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ORIGINAL RESEARCH Open Access

Transcriptional effects of 177Lu-octreotate
therapy using a priming treatment
schedule on GOT1 tumor in nude mice
Johan Spetz1* , Britta Langen1,2, Nils-Petter Rudqvist1, Toshima Z. Parris3, Emman Shubbar1, Johanna Dalmo1,4,
Bo Wängberg5, Ola Nilsson6, Khalil Helou3 and Eva Forssell-Aronsson1,4

Abstract

Background: 177Lu-octreotate is used for therapy of somatostatin receptor expressing neuroendocrine tumors with
promising results, although complete tumor remission is rarely seen. Previous studies on nude mice bearing the
human small intestine neuroendocrine tumor, GOT1, have shown that a priming injection of 177Lu-octreotate 24 h
before the main injection of 177Lu-octreotate resulted in higher 177Lu concentration in tumor, resulting in increased
absorbed dose, volume reduction, and time to regrowth. To our knowledge, the cellular effects of a priming
treatment schedule have not yet been studied. The aim of this study was to identify transcriptional changes
contributing to the enhanced therapeutic response of GOT1 tumors in nude mice to 177Lu-octreotate therapy with
priming, compared with non-curative monotherapy.

Results: RNA microarray analysis was performed on tumor samples from GOT1-bearing BALB/c nude mice treated
with a 5 MBq priming injection of 177Lu-octreotate followed by a second injection of 10 MBq of 177Lu-octreotate
after 24 h and killed after 1, 3, 7, and 41 days after the last injection. Administered activity amounts were chosen to
be non-curative, in order to facilitate the study of tumor regression and regrowth. Differentially regulated transcripts
(RNA samples from treated vs. untreated animals) were identified (change ≥ 1.5-fold; adjusted p value < 0.01) using
Nexus Expression 3.0. Analysis of the biological effects of transcriptional regulation was performed using the Gene
Ontology database and Ingenuity Pathway Analysis. Transcriptional analysis of the tumors revealed two stages of
pathway regulation for the priming schedule (up to 1 week and around 1 month) which differed distinctly from
cellular responses observed after monotherapy. Induction of cell cycle arrest and apoptotic pathways (intrinsic and
extrinsic) was found at early time points after treatment start, while downregulation of pro-proliferative genes were
found at a late time point.

Conclusions: The present study indicates increased cellular stress responses in the tumors treated with a priming
treatment schedule compared with those seen after conventional 177Lu-octreotate monotherapy, resulting in a
more profound initiation of cell cycle arrest followed by apoptosis, as well as effects on PI3K/AKT-signaling and
unfolded protein response.
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Background
Neuroendocrine tumors (NETs) have frequently metasta-
sized at the time of diagnosis. Following surgical tumor re-
duction, adjuvant treatment with 177Lu-[DOTA0,
Tyr3]-octreotate (also written as 177Lu-octreotate or
177Lu-DOTATATE) is used for patients with somatostatin
receptor (SSTR)-positive NETs, with complete remission
in approximately 2% and partial remission in < 30% of pa-
tients [1–3]. 177Lu is a medium-energy beta emitter (mean
electron energy emitted per nuclear decay 147.9 keV) with
a half-life of 6.6 days [4]. The mean range of the beta parti-
cles is 0.67mm, allowing for a relatively contained dose
distribution in tumors with high specific uptake of
177Lu-octreotate [5].
Several strategies have been proposed to further

optimize the therapeutic effect of 177Lu-octreotate in
NETs, including methods to increase tumor uptake and
retention of 177Lu-octreotate [6]. We have previously
demonstrated that tumor cells with neuroendocrine fea-
tures increase their expression of SSTR after exposure to
ionizing radiation in vitro [7, 8]. In vivo studies using
the human small intestine NET model, GOT1 xeno-
transplanted to nude mice [9], have also shown an in-
creased binding of 111In-DTPA-octreotide in tumor
tissue after injection of 177Lu-octreotate [10, 11]. Fur-
thermore, we have also shown a higher concentration of
177Lu in tumor tissue after administration of a low
amount of 177Lu-octreotate (priming dose) given 24 h
before the main administration of 177Lu-octreotate, com-
pared with that found after single injection of the same
total activity [12]. The priming treatment schedule thus
resulted in higher mean absorbed dose to the tumor and
increased anti-tumor effects. However, radiation-induced
upregulation of SSTR has not been confirmed in vivo.
Therefore, it is necessary to determine the mechanisms
involved in the increased treatment efficacy observed
when using a priming administration of 177Lu-octreotate
before a second administration.
We have previously demonstrated the effects of expos-

ure to radionuclides in animal models using expression
microarray analysis. Initially, the effects of 131I or 211At
exposure of normal tissues were demonstrated in mice
and rats [13–18]. Then, studies on transcriptional effects
of 177Lu-octreotate exposure of kidneys (to evaluate
radiotoxicity) showed different responses in the kidney
cortex and medulla [19]. Recently, expression microarray
analysis of GOT1 tumors was presented, demonstrating
radiation-induced apoptosis as an early response after a
non-curative 177Lu-octreotate administration, followed
by pro-survival transcriptional changes in the tumor
during the regrowth phase [20, 21].
The aim of this study was to examine the transcrip-

tional response in tumor tissue from animals treated
with a priming administration of 177Lu-octreotate 24 h

before a second 177Lu-octreotate administration to de-
termine the molecular mechanisms responsible for the
higher anti-tumor effect in comparison with 177Lu-oc-
treotate monotherapy with the same total amount of
177Lu-octreotate.

Methods
Experimental design
This study was performed on 24 GOT1 tumor tissue
samples obtained from previous experimental studies
[12]. Briefly, GOT1 tumor tissue samples were trans-
planted subcutaneously in the neck of 4-week-old female
BALB/c nude mice (Charles River, Japan and Germany)
[9]. Tumor-bearing mice received a priming injection of
177Lu-octreotate (5MBq) followed by a second injection
of 177Lu-octreotate (10MBq) 24 h later (hereafter re-
ferred to as 5 + 10MBq). Control animals were injected
with saline solution. During the study period, tumor vol-
ume was monitored using caliper measurement. Mean
tumor volume relative to the time of the last injection
was reduced in animals treated with 177Lu-octreotate
(Fig. 1), with statistically significant differences com-
pared with controls from day 7 until end of study (calcu-
lated using Student’s t test, p < 0.05). The minimum
relative tumor volume in animals used in this study
(mean = 0.39, SEM = 0.11) was measured 14 days after
injection in animals killed after 41 days. The animals
were killed at 1, 3, 7, or 41 days after the last injection,
and tumor samples were frozen in liquid nitrogen and
stored at − 80 °C until analysis. Tumor-absorbed doses
were determined for the 5 + 10MBq administrations using
the medical internal radiation dose (MIRD) formalism
[22]. This resulted in a mean absorbed dose of 0.73, 2.3,
4.7, 6.4, and 6.4 Gy to the tumors calculated to 1, 3, 7,
41 days and at infinite time, respectively (Fig. 1). Drinking
water and autoclaved food were provided ad libitum. Gene
expression microarray analysis was performed on total
RNA extracted from tumor samples from 15 animals
treated with 5 + 10MBq 177Lu-octreotate (n = 3, 3, 3, and
6 at 1, 3, 7, and 41 days after the second injection, respect-
ively) and nine control animals (n = 2, 2, 2, and 3 at 1, 3, 7,
and 41 days after injection, respectively).

Gene expression analysis
RNA extraction, hybridization, and data processing were
performed for each of the 24 tumor samples individually
as previously described [12]. In brief, total RNA was iso-
lated using the RNeasy Lipid Tissue Mini Kit (Qiagen,
Germany). Hybridization of RNA samples (RNA integrity
numbers > 6.0) was performed at the Swegene Center for
Integrative Biology (SCIBLU, Lund University, Sweden)
on Illumina HumanHT-12 v4 Whole-Genome Expression
BeadChips (Illumina, USA). Data processing was per-
formed using the BioArray Software Environment (BASE)
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and Nexus Expression 3.0 (BioDiscovery, USA) [12, 23].
Differentially regulated transcripts (treated versus control)
were identified using an adjusted p value cutoff of < 0.01
(Benjamini-Hochberg method [24]) and |fold change| ≥
1.5. The RNA samples from the control animals in this
study have previously been used to analyze tumor RNA
samples from animals treated with 15MBq 177Lu-octreo-
tate mono-injection, collected at 1, 3, 7, and 41 days after
injection [20].
Microarray data were validated using quantitative re-

verse transcription-polymerase chain reaction
(qRT-PCR) performed in triplicate with predesigned
TaqMan® assays (Applied Biosystems, USA) specific for
BAX, CDKN1A, FDFT1, GDF15, TGFBI, ACTA2, LY6H,
LDLR, and EGR1 using a 7500 Fast Real-Time PCR Sys-
tem (Applied Biosystems). Differential expression was
calculated using the ΔΔCt method, with EEF1A1, RPL6,
and RPS12 used for normalization. cDNA was synthe-
sized from the same RNA extracted for use in the micro-
array experiments, using SuperScript™ III First-Strand
Synthesis SuperMix (Invitrogen, USA). cDNA reactions
without addition of reverse transcriptase prior to
qRT-PCR did not monitor any interfering genomic
DNA.

Bioinformatics analysis
Heat maps and unsupervised hierarchical clustering of
transcripts based on regulation patterns was performed

in the R statistical computing environment (http://www.
r-project.org, version 3.5.1), as previously described [20].
Functional annotation of differentially regulated tran-
scripts was performed using the Gene Ontology (GO)
database (http://www.geneontology.org) [11], with a p
value cutoff of < 0.05 (modified Fisher’s exact test). The
annotated biological processes were stratified into eight
categories as previously described [15]. Analysis of af-
fected biological functions, canonical pathways, and up-
stream regulators was conducted using the Ingenuity
Pathway Analysis (IPA) software (Ingenuity Systems,
USA) with Fisher’s exact test (p < 0.05) as previously de-
scribed [20, 21]. For direct comparison of the gene ex-
pression data obtained in this study with that of a more
conventional treatment schedule (15MBq single admin-
istration of 177Lu-octreotate, tumor samples collected at
1, 3, 7, and 41 days after injection), data from National
Center for Biotechnology Information (NCBI) Gene Ex-
pression Omnibus (GEO), accession GSE80024 (previ-
ously described in [20]), was used.

Results
Time-dependent transcriptional response in GOT1 tumors
after 177Lu-octreotate therapy with priming
A significant effect on gene expression levels was ob-
served in GOT1 tumors after 177Lu-octreotate adminis-
tration at all time points studied. In total, 187
differentially expressed genes were identified (microarray

Fig. 1 Anti-tumor effect of 177Lu-octreotate with priming on GOT1 in nude mice. The mean relative tumor volume versus time after last injection
for mice i.v.-injected with 5 + 10 MBq 177Lu-octreotate or NaCl and killed at 1, 3, 7 or 41 days after the last injection. The mean absorbed dose to
tumors processed for transcriptional analysis is indicated by the corresponding data point. Vertical error bars indicate SEM, and horizontal error
bars indicate range. The figure is based on the tumor volume and biodistribution data analyzed in these animals in Dalmo et al. [12]. Green arrow
indicates the time for treatment start. Asterisk indicates statistically significant difference versus controls (t test, p < 0.05)
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data was validated using the qPCR assay (Additional file 1:
Table S1 and Additional file 2: Figure S1)). The number
of regulated transcripts varied with time after injection
(n = 31–82; Fig. 2). Of the detected transcripts, 33 (66%),
41 (60%), 48 (59%), and 27 (87%) were uniquely regu-
lated at 1, 3, 7 and 41 days, respectively. Thirty-eight
regulated transcripts were shared between at least two of
the four time points (Fig. 3). Hierarchical clustering of
the transcriptional profiles revealed similarities and dif-
ferences in gene expression over time (Fig. 2). Notably,
several of the transcripts associated with Stress responses
were significantly regulated at 3 and 7 days, while tran-
scripts with a pivotal role in maintaining DNA integrity
were only significantly regulated at 3 days after the last
injection.
Comparing the functional annotation to GO terms

with the results seen after 15MBq 177Lu-octreotate
monotherapy (from GEO accession GSE80024), 43%
of significant annotations were shared overall between
the two treatment regimens (Fig. 2). Categorization of
these annotated biological processes revealed that a
majority of transcripts associated with gene expression
integrity (57%) and organismic regulation (52%) were

found in both 5 + 10MBq and 15MBq experiments.
For the remaining six categories, most annotations
were unique for the 5 + 10MBq setting (48, 46, 45,
36, 30 and 0% shared annotations for the categories
Metabolism, Cell cycle & differentiation, Stress re-
sponses, Cellular integrity, Cell communication, and
DNA integrity, respectively). Furthermore, most of the
annotations shared between the different regimens oc-
curred at 1 and 7 days (90 and 58% shared annota-
tions, respectively) after the last injection of
177Lu-octreotate, while 3 and 41 days showed more
unique annotations (29 and 19% shared annotations,
respectively).

Differential effects on tumor cell proliferation and
apoptosis in GOT1 tumors after 177Lu-octreotate therapy
with priming
Analysis of affected biological functions using IPA pre-
dicted that a variety of functions related to tumor cell
proliferation were significantly regulated at early time
points after the last injection of 177Lu-octreotate (1 and
3 days), due to the regulation of, e.g., the CDKN1A
(p21), GDF15, and SGK genes (Table 1). Apoptotic

Fig. 2 Distribution of significantly regulated genes after 177Lu-octreotate therapy with priming. Expression profiles of the 187 significantly
regulated transcripts after i.v. injection of 5 + 10 MBq 177Lu-octreotate at 1, 3, 7, or 41 days after the last injection and annotation of enriched GO
terms. Unsupervised hierarchical clustering was performed based on expression profiles. The mean absorbed dose to tumors processed for
transcriptional analysis is indicated by the corresponding time point. Red and green indicate up- and downregulated transcripts (treated versus
control, fold change ≥ 1.5, FDR-adjusted p < 0.01), respectively. In the lower segment, orange and blue indicate significant annotation (modified
Fisher’s exact test, p < 0.05) of a gene to a GO term in a specified category. Orange indicates the GO annotation was significant both in animals
treated with 5 + 10 MBq and in animals treated with 15 MBq single administration of 177Lu-octreotate (from GEO accession GSE80024), while blue
indicates a significant GO annotation only in animals receiving 5 + 10 MBq 177Lu-octreotate
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processes were activated at 3 days after the last injection
(z score = 2.0, p = 2.2 × 10−5), due to the regulation pat-
terns of, e.g., the BAX, GADD45A, and TNFRS10B
genes. Biological functions affected at 7 days were
mainly related to cell migration, while a broader variety
of functions (e.g., tumor sphere formation, proliferation
of cancer cells, and budding of mitochondria) were af-
fected during regrowth (41 days), due to the regulation
of, e.g., SOX2, CXCR7, and LGALS1.
Pathway analysis using IPA revealed a variety of signifi-

cantly affected canonical signaling pathways (p < 0.05,
Table 2). Several of the detected pathways are known to
be involved in cancer development (e.g., PI3K/AKT signal-
ing at 1 day, p53 signaling at 3 and 7 days, and Wnt/β-ca-
tenin signaling at 41 days) [25]. p53 (regulator of, e.g.,
DNA damage response) was also identified as an activated
upstream regulator at early time points after the last injec-
tion of 177Lu-octreotate (z scores 3.3 and 1.9, p values 6.0 ×
10−14 and 1.0 × 10−6, at 3 and 7 days, respectively, Table 3).
Other upstream regulators with predicted activation states
(|z| > 2) were ANXA2 (annexin A2, involved in the regula-
tion of cellular growth and in signal transduction) and
KDM5B (lysine demethylase 5B, a histone demethy-
lase involved in the transcriptional repression of cer-
tain tumor suppressor genes) at 3 days (z scores − 2.0
and 2.6, p values 8.1 × 10−9 and 2.0 × 10−5, respect-
ively) and PARP1 (poly (ADP-ribose) polymerase 1,
involved in DNA strand break repair) at 7 days (z
score − 2.0, p value 3.7 × 10−7) after the last injection
of 177Lu-octreotate.

Discussion
The use of priming followed by a second administration
of 177Lu-octreotate is a promising method to increase
the efficacy of 177Lu-octreotate therapy of
SSTR-expressing tumors. In the present study, gene ex-
pression profiling was used to study the mechanisms in-
volved in the anti-tumor effect observed after treatment
with 177Lu-octreotate including priming [12].
The anti-tumor effects of 177Lu-octreotate with differ-

ent priming and second administration protocols have
been presented in detail by Dalmo et al. [12]. The group
of animals used in the present investigation showed
tumor volume regression followed by tumor regrowth,
i.e., a suboptimal treatment, chosen in order to be able
to study also the regrowth period. Tumor mean
absorbed doses were estimated to 6.4 Gy at infinity time
for the 5 + 10MBq administrations. This should be com-
pared with the absorbed dose of 4.0 Gy to tumors in
mice treated with 15MBq single administration. Fur-
thermore, statistically significant differences were ob-
served in the tumor activity concentration between mice
treated with and without priming therapy [12].

177Lu decays by beta emission but also has a gamma
component [4]. The majority of the absorbed dose is de-
livered by the beta-particle, and although the gamma ra-
diation has longer range, the photon contribution only
marginally influences the absorbed dose due to the low
yield of the emitted photons [5]. Even though this means
the cross-absorbed fraction (dose delivered from, e.g.,
tumor to surrounding healthy tissues) is negligible,

Fig. 3 Expression profiles of commonly regulated transcripts after 177Lu-octreotate therapy with priming. Differential expression (treated vs.
control) of the 38 significantly regulated transcripts shared between at least two of the studied time points, after i.v. injection of 5 + 10 MBq
177Lu-octreotate at 1, 3, 7, or 41 days after injection. Transcripts with fold change ≥ 1.5 and FDR-adjusted p < 0.01 were considered significantly
regulated; annotation of enriched Gene Ontology terms was performed using the Gene Ontology database (modified Fisher’s exact test,
threshold p < 0.05). Up- and downregulation is indicated by positive and negative values, respectively
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adverse effects in healthy tissues are still an issue due to
the uptake of 177Lu-octreotate in healthy organs. The
main dose-limiting organ for 177Lu-octreotate treatment
are the kidneys, which accumulate the radiopharmaceu-
tical partly due to SSTR expression but also because of
reabsorption in proximal tubular cells [26]. While out-
side the scope of this work, the effects of 177Lu-octreo-
tate on the kidney function and gene expression are
important considerations and have been studied exten-
sively by both us and others [19, 27–32].
A comparison of differentially regulated transcripts re-

vealed significant differences across time points and in-
dicated that different cellular functions are affected
depending on the time after administration of 177Lu-oc-
treotate. Approximately 60% of the transcripts differen-
tially regulated at 1, 3, and 7 days were uniquely
regulated at each time point, and at 41 days, the value
was even higher with 87%. The microarray analysis

revealed two response stages along the investigated time
course, with a similarity between tumor responses at
early time points (up to 7 days) compared with the re-
sponse during tumor regrowth (41 days). This pattern is
also illustrated by the 38 regulated transcripts shared be-
tween at least two of the time points studied, of which
only four were found in the 41 days group. It is interest-
ing to notice that the direction of regulation changed be-
tween early and late time points for TESC (tescalcin)
and FAM5C (bone morphogenetic protein/retinoic
acid-inducible neural-specific 3). Furthermore, a direc-
tional change was also found between day 1 and day 7
for TGFB1, NGFRAP1 (involved in the extrinsic apop-
totic signaling pathway [33]), MGST1, LY6H (involved in
tissue morphogenesis), and NRSN1. TGFβ is an onco-
static regulator which, if mutated, is central in tumor cell
proliferation, angiogenesis, and invasiveness. In NET, in-
activation of this pathway has been reported in some cell

Table 1 Predicted biological functions affected in GOT1 tumors after 177Lu-octreotate therapy with priming

Affected function z p Targets from transcriptional data

1 day

► Hyperpolarization – 1.7 × 10− 4 ↑SGK, ↓SCN9A

G2 phase arrest in cancer – 3.3 × 10− 4 ↑SGK, ↑CDKN1A

Metabolism of D-glucose – 1.6 × 10− 3 ↑APOE, ↑APOD

Cell migration – 2.2 × 10−3 ↑APOE, ↑CDKN1A

Cancer cell morphology – 2.2 × 10−3 ↑CDKN1A, ↑GDF15

3 days

G1 phase 1.0 1.1 × 10−6 ↑CEL, ↑APOE, ↑CCND3, ↑DDIT3, ↑GADD45A, ↑CDKN1A, ↑GDF15, ↓CDCA5, ↑BAX

Tumor cell proliferation − 1.5 1.4 × 10−5 ↑BEX2, ↓DLGAP5, ↓CTGF, ↑DDIT3, ↑SGK, ↑TNFRSF10B, ↑GDF15, ↑DDB2, ↑BAX, ↓PBK,
↑VCAN, ↓PARVB, ↓FDFT1, ↑CEL, ↓ALDH1A1, ↑CCND3, ↑GADD45A, ↑CDKN1A, ↓CDCA5

Cell death in cancer − 0.20 1.4 × 10−5 ↑DDIT3, ↑GADD45A, ↑SGK, ↑BTG3, ↑TNFRSF10B, ↑CDKN1A, ↑GDF15, ↑BAX

Apoptosis in cancer 2.0 2.2 × 10−5 ↑CCND3, ↑DDIT3, ↑GADD45A, ↑SGK, ↑TNFRSF10B, ↑CDKN1A, ↑BAX, ↓PBK

Cancer cell viability − 1.5 2.7 × 10−5 ↑BEX2, ↓CTGF, ↓INSIG1, ↑CDKN1A, ↑GDF15, ↓PBK

7 days

Clustering of cancer cells – 1.5 × 10−5 ↑CDH1, ↑CDKN1A

Metabolism of cholesterol – 2.8 × 10−5 ↑CEL, ↑APOE, ↓LDLR, ↑ABCA1

Invasion of tumor – 8.2 × 10−5 ↑APOE, ↑CDH1, ↑CTSL, ↑GDF15

Quantity of intercellular junctions – 9.0 × 10−5 ↑CDH1, ↑GDF15

Invasion of cells 0.46 1.7 × 10−4 ↑KISS1R, ↑CDH1, ↑CTSL, RHOB, ↑ACTA2, ↑TGFBI, ↑CDKN1A, ↑GDF15, ↓ENPP2, ↓AGR2,
↓BRINP3, ↑SERPINE2

41 days

► Quantity of Ca2+ – 2.2 × 10−4 ↑IAPP, ↑GCGR, ↑CCK, ↓LGALS1

► Tumor sphere formation – 6.0 × 10−4 ↓SOX2, ↓CXCR7

Proliferation of cancer cells − 1.2 1.3 × 10−3 ↓SOX2, ↓ALDH1A1, ↓CXCR7, ↑PPP2R2C

► Apoptosis of T lymphoblasts – 1.3 × 10− 3 ↓LGALS1

► Budding of mitochondria – 1.3 × 10−3 ↓LGALS1

Significantly affected biological functions identified with IPA (Fisher’s exact test, p < 0.05), ranked according to the lowest p value, for each time point. z scores
indicate activation state of biological function; z > 2 indicates activation, and z < − 2 indicates inhibition. Up and down arrows indicate upregulated and
downregulated genes in tumor samples from treated animals compared with controls, respectively. ► indicates the function was not affected in animals treated
with 15 MBq single administration of 177Lu-octreotate (from GEO accession GSE80024)
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lines, e.g., KRJ-I, but not in others, e.g., BON [34, 35].
The regulation of TGFB1 in the present study is in co-
herence with results seen after 15MBq 177Lu-octreotate
monotherapy of GOT1 tumors [20] and may suggest
functioning TGFβ-signaling in GOT1 tumors, but this
finding remains to be proven.
IPA analysis of the data from 1 day after the last injec-

tion predicts that the initial response to treatment is
growth arrest, based on, e.g., upregulation of the
CDKN1A and SGK genes. Effects on tumor cell prolifer-
ation were also seen at 3 days after the last injection,
along with an activation of apoptosis. This is in accord-
ance with results seen after injection of 15MBq
177Lu-octreotate [20]. However, in the present study on
priming schedule, the target genes for the prediction of
apoptosis activation suggest that both the intrinsic (via,
e.g., the BAX, GADD45A, and PBK genes [36–38]) and
extrinsic (via, e.g., the TNFRSF10B and NGFRAP1 genes
[33, 39]) apoptotic pathways are involved in the re-
sponse. This is in contrast to the observed effects of 15

MBq monotherapy where only the intrinsic apoptotic
pathway was affected [20]. In comparison with the re-
sults from the 15MBq monotherapy study, no
anti-apoptotic functions were affected during regrowth
in the present study, and the downregulation of, e.g.,
CXCR7 and LGALS1 suggests an inhibition of cell prolif-
eration. This may account for the slower regrowth ob-
served with the priming treatment schedule.
In order to identify alterations in key regulatory

pathways after 177Lu-octreotate therapy, analysis of
IPA canonical pathways and upstream regulators was
performed. Both the pathway and upstream regulator
analysis revealed an effect on p53-signaling at 3 and
7 days after injection, with a predicted activation at
3 days (z score 3.3). Previous studies have shown that
radiation exposure resulted in the activation of the
p53 signaling pathway which, depending on the extent
of DNA damage, promotes cell survival (by cell cycle
arrest and DNA damage repair), or intrinsically acti-
vates cell death mechanisms such as apoptosis [40–

Table 2 Predicted canonical pathways affected in GOT1 tumors after 177Lu-octreotate therapy with priming

Ingenuity Canonical Pathways p Targets from transcriptional data

1 day

Systemic lupus erythematosus signaling 1.3 × 10−4 ↓RNU1-3, ↓RNU1-5, ↓RNU1A3

► PI3K/AKT signaling 3.4 × 10−3 ↑PPP2R2B, ↑CDKN1A, ↑GDF15

Taurine biosynthesis 5.0 × 10−3 ↓CDO1

► Role of CHK proteins in cell cycle checkpoint control 8.3 × 10−3 ↑PPP2R2B, ↑CDKN1A

L-cysteine degradation 1.0 × 10−2 ↓CDO1

3 days

p53 signaling 3.2 × 10−5 ↑GADD45A, ↑TNFRSF10B, ↑CDKN1A, ↑TIGAR, ↑BAX

GADD45 signaling 3.2 × 10−5 ↑CCND3, ↑GADD45A, ↑CDKN1A

► Unfolded protein response 7.1 × 10−4 ↑DDIT3, ↓INSIG1, ↑HSPH1

Cholesterol biosynthesis 8.1 × 10−4 ↓FDFT1, ↓MSMO1

► Death receptor signaling 3.6 × 10−2 ↑ACTA2, ↑TNFRSF10B

7 days

Systemic lupus erythematosus signaling 1.3 × 10−4 ↓RNU1-3, ↓RNU1-5, ↓RNU4-2, ↓RNU4-1

LXR/RXR activation 1.3 × 10−3 ↓FDFT1, ↑APOE, ↓LDLR, ↑ABCA1

► Epoxysqualene biosynthesis 7.8 × 10−3 ↓FDFT1

► p53 signaling 9.3 × 10−3 ↑TNFRSF10B, ↑CDKN1A, ↑SERPINE2

► Serotonin and melatonin biosynthesis 2.0 × 10−2 ↑TPH1

41 days

► Role of Oct4 in mammalian embryonic stem cell pluripotency 1.6 × 10−3 ↓SOX2, ↓NR2F2

► Lactose degradation 5.3 × 10−3 ↑GBA3

► CDK5 signaling 7.1 × 10−3 ↓EGR1, ↑PPP2R2C

Embryonic stem cell differentiation into cardiac lineages 1.3 × 10−2 ↓SOX2

► Wnt/β-catenin signaling 2.0 × 10−2 ↓SOX2, ↑PPP2R2C

Significantly affected canonical pathways identified with IPA (Fisher’s exact test, p < 0.05), ranked according to the lowest p value, for each time point. Up and
down arrows indicate upregulated and downregulated genes in tumor samples from treated animals compared with controls, respectively. ► indicates the
pathway was not affected in animals treated with 15MBq single administration of 177Lu-octreotate (from GEO accession GSE80024)
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42]. The predicted inhibition and activation of up-
stream regulators ANXA2 and KDM5B, respectively,
to target genes such as BAX, CDKN1A, GADD45A,
and PBK further suggests that tumor growth is sup-
pressed via p53-mediated processes [43]. An effect on
p53-signaling was also seen in GOT1 tumors in re-
sponse to 15MBq 177Lu-octreotate monotherapy, al-
beit only at 3 days after injection (compared with 3
and 7 days following treatment with priming) [20].
However, in the present study, PI3K/AKT signaling
was also affected at 1 day, suggesting an increased ef-
fect on cell cycle arrest via upregulation of PPP2R2B,
CDKN1A, and GDF15. The effect on the extrinsic
apoptotic pathway (death receptor signaling) was also
observed in the pathway analysis at 3 days, owing to
the regulation of the ACTA2 and TNSRF10B genes.
Unfolded protein response (UPR) was also affected at
3 days. UPR is a stress response pathway which is

caused by endoplasmic reticulum stress. Protein fold-
ing occurring in the endoplasmic reticulum is ex-
tremely sensitive to environmental changes regarding,
e.g., reactive oxygen species (which could be caused
by, e.g., 177Lu-octreotate-induced radiolysis of water
or downstream effects of irradiation-induced cellular
damage), hypoxia, or inflammatory stimuli, and stud-
ies have shown that endoplasmic stress can induce
apoptosis (mediated by, e.g., JNK signaling) and en-
hances the radiosensitivity of tumor cells by degrad-
ation of RAD51 and subsequent reduction of
double-strand break repair [44, 45]. Furthermore, the
prediction of PARP1 as an inhibited upstream regula-
tor at 7 days also suggests an impaired ability to re-
pair DNA double-strand breaks. These responses were
not seen in the study of 15 MBq 177Lu-octreotate
monotherapy and may be contributing factors in the
increased anti-tumor effect of a priming treatment

Table 3 Predicted upstream regulators affected in GOT1 tumors after 177Lu-octreotate therapy with priming

Upstream regulator z p Targets from transcriptional data

1 day

GDF15 – 6.1 × 10−6 ↑CDKN1A, ↑GDF15

PPP5C – 1.8 × 10−5 ↑CDKN1A, ↑SGK

SATB1 0.11 7.8 × 10−5 ↑CDKN1A, ↑F5, ↑FAM129A, ↑SGK

RNF2 – 1.3 × 10−4 ↑CDKN1A, ↑GDF15

FH – 2.2 × 10−4 ↑APOD, ↑CDKN1A

3 days

► p53 3.3 6.0 × 10−14 ↑ACTA2, ↑APOE, ↑BAX, ↑CCND3, ↑CDKN1A, ↓CTGF, ↑DDB2, ↑DDIT3, ↓FDFT1, ↑GADD45A,
↑GDF15, ↑NINJ1, ↓PBK, ↑PHLDA3, ↑SPATA18, ↑TIGAR, ↑TNFRSF10B, ↑VCAN

► ANXA2 −2.0 8.1 × 10−9 ↑BAX, ↑CDKN1A, ↑GADD45A, ↑TNFRSF10B, ↑ZMAT3

MYC −0.32 2.0 × 10−8 ↑BAX, ↑CCND3, ↑CDKN1A, ↑DDB2, ↑DDIT3, ↓EXOSC8, ↑GADD45A, ↑HSPH1, ↑TNFRSF10B

PPARGC1A 0.32 8.3 × 10−8 ↑BAX, ↑CDKN1A, ↓INSIG1, ↓LDLR, ↑TIGAR

► KDM5B 2.6 2.0 × 10−5 ↑DDIT3, ↓DLGAP5, ↑GADD45A, ↓INSIG1, ↓PBK

7 days

PPARG 0.17 9.8 × 10−8 ↑ACTA2, ↑CDH1, ↑CDKN1A, ↑CTSL, ↓INSIG1, ↓PDK4

► PARP1 −2.0 3.7 × 10−7 ↑CDH1, ↓PEG10, ↓TMSB15A, ↑TNFRSF10B

p53 1.9 1.0 × 10−6 ↑ACTA2, ↑APOE, ↑CDH1, ↑CDKN1A, ↑F5, ↓FDFT1, ↑GDF15, ↑NINJ1, ↓PEG10, ↑PHLDA3,
↓TMSB15A, ↑TNFRSF10B

SKI – 1.1 × 10−6 ↑ACTA2, ↑CDH1, ↑CDKN1A

GDF15 – 1.5 × 10−5 ↑CDKN1A, ↑GDF15

41 days

► LIN28B – 4.5 × 10−5 ↓BCL11A, ↓SOX2

ID1 – 1.9 × 10−4 ↓EGR1, ↓SOX2

► CDX2 – 1.1 × 10−3 ↓NR2F2, ↓SOX2

SHP – 1.3 × 10−3 ↓EGR1

mir-140 – 1.3 × 10−3 ↓SOX2

Significantly affected upstream regulators identified with IPA (Fisher’s exact test, p < 0.05), ranked according to the lowest p value, for each time point. z scores
indicate activation state of the upstream regulator; z > 2 indicates activation, and z < −2 indicates inhibition. Up and down arrows indicate upregulated and
downregulated genes in tumor samples from treated animals compared with controls, respectively. ► indicates the upstream regulator was not affected in
animals treated with 15 MBq single administration of 177Lu-octreotate (from GEO accession GSE80024)
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schedule. Interestingly, we have previously demon-
strated that the NAMPT inhibitor GMX1778 en-
hances the effects of single injection of 7.5 MBq
177Lu-octreotate treatment and induces a prolonged
antitumor response in the same animal model as in
the present study [46], an effect that may be related
to PARP1 activation status.
Generation of GOT1 xenografts in nude mice is per-

formed by first establishing a tumor into a few mice, by
subcutaneous injection of cells from in vitro culture. After
4–6months, the mice develop tumors at the site of injec-
tion. Tumors are then allowed to grow for several months
and are then divided into 1-mm tissue pieces and trans-
planted into a larger number of mice, usually ca 60–100
each time. The tumor take is relatively low, tumors appear
at different time points, the tumors grow slowly, and the
growth rate differs much between animals within a trans-
plantation batch, which results in a large variation in
tumor sizes at a certain time point. Unfortunately, this
sometimes results in a low number of tumor-bearing ani-
mals being available for experiments at a certain time,
which limits the number of animals per treatment group.
However, to our knowledge, the GOT1 model is unique in
having a traceable neuroendocrine origin (a liver metasta-
sis from a well-differentiated, serotonin-producing (en-
terochromaffin cell type) ileal NET) as well as harboring
no mutations in p53 (mutated/dysfunctional p53 is usually
not observed in patients) [47]. We therefore consider
GOT1 to be the most representative model for studying
small intestine NETs outside of using patient samples.
Furthermore, the multifaceted differences in gene expres-
sion seen between treated and untreated groups in this
work despite the strict statistical thresholding (fold change
> 1.5, FDR-adjusted p < 0.01) suggests that gene regulation
can be seen also with these group sizes.

Conclusions
Microarray analysis characterized two stages of pathway
regulation for the priming schedule (up to 1 week and
around 1 month) which differed distinctly from cellular
responses observed after monotherapy.
The priming treatment schedule resulted in induction

of p53-mediated cell cycle arrest and apoptosis as well
as extrinsically-mediated apoptosis in GOT1 tumors.
Together with effects on PI3K/AKT-signaling and un-
folded protein response, these findings suggest increased
cellular stress in the tumors after a priming treatment
schedule compared with conventional 177Lu-octreotate
monotherapy. Furthermore, downregulation of, e.g.,
CXCR7 and LGALS1 suggests an inhibition of cell prolif-
eration at late time points after the last injection, which
may explain the slow regrowth compared with tumors in
animals treated with monotherapy.
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