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ABSTRACT: Alternatives assessment is applied for minimizing the
risk of unintentionally replacing a hazardous chemical with another
hazardous chemical. Central challenges are the diversity of properties
to consider and the lack of high-quality experimental data. To
address this, a novel alternatives assessment procedure was
developed based on in silico data and multicriteria decision analysis
(MCDA) methods. As a case study, 16 alternatives to the flame
retardant decabromodiphenyl ether were considered. The hazard
properties included persistence (P), bioaccumulation potential (B),
toxicities (T), and mobility in water (M). Databases were consulted
and 2866 experimental data points were collected for the target
chemicals; however, these were mostly replicate data points for some
hazard criteria for a subset of alternatives. Therefore, in silico data and three MCDA strategies were tested including heat
mapping, multiattribute utility theory (MAUT), and Elimination Et Choix Traduisant la REalite ́ (ELECTRE III). The heat map
clearly showed that none of the target chemicals are hazard-free, whereas MAUT and ELECTRE III agreed on ranking the “least
worst” choices. This study identified several challenges and the complexity in the alternatives assessment processes motivating
more case studies combining in silico and MCDA approaches.

■ INTRODUCTION

With increasingly stringent chemical regulations1,2 as well as
pressure from the public regarding the safe use of chemicals,
tools to facilitate the identification of potentially hazardous
substances prior to use are needed. These tools would facilitate
responsible management of such hazardous substances as well
as help identify safer alternatives. However, the process of
alternatives assessment is not trivial. There are several
examples of regrettable substitution where one hazardous
chemical has been substituted by another problematic
chemical, such as the substitution of bisphenol A with other
bisphenols (e.g., bisphenol S, bisphenol AF, and fluorene-9-
bisphenol, etc.) of which some have been identified as
endocrine disruptors.3,4 Another is the choice of n-hexane to
replace chlorinated solvents for the automotive cleaning
industry; this was later reported to be neurotoxic.5 N-vinyl
formamide, which requires toxic hydrogen cyanide during
synthesis, was chosen as a substitute for the neurotoxic
acrylamide in manufacturing polymers for water treatment.6

Alternatives assessments of chemicals are typically performed
using a broad, established framework such as the Design for

the Environment (DfE) Program,7 Cleaner technologies
substitutes assessment (CTSA),8 BizNGO with GreenScreen,9

and Interstate Chemicals Clearinghouse (IC2),10 that consid-
ers substances with the same or similar uses, considering both
environmental and human health aspects.11−14 A complete
alternatives assessment framework would evaluate not only
hazard and exposure parameters, but also life-cycle impacts,
technical performance, and costs.15 In addition, a decision-
aiding component is needed to integrate and balance all these
factors, so that all aspects including stakeholder perspectives
are considered. Since the 1990s, several alternatives assessment
frameworks have been developed and implemented.15

Regarding the hazard assessment component, almost all
frameworks take human health and ecological effects into
consideration by including chemical persistency (P), bio-
accumulation potential (B), and toxicity (T) properties.15
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More recently, arguments have been presented that chemical
mobility in water (M) is an important property. Chemical risk
assessment used to focus more on nonpolar compounds in
particular, due to their bioaccumulation potential, while polar
organic chemicals sorb less to organic matter in soils and
sediment, and therefore, they are more mobile in aquatic
environments. Compounds that are persistent and mobile can
reach aquatic biota in surface waters, and even reach drinking
water resources, potentially leading to chronic human
exposure. Therefore, a PMT assessment should be considered
in addition to the widely used PBT assessment.16−20

When estimating chemical hazards, experimental data are
often unavailable, especially if alternatives are newly introduced
on the market and the production volumes are low. Thus,
alternatives assessment processes are often hampered by large
data gaps.6 To fill these gaps, in silico tools, for example,
quantitative structure−activity relationship (QSAR) models or
“read-across” approaches could be used. A QSAR is a
regression model where chemical descriptors reflecting key
physicochemical and structural features of chemicals are
correlated with a biological or toxicological activity, which
can be considered a subset of read-across approaches. Read-
across also refers to quantitative and qualitative methods but is
more general because a “read-across” may rely on relatively
sparse data which do not support complicated predictive
modeling.21 In silico tools have the advantage of providing a
large amount of data with much lower cost and time
requirements. Uncertainties in in silico data are generally
higher compared with experimental data; however, such data
are useful especially at the screening level, if certain model
conditions are fulfilled including assessment of the applicability
domain.2,22,23

Alternatives assessment frameworks demand the comparison
of diverse sets of criteria; but do not necessarily provide an
approach for this. For decision making based on multiple and
conflicting criteria, Multicriteria Decision Analysis (MCDA)
methods provide an option, drawn from operations research.24

MCDA is commonly used in the business sector, but it has also
proved itself useful for several environmental management
applications.25−31 The two major kinds of MCDA methods are
synthesizing criterion methods and synthesizing preference
relational systems.32 Synthesizing criterion methods include
those based on multiattribute utility theory (MAUT),33 which
requires all criteria to be converted into comparable scales, and
a trade-off weighting factor representing the relative signifi-
cance of each criterion to be assigned in order to permit
aggregation. Synthesizing preference relational systems, such as
the Elimination Et Choix Traduisant la REalite ́ (ELECTRE III)
method,34 compare the performance of pairs of alternatives
with respect to each criterion, and build a “credibility matrix”
which presents the extent to which an alternative outranks the
other alternatives. Importance coefficients are used instead of
trade-off weights.
In recent years, a number of brominated flame retardants

(BFRs) have been replaced after being banned or restricted for
certain applications.35,36 A review claimed that the adverse
environmental and human health impacts caused by certain
BFRs might even be greater than their fire safety benefits.37

One example is decabromodiphenyl ether (decaBDE) that has
been used in different products and materials including electric
equipment, electronics, vehicles, furniture, and textiles since
1970s, but was later found to be persistent in the environ-
ment,38 bioaccumulative,39 and to induce adverse effects on
both human health and other species.2,40−43 DecaBDE has
been banned in the EU since 2008 for use in electronic and
electric applications44−46 and listed by the Stockholm
Convention on Persistent Organic Pollutants (Annex A).47

In the U.S., both producers and importers announced in 2010
that they would voluntarily phase out decaBDE by the end of
2013.48 However, years after the phase-out, decaBDE has still
been identified in recently purchased electronics.49

Some other BFRs have been used as alternatives to
decaBDE, such as decabromodiphenyl ethane (DBDPE).
However, this substance was later found to also be

Figure 1. Work flow of the developed alternatives assessment procedure.
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persistent,50−53 bioaccumulative,54−56 potentially toxic,36 and
could arguably be considered another example of regrettable
substitution. One large class of flame retardants widely used to
replace BFRs is the organophosphorus flame retardants
(OPFRs). Although some studies show that these OPFRs
are generally safer than BFRs,36 many studies also point out
that some OPFRs are persistent, have the potential for long-
range transport,57 and can be neurotoxic.58,59

Herein, a new alternatives assessment procedure based on
the combination of in silico approaches and MCDA is
developed (Figure 1), using alternatives to decaBDE as a test
case. A variety of human health and environmental hazards
were in focus. This included the mobility hazard, which to our
knowledge has never been used within alternatives assess-
ments. The approach presented here is based on open source
data and models, and aims at deriving a transparent tool for a
first phase alternatives assessment, which evaluates the
hazardous properties of chemicals.

■ MATERIALS AND METHODS
The developed alternatives assessment procedure is summar-
ized in Figure 1. A thorough alternatives assessment should
consider both the hazard of parent compounds and their
possible transformation products. In this study, we focused on
the parent compounds as the case chemicals and proceeded
through the first three steps: alternative chemical identifica-
tion; data collection; and multicriteria decision aiding.
Case Chemical Identification and Characterization. A

set of potential alternatives to decaBDE was identified using
literature sources60,61 and reports from the EU,45,46 United
States Environmental Protection Agency (USEPA),54 and one
from the U.S. National Research Council.6 A database was
established with chemical names, CAS numbers, and molecular
structures represented by simplified molecular input line entry
specification (SMILES). Alternatives to decaBDE include a
large range of chemicals, but here we focused on organic
chemicals and avoided metals and polymers, due to the lack of
data and in silico tools for these types of substances. Details on
how chemicals were selected can be found in Section 1 of the
Supporting Information (SI).
Data Collection. The variation among the chemical

properties was studied using principal component analysis
(PCA) and a set of 65 chemical descriptors.62 The descriptors
were derived using the MOE software63 based on 2D
structures. In addition, selected physicochemical properties
were calculated by EPISUITE.64 The octanol−water partition
coefficient was derived in EPISUITE and by two alternative
models in VEGA.65

Experimental data were acquired using the OECD QSAR
Toolbox,66 which contains five databases for physicochemical
properties, 12 databases for environmental fate and transport
parameters, six databases for ecotoxicity, and 39 databases for
human toxicity data. Among these databases, the ECHA
database of the REACH registration dossiers is one of the most
important, being populated with experimental data and some
modeling data on chemical properties and toxicity for
substances registered under REACH as provided by registrants
who manufacture or import the substance within the European
Union.2 Registered experimental data was acquired directly
from the ECHA Web site.67

The in silico-based data were derived using several open
source software packages or platforms including EPISUITE,
VEGA, TEST,68 and OECD QSAR Toolbox.66 Results from

the USEPA organized Collaborative Estrogen Receptor
Activity Prediction Project (CERAPP)69 and Collaborative
Modeling Project for Androgen Receptor Activity (CoMPA-
RA)70,71 were also included. Six models on the OCHEM
platform72 were included. Details on the assessment criteria
and in silico models are given in Table 1.

Decision Making Approaches with MCDA Methods.
The obtained human health and environmental hazard
parameters were used as 20 assessment criteria within three
MCDA strategies: heat mapping, MAUT, and ELECTRE III.
These criteria were selected to reflect legislative requirements
(e.g., REACH), criteria used in common alternatives assess-
ment frameworks, and availability of in silico tools. For the
heat map, the range of each criterion was divided into four
intervals, and each interval was color-coded (red, orange,
yellow, or greenfrom hazardous to benign) to aid visual
interpretation. Regulatory or proposed thresholds of the
assessment criteria were obtained from various sources,
including EU legislation, USEPA regulations, GreenScreen

Table 1. In Silico Models Used for the Alternatives
Assessment in This Study

aspects
assessment
criteria

number of
models

software or
platforms

P air half-life 1 EPISUITE
(fugacity
model)

water half-life 1 EPISUITE
(fugacity
model)

soil half-life 1 EPISUITE
(fugacity
model)

sediment half-life 1 EPISUITE
(fugacity
model)

biodegradation 1 EPISUITE
(Biowin 3)

B BCF 3 VEGA,
EPISUITE

T human toxicity mutagenicity 4 VEGA
carcinogenicity 3 VEGA
developmental
toxicity

2 VEGA

estrogen binding 5 VEGA, OCHEM,
CERAPP

androgen
binding

4 OCHEM,
COMPARA

transthyretin
binding

1 OCHEM

skin sensitization 1 VEGA
skin irritation 1 OECD QSAR

Toolbox
eye irritation 1 OECD QSAR

Toolbox
rat oral LD50 3 TEST

eco toxicity fish acute LC50 8 VEGA, TEST
Daphnia magna
LC50 48h

7 VEGA, TEST

T. pyriformis
IGC50 48h

4 TEST

M log Koc 3 VEGA,
EPISUITE
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rules, etc. The details on how the thresholds of the four
intervals were determined for each criterion are presented in
Section 2 of the SI.
For the MAUT approach, each criterion was scaled from 0

(worst) to 1 (best) based on the average result of all models
for that criterion. After the scaling, partial scores for P, B, T,
and M properties were calculated by multiplying each criterion
relevant to an aspect with the same weight. Final scores were
calculated by treating the composite criteria of either PBT,
PMT, or PBMT as equally important (SI Table S4).
For ELECTRE III, the calculation was done in a manner

consistent with other publications.32,73,74 Thresholds were set
and pairwise comparisons were conducted on each assessment
criterion. Partial scores were calculated for P, B, M, and T (SI
Table S5−S8), and final scores were also calculated by treating
PBT, PMT, or PBMT equally important (SI Table S9−S11).

■ RESULTS AND DISCUSSION
Database of DecaBDE Alternatives. In total, 31

alternatives to decaBDE including polymers and inorganic
chemicals have been identified and assessed by various
agencies (Table 2, SI Table S1). Among the alternatives, 17

including decaBDE were defined as suitable for the considered
assessment, as they were organic compounds for which the
available in silico tools applied in this study could be used. The
17 substances include 10 brominated and 1 chlorinated FR
(CFR), five OPFRs (two brominated and three non-
halogenated), and melamine. Their chemical names, abbrevia-
tions, CAS numbers, molecular structures, and selected
physicochemical properties are listed in Table 2 and SI
Table S2.
Structural and Chemical Property Variation. The

average molecular weight of the flame retardants was 766
with a large range spanning from 126 for melamine to 1367 for
4′-PeBPOBDE208 (for comparison, decaBDE is 959).

DecaBDE has a very low vapor pressure of 6.3 × 10−10 Pa at
25 °C, this is in the middle range of the alternative FRs,
ranging from 4.9 × 10−18 Pa (4′-PeBPOBDE208) to 1.3 ×
10−3 Pa (TBEP). The estimated octanol−water partition
coefficients (log Kow) are ranging from melamine (−0.4),
OPFRs (2.3−9.6) to halogenated FRs (7.2−14.2) (decaBDE
(10.4)). The chemical variation of the FRs, including
decaBDE, was analyzed in more detail using calculated
chemical descriptors and PCA, see SI Section 3.

Experimental Data. Experimental data identified in the
OECD QSAR Toolbox included 2866 experimental data
points (SI Table S12). Despite the large amount of data, a
large proportion was only relevant to a few chemicals, and
rarely for the same property across different chemicals. For
example, 513 data points were collected for melamine and 275
for decaBDE, while no data were found for five of the target
FRs (BPBPE, EH-TBB, PBDPP, 4′-PeBPOBDE208, and
TBEP). There were 769 data points for eight FRs for repeated
dose toxicity for human health hazard assessment, but no data
for neurotoxicity. Another issue with these data is they do not
allow for systematic comparisons across substances. For
example, 843 data points were found for aquatic toxicity of
our target FRs, though covering diverse indicators, such as
behavior, body size, DNA damage, or lethality. The ECHA
database of REACH dossiers was the largest source of OECD
data. Additional, more recent data was also obtained directly
from REACH dossiers.67 Even this additional data were far
from sufficient in closing data gaps (SI Section 4 and Table
S13). Further, the reliability of data in REACH dossiers has
been criticized in general76,77 and for flame retardants
specifically,56 in which the majority of REACH dossiers have
been reported as “partly or substantially not compliant”76 or
contain significant data gaps and data quality issues.56,77 In
summary, the collected experimental data is thus not a
complete nor suitable source of information for a first tier
alternatives assessment.

In Silico Data. The analyzed in silico data are shown in SI
Table S14. Among the 20 criteria listed in Table 1, 17 of them
(85%) had assessment results for all 17 chemicals. Among the
in silico data, six (1.8%) data gaps had to be filled in manually
for the alternatives assessment, of which four could be filled in
by the experimental data from the ECHA database. Read-
across was applied to fill in the remaining two data gaps as
explained in SI Section 5. The largest number of QSAR models
were available for fish and Daphnia magna and acute toxicity
(seven and eight, respectively), whereas skin sensitization, skin
and eye irritation, and persistence criteria including biode-
gradation and half-lives for four different environmental
compartments had only one model for each criterion. The
20 criteria populated by in silico data cover most of the hazard
criteria concerned by REACH2 as well as the most well-known
alternatives assessment frameworks including U.S. EPA
Cleaner Technologies Substitutes Assessment,8 BizNGO with
GreenScreen,9 and U.S. EPA Design for Environment
Program.7,78 Generally speaking, the quality of in silico data,
at large, varies depending on, for example, experimental data
used in training the models and their statistical performance56

(see SI Section 6 for more details). Because of the identified
data gaps in experimental data, the in silico data of the 20
criteria was used for the further decision-making process.

Decision Making Approaches. With data for 20 criteria,
it is not trivial to identify a more or less hazardous decaBDE
replacement, which emphasizes the need for a good decision

Table 2. Names of Studied Chemicals with Their
Abbreviations and Chemical Abstract Service (CAS)
Registry Numbers

name abbreviationa CAS number

decabromodiphenyl ether decaBDE 1163−19−5
decabromodiphenyl ethane DBDPE 84852−53−9
ethylene bis-tetrabromophthalimide EBTEBPI 32588−76−4
tetrabromobisphenol A bis (2,3-
dibromopropyl) ether

TBBPA-BDBPE 21850−44−2

tris(tribromophenoxy) triazine TTBP-TAZ 25713−60−4
1,2-bis(pentabromophenoxy) ethane BPBPEb 61262−53−1
2-ethylhexyl tetrabromobenzoate EH-TBB 183658−27−7
bis(2-ethylhexyl) tetrabromophthalate BEH-TEBP 26040−51−7
tetradecabromodiphenoxybenzene 4′-

PeBPOBDE208
58965−66−5

Bis(tribromophenoxy) ethane BTBPE 37853−59−1
bis(hexachlorocyclopentadieno)
cyclooctane

DP 13560−89−9

tris(tribromoneopentyl) phosphate TTBNPP 19186−97−1
triphenyl phosphate TPHP 115−86−6
resorcinol bis(diphenyl phosphate) PBDPP 57583−54−7
bisphenol A diphenyl phosphate BPA-BDPP 5945−33−5
tris(2-bromoethyl) phosphate TBEPb 27568−90−7
melamine MAb 108−78−1
aAbbreviations taken from Bergman et al.75 bAbbreviations defined by
the authors (not covered by Bergman et al.75).
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strategy in alternatives assessment processes (SI Figure S10,).
Here, three MCDA methods were tested.
Heat Map. The heat map (Figure 2), which color codes the

ranges of each criterion, suggests that decaBDE is the most
hazardous FR in the database as it has 10 of 20 categories
(Table 1) labeled red, that is, classified as hazardous according
to regulatory or literature cutoff values (SI Table S1); other
substances have nine or fewer categories labeled red. Following
this, six out of the other halogenated FRs obtained eight or
nine red indicators (DBDPE, EBTEBPI, TBBPA-BDBPE, 4′-
PeBPOBDE208, BTBPE, and DP), none of which are
halogenated OPFRs. Among the five OPFRs, the brominated
OPFRs TTBNPP and TBEP had seven red indicators,
appearing more hazardous than the three nonhalogenated
ones, TPHP, PBDPP, and BPA-BDPP, which had six, four, and
five red indicators, respectively. Melamine had among the
fewest red indicators, having only four, in addition to one
orange, five yellow, and the highest number of green indicators
(10). Melamine is often used together with OPFRs,79,80 but
has also been reported to have good flame retardancy
itself.81,82 PBDPP (four red, three orange, five yellow, and
eight green indicators) appeared to be the best OPFR as well
as the second best choice among all studied chemicals. The
BFRs that appear as best alternatives are BEH-TEBP (five red,
three orange, five yellow, and seven green indicators) and BPA-
BDPP (five red, four orange, four yellow, and seven green
indicators). All chemicals achieved at least one red indicator
for P and T, though for M there was a scatter across all colors.
The B property was flagged green for all chemicals, though it is
known some of these substances bioaccumulate, such as
decaBDE,83,84 DP85 and DBDPE.55,56 In REACH, the B
parameter is based on the estimated bioconcentration factor
(BCF) in fish, with a limit value of 2000 for B2. However, this
does not account for other modes of bioaccumulation, for
example, in soils or biomagnification through terrestrial food

chains. In Europe decaBDE was classified as B because of
similarities in fate to very bioaccumulative substances, and
because transformation products of decaBDE are bioaccumu-
lative substances.83,84 DP also did not meet the BCF threshold,
but has been classified as potential very bioaccumulative and
should be handled as one85 due to the frequent observations in
aquatic biota, terrestrial organisms, and even humans. For
DBDPE, this compound is very bioaccumulative, with a
measured bioaccumulation factor (log BAF) up to 7.1,55

considering food and diet, which is almost six log units higher
than the log BCF value used in this study.86,87 Thus, some
flame retardants are clearly bioaccumulative, but their
estimated BCF values are below 2000 which may be due to
issues with the estimates or alternative uptake mechanisms,
which points out the demand for using both experimental data
and in silico data for assessing other B related measures like the
biomagnification factor (BMF) or bioaccumulation factor
(BAF). A previous review also pointed out that laboratory
BCF data, which were commonly used for establishing BCF
models, tend to be underestimated compared with field
BAFs.86 Unfortunately, such BAF measurements are lacking
for model establishment.86

The heat map clearly shows that there is no clear winner
among our target FRs, that none of the chemicals fully satisfies
all the regulatory criteria (i.e., achieving no red indicators).
These results agree well with a previous PBT screening of FRs
including 14 substances of those studied here (except TBEP
and melamine).36 These authors concluded that the 14 FRs
were either PB or PT, and three FRs (BPBPE, EH-TBB, and
PBDPP) fulfilled their PBT criteria. This is a common
situation in alternatives assessment for frameworks with fixed
thresholds, such as the USEPA DfE7 and GreenScreen,9 that
no sustainable choice is available and the demand has become
to select the “least worst” choice. This means that the MCDA
cannot be elegantly condensed into a “sorting problematic”,32

Figure 2. Heat map of the 17 flame retardants where red indicates that a hazard criterion has been met, orange and yellow indicate high and
moderate hazard level, and green indicates that the chemical has properties fulfilled a set safe level (SI Section 2). Thresholds for the four categories
of each criterion is listed in SI Table S3.
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for example sorting chemicals into fully acceptable or fully
unacceptable classes. Rather, a “ranking problematic” is called
for, in which details like the relative half-lives are preserved and
considered in conjunction with the other data. In such cases, a
heat map has some disadvantages. First, since a different
number of criteria are considered for each property, that is, 13
T criteria, 5 P criteria, and just 1 B and 1 M criterion, this
allows T to arguably be overemphasized. Second, setting
thresholds based on legislation or cutoff values from other
alternatives assessment frameworks can make the differences
between chemicals become less clear in the heat map for some
criteria. For example, the sediment half-lives appear red for all
17 chemicals, that is, these chemicals all qualify for the very
persistent criteria of REACH. Therefore, they all get the same
color on the heat map despite the variation of almost a factor
of 5 across all FRs.7,9 Considering the discussion that B should
be more than bioconcentration, adding further B criteria, such
as bioaccumulation or biomagnification, will also make it more
complex and difficult to identify the “least worse” option using
a heat map; as the more criteria, the smaller the chance any of
the alternatives will be hazard free.
MAUT. As a synthesizing criterion method, MAUT can

manage the fact that P, B, M, and T have different numbers of
criteria, by assigning weighing factors to all criteria to make P,
B, T, and M equally important. Since the heat map indicates
that using only legislative or literature values to determine
cutoff values might not be suitable for our data, a new strategy
was developed for MAUT, that for each criterion, input data
on chemical hazards were scaled from 0 (worst) to 1 (best)
based on the distance between our worst case to an ideal level,
or a set worst case to our best case. Details for setting the
scaling ranges are further presented in SI Section 7. The final
scales for MAUT are listed in Table 3.
Consistent with the heat map, partial scores for the four

properties (P, B, M, and T) from MAUT show that none of
the FRs are good with respect to all properties (SI Figure S11).
DecaBDE ranked worst for P and also had a poor T ranking.
The best ranked FR according to the heat map, melamine,
performed well on P, B, and T, but has the worst M ranking.
The worst chemical with respect to T is TBBPA-BDBPE, and
the worst with respect to B is BTBPE.
Though MAUT overcomes some of the limitations of using

a heat map, by more clearly ranking substances, this method
also has its own problems. First, MAUT requires aggregation
independence,87 which is problematic for diverse chemical
hazard criteria, as some criteria may be correlated to similar
physicochemical properties. For instance, the BCF and M
factors correlate to some extent with Kow for many substances.
Toxicity through baseline narcosis is also directly related with
Kow for several nonpolar organics88 including BFRs.56 Another
example is that half-lives for sediment, soil, and water
calculated from EPISUITE are linearly correlated with each
other. Second, the MAUT system illustrated here is based on
average values and neglects the question of whether averages
differ significantly, which may result in erroneous conclusions.
One example is illustrated in SI Figure S12 where data from
seven different models on acute toxicity (Daphnia magna LC50
48h) are compared and among the 17 case chemicals, only MA
has a value that is significantly different from the others.
MAUT therefore needs to be performed alongside a sensitivity
analysis to see the robustness of conclusions.
ELECTRE III. ELECTRE III is an example of a synthesizing

preference relational system that can use thresholds defined via T
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consideration of data uncertainties. There are three important
thresholds for each criterion in ELECTRE III: indifference
thresholds (q), preference thresholds (p), and veto thresholds
(v). In practical terms, when the difference between
alternatives A and B with respect to criterion j is less than q,
the weight of criterion j is not considered in the comparison
between A and B, and if the difference is larger than p, the full
weight of criterion j should be awarded to the superior
alternative. A sliding scale exists between p and q, but if the
difference is as large as a defined v, the ELECTRE method
eliminates the underperforming alternative from conten-
tion.34,73 In this study, q and p were set based on data
uncertainties by considering standard deviation (SD) of
different model results for the same criteria for each of the
chemicals. Details regarding the settings for q, p, and v is
shown in Table 3.
The partial scores of B and M are identical between

ELECTRE III and MAUT, since each property is based on
only one criterion (SI Figure S13). With the consideration of
data uncertainties, the P score for several chemicals were
indifferent compared with each other by ELECTRE III (for
example seven of the chemicals were ranked one and eight
were ranked eight). The ranking of T is generally similar
between MAUT and ELECTRE III, but for a few chemicals it
differed considerably. For example, TBEP was ranked the
second worst (16) by MAUT but average (10) by ELECTRE
III.
Final Score Approaches. Figure 3 presents different final

score approaches by both MAUT and ELECTRE III,
compounding the end points PBT, PMT, and PBMT. The
two different MCDA methods generally reach similar ranking
(SI Figure S14), where EBPEBPI, TBBPA-BDBPE, BTBPE,
and DP were ranked poorly together with decaBDE for all
strategies (PBT, PMT, and PBMT) under both methods,
indicating potential regrettable substitutions, whereas DBDPE,
BEH-TEBP, and melamine are relatively better alternatives.
However, these three compounds also have their problems.
55DBDPE is bioaccumulative as discussed above, with reported
log BAF (6.1−7.1) an order of magnitude higher than
decaBDE in fish.55,56 Another consideration is transformation
products. For BEH-TEBP, although it generally ranked best in
our assessment, studies have shown that one of its trans-
formation products is more toxic, viz., mono(2-ethyhexyl)
tetrabromophthalate (TBMEHP).89 TBMEHP was studied in

all our models and the results indicate only one extra red flag in
the heat map than BEH-TEBP, whereas the ranking in MAUT
(PBMT) decreased from second to sixth position. A large
range of biotic and abiotic transformation products could
theoretically be generated from studied FRs and as an example
the OECD QSAR Toolbox generated 12−90 different
transformation products for the studied FRs. However, an
important consideration is yields of some of these trans-
formation products may be only formed in minor or negligible
quantities. But the issue of yields also relates to mass, and
therefore, differences in tonnages required across FRs, when
used in products for achieving a similar effect for the decaBDE
it is replacing. Assessing transformation products, their yields,
and tonnage/exposure considerations warrants further devel-
opment for inclusion in a more quantitative and comprehen-
sive alternatives assessment procedure than presented here.
For melamine, it generally appears to be a less toxic compound
with no hazardous transformation products, whereas all
MCDA methods suggested that it is a potential PM
compound. This compound has been heavily used in many
applications besides as a flame retardant and thus environ-
mental and human exposure may be a lot higher than other
alternatives, which would need further evaluation via
quantitative risk assessment. All the five OPFRs included in
this study ranked better than decaBDE, but on the other hand,
they were not generally ranked better than the BFRs.
The two different MCDA methods yielded also some

different results. For example, the PBMT ranking in MAUT for
BPBPE is nine, whereas the same approach in ELECTRE III
ranked it three. The major reason for the ranking differences
besides the fundamental difference between the two MCDA
methods is that none of our case chemicals is worse than any
other case chemicals for all properties (except for the case of
DBDPE, which is no worse than decaBDE for all 17
properties), a situation which facilitates rank reversal.
Generally, the inclusion of M as a hazard property had a low
impact on ranking of the studied chemicals except if using
MAUT and in particular for OPFRs, where four out of five
compounds were ranked worse if applying PBMT as compared
with PBT. The compound most affected by the inclusion of M
was 4′-PeBPOBDE208, for which ranking improved from eight
to three based on low mobility.

Environmental Implications. Exchanging chemicals in
materials and products with safer alternatives can be a tedious

Figure 3. Different final score ranking results of the MAUT (M) and ELECTRE III (E) methods.
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and costly process; available methodologies require interdisci-
plinary approaches, broad competences, and lots of data. In
silico methodologies can provide a means to fill data gaps and
speed up processes. Good decision making requires strategies
and methodologies that consider uncertainties in data and the
multitude of aspects including environmental, consumer, and
occupational hazards; in addition to data on the chemical’s
product effectiveness, life cycle, and economic factors.
Different MCDA methods have their own advantages and
disadvantages. Here we assessed a range of alternatives to
decaBDE using mainly in silico based data with a focus on
environmental and human health hazards. The absence of a
fully compliant, clear “winner” was indicated by the heat
mapping which instead showed the value of continuing the
search for sustainable decaBDE alternatives. Inorganic FRs and
polymer FRs were excluded from this study due to their
unsuitableness to the applied in silico methodologies but could
potentially provide more sustainable options. Alternative
approaches including rule-based protocols have been suggested
both for inorganics90 and polymers,91,92 which could be
included in future assessments. However, when alternative
options are limited, it is not always a question of picking a
compliant chemical, but the “least worst” alternative. In this
study, we use two MCDA methods (MAUT and ELECTRE
III) to achieve this, and were able to incorporate more
subtleties in the underlying data. For the identified “less
hazardous” chemicals, more detailed hazard assessment should
be conducted including their possible transformation products,
yield, and other criteria like technical feasibility and tonnage
produced. We also noted that inclusion of the M can reduce
the risk of underestimating hazards of more hydrophilic
compounds (e.g., OPFRs). It is an unfortunate reality that
uncertainties for both experimental and in silico data are
generally large. In the future, besides the demand for high
quality data or models, we recommend that MCDA methods
like ELECTRE III be implemented with consideration of not
only the regulatory thresholds, but also data uncertainties.
Since our approach focused on the hazard criteria, for any
possible better alternatives identified, a quantitative risk
assessment with a more thorough exposure assessment might
need to be carried out, since the emissions and exposures can
vary due to different use patterns and physicochemical
properties. For flame retardants used in several consumer
products, indoor exposure is of particular concern for humans.
It also has to be acknowledged that important chemical
hazards are overlooked, such as BAF and BMF. In principle,
the combination of in silico tools and MCDA methods could
be expanded to explore these additional properties; further, the
quantitate exposure aspects could be adjusted by considering
different use and emission levels. It is unlikely that there will be
enough empirical data to compare these diverse consider-
ations; however, the combination of in silico tools and MCDA
methods could also be developed for the broader selection of
alternative substances and how they ought to be used.
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