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Abstract 
 
Radiation is the dominating heat transfer mechanism in most furnaces, and the radiative 
properties of combustion products represent important aspects regarding its suitability as a heat 
source. However, fuel and energy markets are undergoing rapid changes due to increasing 
concerns related to the security of supply and increased global warming. Industrial processes 
that have traditionally relied on a specific fuel must increase their flexibility in terms of their 
energy supply. Therefore, an increased understanding and improved modeling capacity of 
radiative heat transfer are required to facilitate a more rapid evaluation and implementation of 
novel fuels in large furnaces that have reduced emissions and sustained efficiency. For such 
studies, digital twins of processes may be a useful and economical alternative. 

This PhD thesis on radiative heat transfer focuses on: (i) the application to one industrial 
process, i.e., rotary kilns for heat treatment of iron ore pellets; and (ii) radiative heat transfer 
from soot particles in various propane flames. In-flame measurements of the combustion 
conditions, radiative intensities and radiative heat fluxes were performed during several 
measurement campaigns with different burners, furnace geometries and fuels, including 
gaseous, coal, and co-firing fuels. The radiative heat transfer was modeled using a discrete 
transfer model and a 3D-modeling tool that applies a discrete ordinates method, with the latter 
being developed within this thesis. 

The 3D-modeling tool was used to study the heat transfer conditions within the rotary kiln, as 
well as the heat treatment of the bed material, and a first attempt to validate the model in relation 
to actual measurements was made. Radiation was shown to account for more than 80% of the 
total heat transferred to the bed material, and the flame radiation was dominated by the particles 
present. Nevertheless, the possibility of using co-firing, including up to 30% biomass, was 
found to be feasible, and was not expected to have any significant impact on the radiative heat 
transfer within the process. 

The soot volume fraction and the radiative properties of soot particles were measured following 
gas extraction and using a laser-induced incandescence system for the various propane flames, 
while altering the combustion conditions and oxidizer composition. The modeled radiative 
intensities of the flames correspond well with the measured values, indicating that the soot 
volume fraction was accurately measured by either technique. Furthermore, very high soot 
volume fractions were observed when there were high concentrations of oxygen in the oxidizer, 
revealing the potential for promoting the radiative heat transfer in such furnaces.   

Keywords: Radiative heat transfer, combustion, rotary kiln, co-firing, soot volume fraction 
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Outline 
This PhD thesis consists of a summary of the work (in ten chapters), the five appended papers, 
and an appendix. The first two chapters briefly describe the background to the topics included 
in the thesis and provide an overview of what has previously been done in this area by our 
research group. Chapter 3 describes the different heat transfer models used and developed in 
this thesis and the main equations of interest. Chapters 4 and 5 provide descriptions of the 
measuring equipment and the techniques used, as well as the furnaces studied in the 
measurement campaigns. Chapters 6 and 7 show some selected results, together with the 
associated discussions and conclusions drawn from the work. The thesis ends with some ideas 
for future work, a list of the nomenclature used, and a bibliography. 

Papers I–III focus on the heat transfer in a rotary kiln used for iron ore pelletizing. Paper I 
assesses the possibility of using co-firing of coal and biomass in the grate-kiln process, which 
is used in the production of iron ore pellets. The radiative intensity and heat flux are measured, 
along with the gas temperatures, gas compositions, and particle concentrations in a cylindrical, 
pilot-scale rotary kiln at 580 kWth. An axisymmetric discrete transfer model is used to model 
the radiative heat transfer, and the radiative heat profiles for different fuel combinations are 
compared. Paper II presents the development of a modeling tool applying a discrete ordinates 
method in order to enable studies of the radiative heat transfer along the axis of a furnace. The 
paper further evaluates the measurements obtained in the pilot-scale rotary kiln and the radiative 
heat flux and wall temperatures are modeled, and the addition of a colder bed material is 
examined. Paper III applies and elaborates the model used in Paper II to include conductive and 
convective heat transfers, as well as the movement and mixing of the bed material. Collected 
measurements and process data are used to model a full-scale industrial rotary kiln including 
the properties of the iron ore pellet bed.  

Papers IV and V focus on the radiative heat transfer properties in propane flames, with the soot 
volume fraction being quantified using different measurement techniques. The radiative 
intensity is modeled using the discrete transfer model. In Paper IV, the soot concentration is 
altered by varying the oxygen concentration in the oxidant using oxygen-enriched air. The soot 
volume fraction is measured using laser-induced incandescence, together with an extinction 
laser. In Paper V, scanning mobility particle sizer spectrometry is used to measure the soot 
volume fractions for a non-sooty flame and a sooty flame. A photo-acoustic soot spectrometer 
is used to study the absorption and scattering coefficients of the soot particles at three 
wavelengths.  
 
Paper A studies, in similarity to Paper IV, the soot volume fraction and how it varies for 
different oxygen concentrations using laser-induced incandescence, but for oxy-fuel propane 
flames. Appendix B presents measurement data gathered from co-firing flames conducted in a 
pilot-scale rotary kiln.  
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1.  Introduction 
 
Currently, vast amounts of greenhouse gases are being emitted continuously from industrial 
and electricity-producing sectors, associated with high energy and product demands, thereby 
contributing to increasing global warming. These emissions mainly originate from the 
combustion of fossil fuels around the world, with the produced carbon dioxide being of the 
greatest concern. While greenhouse gas emissions are often difficult to eliminate, preventing 
further global warming is considered to be one of the most urgent, as well as challenging, tasks 
of our time. The greenhouse gas emissions from electricity production can be drastically 
reduced by employing renewable energy sources, such as solar and wind power. Nonetheless, 
combustion processes remain important and necessary for many industries, as well as for the 
global energy system. Instead, replacing the fossil fuel with fully renewable fuels, e.g., 
exchanging coal with biomass, could be a part of the solution. Even substituting a portion of 
the fuel, using so-called ‘co-firing’ of fossil coal and renewable biomass, would eliminate some 
of the emissions. Another approach is to capture the carbon dioxide emitted from the 
combustion and store it (i.e., carbon capture and storage), thereby preventing the gases from 
ever reaching the atmosphere. Finally, emissions of greenhouse gases can be reduced by 
improving the efficiency of the combustion process. Moreover, by making the combustion 
process more efficient, the emissions levels of other products (gases or particles) can also be 
reduced. While carbon dioxide is linked to increases in global warming, other combustion 
products, such as soot particles, may have more direct and negative effects on human health.  

To improve combustion processes, it is necessary to study and understand how heat is 
transferred through convection, conduction and radiation within the furnace. In suspension-
fired furnaces that have luminous flames, heat transfer is mainly via radiation, which in some 
processes accounts for up to 90% of the total heat transfer [1]. Modeling tools, such as digital 
twins of processes, can be helpful and economical options for such studies. The radiative 
properties of the combustion gases and particles present are, however, complex but important 
to consider, since they contribute to the radiation through emission, absorption, and scattering. 
Therefore, it is of great interest to measure experimentally and using detailed theoretical models 
of the radiative heat transfer in combustion processes. To fully capture the total heat transfer, it 
is also necessary to model the convective and conductive heat transfers occurring in the furnace. 

This thesis focuses on studies of radiative heat transfer from flames, using a gaseous or solid 
fuel in cylindrical, semi-cylindrical and cuboid furnaces. The impacts on radiative heat transfer 
of the soot particles in propane flames under various combustion conditions are studied, 
whereby the soot volume fraction is measured using two different techniques. The heat transfer 
in a coal- or oil-fired industrial, as well as a pilot-scale rotary kiln used for iron ore pelletizing 
are studied, involving both measurements and modeling work, including the development of a 
modeling tool to study the heat treatment of the bed material. Co-firing of coal and biomass is 
studied in the same pilot-scale rotary kiln, as well as in a horizontal, cuboid furnace.   
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1.1 Combustion and Thermal Radiation 
Fuel combustion is a commonly used and effective way to generate heat and energy required 
by different processes, ranging from individual transportation and domestic heating systems to 
industrial processes and electricity production. During combustion, chemical energy is 
converted to hot gases as well as particles and heat is transferred to the surroundings via 
convection, conduction and radiation. In contrast to convective and conductive heat transfers, 
radiative heat transfer occurs at the speed of light, and while it may interact with a medium, no 
interacting medium is required for the transfer. At higher temperatures, such as in a flame, heat 
is more effectively transferred due to radiation, and it may dominate both convective and 
conductive heat transfers in a furnace. The fuel can be in gaseous, liquid or solid form, and the 
choice of fuel is determined by several parameters, such as the application, availability, heating 
value, and price. The radiative properties are, in turn, dependent upon the fuel and combustion 
conditions used. Therefore, it is important to understand the radiative heat transfer with the 
context of combustion. This work focuses on the combustion of hydrocarbon fuels, being coal, 
wood, and propane, using air, oxygen-enriched air or recirculated flue gases with additional 
oxygen as the oxidizer, in the so-called ‘oxy-fuel combustion’. 

1.1.1 Combustion Products  
The products obtained from the complete, and desired, combustion of hydrocarbon fuels with 
air are carbon dioxide, water steam, and nitrogen. However, the fuel often contains various 
impurities, the combustion may be incomplete, and other bioproducts (e.g., nitrogen oxides) are 
formed, resulting in a flue gas mixture that contains several compounds and particle types. 
When modeling the radiative heat transfer, one must take into account the radiative properties 
of the different gases and particles.  

Gases 
The many rotational and vibrational energy levels available for the gaseous compounds enable, 
at combustion temperatures, the emission and absorption of electromagnetic waves in the 
infrared wavelength range. The potential absorption of these gases differs at different 
wavelengths, since only certain energy levels can be emitted or absorbed, and may be derived 
from quantum mechanics. Under typical combustion conditions, the maximum emissive power 
is in the wavelength range of 1–6 μm, or wavenumbers 1,667–10,000 cm-1, which is referred to 
as thermal radiation [2]. Both water vapor and carbon dioxide are triatomic molecules with 
many rotational and vibrational energy levels within this spectral range and, therefore, a vast 
number of possible vibrational-rotational transitions, corresponding to spectral lines, are 
available and should be considered appropriately when modeling radiative heat transfer. Both 
gases can have a strong impact on the radiative heat transfer in a furnace, as they are present at 
relatively high concentrations. An example of the spectral black-body intensity at 1400°C, 
representing combustion temperature, is shown in Figure 1, together with the spectral intensity 
of a gas mixture of carbon dioxide (CO2) and water (H2O), at a concentration of 10% for both 
gases, also at 1400°C. The difference between the black body and gas intensity varies with the 
wavenumber. The peaks indicate where radiation is absorbed and emitted by the gases, and as 
is indicated, gases absorb and emit differently at different wavenumbers. Here, the spectral 
intensities were calculated using a statistical-narrow-band model with a bandwidth of 25 cm-1. 
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Figure 1. Example of the spectral intensities of a black body and a gas mixture of water 
steam (H2O) and carbon dioxide (CO2), at a concentration of 10% for both gases, all at 
1400°C. Selected peaks represented by the gaseous water and carbon dioxide are indicated. 

The more abundant nitrogen, but also oxygen, are diatomic molecules without an electrical 
dipole. Therefore, they have fewer motional degrees of freedom and far fewer available energy 
levels in the wavelength range of interest, and their impacts on the radiative heat transfer is 
usually negligible [2]. Therefore, from the radiative heat transfer perspective in a furnace, water 
vapor and carbon dioxide are usually the only two gases considered. 

Particles 
During the combustion of a solid fuel, particles are naturally present in the flame. The fuel 
particles lose mass as a result of drying, devolatilization and char combustion, and undergo 
changes in size and composition upon exposure to the hot surrounding gas. Ash and soot 
particles may form, depending on the fuel composition and combustion conditions. In similarity 
to gases, particles emit and absorb radiation, although they can be characterized as broad-band 
emitters (in contrast to gases), meaning that they emit and absorb radiation continuously across 
most of the spectrum. The radiation exchange is dependent on the surfaces of the particles, such 
that smaller particles can potentially and temporarily radiate more heat per mass than larger 
particles. Furthermore, particles may also scatter radiation, as they are much larger than the gas 
molecules and possibly larger than the infrared wavelengths. Scattering of incident radiation 
occurs at the particle due to three reasons in accordance to Figure 2: (i) diffraction, the path of 
the ray is altered at an angle  without colliding with the particle; (ii) reflection; or (iii) 
refraction, whereby the ray penetrates the particle. Thus, the particle size distribution affects 
the emission, absorption and scattering properties in the furnace. Fuel, char, ash, and soot 
particles can potentially be present throughout the furnace. 

 
Figure 2. Particle scattering of incident radiation due to reflection, refraction and 
diffraction. Incident radiation may also be absorbed and the particle itself emits radiation. 

In a suspension-fired solid-fuel flame, fuel and char particles are the most abundant particles, 
while ash particles mainly appear in the post-flame and recirculation zones. The different 
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particle types have different radiative properties, and flame radiation in pulverized coal-fired 
and cylindrical furnaces has been examined in several studies. Different parameters, such as the 
scattering efficiencies of the different particle types, concentrations, and size distributions [3], 
as well as the temperature distribution, extinction coefficients, and single-scattering albedo [4], 
have been examined. The importance of using separate temperatures for gases and particles has 
also been evaluated [5]. In these studies, it was found that coal and char particles were the main 
contributors to the heat flux at the wall, and the importance of scattering was underlined [3]. It 
was concluded that for predicting the radiative heat transfer in a coal-fueled furnace, a thorough 
understanding of the temperature and particle concentration distributions was more critical than 
having detailed information regarding the gas concentration or the particle index of refraction 
[5]. Therefore, it is desirable to determine both the temperature and particle concentration as 
accurately as possible when studying flames.  

When gaseous or liquid fuels are used, while the particles are not fed to a burner, but as for a 
solid fuel, soot particles may form and be suspended in the flame, indicating incomplete 
combustion. The soot particles are small, with typical primary particle sizes of 20–50 nm in 
diameter, but may aggregate to several hundred nanometers, and is an important contributor to 
heat radiation, given that they both emit and absorb radiation [6]. Soot is generated by the 
pyrolysis of fuel in high-temperature regions of the furnace with lean oxygen concentrations 
[7]. The particles form, age, and combust in the flame through the phases of nucleation, surface 
growth, particle coagulation, and oxidation [8]. The transition from gaseous compounds to solid 
soot particles is, however, poorly understood, although polycyclic aromatic hydrocarbons 
(PAHs) have been demonstrated to play an important role in the soot nucleation step [9]. PAHs 
are considered to be formed from the collisions of smaller aromatic and alkyl compounds during 
the pyrolysis of hydrocarbons [10]. The absorption to the PAH of different compounds from 
the surrounding gas phase will lead to the formation of the smallest soot particle [10], [11]. 
Once formed, the particle will continue to grow and increase in size due to ongoing 
heterogeneous reactions, absorption, and coagulation with smaller soot particles following 
collisions [12]. Thus, soot formation in a flame is not only chemically controlled but is also 
dependent upon the surroundings, and it has been shown to be affected also by dilution and 
temperature [13]. Since large temperature gradients are present in flames, thermophoresis could 
have an impact on the trajectories of the soot particles and, possibly on the particle growth [14]. 
As the particles are eventually transported to more oxygen-rich regions of the flame, they will 
start to be oxidized and combusted. Therefore, the amount of soot that is emitted from a furnace 
reflects a competition between the formation and the destruction, via oxidation, of soot particles 
[10]. The radiative properties of soot particles have been examined in several studies (e.g., [15]–
[18]), and it has been shown that the scattering caused by the soot particles is negligible due to 
their small size, and that the particle properties can be calculated using the Rayleigh theory [2]. 
Others have studied the contribution of the soot particles to radiative heat transfer. For instance, 
Mehta et al. [19] studied laboratory-scale, turbulent jet flames and concluded that as much as 
70% of the emitted flame radiation was due to soot particles. However, any unexpected 
formation of soot can affect the performance of the furnace, with the consequence of increased 
operational cost. For these reasons, it is of interest to analyze the soot present in a furnace and 
to model the radiative heat transfer in the process.  
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1.1.2 Co-firing  
In this work, co-firing refers to the combustion of treated and grounded wood together with 
coal. While coal is a fossil fuel, increasing the concentration of carbon dioxide in the 
atmosphere when combusted, wood is a renewable biomass. Thus, as long as the trees are 
replanted, the atmospheric concentration of carbon dioxide will not increase due to combustion 
of the wood. Typically, biomass from wood contains higher levels of volatile compounds and 
lower levels of fixed carbon and ash, and has a lower heating value than coal fuels [20]. The 
bulk density of the biomass is also lower than that of coal, which may result in drastically 
increased volume flows of the fuel, changing to co-firing combustion [21]. Moreover, the 
mixing of solid fuels can cause the particle distribution to vary over a broad size range. An 
example of a particle sample from a co-firing flame, using untreated wood biomass and coal, 
clearly shows the broad range of particle sizes, as depicted in Figure 3. Potential difficulties 
linked to co-firing include problems with fuel availability and supply, particle burnout, 
corrosion [21], [22], and fuel feeding to the burner, in that long wood fibers can cause 
fluctuations in the fuel feed [23]. Other concerns may be potential changes to the heat transfer 
within the furnace, resulting from the altered particle composition and size distribution.  

 

Figure 3. Example of particles gathered from a co-firing flame. The black coal particles 
are clearly much smaller than the white biomass particles on which they are positioned. 

 
1.1.3 Oxy-Fuel and Oxygen-Enriched Air Combustion  
During the combustion of hydrocarbon fuels, carbon dioxide will always form and be emitted 
to the atmosphere, unless the gas is captured and stored, using so-called ‘carbon capture and 
storage’ (CCS). CCS has been successfully demonstrated in, for example, the Norwegian 
Sleipner project, involving offshore, undersea saline formations into which carbon dioxide has 
been injected since 1996 [24]. To minimize the gas volume, the carbon dioxide should be 
separated from other flue gases before storage. One way to achieve this could be to apply oxy-
fuel combustion, in which the oxidizer is changed from air to either pure oxygen or to 
recirculated flue gas, with the addition of pure oxygen [25]. Potentially, only water vapor and 
carbon dioxide would form from a pure fuel, and these could be easily separated through 
condensation. Thus, applying oxy-fuel combustion would simplify the flue gas separation and, 
for example, also eliminate the formation of thermal NOx. Other changes to the combustion 
conditions will also occur, such as a lowered flame temperature if flue gases are recirculated, 
due to the higher specific heat capacity of the carbon dioxide. However, if the oxygen 
concentration is increased to a level above 21%, as in air, the combustion temperature will 
increase concomitantly [26]. Furthermore, the radiation conditions in the furnace will change 
as transparent nitrogen is substituted for absorbing and emitting carbon dioxide and water 
vapor, and the formation of soot particles will change in the gaseous flames. Beltrame et al. [8] 
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have shown an increase in soot formation when increasing the oxygen concentration in the 
oxidizer from 21% to 100%, for a counterflow diffusion flame. Several other researchers have 
found that a higher oxygen concertation causes an increase in soot formation until a certain 
oxygen concentration is reached, after which the abundance of soot particles decreases (see 
[27]–[31]). As the oxygen concentration is increased, the maximum temperature is increased, 
which enhances soot formation, although the flame volume becomes compressed, and the 
residence time in the high-temperature region is reduced, thereby inhibiting soot formation. In 
addition, the more abundant oxygen will oxidize the formed soot particles [30].  

When operating a furnace in oxy-fuel mode with flue gas recirculation, a high concentration of 
carbon dioxide in the furnace is achieved. Adding carbon dioxide to the oxidizer suppresses 
soot formation, as observed by Guo et al. [7], who attributed this to thermal and direct chemical 
interaction effects, as well as to some dilution effect. The drop in flame temperature results in 
a decreased pyrolysis rate and decreased formation of important compounds during soot 
formation, such as C2H2 and PAHs [7]. The temperature effect was tested by Oh and Shin [32] 
by exchanging the carbon dioxide with a mixture of carbon dioxide and argon, so that the same 
heat capacity was achieved for the gas as if using only air and the same oxygen concentration. 
The reactions implicated in the decrease in soot formation from the additional carbon dioxide 
were studied by Liu et al. [33] and found to proceed according to R1 and R2, enhancing the 
oxidative attack of soot precursors: 
  R1 
  R2 

As soot particles are effective radiative heat emitters, it could be argued that combustion with 
an increased concentration of oxygen in air, so-called ‘oxygen-enriched combustion’, is 
desirable to promote soot formation and enhance the radiative heat transfer in furnaces. Higher 
intermediate concentrations of soot along with a compressed furnace volume can be achieved, 
as the total volume of air required, followed by the emitted gases from the combustion 
processes, is reduced, together with an increase in flame stability and this could eventually lead 
to fuel savings [27], [29]. Different industrial processes have already been successfully operated 
using oxygen-enriched air, including boilers, incinerators and glass furnaces [34]. Oxygen-
enriched combustion can be used effectively to replace oxy-fuel combustion if a strong 
convective heat transfer is required, as well as an increased luminosity, as is the case in 
aluminum melting [28], [29]. However, since the soot particles have been shown to be 
detrimental to health as they are carcinogenic and associated with respiratory illnesses [35], 
[36], it is important that the particles are eliminated in the furnace system. 

1.2 The Rotary Kiln Process 
Already in 1885, Frederick Ransome patented the first example of what is today known as a 
rotary kiln, and it was introduced to the cement industry [1]. Since then, rotary kilns have been 
developed and are commonly used in several industries, such as pulp and paper, cement, and 
iron ore pelletizing plants [37]. The rotary kilns are large, cylindrical, tilting, and slowly rotating 
furnaces, and the unit operation of the kiln involves mainly heat treatment of a solid bed material 
that passes from the higher to the lower end. The heat is supplied either directly or indirectly, 
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depending on the process heat requirements. In directly heated rotary kilns, the heat is mainly 
supplied by radiation from a large luminous flame along the kiln axis, with the burner positioned 
at the lower end of the rotary kiln [38], [39]. One problem associated with large industrial rotary 
kilns is the continuous and substantial emissions of carbon dioxide generated from the 
combustion, which are currently and frequently fueled by fossil coal [1]. The choice of fuel is 
mainly dictated by the availability, composition, cost, and high heating value of the fuel. To 
reduce the impact on global warming from industries, emissions of greenhouse gases from the 
stationary industrial sector need to be drastically reduced. In the case of rotary kilns, one way 
to achieve this might be to switch to less-carbon-intensive fuels. However, this might affect the 
heat transfer conditions in the rotary kiln, thereby compromising the quality of the product. The 
heat treatment of the bed material and the heat transfer that occur within the kiln are complex, 
since they not only include convective, conductive and radiative heat transfers, but also heat 
that is transferred in the angular and axial directions as the wall rotates and the bed mixes, as 
illustrated in Figure 4. The bed material close to the wall is transported from a lower position 
in a cross-section of the bed, until the point at which the bed falls over and is mixed into the 
main bulk of the bed. The bed can, therefore, be divided into two layers, a surface and a bottom 
layer, which are moving in opposite directions. In addition, heat may be released or consumed 
within the bed material as the result of chemical reactions, and heat losses occur at the outer 
wall of the kiln wall due to convection and radiation. 

 

Figure 4. Cross-section of a rotary kiln with bed material present. Different possible heat 
transfer mechanisms involving convection , conduction , and radiation  
at the kiln wall  and bed  are indicated. The incident radiative heat flux may be 
absorbed  or reflected  at a surface. The movement and mixing of the bed material 
due to the rotating kiln wall are shown for a considered surface and bottom layer of the bed. 

However, radiation dominates the overall heat transfer in the kiln [1]. Thermal radiation from 
the flame is anticipated to be dominated by hot particles, mainly char, but also ash and soot 
particles, since a solid fuel is used. The radiative heat transfer from solid fuel flames in 
cylindrical furnaces has, as already mentioned, been studied and modeled earlier [3]–[5], albeit 
under more conventional combustion conditions. There is currently a lack of quantitative 
knowledge of the heat transfer conditions in rotary kilns using any fuel, mainly due to the 
rotation of the kiln, which complicates in-flame measurements. Therefore, it is of interest to 
study how well the radiative heat transfer and the heat treatment of the bed can be modeled in 
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this process. Some studies of the heat transfer between the wall and bed material have been 
conducted previously [39]–[41], as well as of the convective heat transfer [41], [42]. Earlier 
modeling studies of the radiative heat transfer in a rotary kiln [43]–[46] focused on the gases in 
the freeboard and the surfaces of the kiln, neglecting the particles present in flame or freeboard. 
In this work, particles present in the flame and freeboard gas are considered, and measurement 
data from a pilot-scale test furnace are used for modeling the radiative heat transfer.  

While there are many applications of rotary kilns, this work focuses mainly on the rotary kilns 
used in the iron ore industry. To achieve a good iron ore quality and to facilitate transportation, 
the mined, crushed, and treated ore is commonly processed into a pelletized form. Figure 5 
shows a schematic of a commonly used process for iron ore pelletization, the grate-kiln process, 
which is used by the Swedish mining company Luossavaara-Kiirunavaara Aktiebolag (LKAB). 
Raw iron ore pellets are fed onto a travelling grate, where they are partially dried and oxidized 
from magnetite to hematite using hot air and flue gases that pass through the bed and grate. 
From the grate, the iron ore pellets enter the more than 30-m-long and 5-m-wide (inner 
diameter) rotary kiln. As the pellets slide towards the lower end, they are further heated, 
oxidized, and sintered. Once they exit the rotary kiln, the pellets drop down into a rotating 
cooler. Ambient air is used in the four cooler zones (C1–C4). To exploit the heat from the 
pellets, the air that exits the cooler is transported to the grate zones (G2–G4) and kiln (Figure 
5). The air leaving the first cooler zone, C1, is directed directly to the kiln, where it acts as 
preheated secondary air with a temperature in the range of 1050–1100°C. In comparison to 
more typical combustion processes, the volumetric flow of the secondary air is large to promote 
pellet oxidation within the kiln, with an oxygen content of about 16% in the flue gas. The flue 
gas that exits the kiln is directed through the pellet bed in zone G1. A more detailed description 
of a typical grate-kiln process can be found elsewhere [37].  

 
Figure 5. Schematic of the grate-kiln process used by LKAB. Raw iron ore pellets enter 
the grate at G4 and pass through the rotary kiln. The finished product exits the cooler 
section at C4. 

Worldwide, approximately 2,500 million tons of iron ore were mined in 2018, where Australia, 
Brazil, and China being the three largest producers of iron ore according to the 2019 USGS 
Mineral Commodity Summaries [47]. The primary user of iron ore is the steel industry, and the 
combined carbon dioxide emissions from the iron and steel industries represented 
approximately 5.7% of total global emissions (30% of the industrial sector) in 2016 [48]. 
LKAB’s carbon dioxide emissions accounted for about 1.3% of Sweden’s total emissions (4% 
of the industrial sector) in 2018 [49].  

G4 G3 G2 G1

C1 C2 C3 C4
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pellets
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1.3 Aims and Objective 
The overall objective of this thesis is to improve the capability for characterization of radiative 
heat transfer in suspension-fired furnaces to support a growing demand for detailed modeling 
capacity of such units. Accurate and efficient modeling is crucial, for example, in design to 
assist a rapid transition to low-carbon technologies or during operation to be able to handle 
increased flexibility and operational demands. To validate such models, high quality 
measurement data are required, gathered during experiments intended to imitate industrial 
processes. 

More specifically, this work assesses one application of radiative heat transfer in the heat 
treatment of iron ore pellets in a rotary kiln (Papers I–III) and one phenomenon of importance 
for radiative heat transfer in combustion, namely the influence of soot particles and their 
radiative properties (Papers IV and V).  

The specific aims of this thesis are: 

- To examine the respective contributions of the gases and particles to the total radiative 
heat transfer in flames in the rotary kiln process (Paper I); 

- To examine the effect on radiative heat transfer of flames that use co-firing with 
different biomasses (Paper I); 

- To develop a modeling tool to study the radiative heat transfer in detail and to examine 
the heat treatment of the bed material in rotary kilns (Papers II and III); 

- To evaluate techniques for measuring the soot volume fraction in gaseous flames 
(Papers IV and V); and 

- To determine the effects of intermediate soot formation and radiative heat transfer 
properties of soot particles under various oxygen concentrations and combustion 
conditions (Papers IV and V)
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2. Previous Work and Progress Made 
 
Owing to the significant contributions made by various research groups, such as Hottel & 
Sarofim [50], Siegel & Howell [51], Özisik [52], and Modest [2], research on radiative heat 
transfer in suspension-fired systems has advanced rapidly since the 1960’s. The work presented 
in this thesis includes measurements and modeling of the radiative heat transfer in flames that 
employs hydrocarbon fuels, an area in which our research group has been active for many years. 
In-flame measurement data have been gathered during numerous measurement campaigns that 
were conducted to examine various combustion conditions, including pulverized coal-firing, 
co-firing, gaseous and oxy-fuel flames, using different measurement methodologies and 
modeling approaches for different applications, including oxy-fuel flames and rotary kilns [23], 
[53]–[55]. Based on the work of Modest [2], we have constructed models that allows studies of 
flame radiation in cylindrical and semi-cylindrical enclosures, in which both the gases and 
particles are considered. By validating the models with measurement data, they can be useful 
tools for predicting the radiative heat transfer for various furnaces and combustion conditions.  

Figure 6 shows an overview of the previous and relevant studies (including the work included 
in this thesis) conducted by our research group. To reveal the path followed towards this thesis, 
previous studies (before 2014) are briefly presented in this chapter, along with the measurement 
campaigns, the scope of the papers included in the thesis and what models that were used.   

 
Figure 6. Overview of the different pathways for the included Papers I–V, indicated with 
colored arrows. The connections between the present thesis work (gray area) and previous 
work (white area) on rotary kilns (orange), propane flames (green), and radiative heat 
transfer modeling are indicated with black arrows. Additional measurements not presented 
in any of the papers is also included (purple). The thesis includes both experimental work 
(yellow area) and modeling work (blue area). 
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The campaigns of most interest are those that were conducted in a rotary kiln, a down-scaled 
rotary kiln test furnace, and a vertical cylindrical furnace. In addition, measurements that were 
made in an industrial rotary kiln and a measurement campaign that was performed in a cuboid 
furnace (1.5 MWth) are included and briefly described here, but not in any of the papers. For 
further details of the different radiative heat transfer models, measurement equipment items and 
furnaces, please see Chapters 3, 4 and 5, respectively. Selected results from the experimental 
measurement campaigns and the modeling conducted within this thesis work are presented and 
discussed in Chapter 6. 

2.1 Rotary Kilns  
Two measurement campaigns have been conducted in a cylindrical, pilot-scale test furnace, 
which was designed to resemble a full-scale industrial rotary kiln, in collaboration with LKAB. 
The fuel flexibility of the grate-kiln process was studied by examining different fuels under 
combustion conditions similar to those found in an industrial rotary kiln used for iron ore 
pelletizing. The aim was also to study the radiative heat transfer properties within the test 
furnace and, thereby, gain insight of the properties within an industrial rotary kiln. Temperature 
data and operation parameters were gathered at a full-scale rotary kiln and used for a first 
validation attempt of the model.   

2.1.1 Pilot-Scale Rotary Kiln 
A campaign was conducted previously of this thesis in 2013 by Bäckström et al. [23], who 
studied eleven fuels or fuel combinations. A carbon-rich coal, which is used daily in LKAB’s 
full-scale rotary kilns, was used as a reference coal (RC) during the campaign. Studied 
alternative fossil fuels for the process included a second coal (SC), similar to the RC in terms 
of both chemical composition and size distribution, heavy fuel oil and natural gas. The heavy 
fuel oil is used occasionally and during the start-up phase of the full-scale process. The co-
firing cases were all examined with the RC using co-firing burners. Three biomasses were 
studied separately, each being tested at concentrations of 10% and 30%, based on the fuels’ 
lower heating values, while maintaining the total heat load to the burner. The three biomasses 
used were: (i) biomass A (BA), comprising wood treated with steam explosion; (ii) biomass B 
(BB), comprising pelletized and ground wood; and (iii) biomass C (BC), consisting of torrefied 
biomass. In an additional co-firing case, biomass A was premixed (PM) with the RC and tested 
in the same coal burner used for pure coal. 

Measurements of the temperature, gas composition, and radiative intensity were conducted 
along the furnace axis, together with downstream particle extraction. Figure 7 shows the 
measured radiative intensities along the furnace diameter for the fossil fuels. The data were 
obtained at a measurement port positioned 700-mm downstream of the burner, measured using 
a narrow angle radiometer (NAR) probe. The NAR entered the furnace at the 0-mm position 
and was traversed along the furnace diameter. At the port entrance, high radiative intensities 
were measured owing to the high concentrations of particles and the high temperatures in the 
detectors line-of-sight. As the probe was traversed closer to the center, the radiative intensity 
decreased in line with the total number of particles. At the opposite wall, at the 800-mm 
position, the radiative intensity came close to zero due to the presence of a cold background, in 
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the shape of a quartz window in the furnace wall. Comparing the two coals, significant 
differences were observed, even though they had appeared to be very similar in the fuel analysis 
(Figure 7a), which stresses the difficulty of predicting the flame radiation without performing 
experiments. The differences between the coals was difficult to explain due to a lack of flame 
data. This was mainly due to problems associated with particles clogging the suction pyrometer, 
which prevented the achievement of a high suction velocity and, therefore, accurate 
measurements of the flame temperatures. Furthermore, particle extraction was performed 
downstream of all the other measurements, which meant that particle data for positions close to 
the burner were lacking. The oil and gas flames were observed to be shorter than any of the 
solid fuel flames, as reflected by their low radiative intensity values (Figure 7b). This indicates 
that the heat-load profile of the pellets in the full-scale rotary kiln would be rather different than 
that obtained using the RC.  

  
Figure 7. Radiative intensities measured along the furnace diameter, 700-mm downstream 
of the burner, during the measurement campaign conducted in 2013 by Bäckström et al. 
[23] for two coals (RC and SC) and gas and oil flames. 

Figure 8 shows the measured radiative intensities (using the NAR) for the RC and the co-firing 
experiments studied. The PM case and the co-firing case with 30% BA showed slightly lower 
radiative intensities than the RC case (Figure 8a), while the other co-firing cases (BB and BC) 
appeared to have radiative intensity levels similar to that of the RC at the second measurement 
port (Figure 8, b and c, respectively). All the co-firing flames appeared to be shorter than the 
coal-fired flames. 

   
Figure 8. Radiative intensities measured along the furnace diameter, 700-mm downstream 
of the burner, during the measurement campaign conducted in 2013 by Bäckström et al. 
[23] for co-firing of RC with three biomasses (BA, BB, BC), and a co-firing flame where 
RC was premixed with BA (PM). The percentages shown correspond to the proportions of 
biomass in the co-firing cases. 
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Detailed radiation modeling was performed using a discrete transfer model for the different 
cases, and the model appeared to underestimate the radiative intensity in comparison to 
measurements. This was probably due to the problems associated with measuring an accurate 
flame temperature and underestimated particle concentrations. It was found, however, that the 
radiation from the present particles dominated the total flame radiation [23]. From the modeling 
work of the radiative intensity, it was concluded that improved measurements of temperature 
and particle concentrations were needed to more accurately estimate the radiative heat transfer.  

In 2015, a second measurement campaign was conducted as a part of this thesis work. The same 
test furnace was used but incorporating some modifications to ensure better process control. A 
new burner was installed to achieve more stable conditions with respect to biomass feeding and, 
thereby, improve the quality of the experiments. Additional measurement ports were installed 
along the furnace axis to enable an increased access for measurements in the flame. The thermal 
input to the burner was increased from 400 kWth to 580 kWth, and the furnace diameter was 
decreased from 800 mm to 650 mm. As in the previous campaign, measurements of the 
temperature, gas composition, and radiative intensity were conducted along the furnace axis. 
However, extra care was taken to achieve and sustain a sufficient suction velocity using a new 
suction pyrometer and ejector system and the temperature measurements were considered to be 
superior to those in the earlier campaign. The sampling of particles was also improved, as 
particles were sampled within the flame and closer to the burner and additional measurements 
and measurement techniques were applied, including radiative heat flux measurements, Fourier 
Transform Infrared Spectroscopy (FTIR) for gas analysis, and an infrared camera for 
temperature estimations. Moreover, during the second campaign, greater emphasis was placed 
on co-firing flames, to examine the differences in temperature conditions and flame structure 
as compared to a coal flame. Furthermore, the overall test matrix was increased with respect to 
the numbers of fuels and fuel combinations, testing three additional coal fuels. The same RC 
was used, and co-firing of BA and BB was once again studied, using 30% biomass, but in 
contrast to the coal tests, the burner configuration was altered by changing fuel registers and by 
moving the burner further into the furnace so that it resembled the rotary kiln used by LKAB at 
another iron ore pelletizing plant. The measurement data gathered for the co-firing cases is 
presented in Appendix B.  

In Paper I, the co-firing flames from the latter campaign were extensively studied and the 
radiative intensity was modeled using an axisymmetric discrete transfer model, evaluating the 
possibility of substituting a portion of the fossil fuel for renewable biomass. The radiative heat 
transfer is quantified in the process, and the separate contributions from the hot gases and 
particles to the flame radiation are examined. From the modeling results, it appears that the 
model estimates the radiative heat transfer more accurately for the different flames in the latter 
campaign, in comparison to the earlier campaign. It should, however, be noted that while much 
effort was put into ensuring high-quality measurements, at some measurement positions, 
problems were encountered with condensing tars when extracting the particles from the co-
firing flames, and as a consequence some of the data had to be discarded. This lack of data 
somewhat limited the modeling work and highlights a problem that persists and should be 
addressed in future measurement campaigns.  
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To better study the radiative heat transfer along the axis of the pilot-scale furnace, a non-
axisymmetric modeling tool that applies a discrete ordinates method has been developed within 
this thesis; the equations employed in this tool are further described in Chapter 3. Measurement 
data for the RC case from the latter campaign are used together with the developed model in 
Paper II to examine the effect on the incident heat flux to the wall when varying the radiative 
properties of the wall and flame. In an attempt to better imitate a rotary kiln, a stationary bed 
material is added to the furnace and the effect on the radiative heat flux is examined.  

2.1.2 Industrial Rotary Kiln  
From the measurement campaigns described above, valuable data regarding temperature, gas 
composition, radiative intensity, and radiative heat flux were gathered. This information is 
necessary to achieve an increased understanding of the heat transfer occurring within the rotary 
kiln. It would, however, be desirable to measure also these parameters in a rotary kiln at 
industrial scale, but as already stated, most of these parameters are very difficult to measure in 
a full-scale rotary kiln. Modeling of the heat transfer within the kiln can therefore be helpful to 
gain better understanding of the heat treatment of the bed material. It was, however, possible to 
use an infrared camera to study the temperatures at the rotary kiln during real process 
conditions. The outer wall of the rotary kiln was studied while standing next to the kiln and the 
inner wall and bed temperatures could be assessed, as well as the bed angle and flame 
occurrence through a small hatch, positioned close to the burner (Figure 9). Several other 
parameters of interest, such as the production rate and rotational speed, could be derived from 
the operational data.  

 
Figure 9. Temperature conditions inside a rotary kiln used for iron ore pelletization, 
captured using an infrared camera. The approximate extents of the wall, bed, and flame are 
indicated. 

Further development of the modeling tool applying the discrete ordinates method has been 
performed in this thesis to include the heat treatment of the bed material in a rotary kiln, also 
including conductive and convective heat transfers (see Section 3.3). Together with the 
measurement data from the two campaigns involving the pilot-scale rotary kiln described 
above, the bed heat treatment for an oil flame (data from 2013) and a coal flame (RC data from 
2015) were modeled for a full-scale rotary kiln, which is the focus of Paper III. The product 
temperature from the model is compared to measurement data, and the model is further used to 
examine the heat transfer contributions from conduction, convection and radiation to the bed 
material.  
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2.2 Heat Radiation from Soot Particles 
In 2007, Andersson et al. [26] studied propane flames in the Chalmers 100-kWth oxy-fuel test 
rig, equipped with a down-fired swirl-burner. The radiative properties of three 80-kWth flames 
were studied, with one flame using air as the oxidant, and two flames operated in an oxy-fuel 
mode with recirculated flue gases and oxygen concentrations of 21% and 27%, respectively. 
For all three cases, the same stoichiometry was used ( ), achieved by varying the 
recycling rate of the dry flue gas and the addition of a corresponding amount of oxygen. While 
measurements of the temperature, total radiative intensity, and gas composition were 
performed, no direct measurements of the soot content were conducted. It was, however, 
visually observed that the soot content initially decreased along with the flame temperature and 
the measured radiative intensity when the furnace was changed from operating with air (Figure 
10a) to operating with oxy-fuel at 21% oxygen (Figure 10b). However, with a further increase 
of the oxygen content, soot formation again visually increased along with the measured 
radiative intensity (Figure 10c). The radiative intensity was modeled using the discrete transfer 
model, considering the gas temperature and the concentrations of water steam and carbon 
dioxide, but no soot particles. By comparing the measured and modeled radiative intensities, 
the soot particles could be identified as making up for the difference between the two values 
(see Figure 10c), and it became obvious that the present soot particles had a significant 
contribution to the total heat transfer. 

   
Figure 10. Measured and modeled radiative intensities along the furnace diameter for a 
flame using air as the oxidant (a) and when operating the furnace in oxy-fuel mode with 
21% (b) and 27% (c) oxygen, respectively [26]. 

Subsequently, due to the soot particles evident impact on the radiative heat transfer, it was 
desirable to measure the soot contents and examine the radiative properties of different propane 
flames. At the start of this thesis work in 2014, Bäckström et al. [56] used the same test facility 
to estimate the soot volume fraction and study the optical properties of the soot. The 80-kWth 
air-propane flame was studied, and to produce soot particles, the primary air flow to the burner 
was closed using a valve, which resulted in a different and less-effective mixing, which in turn 
caused the formation of soot particles. Gas samples were extracted to measure the soot volume 
fraction using a Scanning Mobility Particle Sizer (SMPS), while the optical properties of the 
soot particles were simultaneously measured with a Photo-Acoustic Soot Spectrometer (PASS-
3) instrument. In Paper V, the obtained optical properties of the soot particles are compared to 
earlier literature findings and by using the measured soot volume fraction, the radiative intensity 
is modeled for the propane flames using the discrete transfer model. 
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However, during the gas extraction, before the soot volume fraction could be measured, present 
particles could break or new could form. It would therefore be desirable to measure the soot 
volume fraction non-intrusively and within the flame. In 2016, the same furnace was used once 
more with the same thermal input of propane to the burner, to measure the soot volume fraction 
using optical and non-intrusive methods. This campaign was conducted in collaboration with 
the Combustion Physics Department at Lund University of Technology and a diode laser was 
used with a Laser-Induced Incandescence (LII) system. With this optical technique, a laser sheet 
is shaped and focused in the central part of the furnace, and it was possible to capture 2D images 
of the soot volume fraction along the furnace diameter, with a considerably increased spatial 
and temporal resolution, using a CCD camera. However, LII has mainly been used at flames of 
smaller scales [28], [57], causing some extra uncertainties at the studied scale, related to the 
laser sheet thickness. During this campaign, it was also of interest to operate the combustion 
process so that high intermediate concentrations, albeit with low final emissions, of soot were 
achieved, in order to enhance the efficiency of radiative heat transfer from the flame [27], [28]. 
This was tested by either varying the oxygen concentration in the oxidant by enriching air with 
oxygen or varying the oxygen concentration while operating the furnace in an oxy-fuel mode. 
A photo of the actual experimental set-up used is shown in Figure 11a and a schematic of the 
setup with an Nd:YAG-laser, a CCD-camera and the NAR is shown in Figure 11b.  

 

  
Figure 11. Experimental setup used in the 2016 campaign (Paper IV [58]). a Photograph 
showing the furnace and the measurement equipment, the diode laser is located beneath the 
radiation shield and the laser beams are directed through the flame onto the detector. b 
Schematic of the equipment setup. 

The results from this campaign are presented in the publications of Gunnarsson et al. [58] (Paper 
IV) and Simonsson et al. [59] (Paper A). In Paper IV, the oxygen-enriched air flames are 
examined and the radiative intensity for the flames are modeled using the discrete transfer 
model. The gas and particle contributions to the total radiative intensities are examined. Paper 
A examines the oxy-fuel flames and more thoroughly describes the experimental setup.  
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2.3 Co-Firing in a 1.5 MWth Furnace 
The radiative heat transfer properties of co-fired flames were also examined during a 
measurement campaign conducted in a horizontal furnace with a quadratic cross-section, 
operated to imitate a 1.6-GWel power plant. The furnace is located in Utah and is referred to as 
the L1500 multifuel furnace. The campaign was conducted in 2018 as a collaboration with the 
University of Utah and Brigham Young University. A coal flame and a co-firing flame of coal 
and torrefied biomass were studied. In the co-firing case, the biomass comprised 15% of the 
total fuel feed, based on a total heat input of 1.5 MWth. The temperature, gas composition, 
radiative intensity, and radiative heat flux profiles were analyzed during the campaign.  
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3.  Heat Transfer Modeling 
 
To model the heat transfer in furnaces, radiative, convective and conductive heat transfers 
should be included, so as to describe accurately the total heat transfer. The largest portion of 
the total heat transfer is attributable to radiation in many furnaces [1] and is the main focus of 
this thesis, which is why most of the emphasis is placed on this heat transfer mechanism. 
However, if only the radiative heat transfer within a furnace is to be considered, calculating the 
heat transfer still remains complex. Several elements need to be considered, given that the 
different gases and particles present within the flame and furnace emit, absorb, and scatter 
radiation. This chapter presents the main equations used to model the radiative heat transfer in 
cylindrical and semi-cylindrical furnaces, how present gases and particles are treated, and how 
measurement data is introduced to the different models. A large part of this thesis focuses on 
rotary kilns in which a bed material is present that exchanges heat with the flame, the passing 
gas and the kiln walls. In the presence of such a bed, heat transfer through conduction and 
convection, as well as the heat that is transported with the mass of the bed or wall must be 
included. Such a modeling tool has been developed within the work of this thesis and the 
structure of the tool is presented here.  

3.1 Radiative Heat Transfer 
The radiative intensity tells us how much heat is being transferred along a set direction . The 
intensity change is described by the radiative transfer equation (RTE), as the sum of the 
contributions from emission, absorption, and scattering away from and in to . For a given 
wavenumber, , the RTE can be written as: 
 

 (1) 

where  and  are the absorption and scattering coefficients, respectively,  is the direction of 
the intensity being scattered in the  direction, and  is the solid angle of the ray in the  
direction. The scattering phase function, , describes the probability that a ray from the  
direction will be scattered in the  direction [2]. The absorption coefficient is dependent upon 
both the gases and particles present, while the scattering coefficient for thermal radiation is only 
related to the presence of particles. 

3.1.1 Gas Radiation 
If the medium, through which a ray of light travels, only consists of gases and there are no 
particles, the scattering may be neglected [2], thereby simplifying the RTE to: 
 

 (2) 

As shown in Eqn. (2), the absorption coefficient is dependent upon the wavenumber (see also 
Figure 1), such that solving the RTE requires knowledge of the spectral properties of the gases. 
The RTE can be solved for each spectral line by performing line-by-line calculations. However, 
these calculations are computationally cumbersome, requiring very detailed knowledge of 
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every spectral line, and they cannot be reasonably applied to other than a limited group of 
simplified problems. If the system is instead very complex, as in, for example CFD models, a 
simpler gas model must be utilized, e.g., a global gray gas model for which a fixed absorption 
coefficient is used throughout the furnace. However, other approaches exist that are 
intermediate to these two extreme models in terms of the model complexity and accuracy, and 
how computationally demanding they are. Such models may still give valuable insights into the 
radiative heat transfer in furnaces and are suitable for many engineering problems. Two such 
examples are statistical narrow-band models and weighted-sum-of-gray-gases models.   

Statistical-narrow-band model 
The statistical-narrow-band model (SNBM) represents a detailed approach to estimating gas 
radiation. In the SNBM, actual absorption coefficients for each spectral line are replaced with 
the averaged values for narrow spectral bands, together with random spacing and the strengths 
of the spectral lines. To enable statistical treatment of the bands, the spectrum has to be divided 
into bands that are sufficiently wide to contain many lines, while being narrow enough to 
assume constant black-body radiation in the band [60]. Different probability functions have 
been developed, for example by Goody [61] and Malkmus [62]. To generate realistic 
representations of the varying line strengths, Sl, the probability density function presented by 
Malkmus, according to Eqn. (3), has been used in the present work, since it is recognized as the 
best model currently available for polyatomic molecules [2].  
 

 (3) 

Using the Malkmus SNBM, Soufiani and Taine have calculated the temperature-dependent 
narrow band parameters of the mean line spacing, , and the mean line-intensity to the typical 
line-spacing ratio, , for H2O, CO2 and CO [63]. These were subsequently updated with 
additional parameters for CH4 by Rivière and Soufiani [64]. The spectrally averaged 
transmissivity of a narrow band  with a bandwidth  of 25 cm-1 is calculated for a gas (g) 
according to Eqn. (4). 
 

 (4) 

In this work, only water steam and carbon dioxide are considered. Using reference values of 
296 K and 1 bar for the temperature and pressure, respectively, the mean line half-widths, , 
for these two gases are given as: 
 

 
(5) 
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The total transmissivity, for all the present gases, may be calculated as the product of the 
transmissivity values of the separate gases: 
 

 (6) 

In those cases in which the pathway is neither isothermal nor homogeneous, the Curtis-Godson 
[2], [65] approximation is used, whereby each inhomogeneous optical path is instead replaced 
with a hypothetical homogeneous path with the corresponding transmittance. The 
transmissivity along a path, , is related to the absorption and scattering coefficients according 
to Eqn. (7). For a non-scattering gas, the scattering coefficient is equal to zero.  
  (7) 

 
Weighted-sum-of-gray-gases model 
A less-detailed, but still effective, approach to modeling the radiative properties of gases is to 
use the weighted-sum-of-gray-gases (WSGG) model. This model was first presented by Hottel 
and Sarofim [50] and considers the molar ratio of water steam to carbon dioxide. The gases in 
the furnace are represented by a mixture of a set number of gray gases. Each gray gas, , has a 
fixed absorption coefficient that reflects the real gas ratio, such that each gray gas represents all 
the spectral regions with an absorption coefficient in a specific range and may be calculated 
according to Eqn. (8). The coefficients  and  are given in Table 1. 
 

 (8) 

In the spectral regions in which the gases neither emit nor absorb, the radiation is represented 
by a so-called clear gas for which the absorption coefficient is set to zero,  Weights for 
each gas, , are calculated, depending on the same molar ratio and the gas temperature 

, corresponding to the fraction of the black-body radiation assigned to each 
gas. The weight of the clear gas, , is set so that the sum of the weights is equal to 1.  
 

  

 
 (9) 

 

  

The coefficients used in this work to calculate the absorption coefficients and the weights for 
the gray gases are listed in Table 1 for a modified WSGG model, derived from the work of 
Johansson et al. [60]. The modified version of the WSGG model was developed for molar ratios 
in the range of 0.125–2.0, temperatures in the range of 500 – 2500 K, and pressure path lengths 
in the range of 0.01–60.0 bar m, for a set of one clear and four gray gases.  
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Table 1. WSGG-model coefficients for each of the four gray gases, j, as derived from the 
work of Johansson et al. [60] 

j 1 2 3 4 

 0.055 0.88 10 135 
 0.012 -0.021 -1.6 -35 

 0.358 0.392 0.142 0.0798 
 0.0731 -0.212 -0.0831 -0.0370 
 -0.0466 0.0191 0.0148 0.0023 

 -0.165 -0.291 0.348 0.0866 
 -0.0554 0.644 -0.294 -0.106 
 0.0930 -0.209 0.0662 0.0305 

 0.0598 0.0784 -0.122 -0.0127 
 0.0028 -0.197 0.118 0.0169 
 -0.0256 0.0662 -0.0295 -0.0051 

 
Neither the absorption coefficient nor the weights are dependent upon the pressure path length, 
although the total emissivity of the gases is.   
 

 (10) 

Using the WSGG model, the RTE in Eqn. (2) may be expressed as: 
 

 (11) 

3.1.2 Particle Radiation 
The particles present in the furnace not only emit and absorb radiation, but they may also scatter 
radiation. Thus, the radiative properties of particles must be modeled in an appropriate way. 
For an interacting ray of light traveling through a cloud of spherical particles with radius a, the 
radiative properties are given by three dimension-less parameters: (i) the complex index of 
refraction; (ii) a size parameter; and (iii) the clearance-to-wavelength ratio, as shown in order 
in Eqn. (12). 
  

(12)   

  

For cases with a clearance-to-wavelength ratio >0.5, which is the case for almost all heat 
transfer problems, the ratio is unimportant [66]. Therefore, in the present work, this parameter 
is ignored, and the scattering is deemed to be independent, i.e., the scattering at one particle is 
not affected by surrounding particles. The complex index of refraction consists of one real part, 
the refractive index , and one imaginary part, the absorptive index . It should be noted that 
each of the particle types have distinct radiative properties. In this work, we differentiate 
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between fuel, ash, and soot particles, although all the particles are treated as spheres. Absorption 
and scattering properties are usually calculated from the Rayleigh theory, for smaller particles, 
such as soot; and Mie theory, for larger particles, i.e., fuel, char, and ash particles [2]. 

Rayleigh Theory 
For particles that are much smaller than the radiated wavelengths, such as soot particles, the 
scattering is negligible and, the RTE can be described in the same manner as in Eqn. (2), albeit 
for particles. Using the Rayleigh theory, the absorption coefficient can be calculated from the 
particle volume fraction rather than from the size of the particles. With the complex refractive 
index of the particles, the absorption coefficient can be calculated according to: 
 

 
 

(13) 

where  is the particle volume fraction,  is a given wavelength, and  is a function of 
the complex refractive index, such that: 
 

 (14) 

Wavelength-dependent functions of the complex refractive index have been developed for soot 
particles by Stull & Plass [15], Dalzell & Sarofim [16], Lee & Tien [17] and Chang & 
Charalampopoulos [18]. However, more recent studies have claimed that the wavelength 
dependency on the -function is low or negligible. Coderre et al. [67] have suggested that 
the function value is remarkably constant at around 0.35, in the wavelength range of 450–750 
nm. However, in the present work, a wider spectral range is in focus and the complex refractive 
index derived from the work of Chang & Charalampopoulos [18] is used for the soot particle 
properties, with validity for the wavelength range of 0.4 – 30.0 μm.  

  
(15)  

 

Mie Theory 
The Mie theory, which was developed by Gustav Mie [68], describes the radiative scattering of 
light by spherical particles. While the theory is complex, it essentially solves the Maxwell 
equations for an electromagnetic wave traveling through a medium that contains a sphere. The 
theory generates absorption and scattering coefficients, which are calculated from the respective 
efficiency factors,  and , and the projected surface areas of the particles, Aproj. 

The efficiency factors are calculated in this work using the derivations of Hulst [69] or Bohren 
and Huffman [70]. The absorption efficiency factor is calculated from the extinction and 
scattering efficiency factors such that: 

  
(16)   
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(17) 

 
 

 

 

where  is an integer for an infinite series, and the complex numbers  and  are the Mie 
scattering coefficients [69], as functions of the complex refractive index. Although the series 
are infinite, it is not necessary to calculate the sum for a value of  that is larger than a value 
termed . As the -value exceeds the value of the size parameter x by 2 or 3, the contribution 
to the sum is negligible [69]. The stop criterion used in this work is taken from the work of 
Bohren and Huffman [70], according to Eqn. (18): 
 

 (18) 

In this work, the Mie theory is used for particles of ash and fuel. The complex refractive index 
of the fuel particles is in this work fitted to the data from Foster and Howarth [71] (Table 2). 

Table 2. Refractive indices used for fuel (coal and char) particles [71].  

 [μm]  

   

   

   
 

The complex refractive indices for the ash particles show rather large variations in the literature 
at wavelengths < 5μm. A function that is derived from the combined data from Lohi et al. [72] 
(0.6–2.6 μm), Gupta and Wall [73] (2.6–5.0 μm), and Goodwin and Mitchner [74] (>5 μm) is 
used, as previously done by Johansson et al. [75] (Table 3). 

Table 3. Refractive indices used for ash particles [72]–[74] 
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3.1.3 Gas and Particle Interactions 
In the furnace, gases and particles co-exist and interact with each other. Using the Rayleigh 
theory for soot particles and the Mie theory for ash and fuel particles, the total particle 
absorption and scattering coefficients at a point can be calculated as the sum of the coefficients 
for the different particle types:  
  

(19)   

The particle absorption and scattering coefficients can be used to calculate transmissivity along 
a distance s, according to Eqn. (7). The total transmissivity can be calculated as the product of 
the transmissivities of the gases and particles: 
  (20) 

Gray particle properties can be calculated from the spectral properties and used in a gray model, 
such as the WSGG model, according to Planck averaging: 
 

 
(21) 

 
 

3.2 Cylindrical Furnaces  
Calculating the radiative intensity field in a furnace requires a model that solves the RTE, 
including emission, absorption, and scattering due to the gases and particles present. The 
furnaces examined and modeled in this work are cylindrical, and two modeling approaches are 
used, namely the discrete transfer model and the discrete ordinates method. Both models 
employ the -approximation and discrete ordinates to identify appropriate directions and 
weighted rays of intensities.  

The input data required by the radiation models comprise mainly temperature, gas composition 
and particle property profiles, and they should preferably be gathered from measurements. The 
model outputs of most interest are the separate and total radiative intensities from the gases and 
particles, as well as the radiative heat flux to the furnace wall.  

3.2.1 SN-approximation 
In the models, the radiative intensity is calculated in a set number of directions, solving the 
RTE. The directions of the rays are, in this work, derived according to an SN-approximation. 
The N term denotes the number of different direction cosines used for each principal direction, 
such that the total number of directions is given by: , typically distributed according 
to either the -, - or -approximations. According to Fiveland [76], the angular 
discretization with the -approximation may yield sufficiently reasonable solutions for some 
systems, while higher values give more detail but require considerably more computational 
effort. Each direction is given by the direction cosines and  for a ray traveling along 
the discrete direction  according to Eqn. (22) and Figure 12 [77], [78]: 
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(22) 

  

  

  

 
 

Figure 12. The direction cosines ( ) for the discrete direction in a cylindrical 
enclosure. 

where θ and ϕ are the polar and azimuthal angles, respectively, and  a space variable in the 
azimuthal direction. To cover the whole sphere, of 4π sr, to which radiation may be emitted 
from a point, the ordinates may be positive or negative. Each set of ordinates is also connected 
to a weight, w, such that: 

 
 (23) 

when both positive and negative signs of the cosine directions are considered. The directions 
given in one eighth of a full sphere, where all the ordinates are positive, are given for the S8-
approximation in Table 4, [2]. All other directions are given by altering the combination of 
positive or negative signs in front of the ordinates, resulting in eight directions for each row.   

Table 4. Discrete ordinates for the S8-approximation, as collected from a previous work [2]. 

 Ordinates  Weights 
ξ η μ  

0.1422555 0.1422555 0.9795543 0.1712359 
0.1422555 0.5773503 0.8040087 0.0992284 
0.1422555 0.8040087 0.5773503 0.0992284 
0.1422555 0.9795543 0.1422555 0.1712359 
0.5773503 0.1422555 0.8040087 0.0992284 
0.5773503 0.5773503 0.5773503 0.4617179 
0.5773503 0.8040087 0.1422555 0.0992284 
0.8040087 0.1422555 0.5773503 0.0992284 
0.8040087 0.5773503 0.1422555 0.0992284 
0.9795543 0.1422555 0.1422555 0.1712359 

 
3.2.2 Discrete transfer model 
The discrete transfer model (DTM) was developed to solve the RTE for representative rays of 
intensity in a volume by tracing the rays that travel from one surface to another in predetermined 
directions. The model was first developed by Lockwood and Shah [79], who tested the model 
for one-, two-, and three-dimensional problems and found good accordance with analytical 
solutions and with solutions generated using the Monte Carlo method. The rays used were set 
so as to be directed to a point, such that they were distributed angularly in an equal fashion in 
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space. In this work, the furnace is treated as an infinitely long cylinder with axisymmetric 
properties within the DTM [75]. That is, the temperatures, as well as the gas and particle 
concentrations are symmetrically distributed around the axis of the furnace and there are no 
gradients in the axial direction. This simplification of an axisymmetric cylindrical furnace 
means that when one is tracing a ray through the center position of a furnace, it is only necessary 
to make the calculation for rays in a quarter of a hemisphere. Thus, when tracing a ray in either 
the forward or backward direction, the number of rays needs to be considered is decreased to: 

. 

The radiative intensity is calculated along a number of grid points set between the furnace wall 
and the center position. Rays from the directions given by the SN-approximation, crossing the 
grid points, are traced and the total number of rays in the model is equal to the number of grid 
points multiplied by the number of rays in each point [75]. The grid-point discretization of the 
path can is illustrated in Figure 13.  

 
Figure 13. Discretization of the radiative path in the discrete transfer model. 

As the ray is traced, the intensity at cell node , , is dependent upon the emissions of all 
the upstream cells, as well as the radiation leaving the wall. The intensity is calculated as the 
sum of the difference in transmissivity between the two cell walls of the same cell, along the 
path to n, multiplied by the spectral black body intensity, . Here, the gas properties are 
calculated in the DTM using the Malkmus SNBM, and if only gases and/or soot particles are 
present along the path the solution to the RTE for a narrow band k may be written according to 
Eqn. (24) at the end of the path, at position : 

 (24) 

If scattering particles are present along the path, the Mie theory is used for the particle properties 
and solving the RTE becomes more complex and may be expressed as: 

 

 (25) 
where G is the incident intensity integrated over all directions, and  is the scattering albedo. 
The albedo is the relative importance of the scattering, such that a value of 0 is equivalent to no 
scattering and a value of 1 signifies pure scattering and no absorption and is given as: 
 

 (26) 

ni

2/1i

0 1 i 1i n
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where β is the extinction coefficient (  and  is the cell length. The total 
radiative intensity at position  is then calculated as the sum of all the spectral intensities and 
the bandwidth of each band :  
 

 (27) 

The incident radiative heat flux to the furnace wall is calculated from the weighted sum of the 
intensities for the different directions, , according to the -approximation:  
 

 (28) 

with  representing any direction cosine. The wall surface is assumed to be gray and diffuse.  

3.2.3 Discrete ordinates method 
As gradients along the furnace axis are not considered in the DTM, it is of interest to study the 
entire cylindrical furnace using a three-dimensional model. Developed from neutron transport 
by Carlson and Lathrop [80], the discrete ordinates method (DOM) divides the cylindrical 
furnace volume into cells in the radial , axial , and angular  directions, so that the total 
number of cells is given by Eqn. (29):   
  (29) 

An example of cell discretization for a cylindrical furnace is shown in Figure 14a. The DOM 
has been used previously for modeling radiative heat transfer in cylindrical furnaces [78], [81], 
[82]. The properties, such as gas composition, particle-projected surface area, and temperature, 
are set at the cell nodes, while the surface properties are set at the cell surface nodes, i.e., no 
symmetry assumption is required. Compared to the DTM, in the DOM, the modeled furnace is 
not infinite and, thus, also has a bottom (burner) and a top (flue gas exhaust) end. However, 
considering the rotary kiln used for iron ore pellet production, a bed of iron ore pellets fills 
approximately 8%–12% (  of the furnace volume. If the bed is assumed to be evenly 
distributed along the axis of the furnace, it can be represented by a flat surface (Figure 14b), as 
has been done previously [83]. The furnace volume can be considered as a “semi-cylindrical” 
enclosure with two cell types, I and II. 
 

 
Figure 14. a Cell discretization of a cylindrical furnace. Considering the rotary kiln used 
for iron ore pellet production, a bed is present and can be represented in the model 
according to b with two cell types, I and II.  
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It is desirable to maintain the angle, , between two cells in the angular direction  constant 
while adding the bed material. To do so, the total number of cells in the angular direction  
can be varied to minimize the bed filling degree error, , expressed in Eqn. (30). In radians, 
the bed filling degree, , and  are related as follows: 

  
 

 
 

(30) 
 

For the cylindrical and semi-cylindrical enclosures of a rotary kiln, the RTE may be expressed 
in terms of cylindrical coordinates [81] according to Eqn. (31) (see Figure 12). 

 

(31) 

To solve Eqn. (31), for cell types I and II, Eqn. (31) is multiplied by the expressions given by 
Eqn. (32):  

Type I  

(32) 
Type II  

and integrated over the volume elements for each cell type. For both cell types, the expression 
is then: 

 
(33) 

The -terms are introduced to handle the discretization of the direction vector  and to 
correct for the curvature of the cylindrical furnace [80], [84]. The ,  and  terms represent 
the cell wall areas through which the radiation enters and leaves the cells, in the radial, angular, 
and axial directions, and  is the cell volume. The subscripts  and  represent the cell 
numbers in the radial, angular, and axial directions respectively. The two cell types, I and II, 
result in six cell surfaces, as shown in Figure 15. 
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Type I 

 

Type II 

Figure 15. Representation of the two cell types and surface areas present using the discrete 
ordinates method for a cylindrical furnace without (a–c) and with (d–f) a bed material being 
present. 

Defining the cells from a line drawn between the center of the furnace and the middle of the 
bed surface, in the angular direction,  is the shortest distance from the central axis of the 
kiln to the bed surface. Each cell surface can then be expressed according to Eqn. (34).  

 

(34)   

  

The cell volume for any cell can be calculated according to Eqn. (35). 
  (35) 

To find the -terms, a case in which divergence-less flow is assumed can be used 
according to Carlson and Lathrop [80], i.e., a case with neither intensity sources nor sinks and 
all intensities are alike. Considering the different cell surfaces, it may be observed that for cell 
type I: , and for both cell types (I and II): , while  for all cells. 
The right-side of the expression in Eqn. (33) becomes zero and for the two cell types, the 
following expressions are achieved:  

Type I  

(36) 

Type II  

With the first -term, , the following terms may be readily calculated. In contrast to 
the DTM, the radiative heat transfer is not traced along one discrete ray along the furnace 
diameter. The rays spread from the nodal points in the cells over a sphere, and calculations are 
performed for one-eighth of a sphere at a time. The RTE is solved in each discrete direction, 
which results in as many coupled partial differential equations, and an iterative process is 
required. The procedure starts at the outer wall at one end of the cylinder. Assumed values for 
the angular and reflected intensities are used in the first iteration and, thereafter, updated in each 
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iteration. The WSGG model is used to model the gases in the furnace and the Mie and Rayleigh 
theories are used for the different particle types, while the gray properties are calculated for 
each cell using Planck averaging according to Eqn. (21). The radiative intensity to a node-point 
P from one direction in a quadrant, with the beam directed from the wall to the furnace center, 
is expressed by Eqn. (37) [81].  
 

 
(37) 

 

Here, the upstream intensities of IA, IB and IC are calculated using a diamond differencing 
scheme. The diamond scheme is, however, known to suffer from the shortcoming of eventually 
producing negative intensities. In the model, if any such values appear, they can be set to zero. 
The radiative heat flux incident to the furnace wall can be calculated as the sum of the incident 
radiations from all directions, as in Eqn. (28). The wall and bed surfaces are assumed to be gray 
and diffuse. 

3.2.4 Modeling input data 
Various parameters, such as the gas and particle temperatures, gas composition, particle surface 
area, and soot volume fraction are used as input data to the models. In the DTM, axisymmetry 
is assumed and radial profiles are created for each parameter as it is introduced to the model. In 
the DOM, it is possible to set any parameter value in each cell node and no symmetry is 
required. These parameters should be estimated in some way, preferably through accurate 
measurements. The input data used in this work are mainly based on measurements made in 
various flames. However, as the access for performing measurements is limited, some 
assumptions are necessary between two measurement positions. For cells that are located at 
positions between two measurement positions, interpolated values were calculated using a 
linear average in both models, except for the temperature and particle concentration values.  

In this work, for the radial temperature profiles, the temperatures measured on each side of the 
furnace central axis, say the right-side and left-side, were used, and the average value was 
calculated considering the temperatures to the power of four, according to Eqn. (38). However, 
separate temperatures for the gases and particles were not measured, and it has been assumed 
that the particles have the same temperature as the surrounding gas. 
 

 (38) 

In the studied cases using a solid fuel, particles were extracted only at the center positions, 
mainly due to time restrictions during the measurement campaigns. Therefore, the particle 
distribution has to be estimated from a single point. It was assumed that the particles were either 
spread along a portion of the furnace diameter, from the central axis by employing a cosine-
function, or that the measured concentration was the same across the entire furnace diameter, 
as discussed in Paper I. The second option was used at downstream positions, close to the end 
of the flame. For the first option, which was used at positions closer to the burner and within 
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the flame, the particle-projected surface area, , is assumed to be distributed at position  
on the furnace radius  according to Eqn. (39):  

 
 

  
(39) 

 
  

where , is the flame radius, i.e., the distance from the furnace center where particles are 
assumed to be present, and  is the projected surface area if the particles are equally 
distributed across a disc along the flame diameter. For positions that lie very close to the burner, 
the fuel size distribution, measured before feeding to the burner, was used instead. For these 
positions, the total project surface area, integrated over the whole furnace diameter, was 
assumed to be known and the particles were assumed to be equally distributed, resembling a 
top hat, for different flame radii. Figure 16 shows three examples of particle distribution in a 
furnace with a radius of 325 mm, for a position very close to the burner (Figure 16a), and for a 
position within the flame (Figure 16b). The three profiles depend on the value of , although 
the central peak value is constant, corresponding to the particle extraction measurements. 

 

Figure 16. Example of particle distribution over a furnace diameter of 650 mm using three 
different flame radii according to either a top-hat (a) or cosine-function (b) distribution.  

The flame radius can be revealed by studying the measurements of the radiative intensity along 
the furnace diameter (for example see Figure 8). This topic is discussed further in Paper I.  

3.2.5 Scattering 
As mentioned above, when radiation approaches a particle, scattering can occur through 
diffraction, reflection or refraction. Radiative scattering depends on multiple properties of the 
particle, such as the size, shape, and composition of the particle [2]. However, in this work, all 
particles are assumed to be spherical, and it has been shown in the work of Gronarz et al. [85] 
that particle shape has little importance for scattering. The scattering efficiency factor is 
calculated for coal and ash particles as already described using the Mie theory for both the DTM 
and the DOM. It is, however, difficult to describe in a satisfactory way in the models how the 
scattered light is distributed when leaving the particles, i.e., the scattering phase function. Two 
commonly applied simplifications involve the assumption that the scattering is: (i) isotropic, 
i.e., the scattered light is distributed equally in all directions; or (ii) only in the forward direction, 
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i.e., no scattering. To demonstrate the effect on radiative intensity of scattering, an example is 
illustrated in Figure 17. Here, a case assuming isotropic scattering is compared to a case 
assuming only forward scattering, applying the DTM. The modeled case was a coal flame with 
particles distributed over a portion of the furnace diameter. A cold background (25°C) was used 
to study the radiation from the flame and the in-scattered radiation from the surroundings. An 
otherwise surrounding furnace wall at 500°C (Figure 17a) was compared to a warmer wall at 
1200°C (Figure 17b). It is clear from the results that in-scattering has a stronger impact on the 
radiative intensity when the furnace wall is hot. This is due to radiation from the warm wall 
being scattered in the narrow direction studied here, directed towards the cold background.  

  

Figure 17. Full isotropic scattering of the incoming radiation is compared to forward-
scattering for a flame with a solid fuel. The wall temperature is 500°C (a) or 1200°C (b). 

In our earlier studies, scattering was assumed to be isotropic, which resulted in only minor 
errors (Figure 17a) for a colder furnace wall. However, for cases in which the furnace wall is 
heated, as in the rotary kiln furnace, the effects of scattering are considerably more potent 
(Figure 17b). It has, however, been shown that scattering is usually much stronger in the 
forward direction of the incoming radiation [2] and Gronarz et al. [86] have suggested using a 
forward scattering of about 80%. Therefore, further work should be focused on improving the 
modeling of the scattering due to particles in the radiation models. Moreover, the different types 
of particles warrant more detailed studies.  

3.3 Rotary Kilns with a Passing Bed Material 
The bed material in a rotary kiln is heated primarily through radiation from the flame and kiln 
wall. However, it is also heated by conduction from the contact with the wall and convection 
via the passing gas, and possibly through exothermic reactions within the bed. The wall receives 
heat from the flame and cooling from the bed material and outer heat losses as it rotates. 
Furthermore, since the temperature difference between the bottom bed layer and wall is 
relatively large for most of the kiln length, it can be argued that it is also important to take into 
account radiative heat transfer under the bed. To calculate the product temperature, all these 
mechanisms should be considered when modeling a rotary kiln with a bed material.  

3.3.1 Bed Motion and Advective Heat Transfer 
According to the definition provided by Henein et al. [87], the bed motion of iron ore pellets in 
the rotary kiln is considered to have a rolling bed mode, characterized by a rather even bed level 
in a cross-section of the kiln and continuous motion of the surface bed layer. The bed material 
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is here considered to be divided into two parts in the model: a surface (s) layer and a bottom (b) 
layer, in accordance with Figure 4 and similar to what has been assumed in earlier works, [39], 
[40], [45]. A fictitious boundary line is assumed between the two layers such that no heat is 
transferred at the contact points between the two layers. The pellets within a single cell of the 
bottom layer are assumed to be at rest in relation to the wall, i.e., there is no mixing of the 
pellets and the bed is assumed to have no slip to the wall. Unlike the bottom bed layer, perfect 
mixing is assumed in the surface layer at each separate angular position, with the consequence 
that the bed material within a surface layer cell is isothermal. The portion of the bed material 
that follows the wall, within a bottom bed layer cell, is defined from the cell volume of the first 
angular bed cell of the bottom layer, , located at angular position  on 
the kiln wall, according to Figure 18. As the wall and bed move, this mass of pellets is 
immediately substituted with pellets derived from the surface layer in an equivalent amount, 
given as a volume portion from the surface layer cell at . Pellets in the surface layer 
then move accordingly from higher to lower positioned angular cells all the way from cell 

. The time that it takes for the wall to move one full step in the model (angular length 
of one cell) is denoted as  and is dependent upon the rotational speed of the kiln wall and cell 
discretization. At position , the bottom bed pellets have reached the highest position 
in the cross-section of the bed and are mixed into the surface layer at . The time that it 
takes for a pellet in the bottom layer to travel the full cross-sectional length of the bed (from 

 to ), is, therefore, .  

 

Figure 18. Cell discretization of the wall and bed material in a surface (s) and in a bottom 

(b) layer, for a rotary kiln.   

3.3.2 Radiative Heat Transfer 
To calculate the radiative heat transfer in the rotary kiln, the DOM is used. The incident 
radiative heat flux to the furnace kiln wall or bed material can be calculated from Eqn. (28). If 
there is net heat flux to the bed or wall, the surface temperature may be updated in the model 
from the accumulated heat due to radiation. Assuming gray and diffuse properties for the 
different surfaces and further assuming that the bed (b) and wall (w) temperatures are constant 
during time , the accumulated heat, , at the surface can be expressed according to Eqn. 
(40). 
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  (40) 

Here,  is the emissivity of the surface and  the Stefan-Boltzmann constant. It can be argued 
that radiative heat transfer also occurs below the bed material, between the wall and the bed 
material close to the wall. Due to the spherical shape of the pellets, only a portion of the wall 
surface area, , is in direct contact with the bed, , while the remaining surface will emit and 
absorb radiation from its surroundings, as illustrated in Figure 19 for which a well-packed bed 
is assumed to have the type face-centered cubic packing.  

 
Figure 19. Radiative heat transfer under the bed material, assuming a face-centered cubic 
packing structure for the iron ore pellets. 

Since a portion of the radiation will always be reflected within the cavity, the absorbed energy 
is dependent on the emitted and the reflected radiation and can be expressed in terms of the 
radiosity, J, from the wall and bed material respectively. It is assumed that the radiation from 
the wall never reaches further into the bed than to the first- and second-pellet layers closest to 
the wall. The view factors, , are calculated for the face-centered cubic packing structure, 
depending on the pellet radius.  

  

 
(41) 

Radiative heat exchanges between the pellets are otherwise ignored, as the temperature 
difference between neighboring pellets is considered to be small. 

3.3.3 Conductive Heat Transfer 
To describe the conductive heat transfer between the wall and bed material that occurs under 
the bed, an unsteady-state penetration model of the bottom bed layer has been used, under the 
assumptions of no mixing within the bottom bed layer and no slip to the wall. As the bed 
material and wall meet, the two surfaces will adopt the same surface temperature where they 
are in contact. The contact surface temperature, , can be calculated according to Eqn. (42): 

 
 (42) 

where  is the thermal conductivity,  is the density of the solid material, and  is the specific 
heat capacity. Early attempts to construct such a penetration model were made by Wes et al 
[40], with modifications introduced subsequently by others [41], [88], [89], in which a fictitious 
gas film was introduced as a heat transfer resistance. Later, Herz et al. [39] examined how well 
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the models aligned with actual measurements and found that the penetration model used by 
Wes and colleagues among others showed reasonable levels of agreement. In the present work, 
no fictitious gas film is considered, and penetration models are used for both the wall and bed 
material. The heat transferred between the two materials due to conduction is described 
according to Eqn. (43) over a period of  seconds:  

 
 (43) 

where  is the temperature distribution within the thermal penetration depth of the bed or 
wall. The distribution is set so as to vary from the contact surface temperature, , to a 
temperature that is 99% of the temperature difference between the initial material temperature 
(of the bed or wall) and the contact surface temperature, which may be derived from the 
Gaussian error function according to Eqn. (44) [90]. That is, however, under the assumption 
that as the bed and wall meet (at  according to Figure 18), each cell is considered 
isothermal within one angular cell, at each respective temperature. Furthermore, the depth of 
the temperature profile cannot be greater than the thickness of the bottom bed layer or wall 
thickness, , after  seconds. This is controlled and checked in the model.  

 
 

(44) 

  
 

3.3.4 Convective Heat Transfer 
Heat is also transferred between the gas passing through the kiln and the bed or wall surfaces 
due to convection. Global expressions of the heat transfer coefficient obtained from the work 
of Gorog et al. [42] have been used here and elsewhere, e.g., [91], [92]. The heat transfer from 
the gas to either surface is described by: 
 

 (45) 

  (46) 

where  is the diameter and  is the length of the rotary kiln, and  is the mass flux of gas 
passing through the kiln. It should, however, be noted that convective heat transfer is only 
considered in one direction within the model. Thus, while the wall and bed may be heated or 
cooled by the gas, the gas temperature is kept constant, as it is set as an input parameter to each 
cell node, based on real measurements. 
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3.3.5 Reactive Bed Material 
As the iron ore pellets are transported through the rotary kiln, magnetite is oxidized to hematite, 
in a strongly exothermic reaction that should be accounted for in the model. From the process 
point-of-view, the bed material should already be fully oxidized as it enters the rotary kiln, 
although some oxidation will occur within the kiln. In the kiln, the amount of available oxygen 
in the gas within the bed is limited by the fuel combustion, as well as by the mixing of the 
pellets with the freeboard gas, so the oxidation is difficult to model in a satisfactory way. 
Therefore, as a simplification, set bed compositions into and out of the rotary kiln, gathered 
from the full-scale process, are instead used, and the heat from reaction is added as a source 
term, evenly distributed along the axis of the kiln. The heat of reaction is taken from Forsmo et 
al. [93]: 
  R3 

The oxidative reaction of iron ore within the grate-kiln process has been studied extensively 
elsewhere, and detailed models have been developed (for example, see [93]–[96]). 

3.3.6 Heat Losses 
Heat losses occur at the rotary kiln as heat is transported through the wall to the colder 
surroundings of the kiln, where heat is transferred by both radiation and convection. The outer 
wall temperature of the rotary kiln, , may be calculated from the composite wall materials 
properties and the outer surrounding temperature, , according to Eqn. (47).  
 

 
(47) 

 

For the full-scale rotary kiln, the outer convective heat transfer coefficient, , is obtained in 
the model using a correlation of a rotating cylinder, as previously described by Barr et al. [44]. 
 

 (48) 

For the pilot-scale rotary kiln, i.e., a stationary kiln that is a horizontal cylinder, the natural 
convection on the outside can be expressed from the Nusselt number for a horizontal cylinder, 
as described by Churchill and Chu [97]. Forced convection on the outside of the kiln is 
considered to be negligible since the furnace is enclosed within a building. 
 

 (49) 
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4. Measurement Techniques 
 
In order to better understand and model the radiative heat transfer in furnaces, high-quality 
measurements of different in-flame parameters are required. Ideally, these measurements would 
be conducted without interfering with the flame and without affecting the combustion 
conditions, i.e., using non-intrusive methods. However, this is not always possible, and for some 
parameters, intrusive methods have to be used. The measurement techniques used in the present 
work are described below, together with schematics of the measurement equipment.  

4.1 Intrusive Measurements 

4.1.1 Suction pyrometer 
Performing accurate measurements of the flame temperature is challenging, as simply using a 
thermocouple will result in errors due to radiative influences. Consider a case in which the 
furnace walls are colder than the flame at the measurement position. Ignoring any radiative 
absorption by the gas, a simple energy balance at the thermocouple is as follows: 
 

 (50) 

That is, due to the radiative heat losses to the surrounding walls, , the temperature measured 
by the thermocouple, , will be lower than the actual flame temperature, . However, the 
measurement error may be reduced by increasing the convective heat transfer coefficient, , 
from the flame to the thermocouple. Applying suction around the thermocouple increases the 
gas velocity and, thereby, the convective heat transfer. The radiative heat loss can be decreased 
further by shielding the thermocouple. This type of instrument is called a suction pyrometer, 
and it is common to use a single shield for measurements of a gaseous flame, as in Papers IV 
and V, and a triple shield for measurements of a solid fuel flame, as was used for the data in 
Papers I–III. Figure 20 presents a schematic of a triple-shielded suction pyrometer of the 
International Flame Research Foundation (IFRF) type, attached to a water-cooled probe. A type 
B thermocouple was used for all the measurements in this work.  

  
Figure 20. Schematic of a triple-shielded suction pyrometer connected to a water-cooled 
probe. Gas is sucked through an opening in the outer shield and passed through the middle 
and inner shields. The thermocouple is protected from the gas by the inner-most shield.  

It should be noted that while the increased suction velocity reduces the measurement error, the 
extracted gas volume also increases, and the measurement will not be a point measurement. 
Furthermore, the suction applied by the suction pyrometer affects the gas flow pattern of the 
flame. That is, the suction velocity should be sufficiently high to minimize the measurement 
error but low enough to ensure a small measurement volume. One problem that can occur when 
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performing measurements with this instrument is that the suction line becomes clogged with 
heavy particle loads or ash melts, resulting in a reduced suction velocity and higher levels of 
uncertainty. 

4.1.2 Fourier-Transform Infrared Spectroscopy  
To measure the gas compositions within the furnaces, gases were extracted from the furnaces 
and analyzed using Fourier-Transform Infrared Spectroscopy (FTIR). In FTIR, the absorption 
at different wavelengths are measured in a small cell, and Fourier transforms are used to convert 
the measured absorption to a spectrum, which is then compared to a database that contains a 
high number of species. From this comparison, it is possible to determine which gas species are 
present and at what concentrations. For more details of the FTIR instrument and technique, see 
the work of Griffiths and Haseth [98]. The gas was extracted using a water-cooled probe, which 
prevented the probe from being damaged by the high temperatures of the flames. However, it 
is desirable to prevent the condensation of water in the system. For this purpose, the probe is 
equipped with an electrically heated inner tube, which ensures that the gas entering the FTIR is 
at a temperature of about 200°C. If measurements are performed in a solid fuel flame, high 
numbers of particles are present, and a filter must be placed at the tip of the probe to avoid 
clogging the system and to protect the FTIR from particles (Figure 21). The filter used in this 
work was composed of sintered alumina oxide. For a gas flame, such filters are normally not 
required, as very few particles are present, although a filter may still be useful if a very sooty 
flame is being probed. Gas extractions in combination with FTIR were used to gather the 
measurement data used in Papers I–V. 

 
Figure 21. Water-cooled, gas-extraction probe with a sintered alumina oxide filter at the 
tip. Electrical heating is applied to the inner tube, maintaining a gas sample temperature of 
200°C.  

4.1.3 Particle extraction probe 
Measurements of the particle concentration and size distribution were performed by extracting 
gas samples including particles from the flame using a probe. The particle sampling inlet was 
oriented perpendicular to the probe axis (see Figure 22) and was directed towards the burner 
during the sampling. The extracted gas was diluted with nitrogen in the tip of the probe, to 
quench any reactions. The overall dilution rate could be estimated by comparing the oxygen 
concentration in the diluted sampling gas with that at the measurement position. When studying 
solid fuel flames (Papers I-III) the probe was cooled using water and connected to a low-
pressure impactor with thirteen sizing steps, ranging from 30 nm to 10 μm; those particles with 
a diameter larger than 10 μm were captured in a cyclone. For the sampling of soot particles in 
a gaseous flame (Paper V) an oil-cooled probe was used instead, maintaining the sample gas 
temperature at 120°C. The probe was connected to the SMPS and PASS-3 instruments to 
measure the size distribution and radiative properties of the particles. 

Suction line

Cooling water outlet

Cooling water inlet

Heated tube

Sintered alumina filter
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Figure 22. Water-cooled or oil-cooled (orange arrows) particle extraction probe (the top) 
used to collect in-flame particles. The opening is oriented perpendicular to the probe 
suction line, and the sample gas is diluted with nitrogen (blue arrows) in the tip of the probe. 

It should be noted that it is very complicated to measure the particle distribution in an accurate 
way. To disturb the flow as little as possible, it is desirable to perform the particle extraction 
isokinetically, i.e., sampling the particles at a suction velocity that is equal to the flame velocity. 
However, it has been shown in previous works that have used similar probes that accurate 
measurements do not require that the sampling is perfectly isokinetic [99]. Moreover, a heavy 
load of particles has the undesired effect of clogging the probe, even more so if the fuel is 
biomass, in which case tars may condense in the probe. 

4.1.4 Scanning Mobility Particle Sizer 
A Scanning Mobility Particle Sizer (SMPS) [100] (Figure 23), provides the size distribution 
with high resolution for particles with diameters < 1 μm. It is commonly used for atmospheric 
measurements and is frequently applied in combustion studies to measure soot particles 
extracted from various flames [101], [102]. In the SMPS, particles are charged by a radioactive 
source, enters a laminar flow of nitrogen, and then, by applying a voltage over the gas, separated 
on the basis of their different electrical mobilities in a Differential Mobility Analyzer (DMA) 
[103]. In a second step, the particles are allowed to grow by addition of iso-butanol and counted 
in a Condensation Particle Counter (CPC) using a light source and an optical detector. The 
particle concentration is obtained by making assumptions regarding the particle density and 
shape (e.g. soot agglomerates). This measurement technique was used in the study described in 
Paper V. 

 
Figure 23. Schematic of the SMPS used to measure the particle size distribution of soot.  
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4.1.5 Photo-Acoustic Soot Spectrometer 
The absorption and scattering coefficients of soot particles can be measured using a Photo-
Acoustic Soot Spectrometer (PASS-3) instrument (Figure 24). Lasers with three different 
wavelengths (405, 532 and 781 nm) are applied to a gas sample, here extracted from a gaseous 
flame, as described in Paper V. The simplified theory is that the particles absorb the laser 
energy, and become heated, and as heat is transferred to the surrounding gas, a sound wave is 
produced, which is captured by a microphone. The sound wave is then correlated to the particle 
absorption. The scattered light is measured in a nephelometer and related to the scattering 
coefficient. For more details of the PASS-instrument see the review of Moosmüller et al. [104].  

 
Figure 24. Schematic of the PASS-3 instrument used to measure the absorption and 
scattering coefficients of soot particles. 

4.1.6 Narrow-angle radiometer 
The radiative intensity is measured along the furnace diameter using a narrow angle radiometer 
(NAR) instrument (Figure 25), which has been used in several studies by our research group, 
[23], [25], [26], [55]. This water-cooled probing instrument is equipped with a thermopile 
sensor at the back-end of the 2.3 m-long probe. Incoming light passes through the inner passage 
of diameter 1 cm, and is focused on the sensor. Thus, light rays that originate exclusively at a 
narrow angle to the sensor’s normal will reach the sensor, and the instrument can be considered 
to measure exclusively the radiative intensity in its line-of-sight. A voltage signal is measured 
that corresponds to the radiative intensity calibrated to a high-precision, black-body furnace 
before the start and at the end of a measurement campaign.  

Integrating sphere/ 
Photodetector

Optical signal 
(Power)Laser

λ = 405 nm
λ = 532 nm
λ = 781 nm

Sample gas in Sample gas out

 
Figure 25. Schematic of the narrow-angle radiometer that was used to measure the total 
radiation intensity. The probe includes the following components: a, thermopile sensor; b, 
focusing lens; c, shutter; d, collimating tube; e, water-cooled sensor housing and f, water-
cooled probe. 

The NAR is traversed through the flame to measure the flame radiation, and most of the direct 
background radiation (from, for example, a hot furnace wall) can be eliminated if the probe is 
directed towards a cold background, such as a quartz window. To minimize bending of the 
probe, owing to high flame temperatures, the probe is made of titanium. A small flow of 
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4.2 Non-intrusive Measurements 

4.2.1 Infrared measurements  
To better understand the combustion process, it is desirable to visually capture the flame in the 
furnace. While many cameras could be used for this purpose, an infrared camera can be used to 
study also the temperature within the furnace. A FLIR A655SC camera with the possibility to 
measure temperatures up to 2000°C at a sampling frequency of 200 Hz and with a resolution of 
640×120 pixels was used in the work for this thesis. Figure 26 shows sample images along the 
ECF furnace axis (see Section 5.1) captured by the camera for a coal flame. The camera was 
placed outside the furnace ports and was protected by a cooling house. The recorded videos 
were analyzed using the FLIR Research IR Max software (Papers I-III).  

    
a b c d 

Figure 26. Representative images captured by the infrared camera for a coal flame, 
showing the interior of the furnace with hot particles and the inner wall. The suspension 
flow moves from the left to the right in the panels, with a being close to the burner and b, 
c and d being located progressively downstream of a. Particles can be observed as denser 
fields that are passing the ports. 

4.2.2 Diode laser and laser-induced incandescence  
The in-flame soot volume fraction was estimated in Paper IV using a diode laser together with 
a Laser-Induced Incandescence (LII) system. The 808-nm  diode laser was used to measure 
the extinction through the flame, measuring the signal going through the furnace, and this was 
used to calibrate the LII-signal. The LII-signal was captured using an intensified CCD camera, 
capturing 2D images from the 1064-nm Nd:YAG laser sheet introduced to the furnace. The soot 
particles absorb the laser energy, are rapidly heated to their sublimation temperatures in the 
range of 3500–4000 K, and start to emit black-body radiation. Thus, the particle temperature is 
much higher than that of the surroundings at this point, and the emitted radiation, i.e., the 
incandescence, is easily captured [105] by an intensified CCD camera placed perpendicular to 
the laser sheet. A simplified schematic of the laser and detector arrangement is shown in Figure 
27. The two lasers were directed to pass through the same part of the flame, although the 
measurements were not performed simultaneously, so as to avoid signal interference.  

The soot volume fraction is estimated by converting the LII-signal to quantitative 2D soot 
volume fractions [57], [106]. The average soot volume fraction is calculated over an absorbing 
path length  where soot particles are present, estimated from the two-dimensional images, 
using the incident intensity, , and transmitted intensity, , as follows:  

nitrogen is used in the ray path to prevent any gases or particles entering the probe. To maintain 
a constant sensor temperature, separate cooling systems are applied to the probe and the sensor 
housing. The NAR was used for the measurements reported in Papers I–V. 
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 (51) 

where  is the volume fraction of soot,  is the wavelength of the diode laser, and  is a 
function of the complex refractive index of soot  [see Eqns. (12) and (14)]. An average of 
the LII-signal along the diameter of the flame is calculated, and given that the soot volume 
fraction is approximately proportional to the LII-signal [107], the soot volume fraction in each 
pixel of the 2D image can be estimated. The value used for  will have a great impact on 
the soot volume fraction [59], as they are inversely proportional to each other. However, the 
value of  varies in the literature, see e.g. [18], [67], and should be selected with care. 

 
Figure 27. Simplified schematic of the laser setup used in the Chalmers 100-kWth oxy-fuel 
test rig with a diode laser and the LII system.  

4.2.3 Ellipsoidal radiometer 
The incident radiative heat flux to the furnace wall can be measured in a non-intrusive manner 
if it is placed in line with the furnace inner wall. In this work, the incident radiative heat flux 
was measured using an ellipsoidal radiometer that was placed in the tip of a probe, with a view 
angle close to that of a hemisphere (Figure 28). The measured voltage signal corresponds to the 
incident radiative heat flux, and the radiative heat transferred from the whole furnace to a small 
point on the furnace wall is measured. The data acquired by this instrument were used for Papers 
I and II. 

 
Figure 28. Schematic of the ellipsoidal radiometer used for measuring the incident 
radiative heat flux to the furnace wall. 
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5.  Experimental Furnaces 
 
The experiments and measurements presented in this thesis were conducted in one industrial 
and three experimental furnaces. While three of the furnaces are cylindrical, they are of different 
dimensions, are operated differently, and are used for different purposes. The furnaces used 
were: a 580-kWth experimental combustion furnace (located at LKAB in Luleå, Sweden); a 37- 
MWth industrial rotary kiln (located at LKAB in Kiruna, Sweden); a 100-kWth oxy-fuel test rig 
(located at Chalmers University of Technology in Gothenburg, Sweden); and a 1.5-MWth 
square horizontal furnace (located at the University of Utah in Salt Lake City, UT, USA).  

5.1 Experimental Combustion Furnace 
Experiments to examine the radiative heat transfer in rotary kilns were conducted in a 
cylindrical and refractory lined test furnace (Figure 29 b), which is referred to as the 
Experimental Combustion Furnace (ECF). The ECF was constructed as a down-scaled version 
of a full-scale rotary kiln used in a grate-kiln process for iron ore pelletizing by LKAB, using 
constant velocity scaling. The furnace is tilted at an angle of 3° from the horizontal line, with 
the burner positioned at the lower end and the burner axis placed in line with the furnace axis. 
The burner has six registers for primary air and fuel [108]. During the experiments presented in 
this thesis, the burner was fed solid fuels, either pure coal or co-firing with coal and biomass, 
corresponding to a thermal input of 580 kWth. Large volumes of preheated secondary air (about 
2,300 Nm3/h) were introduced into two large honeycomb registers, one situated above and one 
situated below the burner, as described previously [23], according to Figure 29a. In the first 
section of the test furnace, lying closest to and downstream of the burner, 13 measurement ports 
are located along the axis of the furnace, allowing for in-flame measurements. The ports are 
labeled MH0–MH12, and on the opposite side to the ports, quartz windows are placed to act as 
cold backgrounds when performing radiative intensity measurements. The first section has an 
inner diameter of 650 mm, widening to 800 mm in the second section. To resemble the pellet 
bed heat sink in the full-scale process, a cooling system was installed at the bottom of the 
furnace. Further details of the furnace and the different fuel cases tested in the furnace can be 
found in Paper I, and these elements are used for Papers I–III.  

 
Figure 29. Schematic of the ECF used to study radiative heat transfer in the rotary kiln 
process. The thermal input to the burner is 580 kWth and the burner is placed to the left in 
the figure. Measurement ports that allow in-flame measurements are shown along the axis 
of the furnace (MH0–MH12).  
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A similar test furnace was used during an earlier experimental campaign conducted by 
Bäckström et al. [23] in 2013. The two campaigns differ in that in the earlier campaign; (i) the 
test furnace axis was horizontally lined with an inner furnace diameter of 800 mm along the 
whole axis; (ii) the thermal input was lower at 400 kWth; and (iii) there was no cooling section 
at the bottom of the bed. Moreover, it had six fewer measurement ports available. Some of these 
measurements are used in Paper III. In both campaigns, the test furnace was stationary and there 
was no bed material. 

5.2 Kiruna Kulsinterverk 2  
A full-scale rotary kiln should perhaps not be considered an experimental furnace, although it 
is possible to perform some measurements also at an industrial scale. The rotary kiln studied in 
this work, called the Kiruna Kulsinterverk 2 (KK2), is approximately 34 m long  and has an 
average inner radius  of about 2.7 m. The kiln has an inclination  of about 3.5° and an 
angular rotation speed  of about 1.4 rpm, causing the pellets to mix and move forward in 
the kiln. The thermal input is about 40 MWth, dependent on the production rate, which varies 
but is annually about 4 million tonnes [37]. The bed material constitutes approximately 10% of 
the total kiln volume, and the jet-like coal flame has occasionally been observed to reach almost 
the full length of the kiln. The burner is regularly fueled with coal, although occasionally, and 
at start-up, oil is used instead. Figure 30 shows a schematic of the rotary kiln. 

 

Figure 30. Schematic of an industrial rotary kiln used for iron ore pelletizing. As the kiln 
rotates, the iron ore pellet bed migrates towards the lower end of the kiln where the burner 
is positioned. 

Performing probing measurements within the kiln would obviously be very challenging since 
the kiln is rotating, and no measurement ports are available today. At a position close to the 
burner, it is however, possible to visually study the inside of the kiln, e.g. using an infrared 
camera, observing the temperature of the different surfaces (see Section 2.1.2). From the 
process control, operational data of the process was however available. Such measurements and 
data were used for paper III. 

5.3 Oxy-Fuel Test Rig 
Soot formation and the radiative heat transfer from soot particles were studied in the 
Chalmers 100-kWth oxy-fuel test rig. A schematic of the down-fired, cylindrical furnace is 
presented in Figure 31a, and the furnace can be used to study both gaseous and solid fuels. The 
inner diameter and height of the furnace are 800 mm and 2400 mm, respectively. A swirl burner 
is mounted on top, with the fuel introduced at the center of the burner and air being introduced 
through two annular swirling registers with swirl angles of 45° and 15° for the primary and 

R
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secondary air registers, respectively, as shown in Figure 31b. A refractory cone is positioned 
close to the burner to stabilize the flame. A more detailed description of the burner can be found 
in the paper of Hjärtstam et al. [109]. The amount of oxidant flowing through each register can 
be altered by closing or opening a valve to either register. The four water-cooled tubes present 
in the furnace cool the flame to temperatures close to those seen in more conventional 
combustion processes. Measurement ports (M) are located at different axial distances from the 
burner, or levels, allowing for in-flame probing, as well as access for the optical measurements. 
Four measurement ports are available at each level, equally distributed around the furnace 
circumference. Quartz windows may be placed in an opposite port for visual observation and 
to act as a cold background when performing measurements of radiative intensity. The test rig 
can be operated in oxy-fuel mode through recirculation of the flue gases and the addition of 
oxygen. Injections of different compounds to the oxidant, such as NO or SO2, or the addition 
of water solutions of salts to the flame through a port directed to a position close to the burner 
(MS) are also possible, allowing studies of the effects of such additives. This furnace was 
studied in Papers IV and V. 

 
Figure 31. a Schematic of the cylindrical Chalmers 100-kWth oxy-fuel test rig. 
Measurement ports (M) are located along the axis of the furnace. b, Cross-section of the 
burner showing the propane flow at the center of the burner and the primary and secondary 
air registers with their respective swirl angles. Dimensions are given in millimeters.  

5.4 L1500 Multifuel Furnace 
At the University of Utah, a 1.5-MWth furnace, referred to as the L1500, has been used in this 
work for studies of coal-firing and co-firing of coal and biomass flames. The L1500 is a 
horizontally fired furnace with a quadratic inner cross-section of 1.1×1.1 m and a total length 
of almost 12.5 m [110] (Figure 32). The burner is a dual concentric swirl burner, designed to 
provide good flame stability. Cooling panels available within the furnace allow for adjustment 
of the flue gas temperature profile and the maintenance of realistic boiler temperature profiles 
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[111]. Several measurement ports are available along the furnace axis for probing or visually 
observing the flame, with the possibility of using cold backgrounds in a manner similar to that 
described for the ECF and 100-kWth furnaces. The test facility has been used in several studies, 
to examine, for example NOx-emissions, particulate control, burner development, retrofitting 
coal burners [111], and co-firing with coal and biomass [110].  

 
Figure 32. Schematic of the first few meters of the L1500 multifuel furnace, which was a 
thermal input of 1.5-MWth. The distance from the burner for the first three ports are shown.  
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6.  Selected Results and Discussion  
 
The main results of this thesis are from the experimental studies and the modeling of the 
radiative intensity and the radiative heat flux in different furnaces. The modeled total radiative 
intensity and incident radiative heat flux correspond to the intensity measured with the narrow 
angle radiometer and the heat flux measured using the ellipsoidal radiometer (see Chapter 4), 
respectively.  

The radiative heat transfer properties of the rotary kiln process (for iron ore pelletizing) were 
studied in two measurement campaigns using the ECF, as described in Chapters 2 and 5. This 
thesis includes modeling results that are based on the measurements from both campaigns. The 
measurements acquired during the latter campaign in 2015 have been evaluated and modeled 
extensively in Paper I, focusing on the cases using the co-firing burner configuration. Since the 
quality of the produced iron ore pellets is largely affected by the radiative heat transfer from 
the flame, the radiative heat flux directed to the wall of the furnace is an important parameter 
to study and understand, as further examined in Paper II, applying the DOM. Using 
measurements from both campaigns, a full-scale rotary kiln was modeled, and the heat transfer 
mechanisms within the kiln are examined in Paper III. 

The soot volume fractions in various propane flames were studied during two measurement 
campaigns included in this thesis (see Chapter 2). Both campaigns were conducted in the 
Chalmers 100-kWth oxy-fuel test rig, as described in Chapter 5, using the optical measurement 
technique presented in Paper IV and the gas extraction measurements described in Paper V (see 
Chapter 4). 

6.1 Pilot-Scale Rotary Kiln 
During the 2015 campaign in the ECF, measurements of the radiative intensity using the co-
firing burner were conducted at three of the measurement ports, MH1, MH3, and MH7, which 
are axially positioned in relation to the burner according to Figure 29. The ports were positioned 
433, 933 and 1,933 mm from the burner, respectively, and the measured radiative intensities 
are shown in Figure 33 for the RC, BA, and BB co-firing cases, using 30% biomass based on 
the lower heating value. The NAR probe enters the furnace at the 0-mm position, recording 
high radiative intensities, as the entire furnace diameter, with high concentrations of particles 
and hot gases, is in the line-of-sight of the detector. When the probe was traversed along the 
furnace diameter, the measured radiative intensity decreased, along with the number of particles 
in the line-of-sight of the probe. At the 650-mm position, at the opposite wall, the intensity 
decreased to values close to zero due to the cold background of the quartz window. Comparing 
the measurements for the three fuel combinations tested, it is evident that the differences are 
minor for the RC case and the co-firing BA case, while the co-firing BB case gives somewhat 
lower values at the different ports. The results imply that co-firing of coal and biomass could 
be used in the rotary kiln.  
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Figure 33. Measured radiative intensities at measurement ports a MH1, b MH3 and c MH7, 
for the three fuel combinations tested in Paper I. RC, Reference coal; BA, biomass A (wood 
treated with steam explosion); BB, biomass B (pelletized and ground wood). 

Using measurements of temperature, gas composition, and particle concentration as input data 
to the DTM, the total radiative intensity was modeled in Paper I for the different co-firing cases. 
The measured and modeled radiative intensities along the furnace diameter are shown in Figure 
34 for the BA co-firing case. A comparison of the modeled contributions from the gases and 
particles to the total radiative intensity reveals that particle radiation (dashed line) 
predominates, and that the fraction of the radiative intensity that arises from the gases (dashed-
dotted line) is small for all the cases and ports. Comparing the axial ports, the measured 
radiative intensity appears to increase when moving from port MH1 to MH3, but decreases 
once again when moving downstream to port MH7. This is probably an effect of cold fuel 
particles that had not yet been ignited at port MH1, while a greater proportion of the particles 
had been ignited at port MH3, resulting in higher flame temperatures and radiative intensities. 
At port MH7, the particle concentration is lower due to the progression of the combustion, and 
the radiative contribution from particle emission is lower. The radial gradient of the radiative 
intensity plots at the central position decreases along the furnace axis, moving downstream from 
port MH1 to MH7, as the particles become more evenly distributed along the furnace radius. 
The model appears to underestimate the radiative intensities at positions close to the entrance 
of port MH3, probably due to the temperatures or the particle concentrations being too low at 
these positions. However, the overall agreement observed between the measured and modeled 
radiative intensity is satisfactory for the different ports and cases. This implies that the 
measurements of temperature and particle concentrations carried out in this campaign were 
largely accurate and represented an improvement over the earlier campaign.   

   
Figure 34. Measured and modeled radiative intensities for the co-firing case of the 
reference coal (RC) and biomass A (BA), as obtained during the ECF 2015 measurement 
campaign at ports: a, MH1; b, MH3; and c, MH7. 
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During the 2015 campaign, the radiative heat flux to the inner wall of the furnace was measured 
for ports MH0, MH1, MH3, and MH7 for the different studied co-firing cases using the 
ellipsoidal radiometer, as shown in Figure 35. Port MH0 is positioned closest to the burner. 
Comparing the different fuel combinations, only minor differences were observed between the 
measurements for all the ports. This outcome raises the possibility of using co-firing in the full-
scale rotary kiln with respect to the heat transfer conditions, as the radiative heat transfer profile 
appears to be similar for all three cases. 

 

 

 

Figure 35. Measured incident radiative heat fluxes for the different fuels and measurement 
ports, reference coal (RC), co-firing with biomass A (BA), wood treated with steam 
explosion, and co-firing with biomass B (BB), using pelletized and ground wood. 

The RC data were also examined in Paper II, modeling the incident heat flux to the furnace wall 
using the DOM for the first section of the ECF, which is 4.8 m in length according to Figure 
29. Measurement profiles were introduced to the model, taken at axial locations corresponding 
to the measurement ports, and averaging was employed for the cells between the ports, using a 
cell resolution of 30×60×100. In a first modeling attempt, the incident radiative heat flux was 
calculated for wall temperatures, as estimated using the infrared camera (Figure 36a). The 
model appears to overestimate the radiative heat flux for the downstream port MH7. In a second 
attempt, the wall temperature was instead set so as to be equal to the gas temperature closest to 
the wall, as measured with a suction pyrometer. The result, shown in Figure 36b, displays better 
agreement. In a third modeling attempt, the wall temperature was calculated from an energy 
balance of the incident and emitted radiation and outer heat loss according to Eqns. (40) and 
(49), as shown in Figure 36c, with good agreement. 

   
Figure 36. Measured and modeled incident radiative heat fluxes for the RC case in the co-
firing burner using the discrete ordinates method. The wall temperature was set based on 
data from: a, the IR-camera; b, the gas temperature close to the wall; and c, calculated from 
an energy balance. 
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6.2 Industrial Full-Scale Rotary Kiln 
Measurement data gathered during the two ECF campaigns were used to model a full-scale 
industrial rotary kiln. Employed were two different flames, a coal flame (2015) and an oil flame 
(2013), resembling the combustion conditions in the KK2 and using constant velocity scaling. 
Using the developed DOM tool, the modeling included radiative, conductive, and convective 
heat transfers, as well as the movement and mixing of the reactive bed material and the rotation 
of the wall, as described in Section 3.3. After feeding a bed material into the kiln, the bed and 
wall temperatures are calculated as the bed travels through the kiln. Temperature maps of the 
modeled inner wall and bed temperature are shown in Figure 37 for the coal (a) and oil (b) flames 
respectively. The bed temperature is observed to increase in the axial direction as the bed travels 
through the kiln towards the burner position ( -position). The wall temperature increases in the 
angular direction as it is heated from the flame and the wall rotates, as a wall cell is transported 
from  towards the point where it meets the bed, due to the rotation of the wall. While under 
the bed material, the wall is cooled as heat is transferred to the pellets until , at which point 
the wall resurfaces and appears at , and is heated by the flame once again. Since the bed 
material in the surface layer mixes while the wall rotates, temperature profiles in the angular 
direction are not as obvious for the bed material. The oil flame is shorter but with a higher peak 
temperature, which is reflected in the higher wall peak temperature closer to the burner, whereas 
the outlet gas temperature is cooler than for the coal flame, also causing a cooler bed feed to the 
kiln. However, the beds appear to leave the kiln at similar temperatures, albeit slightly cooler for 
the oil case, meaning that more heat is absorbed by the bed closer to the burner for the oil flame.  

 

Figure 37. Surface temperatures of the inner wall for a coal flame (a) and an oil flame (b). 
The angular positions of the bed, and the movement of the bed and wall are indicated. 

The modeled  temperatures were compared to the measured  temperatures, and a 
temperature error was estimated according to Eqn. (52).  
 

 (52) 

The temperature errors between the measured and modeled product bed temperatures were 
0.7% and 2.4% for the coal flame and oil flame, respectively. This provides confidence that the 
modeling tool could be considered as rather predictive. 

The different net contributions from radiative, conductive, and convective heat transfers to 
and/or from the bed material were studied along the rotary kiln axis, as shown in Figure 38. 
Radiative heat transfer predominates along almost the entirety of the axis of the rotary kiln. 
However, close to the burner, at the L-position, convective heat transfer is the dominant heat 
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transfer mechanism. At this position, the bed material has reached high temperatures and it has 
travelled past the position of the maximum flame temperature, and the gas coming from the 
cooler section is relatively cool, resulting in an effective, convective transfer of heat. It should 
be noted, however, that the total net heat transfer occurring at this position is relatively small in 
comparison to the total heat transfer throughout the kiln length. The overall heat transfer due to 
radiation is about 81% and 84% for the coal and oil flames, respectively, clearly showing the 
importance of an accurate radiative heat transfer model while working with rotary kilns. 

 

 

Figure 38. The contributions of the different heat transfer mechanisms of radiation, 
conduction, and convection to the bed material along the rotary kiln axis, for the coal flame 
and oil flame cases. 

6.3 Co-Firing in the L1500 Multifuel Furnace 
During the measurement campaign conducted in 2018 in the L1500 multifuel furnace, co-firing 
of a fossil coal and torrefied biomass was examined, using 15% biomass. The measured 
radiative intensities and incident heat fluxes to the inner wall of the furnace are shown in Figure 
39. The radiative intensities measured at port 3 (Figure 39b) appear to be similar for the two 
cases, so the radiative intensity profile is not affected by the biomass exchange. At port 2 
(Figure 39a), the maximum measured radiative intensities appear to be different for the two 
cases. Considering the small difference in incident heat flux (Figure 39c) between the two cases, 
the difference noted at port 2 may be due to a miss-directed NAR during the measurements. 
While the cold background was targeted, at positions close to the entrance port, it appears that 
the NAR was directed towards the opposite wall instead. Since the radial heat profiles are 
similar for the two cases, this result raises the possibility of using co-firing in boilers.  

   
Figure 39. Measured radiative intensities at ports 2 (a), 1800 mm from the burner, and 3 
(b), 3000 mm from the burner, as well as the incident radiative heat fluxes along the furnace 
axis (c) in the L1500 multifuel furnace. 
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6.4 Radiative Properties of Soot Particles 
Two air/propane flames were studied in the 2014 campaign for an open and closed primary air 
register, respectively, as described in Paper V. The former flame appeared to have very few 
soot particles (non-sooty); their numbers were lower than those reported previously in the work 
of Andersson et al. [26], although the conditions used in these studies were similar. The 
discrepancy was likely due to the installation of a refractory burner quarl in the period between 
the two campaigns. The latter flame was, in contrast, considered to be sooty and the soot volume 
fraction was estimated using a SMPS to be about 65 ppb at port M3 (see Figure 31). Figure 40 
shows the measured and modeled radiative intensities, including the measured soot volume 
fraction for the case with a closed primary air valve, and as can be observed, including the soot 
particles the modeled intensities match well with the measurements. The soot volume fraction 
obtained with the SMPS was considered to be reliable. 

 
Figure 40. Measured and modeled radiative intensities for a closed primary air valve, 
including the soot particles present (Paper V) [56]. 

Spectral absorption and scattering coefficients were measured for the soot particles using the 
PASS-3 instrument. Figure 41 shows the measured spectral absorption coefficients (circles) for 
three wavenumbers at port M3 for the sooty flame. Using a least-square method of the soot 
volume fraction, the measurements were compared to spectral expressions found in the 
literature [15]–[18]. For all four models tested, there was generally good agreement between 
the trends of the measured and modeled absorption coefficients. The calculated values of the 
soot volume fraction from the PASS-3 were, however, lower than what was measured with the 
SMPS. Though, it should be kept in mind that there are more uncertainties using the PASS-3 
instrument to calculate the soot volume fraction.  

 
Figure 41. Measured values at port M3 for the absorption coefficients of the soot particles, 
using the PASS-3 instrument, as compared to functions previously published by Stull and 
Plass (S & P) [15], Dalzell and Sarofim (D & S) [16], Lee and Tien (L & T) [17], and 
Chang and Charalampopoulos (C & C) [18].   
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In the latter campaign in 2016, the soot volume fraction was measured using an extinction laser 
together with the LII system, for air, oxygen-enriched air, and oxy-fuel flames, as described in 
Paper IV. With the LII and the CCD camera, it was possible to capture 2D images of the soot 
volume fraction along the diameter in the central part of the furnace, as shown in Figure 42 for 
an air (21% O2) flame and an oxygen-enriched air flame with an oxygen concentration of 30%. 
The contrast in the figure is saturated to show more clearly the presence of soot particles. The 
soot volume fraction ranges from black to white, reflecting the LII-signal in each pixel, for a 
laser sheet with a height of 45 mm.  

 
Figure 42. Photograph of the soot appearance captured with a CCD camera for an air flame 
and an oxygen-enriched air flame with 30% oxygen. The brightness of each pixel is related 
to the magnitude of the soot volume fraction. 

The measured soot volume fractions from the different air (A), oxygen-enriched air (E), and 
oxy-fuel (OF) flames at port M3 are shown in Figure 43. Two different air flames were tested 
using an open (A1) and a closed (A2) primary air register. With an open primary air register, 
the air was enriched with oxygen to generate oxygen concentrations of 25% (E25), 27% (E27), 
and 30% (E30). By recirculating of flue gases and adding oxygen, oxy-fuel flames with oxygen 
concentrations of 30% (OF30), 35% (OF35), 40% (OF40), and 42% (OF42) were achieved. 
The cross-section for which measurements were possible was limited by the height of the laser 
sheet and the width of the measurement port. The central axis of the furnace is located at the 0-
mm position in Figure 43. The results show that there are significant increases in soot formation 
from the oxygen-enriched air and oxy-fuel flames as the oxygen concentration in the oxidant is 
increased above a certain threshold value. Comparing the oxygen-enriched cases with the oxy-
fuel cases, it is clear that a distinct shift in soot formation occurs at higher oxygen concentrations 
for the oxy-fuel flames, i.e., 27% oxygen compared to 40% oxygen. The increased soot volume 
fraction attributed to both thermal and chemical effects. As the oxygen concentration is 
increased, the peak temperature is increased, and the gas volume flow is reduced, which affects 
the mixing. In the oxy-fuel cases, soot formation is suppressed by the increased concentration 
of carbon dioxide, which reduces the flame temperature.  
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Figure 43. The measured soot volume fractions for: a, air (A) and oxygen-enriched air (E) 
flames; and b, oxy-fuel (OF) flames, using a diode laser and a LII system. A1 and A2 
correspond to air flames with a fully open and a fully closed primary air register, 
respectively. The numbers following the E and OF designations are the respective oxygen 
concentrations in the oxidant. 

 
In the cases with higher oxygen concentrations, the measured radiative intensities were 
substantially higher. This may be due to higher flame temperatures or an increased soot volume 
fraction, which is in line with the measurements obtained using the LII system. Together with 
the soot volume fractions, measurements of temperature and gas composition were performed 
and thereafter used to model the radiative intensity using the DTM for air/propane and oxygen-
enriched air/propane flames. The modeled intensities agreed well for the different flames with 
<30% oxygen in the oxidant. Figure 44a shows the measured and modeled radiative intensities 
for the A2 flame, with values comparable to those in Figure 40. For the E30 flame, some of the 
measurements are more uncertain as the heavy particle loads clogged the suction pyrometer, 
resulting in comparably low temperatures measured at positions close to the furnace center, and 
further temperature measurements had to be canceled. Figure 44b shows, however, the 
measured and modeled radiative intensities for the E30 flame, using the available measurement 
data. Comparing the two flames, the radiative intensity level is clearly increased with the 
oxygen concentration and, as can be observed, the largest contributor to the total radiative 
intensity has switched from gas to soot particles.  

  
Figure 44. Measured and modeled radiative intensities for propane flames with a, air as 
the oxidant and with a closed primary air register (A2); and b, 30% oxygen in the oxygen-
enriched air used as the oxidant (E30). The gas and soot particle contributions to the total 
radiative intensities are included.  
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7.  Conclusions 
 

The work presented in this PhD thesis was designed to examine the radiative heat transfer 
conditions and phenomena in, mainly, cylindrical furnaces. The combustion of three different 
co-firing cases using a reference coal, and co-firing with two different biomasses, using 30% 
biomass, were evaluated in Paper I. Comparing the measurements of the radiative heat fluxes 
and intensities, the overall heat transfer conditions appears similar for the cases. The similarities 
indicate that it is possible to use biomass for co-firing in a rotary kiln, used for iron ore pellet 
production without significantly affecting the radiative heat transfer and substantially lowering 
the carbon dioxide emissions. Using the discrete transfer model, the radiative intensities were 
modeled for the three cases and showed good agreement with the measurements, implying that 
the measurements were performed in an accurate way during the campaign. Furthermore, it is 
shown that particle radiation in the flame is the main contributor to the total radiative intensity 
from the flame. A modeling tool that applies a discrete ordinates method was developed and 
used in Paper II, to study the radiative intensity and heat flux to the wall of the ECF. The heat 
flux to the wall is shown to be sensitive to the wall temperature, although the model exhibits 
satisfactory predictive qualities for the incident radiative heat flux and wall temperatures. 
Overall, the tool appears promising for describing the radiative heat transfer in a full-scale 
rotary kiln process. In Paper III, the modeling tool is further developed for the heat treatment 
of a bed material, including convective and conductive heat transfers. The bed heat treatment 
from two flames in a full-scale rotary kiln were modeled, and the bed product temperature was 
compared to actual measurements, with a reasonable level of agreement being noted. It is 
further shown that more than 80% of the total heat transfer to the bed material is due to radiative 
heat transfer. However, to validate further the model, the collection of more full-scale data from 
an industrial rotary kiln is desirable, together with additional full-scale experiments. 

Moreover, the radiative properties of soot particles and their contribution to the total radiative 
heat transfer were studied for various propane flames in the oxy-fuel test rig, with assessment 
of the soot volume fractions using two different measurement techniques. By closing the 
primary air register to the burner, increased soot production could be observed for a propane/air 
flame using both the intrusive SMPS (Paper V) and non-intrusive LII (Paper IV) measurement 
techniques. The soot formation was observed to increase in line with the oxygen concentration, 
using the oxygen-enriched air or oxy-fuel mode, at different oxygen concentrations, while 
retaining the stoichiometry. Dramatic increases in soot formation were observed, in excess of 
27% and 40%, for the oxygen-enriched air and oxy-fuel flames, respectively, increasing the 
soot volume fractions more than 14-fold compared to the lower oxygen concentrations. These 
results suggest the possibility to increase the intermediate soot concentration and, thereby, 
promote the radiative heat transfer in furnaces. The radiative intensity was modeled using the 
discrete transfer model, and the values correspond well with the measurements made, indicating 
successful measurements of the soot volume fractions. The PASS-3 instrument was used to 
study the radiative properties of the soot particles and the absorption coefficients derived from 
the measurements showed trends towards good agreement with the models of the complex 
index of refraction used in the Rayleigh theory. 
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8.  Suggestions for Future Work 
 

During the experimental campaigns, severe problems were occasionally encountered with 
particle sampling. In flames with heavy particle loads at the sampling positions, the particles 
may clog the measurement probe, resulting in measurement errors. For co-firing flames, these 
problems are exacerbated by the presence of condensing tars. Therefore, it is of interest to 
continue the work of developing and refining measurement techniques for particle extraction. 
Furthermore, as the sampling process is time-consuming, it is desirable to make the sampling 
process more time-efficient or to allow for longer sampling times. In the context of particle 
sampling, it is important to describe the radiative scattering in an appropriate way for coal-fired 
and co-firing flames, as has been addressed in this work. Isotropic scattering is a convenient 
simplification applied in the radiative heat transfer modeling, and for a moderate-temperature 
furnace wall, the error appears to be small. However, the impact of in-scattering is much more 
significant when the furnace wall is hot, e.g., in applications such as the rotary kiln. It is, 
therefore, important to continue to develop the modeling, as well as to study experimentally the 
radiative scattering that occurs in combustion processes in the presence of particles.  

To gain further insights into the heat transfer that occurs in the full-scale industrial rotary kiln, 
the performance of measurements within the kiln is desirable. As mentioned earlier, the 
dimensions of the kiln and the rotation of the wall complicate such measurements. However, a 
technique that could give access for measurements of the gas composition and temperatures in 
the kiln freeboard is LIDAR, operated from positions close to either the burner or the pellet 
feeding. LIDAR is an optical measurement technique that has the advantage that the light source 
and detector can be placed at the same position. In addition, performing experiments with co-
firing of coal and biomass in a full-scale rotary kiln during the production process would be 
very valuable and interesting.   

The rotary kiln model could also be useful in the development of rotary kilns other than those 
designed for iron ore pelletizing, such as for cement production, lime regeneration or alumina 
melting. However, an effort must be made to treat each bed type in an appropriate way. 
Moreover, the modeling tool applying the discrete ordinates method could be improved further 
by including a suitable combustion model.  

In recent times, discussions as to how to reduce the greenhouse gas emissions from industries 
that are heavy emitters, such as iron ore pelletizing and cement production, have started to 
include electrification. An interesting alternative for rotary kilns is to substitute coal burners 
with plasma torches, for which the model could prove useful. Plasma temperatures are, 
however, much higher than those found in suspension-fired systems and experimental as well 
as modeling work would be required before implementing plasma torches for industrial 
production.  

It is also probable that industries in the future will have to adapt their production rates for those 
during which the electricity or energy demand is greater than the supply, on a yearly or even 
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daily basis. It would, therefore, be interesting to examine the heat treatment of the bed for 
variations in production rate and process operations, with the focus on radiative heat transfer 
for transient processes. 

Finally, it would be interesting to study more extensively the rapid shifts in soot formation that 
were observed for the propane flames as the oxygen concentration was increased. Experiments 
performed to isolate the different contributions to the soot formation from thermal, chemical 
and mixing effects would be interesting. Also, the soot volume fraction was measured at one 
axial distance from the burner using the LII system during the latest campaign, and it would be 
of interest to study how this change along the axis of the furnace. 
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9. Nomenclature 
 

Abbreviation  

2D two-dimensional 

3D three-dimensional 

BA biomass A, wood treated with steam explosion 

BB biomass B, pelletized and ground wood 

BC biomass C, torrefied wood 

C1 – C4 cooler zones 

CCD charge-coupled device camera 

CCS carbon capture and storage 

CFD computational fluid dynamics 

CPC condensation particle counter 

DMA differential mobility analyzer 

DOM discrete ordinates method 

DTM discrete transfer model 

erf error function 

ECF experimental combustion furnace 

FTIR Fourier-transform infrared spectroscopy 

G1 – G4  grate zones 

IFRF International Flame Research Foundation 

IR infrared  

KK2 Kiruna Kulsinterverk 2 

L1500 1.5-MWth multifuel furnace 

LII laser-induced incandescence  

LKAB Luossavaara-Kiirunavaara Aktiebolag 

MH1 – MH7 measurement ports 

NAR narrow angle radiometer 

Nd:YAG neodymium-doped yttrium aluminum garnet (Y3Al5O12) laser  

PASS-3 photo-acoustic soot spectrometer with three laser wavelengths 

PAH polycyclic aromatic hydrocarbon 

PM premixed reference coal and biomass A 

RC reference coal 

RTE radiative transfer equation 
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SC second coal 

SMPS scanning mobility particle sizer 

SNBM statistical narrow band model 

WSGG weighted-sum-of-gray-gases model 

 

Symbols  

 particle radius [μm] 
 weighting factor of gray gas j in the WSGG-model [-] 

 Mie scattering coefficient [-] 

 weighting factor of a clear gas in the WSGG-model [-] 

 area [m2] 

 air flame [-] 

 cell surface area in radial direction [m2] 
 projected particle surface area [m2m-3] 

 Mie scattering coefficient [-] 

 cell surface area in angular direction [m2] 

 light velocity [ms-1] 
 coefficient in the WSGG-model [-] 

 cell surface area in axial direction [m2] 

 coefficient in the WSGG-model [-] 
 specific heat capacity [Jkg-1K-1] 

 mean line spacing for a narrow band [cm-1] 

 temperature distribution within the thermal penetration depth [-] 

 diameter [m] 

 oxygen-enriched air flame [-] 

 emitted radiation [Wm-2] 

 absorption function [-] 
 projected surface area [m2m-3] 

 soot volume fraction [ppb] 

 view factor [-] 

 intensity integrated over all directions [Wm-2] 

 mass flux [m2s-1] 

 convective heat transfer coefficient [Wm-2K-1] 

 unit vector [-] 
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 intensity [Wm-2sr-1] 

 cell type [-] 

 spectral intensity [Wm-2sr-1cm-1] 

 incident intensity [Wm-2sr-1] 

 unit vector [-] 

 radiosity [Wm-2] 

 thermal conductivity [Wm-1] 

 ratio of mean line intensity to typical line spacing for a narrow band [cm-1] 

 absorptive index [-] 

 unit vector [-] 

 coefficient in the WSGG-model [-] 

 length [m] 

 complex index of refraction [-] 

 measurement port [-] 

 cell node [-] 

 cell number [-] 

 integer [-] 

 stop criterion used in Mie theory calculations [-] 

 refractive index [-] 

 total cell number in one direction [-] 

 order of the SN-approximation [-] 

 oxy-fuel flame [-] 

 probability function [-] 

 total pressure [bar] 

 heat flux [Wm-2] 

 absorption coefficient [-] 

 extinction coefficient [-] 

 scattering coefficient [-] 

 radius [m]  

 radial distance [m] 

 furnace radius [m] 
 flame radius [m] 

 coordinate along a radiative path [-] 

 unit vector in a given direction [-] 

 total path length [m] 
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 line strength [-] 

 order of discrete ordinates [-] 

 time [s] 

 temperature [K] 

 volume [m3] 

 weight for a discrete ordinate [sr] 

 transferred heat [J] 

 size parameter [-] 

 contact factor [-] 
 rotary kiln volume bed portion [-] 
 filling degree error [-] 

 mole fraction [-] 

 axial distance [m] 
 

Greek symbols 

 absorptivity [-] 

 angular derivative coefficient [-] 

 extinction coefficient [m-1] 

 kiln inclination 

 mean line half-width [cm-1] 

 penetration depth [m] 

 heat of reaction [kJmol-1] 

 length of computational cell [m] 

 bandwidth [cm-1] 

 angle of one cell, in the angular direction, in the DOM [rad] 

 emissivity [-] 

 direction cosine [-] 

 direction cosine [-] 

 polar angle [rad] 

 absorption coefficient [cm-1] 

 spectral absorption coefficient [cm-1]  

 wavelength [μm] 

 oxygen-to-fuel ratio [-]  

 diode laser wavelength [μm] 
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 direction cosine [-] 

 wavenumber [cm-1] 

 direction cosine [-] 

 reflectivity [-] 

 density [kgm-3] 

 Stefan-Boltzmann constant [Wm-2K-4] 

 spectral scattering coefficient [cm-1] 

 transmissivity [-] 

 spectral scattering phase function [sr-1] 

 azimuthal angle [rad] 

 rotational angle [rad] 

 solid angle [sr] 

 scattering albedo [-] 

 angle in the angular direction in the DOM [rad] 

 angular rotation speed [rpm] 
 

Subscripts  

 absorption  

 bed 

 bottom bed layer 

 black body 

 conduction 

 center 

 convection 

 surface contact  

 diode laser 

 error 

 extinction 

 gas 

 cell number 

 inner  

 cosine direction number 

 radial cell number  

 gray-gas number 
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 angular cell number 

 narrow-band number 

 axial cell number 

 discrete direction of ray 

 measured 

 modeled 

 outer 

 particle 

 node point  

 radiation 

 radial position 

 reference 

 surface bed layer 

 scattering 

 thermocouple 

 total  

 wall 

 axial position 

 angular position 

 far from surface 

 

Dimensionless numbers 

 Grashof number 

Nu Nusselt number 

 Prandtl number 

 Rayleigh number 

 Reynold number 
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