on-board
sensors was presented in [40]. However, these studies treat the map only as an auxiliary tool for
perception to improve the recognition result without improving the integrity of perception. Moreover,
these studies also rely on the accuracy of vehicular positioning.

1.3. Contributions

In general, recent research exploits additional sources of information to improve vehicular
self-positioning and localization of other targets. However, to the best of our knowledge, V2X
and HD maps are considered separately in the literature, while the positioning of the vehicles
themselves and those of other targets are usually treated as different modules. In this paper, we
propose a unified theoretical positioning framework for multiple targets for ICVs. The bottlenecks
of vehicular self-positioning and target localization can be eliminated. Our main contributions are
summarized as follows.
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• A unified theoretical framework for vehicular self-positioning and relative localization of targets
based on V2X is proposed, and it can integrate data from the on-board sensors in the vehicular
network and HD maps with GNSS/INS measurements into a unified system.

• By cooperative positioning, accuracy of under 0.2 m can be achieved in terms of self-positioning
and relative localization of targets in urban areas using low-cost GNSS/INS, on-board sensors,
and widely equipped HD maps. Simultaneously, the target sensing range is extended beyond the
line of sight and field of view, and this greatly improves the integrity of perception.

• Furthermore, compared with state-of-the-art techniques, the proposed framework places fewer
demands on vehicular network nodes’ density and the amount of vehicle-to-target measurements.

The remainder of the paper is organized as follows. In Section 2, the system model is provided.
The development of the proposed joint multiple-target positioning for ICVs is detailed in Section 3.
Detailed implementation aspects are introduced in Section 4. Theoretical studies are explained in
Section 5. Numerical results are given in Section 6. Finally, we conclude the paper in Section 7.

2. Problem Formulation

Firstly, we describe the targets in a traffic scene in this section.

• Targets: All objects related to vehicle driving, including the connected vehicles themselves and
the elements that constitute the environment.

• Connected vehicles: Vehicles in the vehicular network that can obtain information from other
vehicles and HD maps.

• Features: Static targets that can be associated with HD maps, e.g., lamps, trees, traffic lights, and
traffic signs.

• Objects: Targets, both static and moving, that do not exist in HD maps. These can be pedestrians,
bicycles, and disconnected vehicles, all of which are unlabeled on the map.

Consider a vehicular network scenario with a set of Nv interconnected vehicles V =
{

1, 2, · · · , Nv
}

,

as shown in Figure 1. At time t, let x(V)
i,t be the position and orientation of connected vehicle i in the

global coordinate (see Equation (1)).

x(V)
i,t =

[
p(V)

i,t , θ
(V)
i,t
]
=
[
x(V)

i,t , y(V)
i,t , θ

(V)
i,t
]T , i ∈ V (1)

A set of N f static features F =
{

1, 2, · · · , N f
}

also exists in the scene. Their positions are stored
on a HD map with noise and, although not necessary, can be captured by the on-board sensors. We use
Equation (2) to describe the two-dimensional position of the jth feature.

x(F)
j,t = p(F)

j,t =
[
x(F)

j,t , y(F)
j,t
]T , j ∈ F (2)

In addition, we also consider a set of No objects, moving or static, O =
{

1, 2, · · · , No
}

, which is
described in Equation (3).

x(O)
k,t = p(O)

k,t =
[
x(O)

k,t , y(O)
k,t
]T , k ∈ O (3)

It must be noted that we do not estimate the orientations of the features and objects because the
planning module usually does not require this information.

Our task is to estimate the localization and orientation of all the connected vehicles,

X(V)
t =

[
x(V)

1,t · · · x(V)
Nv ,t

]
, (4)
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We also attempt to localize the features and objects (see Equation (5))

X(F)
t =

[
x(F)

1,t · · · x(F)
N f ,t

]
X(O)

t =
[
x(O)

1,t · · · x(O)
No ,t

] (5)

Based on Equations (4) and (5), we can obtain the relative localization of other targets by
transforming their location into the vehicles’ coordinate system.

In terms of the measurements, a target may be captured by a vehicle if it is within the vehicle’s
sensing range and without any occlusions. As shown in Figure 1, the target can be a connected
vehicle, a feature, or an object, which are indicated with red, blue, and brown arrows, respectively.
Its measurement model is described as Equation (6).

z(Ξ)i,j,t = h(S)
(
p(Ξ)

j,t , x(V)
i,t
)
+ v(S)

i,j,t (6)

where Ξ ∈
{

V, F, O
}

and v(S)
k,j,t ∼ N

(
0, R(S)

k,j,t
)

is additive white Gaussian measurement noise with

covariance R(S)
k,j,t, h(S)

(
p(Ξ)

j,t , x(V)
k,t
)

is a function which denotes the measurement of target at position

p(Ξ)
j,t from vehicle x(V)

k,t .

Figure 1. A demonstration of the multiple targets positioning scenario.

The connected vehicles are also equipped with GNSS/INS, which can provide measurements of
their localization and orientation. The corresponding measurements are indicated with black arrows in
Figure 1. Similarly, we treat the map as a virtual sensor with measurements pertaining to an associated
feature as shown with green arrows. The measurement of GNSS/INS on vehicle i and that of HD map
on feature j is indicated by Equations (7) and (8).

z(G)
i,t = h(G)(p(V)

i,t ) + v(G)
i,t (7)

and
z(M)

j,t = h(M)(p(F)
j,t ) + v(M)

j,t (8)
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where v(G)
i,t ∼ N

(
0, R(G)

i,t
)

is the measurement noise of GNSS/INS, and v(M)
j,t ∼ N

(
0, R(M)

j,t
)

denotes
the measurement noise from the map.

If we consider this problem as analogous to a distributed sensor network, the features and
connected vehicles are static and mobile anchors, respectively, and their locations are constrained
by the HD map and GNSS/INS. The objects are static or mobile nodes, and the on-board sensors
generate constraints between the vehicle and nodes. For the vehicles, additional constraints arise from
the V-V measurements.

3. The Unified Multiple-Target Positioning Framework

The objective of multiple-target positioning in this paper is to estimate the states
Xt =

[
X(V)

t , X(F)
t , X(O)

t

]
, from measurements,

Zt =
[
z(S)k,j,t, z(G)

k,t , z(M)
l,t

]
, (9)

where k ∈ V , j ∈ {V ,F ,O}, l ∈ F . From a probabilistic perspective, the maximum likelihood
estimation of Xt is given by Equation (10).

X∗t = arg max P (Zt|Xt) (10)

where P (Zt|Xt) is the likelihood of the measurements Zt given the states Xt. The conditional
distribution of the on-board sensor measurements in Equation (6) is given by Equation (11), where

P
(

z(S)k,j,t|p
(Ξ)
j,t , x(V)

k,t

)
denotes the probability distribution of measurement z(S)k,j,t given the states p(Ξ)

j,t and

x(V)
k,t . N

(
h(S)

(
p(Ξ)

j,t , x(V)
k,t
)
, R(S)

k,j,t

)
denotes a normal distribution with expectation h(S) and variance R(S)

k,j,t.

P
(

z(S)k,j,t|p
(Ξ)
j,t , x(V)

(k,t)

)
= N

(
h(S)
(

p(Ξ)
j,t , x(V)

k,t

)
, R(S)

k,j,t

)
(11)

Similarly, we get the conditional distributions of the measurement from GNSS/INS P
(

z(G)
i,t |p

(V)
i,t

)
and map P

(
z(M)

j,t |p
(F)
j,t

)
given states of vehicles p(V)

i,t or feature states p(F)
j,t (see Equations (12) and (13)).

Their distributions are also normal with perception model h as expectation.

P
(

z(G)
i,t |p

(V)
i,t

)
= N

(
h(G)

(
p(V)

i,t
)
, R(G)

i,t

)
(12)

and
P
(

z(M)
j,t |p

(F)
j,t

)
= N

(
h(M)

(
p(F)

j,t
)
, R(M)

j,t

)
(13)

Remark 1. Given a set of independent and identically distributed (i.i.d.) data D = {xn, n = 1, 2, · · · , N},
where observation xn ∈ RD×1 is drawn from a multivariate Gaussian distribution N (xn; µn, Rn).
The log-likelihood of the data set can be written as Equation (14).

L(D) = −1
2

N

∑
n=1

(
ln
(
(2π)D det(Rn)

)
+ en

TR−1
n en

)
(14)

where en = xn − µn.

According to Remark 1, the maximization of L(D) is equivalent to the minimization of J (D)
(see Equation (15)). The problem is solved with optimization as described in Section 4.

J (D) =
N

∑
n=1

eT
n Rn

−1en (15)
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Considering (11)–(13) and assuming that the three types of measurements are independent,
the joint probability density can be factorized as given in Equation (16).

P (Zt|Xt) =P
(

Z(V)
t , Z(F)

t , Z(O)
t |Xt

)
=∏

k,j
P
(

z(S)k,j,t|p
(Ξ)
j,t , x(V)

(k,t)

)
∏

i
P
(

z(G)
i,t |p

(V)
i,t

)
∏

j
P
(

z(M)
j,t |p

(F)
j,t

) (16)

The maximization of P(Zt|Xt) can be reformulated as the following nonlinear least squares
problem (see Equation (17)).

X∗t = arg min ∑
k

∑
j

(
e(S)k,j,t

)T(
R(S)

k,j,t

)−1
e(S)k,j,t

+ ∑
i

(
e(G)

i,t

)T(
R(G)

i,t

)−1
e(G)

i,t

+ ∑
j

(
e(M)

j,t

)T(
R(M)

j,t

)−1
e(M)

j,t

(17)

To enable insightful visualization, the nonlinear least–squares problem is interpreted in terms
of inference over a factor graph [41]. This graph consists of 2 types of nodes: variable nodes, which
represent the state Xt, and factor nodes, which represent the constraints to on the variables. The factor
nodes can be further divided into bi-directed nodes, which denote the constraints for 2 states (from the
on-board sensor measurements), and directed prior nodes, which denote the constraints from the map
and GNSS/INS.

As shown in Figure 2, for each measurement, we have the following factors.

• Factor between the variables V and Ξ = {V ,F ,O}, on behalf of the constraints of V-V,
vehicle-feature (V-F), vehicle-object (V-O), as expressed in Equation (18).

φk,j,t = P
(

z(S)k,j,t|p
(Ξ)
j,t , x(V)

(k,t)

)
(18)

• Factor between the variables V and GNSS/INS, on behalf of the constraints from GNSS/INS,
as expressed in Equation (19).

φi,t = P
(

z(G)
i,t |p

(V)
i,t

)
(19)

• Factor between the variables F and the map, on behalf of the constraints from the HD map,
as expressed in Equation (20).

φj,t = P
(

z(M)
j,t |p

(F)
j,t

)
(20)

The joint probability in Equation (16) can then be rewritten as the product of all the factors.

P (Zt|Xt) = ∏
k,j,t

φk,j,t ∏
i,t

φi,t ∏
j,t

φj,t (21)

We can clearly see the constraints applied on each node in the factor graph.
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Figure 2. The proposed framework interpreted as inference on factor graphs.

4. Implementation Aspects

In this section, we introduce the implementation aspects related to the hypothesis on vehicle
perception, the measurement model, optimization, and data association.

4.1. Perception Demands and Sensing Capability of Vehicles

We assume that due to occlusion and the limitations of perception range, the vehicle cannot completely
locate the desired target. In this section, we explain the hypothesis of this work. It should be noted that our
hypothesis is based on typical perceptual systems, but can be easily adapted to other forms.

As shown in Figure 3, we identify the scope of targets that need to be localized by a vehicle as
“demanding space” and assume that it is a rectangle that can be quantitatively described by l f and lr,
i.e., the distances that the vehicle requires to sense ahead of and behind itself, respectively, and Wd, the
range that should be perceived laterally. We assume that the vehicle sensing range is a forward-facing
cone with a radius of Rs, and the field of view is θFOV .

Figure 3. Sensing range and perception demand.
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To consider situations of occlusion, we assume that there is an object P in the sensing range, and
that the area outside P in the sector with line VP as the axis of symmetry is regarded as the occlusion
area. Thus, only the blue area in Figure 3 can be perceived. The limitations in sensing range and
occlusion constitute the blind spots of environment perception.

4.2. Measurement Model

In this work, we assume that data from the on-board sensors are in a 2D vehicular coordinate
fashion where h(S) ∼ R2×1, correspond to the measurements from low-cost cameras. This can be
easily adapted to other measurement types, such as polar coordinates in LiDAR measurements.
The measurement model is expressed as,

h(S)
(
p(Ξ)

j,t , x(V)
i,t
)
= R−1(θ(V)

i,t
) [

p(Ξ)
j,t − p(V)

i,t

]
, (22)

where the rotation matrix is expressed as,

R
(
θ
(V)
i,t
)
=

[
cos

(
θ
(V)
i,t
)
− sin

(
θ
(V)
i,t
)

sin
(
θ
(V)
i,t
)

cos
(
θ
(V)
i,t
) ]

, (23)

and the covariance of the on-board sensors’ measurements is given in Equation (24).

R(S)
k,j,t =

[
δ2

sensor 0
0 δ2

sensor

]
(24)

We assume that the GNSS/INS can provide the measurements of the coordinates and angles
of the vehicles. There are many studies on modeling the measurements noise of GNSS/INS [42,43].
In this paper, we simplify the error of GNSS to Gaussian distribution, and the measurement model and
uncertainty of the GNSS/INS on vehicle i are indicated as Equations (25) and (26). Our framework is
also suitable for extending to other error assumptions.

h(G)(p(V)
i,t ) = p(V)

i,t (25)

and

R(G)
i,t =

 δ2
GNSS,l 0 0

0 δ2
GNSS,l 0

0 0 δ2
GNSS,θ

 (26)

In commercial HD maps, the coordinates of the features are provided along with noise, so we
formulate the measurement mode and covariance matrix as expressed by Equations (27) and (28).

h(M)(p(F)
j,t ) = p(F)

j,t (27)

R(M)
j,t =

[
δ2

map 0
0 δ2

map

]
(28)

4.3. Optimized Variable Allocation and Data Association

The optimized variables are allocated to observations within the demanding space of perception.
Unlike in a traditional multi-vehicle cooperative system, barring objects and features captured by
vehicles, features that are not seen by any vehicle but are within the demanding space are also included
in the optimized variables, and further optimized to yield the results of perception.
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Observations that are associated are merged into existing variables and form constraints in the
process of optimization. There are many methods that can be applied to our framework [44,45]. In this
study, we assume that the vehicle’s on-board sensors and HD maps can provide enough semantic clue
to identify objects. The association algorithm itself is beyond the scope of this article.

4.4. Optimization Problem Solving

In this study, the nonlinear optimization problem in Equation (17) is solved via the
Levenberg-Marquardt method [46]. We reorganize the residuals of time t into one vector, as expressed
in Equation (29).

e =
(

e(S)ij e(S)kp e(G)
m e(M)

q

)T
(29)

where e(S)ij is the residual of measurement from the on-board sensor of vehicle i to vehicle j. e(S)kp is

the residual of measurement from the on-board sensor of vehicle k to feature or object p. e(G)
m is the

residual of GNSS/INS measurement of vehicle m, and e(M)
q is the residual of measurement from HD

map to feature q. The optimized variable at time t can then be rewritten as,

X =
(

x(V)i x(V)j x(V)k x(Ξ)p x(V)m x(F)q

)
, (30)

where Ξ ∈
{

F, O
}

. Let R be the overall covariance matrix such that

R = diag
(

R(S) R(S) R(G) R(M)
)

. (31)

The cost function can be rewritten as,

f(X) =
(
R
−

1
2 e
)T(R−1

2 e
)
. (32)

We can get the Jacobian matrix (see Equation (33)).

J(X) =
∂
(
R
−

1
2 e
)

∂X
=

R
−

1
2



∂e(S)ij

∂x(V)
i

∂e(S)ij

∂x(V)
j

0 0 0 0

0 0
∂e(S)kp

∂x(V)
k

∂e(S)kp

∂x(Ξ)p

0 0

0 0 0 0
∂e(G)

m

∂x(V)
m

0

0 0 0 0 0
∂e(M)

q

∂x(F)
q



(33)

The initial values of the optimization iterations are given as follows. The vehicular position and
attitude are calculated by the measurements of the GNSS/INS. The positions of features are determined
by the map, and the initial positions of objects are calculated by converting the positions measured by
the on-board sensors to the geodetic coordinate system according to the initial vehicle position and
attitude. The cost function (17) can be minimized towards zero by iterations:

Xk+1 ← Xk −
(

JTJ + λdiag
(

JTJ
) )−1

JTf (Xk+1) (34)
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where λ is determined by the Levenberg-Marquardt method, and J and f are defined in Equations (32)
and (33), respectively.

5. Theoretical Analysis on the Framework Performance

The proposed multiple-target positioning framework aims to solve a parameter estimation
problem. Its performance can be evaluated either numerically or theoretically. In this section, the lower
bounds on the estimation errors are determined from theoretical studies. As one of the most widely
used lower bounds, the Cramér-Rao lower bound (CRLB) is chosen as the performance benchmark.
The framework is performance-bound in terms of the minimum achievable variance provided by any
unbiased estimators.

Assume that a deterministic signal st(θ) with an unknown vector parameter θ is observed in
white Gaussian noise as Equation (35).

zt = ht(θ) + vt (35)

where vt ∼ N (0, Ct). We wish to estimate θ from z. The Fisher information matrix [47] is given by
Equation (36).

[I(θ)]m,n =

[
∂ht(θ)

∂θm

]T
C−1

t

[
∂ht(θ)

∂θn

]
(36)

Taking the inverse of I(θ), the CRLB for the parameters is then obtained from its diagonal elements.
The CRLB for θm is the (m, m) entry of I−1(θ).

For the proposed framework, the following measurements are considered.

z(V)i,t vehicle i ∈ V , measured from GNSS/INS;

z(V2V)
il,t measured from vehicle i to vehicle l, where i ∈ V and l ∈ V ;

z(F)j,t feature j ∈ F , measured from the HD map;

z(V2F)
ij,t vehicle i ∈ V to feature j ∈ F , measured from the vehicle’s on-board sensors; and

z(V2O)
ik,t vehicle i to object k ∈ O.

For convenience, all the measurements available are reformulated to the following compact form:

zt = ht(θ) + vt =


zG

i,t

zM
j,t

zΞ
i,j,t

+ vt (37)

where zG
i,t, zM

j,t and zΞ
i,j,t are defined in Equations (6)–(8), respectively. The unknown parameters are

obtained from Equation (38).

θT =
[

x(V)i,t y(V)i,t θi,t︸ ︷︷ ︸
i∈V

x(F)j,t y(F)j,t︸ ︷︷ ︸
j∈F

x(O)
k,t y(O)

k,t

]
︸ ︷︷ ︸

k∈O

(38)

We observe that zt is Gaussian distributed with mean ht(θ) and covariance matrix Ct:

zt ∼ N
(

ht(θ), Ct

)
(39)

The CRLB for θ is obtained by substituting ht(θ) and Ct into Equation (36).
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6. Numerical Results

In this section, we discuss the simulation experiments conducted under typical vehicular network
scenarios to verify the localization and perception capacity results of the proposed algorithm. We also
demonstrate its environmental adaptability in subsequent discussions on factors that influence the
final performance by considering different scene configurations.

As shown in Figure 4, we build an intersection with 2 two-way two-lane roads. This scenario
consists of a busy urban area and a suburban area. The trajectories of all the vehicles and objects as
well as the traffic scene configuration come from VISSIM, a behavior-based traffic flow simulator [48].
Each road is 330 m long. In the middle, until approximately 200 m from the intersection, we simulate
a busy urban scenario with lamps, traffic lights, and traffic signs located randomly on the roadside.
Pedestrians walking around the road and across the intersection are generated. Outside of and far from
the intersection, nothing is placed on the roadside, which simulates the scenario of a suburban area.
In the simulation, connected and disconnected vehicles start from one end of the road simultaneously,
then travel straight or turn left or right at the intersection, and exit the scene almost simultaneously.
Therefore, vehicles are in the urban area in the middle section of the simulation steps, and the starting
and ending segments correspond to suburban scenes.

Figure 4. The considered intersection simulated in VISSIM.

6.1. Performance in a Typical Scenario

First, we validate the effectiveness of our algorithm in a fixed scenario and compare it with the
method proposed by Gloria et al. [19], as well as the theoretical bound CRLB. We set the accuracy of each
measurement to that of low-cost devices. The configuration for the scenario and each measurement
are as follows.

• Nv = 6
• N f = 23 (15 lamps, 4 traffic lights, and 4 traffic signs)
• No = 18 (10 pedestrians, and 8 disconnected vehicles)
• δsensor = 0.25 m, and δmap = 0.05 m
• δGNSS,l = 2.5 m, and δGNSS,θ = 0.1 rad
• θFOV = 70 m, Rs = 80 m, and θb = 2◦

• L f = 100 m, Lr = 30 m, and Wd = 60 m



Sensors 2019, 19, 1967 13 of 22

We run the simulation 200 times, and noise is added to the measurements independently for each
iteration. One localization result of the vehicles, objects, and features, and their true positions in the
urban area is shown in Figure 5. As the 6 vehicles face similar scenes in every simulation step, we
statistically analyze the positioning errors of all the vehicles. The root-mean-square error (RMSE) of
self-positioning for all 6 vehicles at simulation time t is calculated using Equation (40).

RMSE(V)
t =

√√√√ 1
MN

N

∑
j=1

M

∑
i=1

∥∥∥p̂(V)
i,j,t − p(V)

i,j,t

∥∥∥2

2
(40)

where p̂(V)
i,j,t is the self-positioning result of vehicle i at the jth run at simulation step t, and p(V)

i,j,t is its
corresponding ground truth. The self-positioning mean-square error MSE bound is calculated using
Equation (41)

CRLBt =
1
M

M

∑
i=1

(
CRLB

(
x(V)

i,t
)
+ CRLB

(
y(V)

i,t
))

(41)

where CRLB(x(V)
i,t ) and CRLB(y(V)

i,t ) are the CRLBs of the x and y coordinates of vehicle i at
simulation step t.

Figure 5. Multiple-target position performance in the urban area.

As shown in Figure 6, the proposed method is compared with that of Gloria et al. [19], as well as
the RMSE bound

√
CRLBt (see Equation (41)).

It is obvious that compared with the original GNSS measurements, we obtain a significantly
improved positioning result by using the information from V2X and the HD map. In particular, in the
urban area (simulation steps 21–55), our algorithm achieves high positioning accuracy (0.16 m), which
is also lower than that of the method in [19] (1.79 m). Our positioning accuracy is close to the theoretical
lower bound given by CRLB, which shows that we have effectively used all valuable information.
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Figure 6. Self-localization error.

We also give the number of constraints at each simulation time in Figure 7. Overall, the greater
the number of constraints available, the better our positioning results are. In fact, the study in [19] only
uses GNSS and V-O constraints, while we have used additional constraints including V-F, V-V, and
prior constraints of the HD map.

Figure 7. Amount of constraints used at every simulation step.

In the suburban area where the sensing ranges of different vehicles have little overlap, the method
proposed in [19] acts ineffectively as few constraints are available. However, our positioning is still
a significant improvement in these challenging areas. Environmental adaptability will be further
discussed in the next section.

In terms of the positioning of other targets, we compared both the target location precision and
sensing integrity. We transform the positioning results of these targets into the body coordinate system
(i.e., the vehicle coordinate system shown in Figure 3 for analysis, as this analysis is consistent with the
vehicle sensing system. The target positioning accuracy of a vehicle is evaluated by the RMSE of all
targets within the demanding space (see Equation (42)).

RMSE(T)
i,t =

√√√√ 1
ON

O

∑
k=1

N

∑
j=1

∥∥∥p̂(T)
k,j,t − p(T)

k,j,t

∥∥∥2

2
(42)
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where p̂(T)
k,j,t is the localization result of the kth target in the vehicle coordinate system at the jth runtime,

and p(T)
k,j,t is its truth position. The RMSE of relative localization i.e., RMSE(T)

t is defined as the root mean
square of the location of all vehicles. In fact, such a result is affected by both the absolute positioning
and vehicular self-positioning, which makes our analysis more rigorous.The result is shown in Figure 8.
In the urban area, the RMSE is 0.17 m; it is much smaller than that (0.24 m) obtained by Gloria’s method
as well as that (0.32 m) provided by the vehicles’ on-board sensors. Higher perception accuracy is also
achieved in suburban areas.

Figure 8. Relative positioning error of surrounding targets.

Figure 9 shows the improvement in sensing integrity. The blue line is the true value of the number
of targets within the demanding space. Based on the raw data of the on-board sensors, only 41.81%
of targets are captured in the urban area, owing to occlusion or limited sensing range, while the
proposed method enables 90.42% of the targets to be captured. The improvement comes from the
sharing of information between the connected vehicles, and the information provided by the real-time
dynamic map.

Figure 9. Perception integrity in terms of the number of targets captured.

In summary, our approach significantly improves multiple-target positioning in terms of accuracy
and integrity over that achieved using the original measurements, and is also more effective than
other methods.



Sensors 2019, 19, 1967 16 of 22

6.2. Adaptability to Different Scenarios

In the following section, we analyze the impact of different elements on the results of
multiple-target positioning to demonstrate the adaptability of our method to different environments.
Simultaneously, we discuss the contributions of different constraint types to the results.

6.2.1. Number of Connected Vehicles

The vehicular positioning and relative localization of the targets in terms of the number of
connected vehicles are shown in Figures 10 and 11, respectively. Except for the number of connected
vehicles, the configurations of the scene are identical, with 6 features and 3 objects. The accuracy of
sensing and GNSS/INS are the same as those in previous experiments.

Figure 10. Effect of the number of connected vehicles on localization accuracy.

Figure 11. Effect of the number of connected vehicles on perception accuracy.

As can be seen from the figures, although there is a limited number of connected vehicles
(only 2 vehicles), the positioning capacities of the vehicles and other targets are significantly improved
in the urban areas. In general, the greater the number of connected vehicles, the smaller the
corresponding positioning errors, as more V-V constraints are imposed between the vehicles. It is
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worth noting that there is a trend that the RMSEs of self-positioning increase as the simulation step
increases from 70 to 80, as the vehicles are heading the end of the roads, where features and objects are
becoming increasingly sparse. In theory, the lower bound of positioning error of 12 vehicles is lower
than 8 vehicles. Due to the limited simulation times, the RMSE fluctuates near the theoretical bounds.
Therefore, the RMSE of 12 vehicles seems close to those of 8 vehicles. However, based on the existing
results, we cannot say that there is a trend that they will exceed those of 8 vehicles.

Another interesting observation is that for a given number of connected vehicles, the positioning
errors in the suburban areas are larger than those in the urban areas, but it is worth noting that the
decreasing trend of RMSE with increasing the number of connected vehicles is more significant. This
is because, unlike the urban area with sufficient types of constraints, the constraints in suburbs are
mainly of V-V. Therefore, we argue that the number of connected vehicles is important for improving
location accuracy in the suburban area, which is consistent with the results shown in Figure 10.

As for the perception accuracy, in suburban area, with the increase of the number of vehicles,
there are more constraints which benefits the positioning of connected vehicles and other objects.
The underlying mechanism can be explained by Equation (36). As the constraints increase, the
dimension of ht(θ) increases, which leads to an increase in the value of the information matrix
I(θ). The CRLB for θm, which can be calculated with the diagonal element of I(θ))−1 will decrease,
which leads to the reduction of the absolute positioning error for each object. As the perception
result is gained by projecting the absolute of other targets to the vehicle-body coordinate system
based on the self-positioning, the reduction of the absolute positioning error finally improves the
perception accuracy.

6.2.2. Number of Features

The effect of the number of features are shown in Figures 12 and 13. There are four connected
vehicles running on the road with four objects and different numbers of features. It is obvious that
increasing the number of features improves the accuracy of vehicle positioning and relative localization
of the targets. Compared to raw measurements, even with a few features, the positioning and
perception errors are reduced by exploiting the vehicle-to-target constraints and HD map information.
It is noteworthy that at the intersection, the positioning accuracy is high when the number of features
is 5, 10, or 30. However, if there is no feature i.e., no map information is used, the positioning error is
obviously higher. This reflects the contribution of the HD map to vehicle positioning.

Figure 12. Effect of the number of features on localization accuracy.



Sensors 2019, 19, 1967 18 of 22

Figure 13. Effect of the number of features on perception accuracy.

6.2.3. Number of Objects

In comparing the results obtained when the number of objects varies, we set Nv = 8 and N f = 0.
The corresponding results are given in Figures 14 and 15. In the suburban zones, the increase in the
number of objects improves the positioning. However, it is noteworthy that such an improvement
in the intersection zone is not obvious. The reason is that in the former zone, there are very few V-V
constraints, and V-O constraints play the main role in improving the results. Hence, adding objects
can effectively improve the positioning. However, at the intersections, the V-V constraints formed
by 8 vehicles are dominant and the results approach the theoretical bounds achievable. There is no
significant improvement in accuracy with the addition of objects.

Figure 14. Effect of the number of objects on localization accuracy.
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Figure 15. Effect of the number object on perception accuracy.

In the case of relative localization, increasing the number of objects can reduce the overall
perception accuracy, instead. As the number of objects increases, the proportion of objects among all
the perceived targets participating in the perceptual precision calculation increases. The objects are less
constrained relative to other targets, and the overall clarity of perception declines. Considering this
and the former discussion, we argue that V-O constraints are less effective than V-V and V-F constraints
in improving multiple-target positioning accuracy.

7. Conclusions

This study focuses on the problem of multiple-target positioning for ICVs. We propose a unified
theoretical framework for positioning both vehicles and other targets, wherein sensor data from V2X
and HD map data are effectively fused with GNSS/INS and on-board sensors. By jointly exploiting
the vehicle-to-target constraints and HD map information, the vehicular localization accuracy can be
enhanced to meet the requirements of high-level automated driving by using low-cost GNSS/INS and
on-board sensors in urban areas. Meanwhile, the confidence and integrity of the results of relative
localization of targets are significantly improved, realizing sensing beyond line of sight and field
of view, which can improve the transportation efficiency and safety. Furthermore, the proposed
framework is applicable to more challenging scenarios entailing fewer connected vehicles and sparse
features and objects. In future research, we plan to remove the limiting assumption of data association
employed in this study by applying association methods in the process of optimization. We will also
study the formulation of communication delay of V2X in the data fusion framework.
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