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ABSTRACT Bacillus coagulans MA-13 is an efficient lactic acid producer which with-
stands high concentrations of the growth inhibitors formed during the pretreatment
of lignocellulosic feedstock. This draft genome sequence is expected to pave the
way toward the understanding of mechanisms responsible for the robustness of
MA-13 during simultaneous saccharification and fermentation.

Bacillus coagulans MA-13 is a Gram-positive spore-forming moderately thermophilic
facultatively anaerobic bacterium isolated from processed bean waste (1). MA-13

ferments lignocellulose-derived hexoses to lactic acid (LA); therefore, it is a suitable
candidate for the conversion of lignocellulose to LA, which is a building block for the
production of polylactic acid (PLA), i.e., a biodegradable bioplastic (2). Recently, MA-13
was used for the conversion of steam-exploded wheat straw to LA in simultaneous
saccharification and fermentation (SSF) (3, 4). The preexposure to the inhibitor-rich
lignocellulosic hydrolysate (5) led to a physiological adaptation of MA-13, which was
reflected in an improved fermentation performance during SSF, thus resulting in a more
cost-effective process (4).

The strain MA-13 was isolated and cultivated as previously described (1) before
genomic DNA was extracted using the LETS (lithium, EDTA, Tris, and SDS) buffer
method, followed by phenol extraction (6). The sequencing of the whole genome was
performed using the Illumina NextSeq platform at Genomix4life S.R.L. (Salerno, Italy)
with paired-end indexed libraries prepared using a Nextera XT kit (Illumina, Inc.). The
reads (151 nucleotides [nt]) were de novo assembled using the SPAdes genome assem-
bler version 3.9.0 on BaseSpace (7, 8). A total of 11,245,275 paired-end reads with an
average length of 150 base pairs (bp) were assembled into 1,653 contigs (N50 length of
51,225 nt, N90 length of 4,278 nt), with the largest contig being 145,076 nt long. The
draft genome consists of 3,237,270 bp with a GC content of 47.11%.

Functional annotation of contigs was carried out using the comprehensive bioin-
formatics tool Blast2GO version 5.2.5 (9, 10). A total of 3,336 open reading frames
(ORFs) were identified, 3,268 of which were predicted as genes. A further annota-
tion analysis was carried out with Rapid Annotations using Subsystems Technology
(RAST) software (myRAST version 36) (11). Default parameters were used for all
software unless otherwise specified. There were 2,355 gene ontology (GO) terms,
468 of which were assigned to the category of biological processes, including all
necessary genes for the glycolysis (Embden-Meyerhof-Parnas) and the tricarboxylic
acid cycle. Moreover, one D-lactate and three L-lactate dehydrogenase genes were
identified, which can account for the superior fermentation performance of MA-13
(1, 4). The tolerance toward lignocellulose-derived inhibitors can be traced back to
the presence in the MA-13 genome of genes encoding enzymes putatively involved in
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detoxification pathways, i.e., four aldehyde dehydrogenases, three short-chain dehy-
drogenases, two alcohol dehydrogenases, and one zinc-dependent alcohol dehydro-
genase, which are potentially associated with detoxification reactions (12–14). Besides
LA metabolism, MA-13 possesses genes required for the production of value-added
chemicals, such as acetoin, butanediol, and polyhydroxybutyrate (i.e., a biodegradable
plastic). The presence of genes encoding bacteriocins is related to the production of
antimicrobial molecules (15–17) suitable to avoid competition with other bacteria in
nonsterile open fermentation. As shown for other B. coagulans strains (18–21), genes
associated with the defense mechanism toward foreign genetic elements, i.e., the
clusters of regularly interspaced short palindromic repeat (CRISPR)-cas systems (22),
were identified using CRISPRFinder version 1.3 (23).

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number SMSP00000000. The version de-
scribed in this paper is version SMSP01000000. The raw reads have been deposited in
the SRA under the accession number PRJNA526660 and are also available at https://
www.ncbi.nlm.nih.gov/Traces/study/?acc�PRJNA526660.
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