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Abstract: We examine the structure of gauge transformations in extended geometry, the
framework unifying double geometry, exceptional geometry, etc. This is done by giving
the variations of the ghosts in a Batalin—Vilkovisky framework, or equivalently, an L
algebra. The L, brackets are given as derived brackets constructed using an underlying
Borcherds superalgebra Z(g,+1), which is a double extension of the structure algebra
gr. The construction includes a set of “ancillary” ghosts. All brackets involving the
infinite sequence of ghosts are given explicitly. All even brackets above the 2-brackets
vanish, and the coefficients appearing in the brackets are given by Bernoulli numbers.
The results are valid in the absence of ancillary transformations at ghost number 1.
We present evidence that in order to go further, the underlying algebra should be the
corresponding tensor hierarchy algebra.
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1. Introduction

The ghosts in exceptional field theory [1], and generally in extended field theory with an
extended structure algebra g, [2], are known to fall into %, (g, ), the positive levels of a
Borcherds superalgebra %(g, ) [3,4]. We use the concept of ghosts, including ghosts for
ghosts etc., as a convenient tool to encode the structure of the gauge symmetry (structure
constants, reducibility and so on) in a classical field theory using the (classical) Batalin—
Vilkovisky framework.

It was shown in Ref. [3] how generalised diffeomorphisms for E, have a natural
formulation in terms of the structure constants of the Borcherds superalgebra Z(E,+1).
This generalises to extended geometry in general [2]. The more precise rdle of the
Borcherds superalgebra has not been spelt out, and one of the purposes of the present
paper is to fill this gap. The gauge structure of extended geometry will be described
as an Lo algebra, governed by an underlying Borcherds superalgebra %(g,+1). The
superalgebra Z(g,+1) generalises Z(E,+1) in Ref. [3], and is obtained from the structure
algebra g, by adding two more nodes to the Dynkin diagram, as will be explained in
Section 2. In cases where the superalgebra is finite-dimensional, such as double field
theory [5—19], the structure simplifies to an L, -, algebra [20-22], and the reducibility
becomes finite.

It is likely that a consistent treatment of quantum extended geometry will require a
full Batalin—Vilkovisky treatment of the ghost sector, which is part of the motivation
behind our work. Another, equally strong motivation is the belief that the underlying
superalgebras carry much information about the models—also concerning physical fields
and their dynamics—and that this can assist us in the future when investigating extended
geometries bases on infinite-dimensional structure algebras.

The first 8 — r levels in Z(E,) consist of E,-modules for form fields in exceptional
field theory [1,23-40], locally describing eleven-dimensional supergravity. Inside this
window, there is a connection-free but covariant derivative, taking an element in R, at
level p to R, atlevel p—1[31]. Above the window, the modules, when decomposed as
gl(r) modules with respect to a local choice of section, start to contain mixed tensors, and
covariance is lost. For Eg, the window closes, not even the generalised diffeomorphisms
are covariant [39] and there are additional restricted local Eg transformations [38].
Such transformations were named “ancillary” in ref. [2]. In the present paper, we will
not treat the situation where ancillary transformations arise in the commutator of two
generalised diffeomorphisms, but we will extend the concept of ancillary ghosts to higher
ghost number. It will become clear from the structure of the doubly extended Borcherds
superalgebra %(g,+1) why and when such extra restricted ghosts appear, and what their
precise connection to e.g. the loss of covariance is.

A by-product of our construction is that all identities previously derived on a case-by-
case basis, relating to the “form-like” properties of the elements in the tensor hierarchies
[31,41], are derived in a completely general manner.

Although the exceptional geometries are the most interesting cases where the struc-
ture has not yet been formulated, we will perform all our calculations in the general
setting with arbitrary structure group (which for simplicity will be taken to be simply
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laced, although non-simply laced groups present no principal problem). The general for-
mulation of ref. [2] introduces no additional difficulty compared to any special case, and
in fact provides the best unifying formalism also for the different exceptional groups. We
note that the gauge symmetries of exceptional generalised geometry have been dealt with
in the L, algebra framework earlier [42]. However, this was done in terms of a formal-
ism where ghosts are not collected into modules of E,., but consist of the diffeomorphism
parameter together with forms for the ghosts of the tensor gauge transformations (i.e.,
in generalised geometry, not in extended geometry).

In Section 2, details about the Borcherds superalgebra %(g,-+1) are given. Especially,
the double grading relevant for our purposes is introduced, and the (anti-)commutators
are given in this basis. Section 3 introduces the generalised Lie derivative and the section
constraint in terms of the Borcherds superalgebra bracket. In Section 4 we show how
the generalised Lie derivative arises naturally from a nilpotent derivative on the (g, )
subalgebra, and how ancillary terms/ghosts fit into the algebraic structure. Some further
operators related to ancillary terms are introduced, and identities between the operators
are derived. Section 5 is an interlude concerning L, algebras and Batalin—Vilkovisky
ghosts. The non-ancillary part of the L, brackets, i.e., the part where ghosts and brackets
belong to the %, (g,) subalgebra, is derived in Section 6. The complete non-ancillary
variation (S, C) = 2211 [[C"]] can formally be written as

(S,C) =dC + g(ad C) %¢C, (1.1)
where g is the function

2 1
gx) = ——- — —, (1.2)

l—e2x x

containing Bernoulli numbers in its Maclaurin series. Ancillary ghosts are introduced in
Section 7, and the complete structure of the L, brackets is presented in Section 8. Some
examples, including ordinary diffeomorphisms (the algebra of vector fields), double
diffeomorphisms and exceptional diffeomorphisms, are given in Section 9. We conclude
with a discussion, with focus on the extension of the present construction to situations
where ancillary transformations are present already in the commutator of two generalised
diffeomorphisms.

2. The Borcherds Superalgebra

For simplicity we assume the structure algebra g, to be simply laced, and we normalise
the inner product in the real root space by («;, ;) = 2. We let the coordinate module,
which we denote R| = R(—X), be a lowest weight module' with lowest weight —A.
Then the derivative module is a highest weight module R()) with highest weight A, and
R(—=X) = R(}).

As explained in ref. [3] we can extend g, to a Lie algebra g, or to a Lie superalgebra
H(gy) by adding a node to the Dynkin diagram. In the first case, the additional node is
an ordinary “white” node, the corresponding simple root ¢ satisfies («g, @p) = 2, and
the resulting Lie algebra g, is a Kac—-Moody algebra like g, itself. In the second case,

1 In refs. [2,40], the coordinate module was taken to be a highest weight module. We prefer to reverse
these conventions (in agreement with ref. [3]). With the standard basis of simple roots in the superalgebra, its
positive levels consists of lowest weight g,-modules. In the present paper the distinction is not essential, since
the cases treated all concern finite-dimensional g, and finite-dimensional g, -modules.
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Fig. 1. Dynkin diagrams of Z(E, 1) together with our notation for the simple roots represented by the nodes

the additional node is “grey”, corresponding to a simple root fy. It satisfies (8o, Bp) = O,
and is furthermore a fermionic (i.e., odd) root, which means that the associated Chevalley
generators ep and fjy belong to the fermionic subspace of the resulting Lie superalgebra
A(gr). In both cases, the inner product of the additional simple root with those of g, is
given by the Dynkin labels of A, with a minus sign,

—Ai = =&, @) = (a0, ;) = (Bo. Bi). 2.1

where we have seto; = 3; (1 = 1,2,...,7).

We can extend g, and Z(g,) further to a Lie superalgebra Z(g,+1) by adding one
more node to the Dynkin diagrams.> We will then get two different Dynkin diagrams
(two different sets of simple roots) corresponding to the same Lie superalgebra % (g,+1).
These are shown in Figure 1 in the case when g = E, and X is the highest weight of the
derivative module in exceptional geometry. The line between the two grey nodes in the
second diagram indicate that the inner product of the two corresponding simple roots is
(B=1, Bo) = 1, not —1 as when one or both of the nodes are white.

The two sets of simple roots are related to each other by

y-1=—B-1, vo=pB-1+Bo, vi=Bi. (2.2)

This corresponds to a “generalised Weyl transformation” or “odd Weyl reflection” [43],
which provides a map between the two sets of Chevalley generators mapping the defining
relations to each other, thus inducing an isomorphism.

In spite of the notation %(g,+1) we choose to consider this algebra as constructed
from the second Dynkin diagram in Figure 1, which means that we let eg, fo and h¢ be
associated to S rather than y. For f_1, we drop the subscript and write the associated
generators simply as e, f and h. They satisfy the (anti-)commutation relations

[h,e]l=1h, f1=0 [e, f1=nh. (2.3)
Acting with & on eg and fy we have
[, e0]l = eo, [h, fol = —fo. (2.4

2 Inref. [2], the algebras g,4+1, #(gr) and A(g,4+1) were called o7, Z and €, respectively.
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Throughout the paper the notation [, -] is used for the Lie super-bracket of the superalge-
bra, disregarding the statistics of the generators. Thus, we do not use a separate notation
(e.g. {-, -}, common in the physics literature) for brackets between a pair of fermionic
elements.

Let k be an element in the Cartan subalgebra of Z(g,) that commutes with g, and
satisfies [k, e] = e and [k, f] = — f when we extend %(g,) to %(g,+1). In the Cartan
subalgebra of A(g,+1), set k = k + h, so that [e, f] = h = k — k. We then have

[k, e0]l = — (A, Meo, [k,e] =e,
[k, fol = O, M) fo, [k, f1=—Ff, (2.5)
[k, eol = (1 — (A, M)eo, [k.el=e,

[k, fol = (. 2) = D fo, [k, f1=—. (2.6)

The Lie superalgebra % (g, +1) can be given a (Z x Z)-grading with respect to Sy and
B_1. It is then decomposed into a direct sum of g, modules

Bor)= B  Rpg- 2.7)
(p.q)ELXTL

where R, 4) is spanned by root vectors (together with the Cartan generators if p =
q = 0) such that the corresponding roots have coefficients p and ¢ for By and B_1,
respectively, when expressed as linear combinations of the simple roots. We will refer
to the degrees p and q as level and height, respectively. They are the eigenvalues of the
adjoint action of &7 = k — k and the Cartan element

qg=1 — (o, Ak + (A, Dk =k + (&, M, (2.8)
respectively. Thus

lg.e0l = [gq, fol=0, [g,el=e, lq,fl=—F 2.9

In the same way as the Lie superalgebra #(g,+1) can be decomposed with respect to
Bo and B_1, it can also be decomposed with respect to 3 and y_;. Then the degrees m
and n, corresponding to yp and y_1, respectively, are related to the level and height by
m = pandn = p — q. The Lo structure on A (g,+1) that we are going to introduce is
based on yet another Z-grading,

Bar1) = P L, (2.10)

Le

where the degree £ of an element in R(, 4) is given by £ = p + g. The L structure is
then defined on (a part of) the subalgebra of %(g,+1) corresponding to positive levels ¢,
and all the brackets have level £ = —1. It is important, however, to note that the subset
of %(g,+1) on which the ghosts live is not closed under the superalgebra bracket, so the
space on which the L, algebra is defined will not support a Lie superalgebra structure.
The subset in question consists of the positive levels of the subalgebra %(g,) at p > 0,
q = 0, together with a subset of the elements at p > 0, g = 1. See further Sections 7
and 8. The ghost number is identified with the level £ = p + ¢ in Table 1.

Following Ref. [3], welet Ejy and F M e fermionic basis elements of R(1,0) = Ry and
R 1,0 = R, respectively, in the subalgebra #(g, ), while E M and FM are bosonic basis
elements of R(1,;;) = Ry and R—1 1) = R in the subalgebra g,,1. Furthermore, we



726

M. Cederwall, J. Palmkvist

Table 1. The general structure of the superalgebra (g, +1)

p=-—1 p=20 p=1 p=2 p=3
n=>0
1=3 By
qg=2 Ry Ry @ Ity n=2
q=1 1 Ry Ry ® Ry R3 @ Ry
q=0 R 1®adj®1 Ry Ry R3
R, 1 (=1] ¢ =2] ¢ =3]

The blue lines are the Loo-levels, given by £ = p + g. We also have m = p. Red lines are the usual levels
in the level decomposition of #(g,+1), and form g,.; modules. Tables with specific examples are given in

Section 9, and use the same gradings as this table

let T, be generators of g,, and (#) u

representation matrices in the R; representation.

Adjoint indices will be raised and lowered with the Killing metric 74 and its inverse.
Then the remaining (anti-)commutation relations of generators at levels —1, 0 and 1 in
the “local superalgebra” (i.e., where also the right hand side belongs to level —1, 0 or 1)
that follow from the Chevalley—Serre relations are

[To. Ev]1 = —(ta)u” En,
[k, Em] = —(A, M Ep,
[k, Ex]1= (1 — (A, M)En,
[e. EN] = E,
[f. En]=0,

[Ty, FN] = (t) ™ FM,
[k, FN1= (A, ) FV,
[k, FN] = ((,\ A) — DFEN,
le, F¥] =
[f, FN]1= —FN,

[Ep, FN1 = —(t) ™ Ty + 81Nk,
(Ey, FN1=68u" f,

From this we get

Ewm, FN1,Epl= fu™ pPEg,

Em, FNL,Epl =™ Ep + fu™ p%Eg,

[Ey, FN1, Ep1=0,
(Em, FN1,Epl =™ Ep,

[T, Ev] = —(t))M" En.

(k. Exl = 2 — (x, W)En,

[k, Ey]= (1 — (A, 2)EN,

le, EN] =0,

[f. Ex]1= E, (2.11)
[To, FN] = ()™ FM,

[k, FN1= (A, ») —2)FV,

[k, FN1=((, 1) = DFY,

[e, FN1=FV,

[f, FN] =0, (2.12)

[Ep. FN1 = ()" Ty + 4™k,
[Ey, FN1= —sy"Ve. (2.13)

[[EMs FN], EP] = fMNPQEQ,
[[Ey. FN1. Epl =0,

(Ep. FN1, Epl = =8N Ep, (2.14)
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where

"V P = ()™ ¢ p% = (0, 18" 859, (2.15)
and
T P2 = (1) ) P2 + (2 — (1, 2) 81N 8p 2. (2.16)
In particular we have the identities

[Eum, FN1, Epl = [[Ey, FN1, Ep1+ [[Em, FN1, Ep],
([Eum, FN1, Epl = [[Em, FN1, Ep] — [[Em, FN1, Ep], (2.17)

which follow from acting with e and f on [[E )y, I::N], Ep] =0and [[EM, FN], Ep] =
0, respectively.

Continuing to level 2, the generators Ej; and E y fulfil certain “covariantised Serre
relations”, following from the Serre relations for eg and [e, eg], the generators corre-
sponding to the roots Sy and Yy, respectively. The Serre relation in the %(g, ) subalgebra
states that [E s, E ] only spans a submodule R, of the symmetric product of two R1’s.
The complement of R; in the symmetric product is R(—22), the only module appearing
in the square of an object in a minimal orbit. Similarly, the Serre relation in the g,41
subalgebra states that [ E )y, E ~] only spans Rz, the complement of which is the highest
module in the antisymmetric product of two Ry’s. The bracket [E s, E ~N1spans Ry @ R;.
The conjugate relations apply to FM and F FM . We thus have

[Em, Ex]l € Ry, [FM,FN]eRs,
[Ey.ENle Ro® Ry, [FM. FNle R, @R,
[Ew. Envle Ry, [FM FNleR,. (2.18)

The modules R, and R» are precisely the ones appearing in the symmetric and antisym-
metric parts of the section constraint in Section 3. For more details, e.g. on the connection
to minimal orbits and to a denominator formula for the Borcherds superalgebra, we refer
to refs. [2—4]. The (anti-)commutation relations with generators at level 1 acting on
those in (2.18) at level 2 follow from Eqgs. (2.14) by the Jacobi identity.

Animportant property of %(g,+1) is that any non-zero level decomposes into doublets
of the Heisenberg superalgebra spanned by e, f and A. This follows from Egs. (2.3). An
element at positive level and height 0 is annihilated by ad f. It can be “raised” to height
1 by ad e and lowered back by ad f. We define, for any element at a non-zero level p,

Af = l[A, el, (2.19)
p
A" = —[A, f]. (2.20)

Then A = A® + A%, Occasionally, for convenience, we will write raising and lowering
operators acting on algebra elements. We then use the same symbols for the operators:
bA = A” and A = AF.

As explained above (g, +1) decomposes into g, modules, where we denote the one
at level p and height g by R(, 4). Every g,-module R, = R(, ) at level p > 0 and
height O exists also at height 1. In addition there may be another module. We write
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Rp1yy =Ry ® R p. Sometimes, R p may vanish. The occurrence of non-zero modules
R p is responsible for the appearance of “ancillary ghosts” 3

Let A and B be elements at positive level and height O (or more generally, annihilated
by ad f), and denote the total statistics of an element A by |A|. The notation is such
that |A| takes the value O for a totally bosonic element A and 1 for a totally fermionic
one. “Totally” means statistics of generators and components together, so that a ghost C
always has |C| = 0, while its derivative (to be defined in Eq. (4.1) below) has |dC| = 1.
This assignment is completely analogous to the assignment of statistics to components
in a superfield. To be completely clear, our conventions are such that also fermionic
components and generators anticommute, so that if e.g. A = AMEy; and B = BMEy,
are elements at level 1 with |A| = |B| = 0, then [A, B] = [AMEy, BVEy] =
—AMBN[E ., Ex]. A bosonic gauge parameter AM atlevel 1 sits in an element A with
Al = 1.

Some useful formulas involving raising and lowering operators are easily derived:

[A, B’ = [A, B], 2.21)
[A, BYF = —(=D)!Blad )~ '([n, A"], BY). (2.22)

Note that [A?, B*] has height 2 and lies in EPA"’[’B’ if pa, pp are the levels of A, B. The
decomposition

[A, B*] = [A, B — (=1)!Bl@ad )~ '[[h, A%], B*Y’ (2.23)

provides projections of R, 1) = R, ® R p on the two subspaces.

We will initially consider fields (ghosts) in the positive levels of %(g, ), embedded in
A(gr+1) at zero height. They can thus be characterised as elements with positive (integer)
eigenvalues of ad 4 and zero eigenvalue of the adjoint action of the element ¢ in Eq.
(2.8). Unless explicitly stated otherwise, elements in Z(g,+1) will be “bosonic”, in the
sense that components multiplying generators that are fermions will also be fermionic,
as in a superfield. This agrees with the statistics of ghosts. With such conventions, the
superalgebra bracket [-, -] is graded antisymmetric, [C, C] = 0 when |C| = 0.

3. Section Constraint and Generalised Lie Derivatives

We will consider elements in certain subspaces of the algebra Z(g,+1) which are also
functions of coordinates transforming in Ry = R(—A), the coordinates of an extended
space. The functional dependence is such that a (strong) section constraint is satisfied.
A derivative is in R; = R(}). Given the commutation relations between F™ and FM
(which both provide bases of Ry), the section constraint can be expressed as

[FM FN13y ® oy =0,
[FM, FNJay ® oy = 0,
[FM, FNloy ® oy = 0. (3.1)

The first equation expresses the vanishing of R; in the symmetric product of two deriva-
tives (acting on the same or different fields), the last one the vanishing of R; in the

3 The notation ﬁp was used differently in ref. [3]. There, 1’51, ﬁz, §3, ... correspond to Ry, Ez, 1'33, L.
here, i.e., the representations on the diagonal n = 0 in Table 1. Thus it is only for p = 2 that the meanings of
the notation coincide.
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antisymmetric product, and the second one contains both the symmetric and antisym-
metric constraint. The first and third constraints come from the subalgebras %(g,) and
gr+1, respectively, which gives a simple motivation for the introduction of the double
extension. By the Jacobi identity, they imply

[lx, FM1, FN19 ® dny = 0,
[[x, FM], FN 1o ® dn =0 (3.2)

for any element x € Z(g,+1). We refer to refs. [2,3] for details concerning e.g. the
importance of Egs. (3.1) for the generalised Lie derivative, and the construction of
solutions to the section constraint.

The generalised Lie derivative, acting on an element in R1, has the form

LyvM =UNoyvM 4 ZpoMNoyutve, (3.3)
where the invariant tensor Z has the universal expression [2,40]

0Z =—nept* @1F + (1, 2) — 1 (3.4)
(o is the permutation operator),i.e., Zp oMY = —nap(t*) p™ (tF) oM +((h, 1) —1 )SgSg.
With the help of the structure constants of Z(g,+1) it can now be written [3]

LV =[lU, FN, oxV®] = [[anU%, FNY, V], (3.5)

where U = UMEy, V = VME,,, with UM and V™ bosonic. The two terms in this
expression corresponds to the first and second terms in Eq. (3.3), respectively, using the
fourth and seventh equations in (2.14). It becomes clear that the superalgebra %(g;)
does not provide the structure needed to construct a generalised Lie derivative, but that
HB(gr+1) does. In the following Section we will show that this construction not only is
made possible, but that the generalised Lie derivative arises naturally from considering
the properties of a derivative.

We introduce the following notation for the antisymmetrisation, which will be the
2-bracket in the L, algebra,

MU, V] = LV — LU = [[U, FN], oy VE = [[ay U, FN], V] = (U < V).

(3.6)
For the symmetric part we have
Z(IU, VD = D%UV +va
= [[U, F], oy V*] — [[anU*, FV1, V]
+[[V. FN1, oy U] — [[aw VE, FN1, U]
= [[U, dn V*1. FM] = [[ay U, V1, FM], 3.7)
where we have used the Jacobi identity. If R> = 0, then
[Ev, EN1=[En, Ex] = —[Eum, E] (3.8)

so that [y U, V] = —[dy U, V]and 2(U, V) = ayl[U, V1, FM].
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In the cases where £y %y — Ly %y = Lu.vy we get

2(][[U, V]], WD = f[[uyv]]W +fwl[U, V]]
= Zngvw +$W$UV = 3$U$VW
=3_LLYy LW — Ly LyV)
=3(ZAu.viW — ZwlU, V) = 6llU, V], W] (3.9)

antisymmetrised in U, V, W. These expressions, and their generalisations, will return
with ghosts as arguments in Section 6. Note however that U and V have bosonic compo-
nents. They will be replaced by fermionic ghosts, which together with fermionic basis
elements build bosonic elements. The bracket will be graded symmetric.

4. Derivatives, Generalised Lie Derivatives and Other Operators

In this Section, we will start to examine operators on elements at height 0, which are
functions of coordinates in R;. Beginning with a derivative, and attempting to get as
close as possible to a derivation property, we are naturally led to the generalised Lie
derivative, extended to all positive levels. The generalised Lie derivative is automatically
associated with a graded symmetry, as opposed to the graded antisymmetry of the algebra
bracket. This will serve as a starting point for the L, brackets. Other operators arise
as obstructions to various desirable properties, and will represent contributions from
ancillary ghosts. Various identities fulfilled by the operators will be derived; they will
all be essential to the formulation of the L, brackets and the proof of their identities.

4.1. The derivative. Define a derivative d: R, 0) — R(p—1,0) (p > 0) by

_ 0, A € R0,
dA = {[aMAﬁ, FM], A e Ry p> 1. @)
It fulfils d*> = 0 thanks to the section constraint. At levels p > 1 (and height 0),
1 M
dA, = —[dyA, F"]. 4.2)
p
This follows from
=M 1 =M 1 My, 1 =M
(A5, FM = 1114, e, FM = 114, FM1+ 1114, FM e, (43)

where [A ), fM] =0forp > 1.

Only insisting on having a nilpotent derivative does not determine the relative coeffi-
cients depending on the level p in Eq. (4.2). The subsequent considerations will however
depend crucially on the coefficient.
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4.2. Generalised Lie derivative from “almost derivation”. The derivative is not a deriva-
tion, but its failure to be one is of a useful form. It consists of two parts, one being
connected to the generalised Lie derivative, and the other to the appearance of modules
R,,. The almost-derivation property is derived using Eq. (2.22), which allows moving
around raising operators at the cost of introducing height 1 elements. Let p4, pp be the
levels of A, B. One can then use the two alternative forms

. [A,Bﬁ]+(—1)|3|"—f*[At B,
T Lo, b - oo, gy “

PATPB
to derive
dlA, Bl =[[A, 0y B, FM]1+[[an A, BY, FM]

PA
DA+ DB
+ (=) B[y A%, B, FM] — (—1)/BI—LE__15,, 4%, B, FM)

PA + DB

=[[A, Oy B*], FM ]+ (—1)!®! [[A*, 0y B*]", FM]

= [[A, FM], 0y B*] + [A, [0y B®, FM]]
+ (=) Blay A%, [B, FM1+ (= 1)'Bl[[8y A%, FM], B]

(B) (A)
b (B PA% = PEO g gy vy
PA+ DB
= [[A, FM], 0y B*]1 + [A, d B +8,, 1[A, [0 B, FM]]
+(=DBl[ay A%, [B, FM]1+ (= 1)'BI[dA, B] +5,, 1(=1)!Bl[[ay A%, FM], B]

A
)\B|PA3( ) ppa

pPA+ DB
=[A,dB]+ (—1)!Bl[dA, B]

+8p0 (L4, P, 000 B+ (= 1) Pl110y A%, M), B1)

+(—1 [[A%, BY], FM7

— (=D)AL, (108, FMY, 0y A%+ (1) oy B2, FM), A)

(B) (A)
)\B| PAaM - PBaM

[[A%, BY], FM7 4.5)
pPA+ DB

+(—1

where superscript on derivatives indicate on which field they act. We recognise the
generalised Lie derivative from Eq. (3.5) in the second and third lines in the last step,
and we define, for arbitrary A, B,

LB =5,, ([[A, MY, 00 BE] + (= 1)B[[ay A, FM], B]) . (4.6)

The extension is natural: a parameter A with p4 > 1 generates a vanishing transforma-
tion, while the action on arbitrary elements is the one which follows from demanding
a Leibniz rule for the generalised Lie derivative. Note that bosonic components at level
1 implies fermionic elements, hence the signs in Eqgs. (3.5) and (4. 6) agree. The last
term in Eq. (4.5) is present only if RPA+PB is non-empty, since [A”, B*]is an element at
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height 2 with [A%, B¥]* = 0. We will refer to such terms as ancillary terms, and denote
them —R°(A, B), i.e.,

(A)

(B)
d,,, — ppad ~
R°(A, B) = _(_I)IB\M[[M, BY, FM). 4.7
PA+ DB

A generic ancillary element will be an element K” € R p at height O (or raised to K at
height 1) obtained from an element By, € §p+1 at height 1 as K* = [By;, FM]. The
extra index on B) is assumed to be “in section”. See Section 7 for a more complete
discussion.

The derivative is thus “almost” a derivation, but the derivation property is broken by
two types of terms, the generalised Lie derivative and an ancillary term:

d[A, Bl —[A,dB] — (-1)!Bl[dA, Bl = Z4B — (—1)AI1Bl. 5 A — R"(A, B). (4.8)

The relative factor with which the derivative acts on different levels is fixed by the
existence of the almost derivation property.

Equation (4.8) states that the symmetry of .Z4 B is graded symmetric, modulo terms
with “derivatives”, which in the end will be associated with exact terms. This is good,
since it means that we, roughly speaking, have gone from the graded antisymmetry
of the superalgebra bracket to the desired symmetry of an L., bracket. The graded
antisymmetric part of the generalised Lie derivative appearing in Eq. (4.8) represents
what, for bosonic parameters U, V, would be the symmetrised part £V + %y U, and
it can be seen as responsible for the violation of the Jacobi identities (antisymmetry and
the Leibniz property imply the Jacobi identities [8]). The generalised Lie derivative (at
level 1) will be the starting point for the L, 2-bracket in Sections 6 and 8.

We note that 4B = 0, Z74,51C = 0, and that £, fulfils a Leibniz rule,

Z4[B,Cl = (—=DICI[24B, C1+ (—)AIBIB, £4C]. (4.9)

Consider the expression (4.6) for the generalised Lie derivative. It agrees with Eq. (3.5)
when py = pp = 1 and |A| = |B| = 1. It is straightforward to see that the expression
contains a factor (—1)!8*! compared to the usual expression for the generalised Lie
derivative when expressed in terms of components.

In the present paper, we will assume that the generalised Lie derivative, when acting
on an element in %, (g, ), close. This is not encoded in the Borcherds superalgebra. We
will indicate in the Conclusions what we think will be the correct procedure if this is not
the case. We thus assume

(Zatp+ (DML 2 C = (DMLY o g i gy C. (410)

where the sign comes from the consideration above. When all components are bosonic
and level 1, this becomes the usual expression () Lp — Lp-LA)C = .,2”% (Z1B—2s1)C-
If we instead consider a ghost C with |C| = 0, then

LclcC=—-2Lq.cC. 4.11)
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4.3. “Almost covariance” and related operators. The generalised Lie derivative anti-
commutes with the derivative, modulo ancillary terms. This can be viewed as covariance
of the derivative, modulo ancillary terms. Namely, combining Eq. (4.8) with entries A
and d B with the derivative of Eq. (4.8) gives the relation

dLsB + Z4dB = (—1)BI([dA, dB] — d[dA, B]) + (—1)AIBlg 2z A
+dR°(A, B)+ R"(A, dB). (4.12)

The left hand side can only give a non-vanishing contribution for p4 = 1 and pp > 1.
But then the non-ancillary part of the right hand side vanishes. Therefore, we can define
an ancillary operator X 4 B as

dZAB+ %xdB = —X,B. (4.13)

The explicit form of X 4 is
X\B = —(dLy+ Lad)B = =18, 1[[[omdn A%, BF], FM], FV]. (4.14)

The notation X;B means (X 4 B)b. Thus, X4 B is an element in R, at height 1.
It will be natural to extend the action of the derivative and generalised Lie derivative to
elements K at height 1 by

dK = —(dK")*,
LeK = —(ZLcK ). (4.15)

Then, db + bd = 0 and Z¢b +b.%c = 0.
Note that Xy4B = 0 and X4, 5)C = 0, directly inherited from the generalised Lie
derivative. In addition, we always have

Ly 5C =0. (4.16)

If R, = O this statement is trivial. If R is non-empty (as e.g. for g, = E7), X ZB repre-
sents a parameter which gives a trivial transformation without being a total derivative,
thanks to the section constraint.

4.4. More operator identities. The operator X Z obeys the important property
dX’, B — X,dB = 0. 4.17)
It follows from the definition of X ; and the nilpotency of d as
dX\B — X, dB = —d(d.LsB + £1dB) + (d.Ls + Lad)dB = 0. (4.18)
It can also be verified by the direct calculation
dX,B — X,dB = —18,, 1[[[dp[dydn A%, BY1, FM], FNV, FPYP
+ 18, 1ll[mdn A, [3p B*, FPYF1, FM), FN1P
_ 8PA71
(pe = D(pp —2)
+[[won A% [0p B2, FPY) FM), FNY), (4.19)

(1t Lom oy A%, BE1, FM), FNY, )
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where the action of the raising operators have been expanded. In the first term, dp
must hit B, the other term vanishes due to the section constraint. In the second term,
[Omdn AR, [9p B, FP1] = [[0pdn A%, 3p B*], F'], and the two terms cancel. Note that
we are now dealing with identities that hold exactly, not only modulo ancillary terms
(they are identities for ancillary terms).

An equivalent relation raised to height 1 is

(dX A+ Xad)B = 0. (4.20)

A relation for the commutator of X with . is obtained directly from the definition
(4.13) of X,

(ZaXy = X3 Lo+ (D)L X, - X 20) €

> C 4.21)

— (1l
= DX gz C

or

(ZaXp+ XaZy+ (DA (LpX s — Xp L)) C

Cl+1
= (=D'MX1 (g, pac_ryas 2,4 C- (4.22)

For a ghost C the relation reads

LeXC = XpLeC = 3X'y C, (4.23)
or equivalently,
(LcXc+XcZe)C = —3X 4.cC. (4.24)

Further useful relations expressing derivation-like properties, derived using the def-
initions of X4 B and R(A, B), together with Eq. (4.10), are:

dR(A, B) — R(A,dB) — (=1)/BIR(dA, B) = X4sB — (—=)A1BlxpA  (4.25)
and

Z4R(B,C) — (—D)AIBIR(B, £,C) — (= DICI/R(Z4 B, ©)
= —X4[B, Cl+ (—=D)ABI B X ,C1+ (—=1)CI[X 4B, C]. (4.26)

Although R(A, B) is non-vanishing for A and B at all levels (as long as ﬁpﬁpg is
non-empty), we will sometimes use the notation R4 B = R(A, B). Thanks to the Jacobi
identity for the Borcherds superalgebra and the Leibniz property of the generalised Lie
derivative, R(A, B) satisfies a cyclic identity,

0= R(A,[B,C]) — R([A, B],C) — (=)AIIBIR(B, [A, C])
+[A, R(B,C)] —[R(A, B), C]— (=DIAIBI[B, R(A, O)]. 4.27)
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5. Batalin—Vilkovisky Ghost Actions and L, Algebras

Let C € ¥ be a full set of ghosts, including ghosts for ghosts etc. If the “algebra” of
gauge transformations does not contain any field dependence, the Batalin—Vilkovisky
(BV) action [44] can be truncated to ghosts and their antifields C*. We denote this ghost
action S(C, C*), and assume further that it is linear in C*. The ghost action S can be
(formally, if needed) expanded as a power series in C,

oo

S(c,cr) = Z(C*, rcm, (5.1

n=1

where (-, -) is the natural scalar product on the vector space of the ghosts and its dual,
and where

[c'n=Ic.c,...,Cl (5.2)
~—————

n

is a graded symmetric map from ®"7 to #. This map is, roughly speaking, the L,
n-bracket. The 1-bracket is the BRST operator. The BV variation of C is

($.C) =Y _lIC"I. (5.3)
n=1

The BV master equation (S, S) = 0 becomes, phrased as the nilpotency of the transfor-
mation (S, -), the relation (S, (S, C)) = 0, which in the series expansion turns into a set
of identities for the brackets [21,45-47],

n—1

Z(i + DICL, [C™ 11 = 0. (5.4)

i=0

Often, L algebras are presented with other conventions (see ref. [21] for an overview).
This includes a shifted notion of level, equalling ghost number minus 1. Then the n-
bracket carries level n — 2. In our conventions, all L, brackets carry ghost number —1,
and the superalgebra bracket preserves ghost number. Also, the properties of the brack-
ets under permutation of elements are sometimes presented as governed by “Koszul
sign factors”. In our conventions, the L, brackets are simply graded symmetric and
the statistics of the ghosts, inherited from the superalgebra, is taking care of all signs
automatically.

Since the relation between the BV ghost variation and the L, brackets seems to be
established, but not common knowledge among mathematical physicists, we would like
to demonstrate the equivalence explicitly. (See also refs. [21,48].

In order to go from the compact form (5.4) to a version with n arbitrary elements, let
C = Y 72, Ck and take the part of the identity containing each of the terms in the sum
once. We then get

Z J Z [Coii+1)s - s Comys [Co(1ys - -+ Coy Il = 0, (5.5)
ij=1 o
it j=n+1
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where the inner sum is over all permutations o of {1, ..., n}. The standard definition of
the L, identities does not involve the sum over all permutations, but over the subset of
“unshuffles”, permutations which are ordered inside the two subsets:

o(l) <--- <o(i),
oi+l)<---<o). (5.6)

Reexpressing the sum in terms of the sum over unshuffles gives a factor i!(n —i)!, which
combined with the factor j in Eq. (5.5) gives i!j!, Rescaling the brackets according to

n![Cy, ..., Cpll = £(Cy, ..., Cp) (5.7)
turns the identity into
/- —
> Y UCoy. s Coljo1ys UCo(jy s Com)) =0, (5.8)
ijz1 o
i+j=n+l

where the primed inner sum denotes summation over unshuffles.

It remains to investigate the sign factors induced by the statistics of the elements in the
superalgebra. We therefore introduce a basis {c;} which consists of fermionic elements
with odd ghost numbers and bosonic elements with even ghost numbers. Since a ghost
is always totally bosonic, this means that ghosts with odd ghost numbers have fermionic
components in this basis and ghosts with even ghost numbers have bosonic components.
Furthermore, we include the x-dependence of the ghosts in the basis elements ¢; (“DeWitt
notation”) and thus treat the components as constants that we can move out of the
brackets. Then, our identities take the form

/ - -
Z Z 0j—1(0; )(Co(1)s - -1 Ca(j=1)» €(Co(j)s - - +» Com))) = 0, (5.9
ij=1 o
i+j=n+1

where ¢;_1(0; ¢) is the sign factor for the permutation o in the graded symmetrisation
of the elements {cy, ..., ¢y, F} t0 {¢s(1), - -1 Co(j=1)s ', Ca(j)s -+ -+ Com)}- Here, F is
a fermionic element used to define the sign factor, which comes from the fact that the
brackets are fermionic.

We now turn to the standard definition of L, identities. The Koszul sign factor
e(o; x) for a permutation o of n elements {xi, ..., x,} is defined inductively by an
associative and graded symmetric product

xiox; = (—D)Hillilx; o x;, (5.10)
where |x;| = O for “bosonic” x; and 1 for “fermionic”. Then,
Xo(1)©...0Xg(n) = €(0; X)X 00Xy, (5.11)

Multiplying by a factor (—1)? gives a graded antisymmetric product, which can be seen
as a wedge product of super-forms,

Xo() N NXg@n) = (—1)”8(0; X)XI AL A Xy (5.12)
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The standard form of the identities for an L, bracket is

N /
D DYDY (1) 8(05 LUK (1) -2 X)) X1 - - -2 Komy) = 0.
i,j>1 o
i+j=n+1

(5.13)

The two equations (5.9) and (5.13) look almost identical. However, the assignment of
“bosonic” and “fermionic” for the ¢’s is opposite to the one for the x’s. On the other hand,
the brackets of x’s are graded antisymmetric, while those of ¢’s are graded symmetric.
Seen as tensors, such products differ in sign when exchanging bosonic with fermionic
indices. There is obviously a difference between a tensor being graded antisymmetric (the
“x picture”) and “graded symmetric with opposite statistics” (the “c picture”). The two
types of tensors are however equivalent as modules (super-plethysms) of a general linear
superalgebra. As a simple example, a 2-index tensor which is graded antisymmetric can

be represented as a matrix
a «o
(—at S> , (5.14)

where a is antisymmetric and s symmetric, while a 2-index tensor which is graded
symmetric in the opposite statistics is

a o
<(a’)t s/>- (5.15)

The tensor product V ® V of a graded vector space V with itself can always be decom-
posed as the sum of the two plethysms, graded symmetric and graded antisymmetric,
i.e., in the sum of the two super-plethysms. Equivalently, the same decomposition, as
modules of the general linear superalgebra gl(V), is the sum of the graded antisymmetric
and graded symmetric modules with the opposite assignment of statistics. The same is
true for higher tensor products ®" V.

This means that, as long as the brackets £ and ¢ are taken to be proportional up to
signs, the equations (5.9) and (5.13) contain the same number of equations in the same
g-modules, but not that the signs for the different terms in the identities are equivalent.
In order to show this, one needs to introduce an explicit invertible map, a so called
suspension, from the “x picture” to the “c picture”, i.e., between the two presentations
of the plethysms of the general linear superalgebra.

Let us use a basis where all basis elements are labelled by an index A = (a, ),
where aand and « correspond to fermionic and bosonic basis elements, respectively. We
choose an ordering where the a indices are “lower” than the « ones. Any unshuffle then
has the index structure {a; ... axoq ... o, Akl ... AeQgryq - .. ap ). If the brackets £ and
£ are expressed in terms of structure constants,

B
L(xAys .-y X4,) = fA,..A, XB,

Ucays - ca,) = faya,Bes, (5.16)
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the respective identities contain terms of the forms

(i1
(—l)l(j )(—1)08(611 7452 BN 0 72427 /% R 7 /16 7 25 N .ch/)
B A

X fal...akal.“otk/ fBakH...agak/H“.aZ/ ,
(D" @j—1(@ms1 ... Qgotprs1 ... Qpay ... apoty ... 0yy)

r B 7 A
XfamH...agam/H...ae/ fal...amal...amrB s (517)

where k+m = €, k' +m' =0/, k+k' =i,m+m’ = j — 1 (i, j being the same variables
as in the sums (5.9) and (5.13)). Now, both expressions need to be arranged to the same
index structure, which we choose as a; ... agag ...« . This gives a factor (—1)"/’” for
the f 2 term, and (—l)k’" for f 2 In order to compare the two brackets, we also need to
move the summation index B to the right on f when B = § and to the left on f when
B = b. All non-vanishing brackets have a total odd number of “a indices”, including
the upper index, so B = b when k is even, and B = 8 when k is odd. This gives a factor
(—1)™ for the f2 expression when k is odd, and (—1)" for f2 when  is even.
The task is now to find a relation

farararoap® = 0k k) far..arar . © (5.18)

for some sign o(k, k’). The resulting relative sign between the two expressions in
Eq. (5.17) must then be the same for all terms in an identity, i.e., it should only de-
pend on £ = k +m and £’ = k' + m’. Taking the factors above into consideration, this
condition reads

keven: (—D)® ok Kyom+1,m') =tk +m, k' +m),
kodd: (—=D)®™ 5k ko(m,m' +1) = t(k +m, k' +m). (5.19)

This is satisfied for
ok, k') = (—1)zK ®'=1) (5.20)

with 7(£, £') = o(£, £'). The last relation is natural, considering that the equations in
turn belong to the two different presentations of the same super-plethysm. This gives
the explicit translation between the two pictures.

All structure constants carry an odd number of a indices (including the upper one).
This is a direct consequence of the fact that all brackets are fermionic in the ¢ picture
(since the BV antibracket is fermionic). The relation between the structure constants in
the two pictures implies, among other things, that

faf = £,
foh = 1o,
fara" = fara”
fad® = fud®.
fors” = = farar”- (5.21)

The first two of these equations relate the 1-bracket (derivative) in the two pictures, and
the remaining three the 2-bracket. Using these relations we can give an explicit example
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of how identities in the two pictures are related to each other. Let us write |c,| = 1 and
|ce| = 0. We then have

Uca, cp) = (=DAllBlg(cp cp),  C(xa, xp) = —(=D)IealtDUceFD g p x 0,
(5.22)

Furthermore, the relations (5.21) imply that under the inverse of the suspension,

U(ca) > E(xp),
Uca, cp) > (=D e (x4 xp). (5.23)

In the ¢ picture, we have the identity
Ul(cas ep)) + (=D (ca, Uep)) + (=DIAHDIEFcp Bea)) = 0. (5.24)
Moving the inner 1-bracket to the left, the left hand side is equal to the expression
E(l(ca, cp)) + (=DIANEE (@l (cp), ca) + E(Een). cp), (5.25)
which, according to (5.23), is mapped to

(=D aPle(ea, xp)) + (—DIAVIBe(exp), xa) + (— DI (xA). x5)
= (=) (e(eCra, xp) + (= DIAFDIPD0(E(rp), x4) = E(ECr), 38) )

= (=Dlea! (fz(fz(xA, xg)) = (£(€0ea), xp) = (=D IAFDIDg(e ), xA))).
(5.26)

Setting this to zero gives the identity in the x picture corresponding to the identity (5.24)
in the ¢ picture.

Note that the issue with the two pictures arises already when constructing a BRST
operator in a situation where one has a mixture of bosonic and fermionic constraints. In
the rest of the paper, we stay within the ¢ picture, i.e., we work with ghosts with graded
symmetry.

6. The L Structure, Ignoring Ancillary Ghosts

The following calculation will first be performed disregarding ancillary ghosts, i.e., as
if all R, = 0. The results will form an essential part of the full picture, but the structure
does not provide an L, subalgebra unless all R p =0.

We use a ghost C which is totally bosonic, i.e., |C| = 0, and which is a general
element of %,(g,), i.e., a height 0 element of %, (g,+1). This gives the correct statistics
of the components, namely the same as the basis elements in the superalgebra. All signs
are taken care of automatically by the statistics of the ghosts. While the superalgebra
bracket is graded antisymmetric, the L, brackets (by which we mean the brackets in the
¢ picture of the previous Section, before the rescaling of Eq. (5.7)) are graded symmetric.
The a index of the previous Section labels ghosts with odd ghost number, and the « index
those with even ghost number, and include also the coordinate dependence.
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6.1. Some low brackets. The 1-bracket acting on a ghosts at height O is taken as
[C] =dcC. (6.1)

Then the 1-bracketidentity [[C]] = O (the nilpotency of the BRST operator) is satisfied.
The 2-bracket on level 1 elements c is

lc, cll = Zec, (6.2)

in order to reproduce the structure of the generalised diffeomorphisms. This already
assumes that there are no ancillary transformations, which also would appear on the
right hand side of this equation, and have their corresponding ghosts (we will comment
on this situation in the Conclusions). It is natural to extend this to arbitrary levels by
writing

[C,Cl = %4cC. (6.3)

Given the relations (5.21) between low brackets in the two pictures in the previous
Section, this essentially identifies the 1- and 2-brackets between components with the
ones in the traditional L, language (the x picture). Recall, however, that our ghosts C
are elements in the superalgebra, formed as sums of components times basis elements,
which lends a compactness to the notation, which becomes index-free.

There are potentially two infinities to deal with, one being the level of the ghosts, the
other the number of arguments in a bracket. In order to deal with the first one, we are
trying to derive a full set of 2-brackets before going to higher brackets. Of course, the
existence of higher level ghosts is motivated by the failure of higher identities, so it may
seem premature to postulate Eq. (6.3) before we have seen this happen. However, it is
essential for us to be able to deal with brackets for arbitrary elements, without splitting
them according to level. The identity for the 2-bracket is then satisfied, since

[IC, CIl+2[C,[Cll=dZcC+2- %fch =0. 6.4)

Notice that this implies that the 2-bracket between ghosts which are both at level 2 or
higher vanishes.

There is of course a choice involved every time a new bracket is introduced, and the
choices differ by something exact. The choice will then have repercussions for the rest of
the structure. The first choice arises when the need for a level 2 ghost C; becomes clear
(from the 3-bracket identity as a modification of the Jacobi identity), and its 2-bracket
with the level 1 ghost is to be determined. Instead of choosing [[c, C2]] = %.,%CCZ,

corresponding to Eq. (6.4), we could have taken [[c, C2]] = —%[c, dC,], since the
derivative of the two expressions are the same (modulo ancillary terms) according to
Eq. (4.8). The latter is the type of choice made in e.g. Ref. [21]. Any linear combination
of the two choices with weight 1 is of course also a solution. However, it turns out that
other choices than the one made here lead to expressions that do not lend themselves
to unified expressions containing C as a generic element in %,(g,). Thus, this initial
choice and its continuation are of importance.
We now turn to the 3-bracket. The identity is

[IC, C, CIT+2[C, [C, CII+3[IC, C,[CIll = 0. (6.5)
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The second term (the Jacobiator) equals Z¢[[C, C1 + Zjc.cjC. Here we must assume
the closure of the transformations, acting on something, i.e., the absence of ancillary
transformations in the commutator of two level 1 transformations. Then,

ZclC.Cll = Zc%cC = -5 Ze.c1C. (6.6)
and the second term in Eq. (6.5) can be written expressed in terms of the (graded)

antisymmetric part instead of the symmetric one, so that the derivation property may be
used:

2[C. [C., CIl = —$(LcLcC — L4.cC)
= —1(d[C, ZcC] - [C,dLcCl+[dC, ZcC)
= —1(d[C, ZcCl+[C, LcdC)+[dC, ZcC) (6.7)

(modulo ancillary terms). If one takes
[C.C.Cl = }(C, ZCl (6.8)
the identity is satisfied, since then
[IC, C,CIl = %d[C, Zcl, (6.9)
and
3[C. C. [CT =3 (3[C, LcdCl+ 3[dC, ZcC)). (6.10)
Starting from the 4-bracket identity

[Ic, c, c, Cl +2[C, [C, C, CTT +3IC, C, [C, CTT +4[C, C, C, [CTT = 0,
6.11)

a calculation gives at hand that the second and third terms cancel (still modulo ancillary
terms). This would allow [C, C, C, C] = 0. The calculation goes as follows. We use
the brackets and identities above to show

[C.[C.C.CII = }C,[C., % Cll = +L[C. 4cC)
= — [ LC. LcCl+ HC, Lo 4 C)

= —¢[LcC. ZcCl = $51C. Ly.cC] (6.12)

and

[C.C.IC.Cl = & (ILLcC, ZcCl+([C. Ly cCl+[C. Lc.LcC)
= §[LC, LcCl+ 5[C, Ly.cC. (6.13)

This does not imply that all higher brackets vanish. Especially, the middle term
3[C, C,[IC, C, CI1 in the 5-bracket identity is non-zero, which requires a 5-bracket.



742 M. Cederwall, J. Palmkvist

6.2. Higher brackets. In order to go further, we need to perform calculations at arbitrary
order. There is essentially one possible form for the n-bracket, namely

[C"] = kp(ad C)"2.%cC. (6.14)
It turns out that the constants k,, are given by Bernoulli numbers,

2B

n!

Koy = , (6.15)

where B} = (—1)"B, (which only changes the sign for n = 1, since higher odd
Bernoulli numbers are 0).

We will first show that it is consistent to set all [C?*]] = 0, n > 2. Then the 2(n + 1)-
identity reduces to

0 =2[C, [C**' 1+ 2n + D[C*", [C, CT]. (6.16)

Evaluating the two terms gives

[C, [C*™ 1 = [C, kaps1 (ad O)*" ' L C)
= Sk Ze(ad O L C

2n—2
= S (@O Lo LeC = Y (@d €)' ad ZeCad O 27 ZcC)
i=0
2n—2 ) )
= Tkonsi (—%(ad O ' Ly cC— Z (ad C)'ad L C(ad C)Z"—Z—’fcc),
i=0
6.17)
k
[c2, [c, cyy = 22"7:11 ((ad )"\ Lo Lo C + (ad O Ly C
n
2n—2
+ 3 (@dCYad ZeClad €22 .,%C>
i=0
ko1 =

= 3 (@A O Ly + Y (ad 0)'ad ZeClad O 2 ZeC),
n
i=0

(6.18)

which shows that Eq. (6.16) is fulfilled.
We then turn to the general n-identities, n > 2 (the remaining ones are those with
odd n). They are

n—2
0= [IC"IN+ > G+ DIC', [C" 1] +nlC"~", [CTI. (6.19)

i=1
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The first term equals k,,d (ad C)" 2 ZC. Repeated use of Eq. (4.8) (without the ancillary
term) gives

n—3
d@dC)" 2 ZLeC =~ (adC)addC(adC)"" > Z:C
i=0
n—4 . .
—2adC)" P Ly cC = (i +1)(adC)'ad ZC@d C)' 4 LC. (6.20)
i=0

The first sum cancels the last term in Eq. (6.19). We now evaluate the middle terms under
the summation sign in Eq. (6.19).

i i+1kn—i n—
[Cl, [c" l]]]]-ﬂ—l(—%(ado 3L 40cC
i—2
+Y (adC)/ad ((ad €)' 2L C)(@d C) /2L C
=0
-y (adC)'ﬂ*‘adzCC(adC)"*l*f*.,%c). 6.21)
j=0

Here we have ignored the insertion of the 2-bracket in the argument of the generalised
Lie derivative in the (n — 1)-bracket (which changes the sign of the term with £, C),
since this already has been taken care of in Egs. (6.17) and (6.18). It does not appear in
the identity for odd n.

Letn =2m+ 1 and i = 2. There is a single term containing #¢,.cC, namely

k2 jr1kogn—jy+1 Im—2
- (ad )" &L C. 6.22
20)+1) (ad C) 76 (6.22)

The total coefficient of this term in Eq. (6.19) demands that

n—1

kanet = =551 O K2jetkai—jyei- (6.23)
j=1

It is straightforward to show that the Bernoulli numbers satisty the identity

m—1

B2 Bom—j) Bom
— = —(2 1 . 6.24
Z:l aniem—t - 2"V am), ©29

It follows from the differential equation %[r( f— %)] + f2 =0, satisfied by

t t >
1 2 2::

+ = —1, where (6.25)

:|tc

f =

The (2m + 1)-identity (6.19) then is satisfied with the coefficients given by Eq. (6.15).
The initial value k3 = % fixes the coefficients to the values in Eq. (6.15). Bernoulli
numbers as coefficients of L, brackets have been encountered earlier [49,50].
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In order to show that the identities are satisfied at all levels, we use the method devised
by Getzler [50] (although our expressions seem to be quite different from the ones in that
paper). All expressions remaining after using the derivation property and identifying the
coefficients using the £ ¢, C terms are of the form

Znjk = @d C)" K [(ad C)/ ZcC, (ad O)F L C1. (6.26)

There are however many dependencies among these expressions. First one observes that,
since .Z¢ C is fermionic, Z, j x = Zy k, ;. Furthermore, the Jacobi identity immediately
gives

Znjk = Zn j+1,k + Zn, j i+l (6.27)

for j + k < n — 4. If one associates the term Z, ; ; with the monomial 57k, the Jacobi
identity implies s7/7% ~ s/ K 4 gitk+1 e (s +1 — 1)s/tF 2 0. We can then replace
s by 1 — 1, so that s/ 7K becomes (1 — 1)/*. The symmetry property is taken care of by
symmetrisation, so that the final expression corresponding to Z,, ; x is

A —=oith+1/ 1 - nh. (6.28)

All expressions are reduced to polynomials of degree up to n — 4 in one variable,
symmetric under ¢ <> 1 — ¢. An independent basis consists of even powers of 1 — % In
addition to the equations with .Z . C that we have already checked, there are m — 1
independent equations from the terms with (. C)? in the (2m + 1)-identity, involving
kom+1 and products of lower odd k’s.

We will now show that all identities are satisfied by translating them into polynomials
with Getzler’s method, using the generating function for the Bernoulli numbers.

Take the last sum in Eq. (6.20). It represents the contribution from the first and last
terms in the identity. It translates into the polynomial

n—4 )
. 4 n—3—(n-=2)t+t"
—kn Z{;(l + D" =k, =L (6.29)
The terms from the middle terms in the identity (Eq. (6.21)) translate into
n—2 i—2 n—i—3
Zkiﬂkn—i (Z Sl’l*lfztl*j*z _ Z tn717]73)
i=1 j=0 j=0
n—2 i
1= tl—l 1 — tn—l—2
= D kst (5" - ) (6.30)

Let f(x) be the generating function for the coefficients &, i.e.,

o0 o0
2" B* 2x2
f(x):anx":Z = Ty
n! 1 —e2x
n=2 n=l1
_ 2,13 _1.5,2 7 1 .9 2 1 1382 13,
= XU+ 3XT = 5 X7+ gpzX — X t o355 X 63852875 T (6.31)
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‘We now multiply the contributions from Egs. (6.29) and (6.30), symmetrised in s and ¢,
by x" and sum over n, identifying the function f when possibility is given. This gives

1 , S (tx)
sz (C =0 @+ G200 - =)
1 2 S f(sx)  fx)f@ax)  fsx)f(tx)
20 —t)x<_f(x) T T2 T g )+(s N
(6.32)
When the specific function f is used, this becomes, after some manipulation,
(s+7—Dx  (s+t—1)(2—s)x2 sinh((1 — $)x)
¢(S, tv -x) = - . .
2st 2t (1 — 5)2 sinh x sinh(sx)
=12 - H)x2 sinh((1 — £)x)
2s(1 —1)2 sinh x sinh(zx)
_ 3 : _ - _
(s+t—2)x ' 12 (1 _ smh((l. $)x) s%nh((l t)x))‘ (6.33)
2(1 = s)(1 —¢) sinh