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Abstract

This work introduces a novel algorithm for quad-mesh generation based on surface foliation theory. The algorithm is based on the
equivalence among colorable quad-meshes, measure foliations and holomorphic differentials. The holomorphic differentials can be
obtained by graph-valued harmonic maps. The algorithm has several merits: it can be applied for surfaces with general topologies;
the resulting quad-meshes have global tensor product structure and the least number of singularities; the algorithmic pipeline is
fully automatic. The experimental results demonstrate the efficiency and efficacy of the proposed method.
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Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Keywords: quadrilateral; quad-mesh; structured; foliation; harmonic map; holomorphic differential;

1. Introduction

Polygonal meshes are ubiquitous in many engineering and medicine fields, such as computer graphics, computer
vision, geometric modeling, mechanical engineering, architecture and medical imaging. Although triangle meshes
are the most popular representations, quadrilateral meshes have many advantages and have been widely used CAD
and simulation. The main advantages of quad-meshes can be summarized as follows:

• Quad-mesh can better capture the local principle curvature directions or sharp features, as well as the semantics
of modeled objects, therefore it is widely used in animation industry.
• Quad-mesh has tensor product structure, it is suitable for fitting splines or NURBS. Therefore it is applied for

high-order surface modeling, such as CAD/CAM for Splines and NURBS, and the entertainment industry for
subdivision surfaces.
• Patches of semi-regular quad meshes with a rectangular grid topology, naturally match the sampling pattern of

textures. Therefore quad-mesh is highly preferred for texturing and compression.
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Given a quad-mesh, a vertex is called regular, if its topological valence is 4; otherwise, it is singular. A path con-
sisting of a sequence of adjacent edges {e0, e1, · · · , ek} is called a separatrice, if it starts from and ends at singularities,
and each pair of consecutive edges ei, ei+1 share the same regular vertex vi, furthermore ei and ei+1 belong to different
faces. The regularity of the quad-mesh can be described by the number of singularities, and the global behavior of the
separatrices.

Roughly speaking, quad-meshes can be classified to four categories with the descending regularity:

1. Regular quad-mesh: all the interior vertices are with topological valence 4, there are no singularities, such as
geometry image [10]. The regular quad-mesh has strong topological restriction, we can never construct regular
quad-mesh on the high genus g > 1 surface.

2. Semi-regular quad-mesh: The separatrices divide the quad-mesh into several topological rectangles (a topological
disk with four corners on the boundary), the interior of each topological rectangle is regular grids.

3. Valence semi-regular quad-mesh: The number of singularities are few, but the separatrices have complicated
global behavior, they may have intersections, form spirals and go through most edges.

4. Unstructured quad-mesh: if a large fraction of its vertices are irregular. For example, one can convert a triangle
mesh to an unstructured quad-mesh by splitting each triangle into three quads by connecting the edge center to
the face center.

1.1. Generalized Regular Quad-Mesh

The current work focuses on a special class of quad-meshes, which is between regular and semi-regular categories,
which we call generalized regular quad-mesh. The generalized regular quad-mesh has only the valence 6 singular
vertices and the number of the singular vertices reaches the theoretic lower bound. The theoretic lower bound of the
number of the valence 6 singular vertices for a genus g > 1 close surface is 4g − 4. A generalized regular quad-
mesh combines the advantages of both regular and semi-regular quad-meshes, and overcome their disadvantages.
Comparing to regular quad-meshes, generalized regular quad-meshes have no topological restrictions; comparing to
semi-regular quad-meshes, generalized regular quad-meshes have more regular global structures, which consist of
topological cylinders and reduce the number of singularities to the theoretic lower bound.

Our method is based on the following observations: by subdividing a generalized regular quad-mesh infinitely
many times, one obtain two conjugate foliations; the foliations are equivalent to holomorphic quadratic differentials; a
holomorphic quadratic differential can be obtained by a graph-valued harmonic mapping. Therefore, one can construct
a pants decomposition of the surface, then convert the pants decomposition to a graph, compute the harmonic mapping
from the surface to the graph, induce the conjugate foliations from the harmonic mapping, produce the generalized
regular quad-mesh from the foliations, as shown in Fig. 4 and Fig. 9.

1.2. Previous Works

The literature of quad-meshing is huge, in the following we only review the most relevant works. We refer readers
to [3] for a thorough literature review.

Triangle Mesh to Quad-Mesh Conversion. This method directly converts a triangle mesh to a quad-mesh. One naive
way is to perform topological Catmull-Clark subdivision [5] and the other way is to fuse two original adjacent triangles
into one quad [12,23,24,27]. The quad shape is strongly dependent on the input and the major drawback of this
approach is that the resulting meshes are unstructured quad-meshes.

Patch Based Approach. This approach divides the input surface into several square patches, then by subdividing
the patches to produce quad-meshes. This method can produce semi-regular quad-meshes. The singularities of the
resulting quad-mesh arise where three, five or more patches meet. Clustering method (normal-based, center-based)
[2,4] and poly-cube map [13,21,28,30] are adopted to compute the patches. Comparing to this approach, our algorithm
produce much less number of singularities, the number is solely determined by the topology of the surface.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.818&domain=pdf
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Parameterization Based Approach . There are many method in this category. The spectral surface quadrangula-
tion method [7,14] derives the coarse quadrangular structure from the Morse-Smale complex of an eigenfunction of
the Laplacian operator on the input mesh. Discrete harmonic forms [26], periodic Global Parameterization [1] and
Branched Coverings method [17] are all use for quad mesh generation.

Most methods in this category can not produce semi-regular quad-meshes, but valence semi-regular ones. Namely,
the global behavior of the separatrices are hard to control, which make the global structure intricate and reduce the
regularity. In contrast, our method produce much higher regularity, the global behavior of separatrices is very simple.
The surface is segmented by the separatrices (critical trajectories) into 3g − 3 topological cylinders.

Directional field Based Method. The paper [22] presented a novel method to approximate a surface with a planar
quadrilateral mesh which was based on the study of conjugate direction fields. Starting with a triangle mesh, the
method first compute an as smooth as possible conjugate direction field satisfying the users directional and angular
constraints, then apply mixed-integer quadrangulation and planarization techniques to generate a planar quadrilateral
mesh. The method can produce semi-regular quad mesh or valence semi-regular quad mesh. However it could neither
control the mesh type directly, nor reduce the number of singularities to the lower bound. Compared to this methods,
the quad meshes produced by our method have very clear and simple structures. Our algorithm produces one foliation
and then the conjugate foliation, these two foliations form the quad mesh. For the quad mesh of a genus g > 1 close
surface, all the interior singularities are all of valence 6 and their amount reaches the theoretic lower bound 4g − 4.
The separatrices can divide the surface into 3g − 3 topological cylinders.

Voronoi Based Method. The paper [18] generates quad mesh by introducing Lp -Centroidal Voronoi Tessellation (Lp
-CVT) and a generalization of CVT that allows for aligning the axes of the Voronoi cells with a predefined background
tensor field. This method can only produce non-structured quad-mesh, there is no global tensor product structure.

1.3. Contributions

This work proposes a novel algorithm for quadrilateral meshing, the major contributions can be summarized as:

1. Discover a new category of quad-mesh - generalized regular quad-mesh, compared to regular quad-mesh, it can
be applied for surfaces with general topologies; compared to semi-regular quad-mesh, it has higher regularity.

2. The generalized regular quad-mesh reduces the number of singularities to the theoretic lower bound (for a genus
g > 1 closed surface, there are 4g−4 singularities generically), and simplifies the global behavior of separatrices,
(the separatrices divides the surface into 3g − 3 topological cylinders).

3. The generalized regular quad-mesh are with C∞ smoothness except the singular vertices and global tensor product
structure, which are suitable for spline fitting application.

4. The algorithm has solid theoretic foundation, and is capable of constructing all structured quad-meshes based on
surface foliation theory. There are infinite many such quad-meshes, all of them form a 6g − 6 linear space.

5. The algorithm can be fully automatic without any user input or intervention.

In the following discussion, we call generalized regular quad-mesh as regular quad-mesh, for the purpose of con-
venience.

2. Theoretic Foundation

Our proposed method is based on fundamental concepts and theorems in conformal geometry. Here we briefly
review the basic concepts. Detailed treatments can be found in [8,11,15,25]. Additional concepts and theorems can
be found in our previous work on hexahedral meshing based on surface foliation [19].

2.1. Overview

Our method is based on the equivalence among four key concepts: regular quad-mesh, colorable quad-mesh,
Strebel differentials and graph-valued harmonic map. In this section, we give the solid theorems in topology and
differential geometry.

4 Na Lei et al. / Procedia Engineering 00 (2017) 000–000
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Fig. 1: Equivalence among the key concepts.

1. Quad-meshes with minimal number of singularities are equivalent to colorable quad-meshes, explained in sub-
section 2.2;

2. Colorable quad-meshes are equivalent to measured foliations, detailed in subsection 2.2 and 2.3;
3. Measured foliations are equivalent to Strebel differentials, elucidated in subsection 2.4;
4. Strebel differentials are equivalent to graph-valued harmonic maps, illustrated in subsection 2.5.

These theorems lead to the practical computational algorithm for regular quad-meshes;

1. Construct a pants decomposition graph, find the harmonic map from the surface to the graph;
2. From the harmonic map to obtain the Strebel differential;
3. From the Strebel differential to get the foliations;
4. From the foliations to compute the regular quad-meshes.

2.2. Colorable Quadrilateral Mesh

Suppose S is a surface, a quadrilateral mesh of S is a geometric cell decomposition, such that each cell is topolog-
ical quadrilateral. A vertex in a quadrilateral mesh is called regular, if its topological valence equals to 4; otherwise,
the vertex is irregular. Irregular vertices are also called singularities. One of the major goal for quad-meshing is to
minimize the number of irregular vertices.

A generic quad-mesh is called regular, if it is with the minimal number of singularities. We show that a quad-mesh
is regular if and only if it is colorable.

Definition 1 (Colorable Quad Mesh). Suppose Q is a quadrilateral mesh on a surface S , if there is a coloring
scheme ι : E → {red, blue}, which colors each edge either red or blue, such that each quadrilateral face includes two
opposite red edges and two opposite blue edges, then Q is called a colorable (red-blue) quadrilateral mesh.

We show that the singularities of a colorable mesh are with even number of valences in [19].

Lemma 1. Suppose S is an oriented closed surface, Q is a quadrilateral mesh on S . Q is colorable if and only if the
valences of all vertices are even.

2.3. Finite Measured Foliation

Fig. 2: Two conjugate finite measured foliations on a genus five surface.

Definition 2 (Measured Foliation). Let S be a compact Riemann surface of genus g > 1. A Ck measured foliation
on S with singularities z1, . . . , zl of order k1, . . . , kl respectively is given by an open covering {Ui} of S − {z1, . . . , zl}
and open sets V1, . . . ,Vl around z1, . . . , zl respectively along with Ck real valued functions vi defined on Ui s.t.

1. |dvi| = |dv j| on Ui ∩ U j
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We show that the singularities of a colorable mesh are with even number of valences in [19].

Lemma 1. Suppose S is an oriented closed surface, Q is a quadrilateral mesh on S . Q is colorable if and only if the
valences of all vertices are even.

2.3. Finite Measured Foliation

Fig. 2: Two conjugate finite measured foliations on a genus five surface.

Definition 2 (Measured Foliation). Let S be a compact Riemann surface of genus g > 1. A Ck measured foliation
on S with singularities z1, . . . , zl of order k1, . . . , kl respectively is given by an open covering {Ui} of S − {z1, . . . , zl}
and open sets V1, . . . ,Vl around z1, . . . , zl respectively along with Ck real valued functions vi defined on Ui s.t.

1. |dvi| = |dv j| on Ui ∩ U j
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2. |dvi| = |Im(z − z j)k j/2dz| on Ui ∩ Vj.

The kernels ker dvi define a Ck−1 line field on S which integrates to give a foliation F on S − {z1, . . . , zl}, with k j + 2
pronged singularity at z j. Moreover, given an arc γ ⊂ S , we have a well-defined measure µ(γ) given by µ(γ) = |

∫
γ

dv|
where |dv| is defined by |dv|Ui = |dvi|.

If each leaf of the measured foliation (F , µ) is a finite loop, then F is called a finite measured foliation.
Given a colorable quad-mesh, it is obvious that all the red edges form red loops, each red loop has no self-

intersection, two red loops have no intersection either. Similarly, all the blue loops have no intersections. If we
subdivide a colorable quad-mesh infinitely many times, all the red loops become infinitely dense and cover all the
points on the surface except the singularities in the initial quad-mesh. All the red loops have no intersections, which
form a foliation, each red loop is a leaf of the foliation. Similarly, all the blue loops form another foliation. The two
foliations transversely intersect each other.

Lemma 2. Suppose S is a closed oriented surface, Q is a colorable quadrilateral mesh of the surface, then Q induces
two finite measured foliations.

Inversely, if we have two transversal foliations, we can construct a color quad-mesh with minimal number of
singularities.

2.4. Strebel Differential

Riemann Surface. Riemann surface theory generalizes the complex analysis to the surface setting. Given a complex
function f : C→ C, f : x+ iy �→ u(x, y)+ iv(x, y), if f satisfies the Cauchy-Riemann equation ux = vy, uy = −vx, then
f is a holomorphic function. If f is invertible, and f −1 is also holomorphic, then f is a bi-holomorphic function. A two
dimensional manifold is called a surface. A surface with a complex atlas A, such that all chart transition functions
are bi-holomorphic, then it is called a Riemann surface, the atlasA is called a complex structure.

Holomorphic Quadratic Differential.

Definition 3 (Holomorphic Quadratic Differentials). Suppose S is a Riemann surface. Let Φ be a complex differ-
ential form, such that on each local chart with the local complex parameter {zα}, Φ = ϕα(zα)dz2

α, where ϕα(zα) is a
holomorphic function.

A holomorphic quadratic differentials on a genus zero closed surface must be 0. On a genus one closed surface,
any holomorphic quadratic differential must be the square of a holomorphic 1-form. According to Riemann-Roch
theorem, the dimension of the linear space of all holomorphic quadratic differentials is 3g − 3 complex dimensional,
where the genus g > 1.

A point zi ∈ S is called a zero of Φ, if ϕ(zi) vanishes. A holomorphic quadratic differential has 4g − 4 zeros, as
shown in Fig. 2. For any point away from zero, we can define a local coordinates ζ(p) :=

∫ p √
ϕ(z)dz, which is the

so-called natural coordinates induced by Φ. The holomorphic quadratic differential Φ also defines a flat metric on the
surface with cone singularities, dΦ := dζdζ̄. The curves with constant real natural coordinates are called the vertical
trajectories, with constant imaginary natural coordinates horizontal trajectories. The trajectories through the zeros
are called the critical trajectories.

Definition 4 (Strebel[25]). Given a holomorphic quadratic differential Φ on a Riemann surface S , if all of its hori-
zontal trajectories are finite, then Φ is called a Strebel differential.

A holomorphic quadratic differential Φ is Strebel, if and only if its critical horizontal trajectories form a finite graph
[25].

Measured Foliation vs Holomorphic Quadratic Differentials . Hubbard and Masure proved the following fundamental
theorem connecting measured foliation and holomorphic quadratic differentials.

Theorem 1 (Hubbard-Masur [15]). If (F , µ) is a measured foliation on a compact Riemann surface S , then there is
a unique holomorphic quadratic differential Φ on S whose horizontal foliation is equivalent to (F , µ).

6 Na Lei et al. / Procedia Engineering 00 (2017) 000–000

Corollary 1. Suppose S is a closed compact Riemann surface, Q is a colorable quadrilateral mesh, then there exists
a unique Strebel differential Φ, the horizontal measured foliation of Φ is equivalent to the horizontal foliation induced
by Q.

Similarly, it can be shown there is a unique Strebel differential, whose horizontal foliation is equivalent to the
vertical foliation induced by Q.

2.5. Graph-Valued Harmonic Map

Pants Decomposition.

Definition 5 (Admissible Curve System). On a genus g > 1 closed surface S , a set of disjoint, pairwise not homo-
topic, homotopically nontrivial simple loops Γ = {γ1, γ2, · · · , γn}, where n ≤ 3g − 3 is called an admissible curve
system.

Definition 6 (Pants Decomposition). On a genus g > 1 closed surface S , given an admissible curve system Γ, Γ
decomposes the surface into 2g − 2 pairs of pants S =

⋃2g−2
i=1 Pi, each pair of pants is a genus 0 surface with 3

boundaries.

Definition 7 (Pants Decomposition Graph). Suppose S is a genus g > 1 closed surface, Γ is an admissible curve
system, which induces a pants decomposition {Pi}. The corresponding pants decomposition graph GΓ = (V, E) is
constructed as follows:

1. each node vi ∈ V(GΓ) corresponds to a pair of pants Pi;
2. each edge ek ∈ E(GΓ) corresponds to a loop γkΓ, such that ek connects vi and v j if and only if γk is shared by Pi

and Pj, γk = Pi ∩ Pj.

We assign an edge weight to each edge, the the graph becomes a metric graph.

Definition 8 (Metric Graph). A graph G = (V, E) is a one dimensional simplicial complex with a vertex set V and
an edge set E. A Riemannian metric d : E → R is assigned to each edge e ∈ E. (G, d) is called a metric graph.

Harmonic Mapping.

Definition 9 (Isothermal Parameters). Suppose (S , g) is a surface with a Riemannian metric g, the local coordinates
(u, v) are called isothermal parameters, if the metric can be represented as g = e2λ(u,v)(du2 + dv2), where λ : S → R
is the so-called conformal factor function.

Chern [6] has proved the existence of isothermal parameters: given any point p ∈ S , there is a neighborhood U(p) ⊂ S
of p, such that isothermal parameters exist on the neighborhood. In the following discussion, isothermal parameters
are used by default.

Definition 10 (Harmonic Function). Given a function defined on a surface with a Riemannian metric, f : (S , g) →
R, the harmonic energy of the function is defined as E( f ) :=

∫
S |∇g f |2dAg. If f minimizes the harmonic energy, then

f is called a harmonic function.

The local representation of the gradient and the area element under isothermal parameters are as follows: ∇g f (u, v) =
1

e2λ(u,v)

(
∂ f (u,v)
∂u ,

∂ f (u,v)
∂v

)T
, dAg = e2λ(u,v)dudv. Suppose ϕ : (S , g)→ (G, d) is a smooth mapping from a metric surface to a

metric graph. The preimage of the vertices of the graph is of zero measure and denoted as Γ. Each edge ei ∈ E in the
graph is isometrically embedded in R, the preimage of ei is topologically a cylinder Ci. The mapping restricted on Ci

is treated as a function, its harmonic energy is well defined by Definition 10. The harmonic energy for the whole map
is defined as E(ϕ) :=

∫
S \Γ |∇gϕ|2dAg.

Definition 11 (Graph-valued Harmonic Map). Suppose (S , g) is a surface with a Riemannian metric g, (G, d) is a
metric graph. The mapping ϕ : (S , g) → (G, d) is harmonic, if it minimizes the harmonic energy in the homotopy
class.
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Gromov and Schoen [9] showed that because the graph (G, d) is with non-positive curvature, the harmonic map
exists and is unique in each homotopy class.

Strebel Differential vs. Graph-Valued Harmonic Mapping. Jenkin and Strebel show that if a user prescribes the
admissible curve system with the heights, there exists a unique holomorphic quadratic differential with the prescribed
combinatorial type and geometry.

Theorem 2 (Jenkin [16] and Strebel [25] ). Given an admissible curve system Γ = {γ1, γ2, · · · , γn}, n ≤ 3g − 3, and
positive numbers (heights) h = {h1, h2, · · · , hn}, there exists a unique holomorphic quadratic differential Φ, satisfying
the following :

1. The critical graph of Φ partitions the surface into n topological cylinders {C1,C2, · · · ,Cn}, such that γk is the
generator of Ck,

2. The height of each cylinder (Ck, dΦ) equals to hk, k = 1, 2, · · · , n, where dΦ is the flat metric induced by Φ.

Wolf [29] showed that the holomorphic quadratic differential Φ can be obtained by the harmonic map from the
Riemann surface to the cylindric decomposition graph induced by the curve system Γ with the heights h as the metric.

Theorem 3 (Wolf[29]). Given an admissible curve system Γ, and an height vector h, Γ induces a pants decomposition
graph GΓ, with the metric h. Let ϕ : (S , g)→ (GΓ, h) be the harmonic map, the Hopf differentialΦ = 4〈ϕ∗∂z, ϕ∗∂z〉hdz2

is the holomorphic quadratic differential in theorem 2.

These theorems pave the way to compute the regular quad-meshes.

3. Computational Algorithm

Pants Decomposition Quadrilateral MeshMeasured FoliationGraph-Valued Harmonic Map

Fig. 3: Algorithmic pipeline.
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(a) Pants decomposition (b) Foliation (c) Cylindrical decomposition (d) Quadrilateral Mesh

Fig. 4: Foliation generation pipeline.
A surface foliation decomposes the surface into a family of closed loops, such that the decomposition has local

tensor product structure. First, we explain the algorithm for a high genus closed surface, then extend it to general
cases. Fig. 4 demonstrates the processing pipeline.

3.1. Pants Decomposition

As shown in Fig. 4 frame (a), the first step is pants decomposition, which is carried out automatically using the
algorithm described in [20]. Given a genus g > 1 closed surface S , we automatically compute the g handle loops, then
find extra 2g − 3 disjoint simple loops, to form the set of cutting loops, {γ1, γ2, · · · , γ3g−3}.The cutting loops segment
the surface into 2g − 2 pairs of pants, {P1, P2, · · · , P2g−2}. A pants decomposition can be represented as a graph G,
the so-called pants decomposition graph, where each pair of pants Pi is represented as a node, and each cutting loop

8 Na Lei et al. / Procedia Engineering 00 (2017) 000–000

γ j is denoted by an edge. Suppose on the surface S , the cutting loop γi is shared by two pairs of pants Pj, Pk, then in
the graph G, the arc of γi connects nodes of Pj and Pk. Furthermore, we associate a positive weight hi > 0 for each
edge γi in the pants decomposition graph. We use (G, h) to denote the pants decomposition graph G with the weights
h = (h1, h2, · · · , h3g−3), and call it the weighted pants decomposition graph. The weights can be used to adjust the
strip widths.

3.2. Graph-Valued Harmonic Map

As shown in Fig. 4 frame (b), the second step is to compute a foliation based on a harmonic map between the
surface and the weighted pants decomposition graph (G, h).

The weighted pants decomposition graph (G, h) can be treated as a metric space, where the distance between two
points p, q ∈ G is defined as the length of the shortest path connecting them, and denoted as dh(p, q).

Given a mapping f : (S , g) → (G, h), the pre-image of a node is called a critical fiber, and the union of critical
fibers is called the critical graph, denoted as Γ ⊂ S . In general, the critical graph is of 0 measure, then we can define
the harmonic energy of the mapping f ,

E( f ) :=
∫

S \Γ
|∇g f |2dAg. (1)

If f minimizes the harmonic energy, then f is called a harmonic map. Wolf [29] proved the existence and the
uniqueness of the harmonic map. The preimage of each non-node point is a closed loop on the original surface. All
such closed loops compose a foliation F . The Ribbon graph of the foliation F is exactly (G, h).

In practice, the surface is approximated by a triangular mesh M = (V, E, F). We use [vi, v j] to represent an edge
connecting the vertices vi and v j. The harmonic energy of a map f : M → (G, h) is given by

E( f ) :=
1
2

∑
[vi,v j]

wi jdh( f (vi), f (v j))2,

where dh(·, ·) is the shortest distance between two points on the graph, wi j is the cotangent edge weight. Suppose two
faces [vi, v j, vk] and [v j, vi, vl] share the edge [vi, v j], then

wi j = cot θi j
k + cot θ ji

l ,

where θi j
k represents the corner angle at the vertex vk in the face [vi, v j, vk].

We use the non-linear heat flow method to compute the harmonic map.

1. We homotopically deform γi to sweep a cylinder Ci, such that the union of all the cylinders cover the whole
surface.

2. Each cylinder Ci is mapped to the edge γi, this constructs the initial map f .
3. We diffuse the map to reduce the harmonic energy, until it converges to the harmonic map.

The diffusion process is as follows: at each step, we move the image of each vertex to the weighted geodesic center
of the images of its neighbors. Suppose after the k-th iteration, we have obtained the mapping fk : M → G already,
vertices {v j}’s are adjacent to the vertex vi, the weighted geodesic center of { fk(v j)}’s is defined as

ck(vi) = argminq∈G

n∑
j=1

wi jdh( fk(v j), q)2.

The diffusion process moves the image of vi to the weighted geodesic center, fk+1(vi) ← ck(vi). By repeating this
procedure, the mapping sequence { fn} converges to the harmonic map.

The harmonic foliation is composed of the fibers, each fiber is a preimage of a point in the graph, F = { f −1(p)|p ∈
G}.
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γ j is denoted by an edge. Suppose on the surface S , the cutting loop γi is shared by two pairs of pants Pj, Pk, then in
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Given a mapping f : (S , g) → (G, h), the pre-image of a node is called a critical fiber, and the union of critical
fibers is called the critical graph, denoted as Γ ⊂ S . In general, the critical graph is of 0 measure, then we can define
the harmonic energy of the mapping f ,

E( f ) :=
∫
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|∇g f |2dAg. (1)

If f minimizes the harmonic energy, then f is called a harmonic map. Wolf [29] proved the existence and the
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surface.
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Algorithm 1: Surface Foliation Algorithm for Close Surface.
Input : A close surface S with genus g > 1 and a threshold ε
Output: A foliation F of S

1 Construct a pants decomposition of S;
2 Construct the pants decomposition graph G, assign the edge weight h to G;
3 Construct an initial map f : S → G by mapping each pair of pants to the corresponding node;
4 Compute the initial harmonic energy E;
5 while true do
6 E0 ← E;
7 foreach vertex vi ∈ S do
8 f (vi)← argminq∈G

∑n
j=1 dh( f (v j), q)2;

9 end
10 Calculate the harmonic energy E;
11 if |E − E0 | < ε then
12 break;
13 end
14 end
15 foreach p ∈ G do
16 Compute the fiber f −1(p) ∈ S;
17 end
18 Return the foliation F consisting of all fibers;

3.3. Measured Foliations

As shown in Fig. 4 frame (c), the preimages of the nodes form the critical graph Γ, the surface is sliced along Γ and
decomposed into 3g − 3 topological cylinders. Different cylinders are rendered using different colors, all the fibers
within one cylinder are homotopic to each other.

For each edge γi ∈ G, its preimage is a cylinder Ci. The restriction of the harmonic map on the cylinder Ci,
fi := f |Ci , can be treated as a harmonic function, fi : Ci → [0, hi]. The gradient of fi can be expressed explicitly.
Suppose a face [vp, vq, vr] is in the cylinder Ci, the gradient of the piece-wise linear map fi on this face is

∇ fi := n × ( fi(vr)(vq − vp) + fi(vp)(vr − vq) + fi(vq)(vp − vr))

where n is the normal to the face, by abusing the symbols, vr represents the position of the vertex vr. The Hodge star
operator is defined as �∇ fi := n × ∇ fi.

When the mesh triangulation is refined enough, the integration lines of the vector field �∇ fi give the so-called
conjugate foliation F �, that is orthogonal to the original foliation F . We can show that the conjugate foliation F �
itself is harmonic as well. The conjugate foliation is depicted in Fig. 4 frame (d), whose fibers are the blue loops.

3.4. Regular Quad-Meshing

Fig. 4 frame (d) illustrates the quadrilateral remeshing step. Basically, given a pair of conjugate foliations {F ,F �},
we can select some fibers to form a quadrilateral tessellation of the surface.

In more details, each cylinder Ci has two boundaries, ∂Ci = τ
+ − τ−. We can find the shortest path γ connecting τ+

and τ−. We slice Ci along γ to get a topological quadrilateral, Di. The integration of a pair of vector fields (�∇ fi,∇ fi)
gives a parameterization ϕi : Di → R2, picking a base point p0 ∈ Di, ϕi(p) =

∫ p
p0

(�∇ fi,∇ fi)dr, where the integration
path r(t) from p0 to p is arbitrarily chosen within Di. It can be shown that the parameterization ϕi is angle-preserving,
and maps the planar regular grids to the quad-mesh on the surface. The planar horizontal and vertical lines are mapped
to red and blue loops on the surface respectively. As shown in Fig. 4, because the parameterization is angle-preserving,
the red/blue fibers are orthogonal, and the quadrilateral cells are similar to squares.

3.5. General Cases

Genus One Closed Surface. Fig. 5 shows a pair of conjugate foliations on a genus one closed surface. First, we
compute the handle loop γ, set the weight to be the unit, then find a harmonic map from the surface to γ with the unit

10 Na Lei et al. / Procedia Engineering 00 (2017) 000–000

Fig. 5: Conjugate foliations on a genus one surface.

weight, f : S → γ. The harmonic map induces a foliation F , whose fibers are the red loops. Locally, f can be treated
as a harmonic function. Similarly, we use the Hodge star operator to get the vector field ∗∇ f , and the integration of
∗∇ gives the conjugate harmonic foliation F �, whose fibers are the blue loops in the Fig. 5.

Fig. 6: Conjugate foliations on a facial surface.

Topological Disk. As shown in Fig. 6, given a genus zero surface M with a single boundary (a topological disk),
we can select four boundary points {p0, p1, p2, p3}, which divide the boundary of the surface into four segments,
{γ0, γ1, γ2, γ3}, such that ∂γi = pi+1 − pi.

Then we perform the double covering operator: make a copy of M, denoted as M̄, reverse the orientation of all
faces of M̄, then glue M and M̄ along the boundary segments γ0 and γ2, to form a topological cylinder M̃.

Then we compute a harmonic map from the doubled mesh M̃ to the unit interval, f : M̃ → [0, 1], such that the
boundary loops of M̃ are mapped to the end points of the interval. Then level sets of f gives a foliation F . The
integration curves of �∇ f gives the conjugate foliation �F . The restriction of the {F , �F } on the original mesh gives
the desired pair of conjugate foliations. The harmonic map here can be obtained by solving a sparse linear system.

Fig. 7: Foliations on a genus 0 surface with multiple boundaries.

Open Surfaces with Negative Euler Numbers. Given a surface M, χ(M) < 0, with boundary curves ∂M = {γ1, γ2, · · · , γn},
we first use double covering to obtain a symmetric closed surface M̃. Then we extend {γ1, γ2, · · · , γn} to a set of cutting
loops, generate the pants decomposition, and compute the harmonic map from M̃ to the pants decomposition graph,
in turn obtaining a foliation F . By construction, the boundary loops of the original mesh {γi} become the fibers of F .
Furthermore, we use the Hodge star operator to obtain the conjugate foliation ∗F . The restriction of the {F , �F } on
the original mesh gives the desired pair of conjugate foliations.

Fig. 7 demonstrates the foliation F on a genus zero surface with multiple boundaries. The original cat model is
genus zero surface with 2 boundaries which are the two eyes. To obtain a better foliation, we further puncture through
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Output: A foliation F of S

1 Construct a pants decomposition of S;
2 Construct the pants decomposition graph G, assign the edge weight h to G;
3 Construct an initial map f : S → G by mapping each pair of pants to the corresponding node;
4 Compute the initial harmonic energy E;
5 while true do
6 E0 ← E;
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9 end
10 Calculate the harmonic energy E;
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17 end
18 Return the foliation F consisting of all fibers;

3.3. Measured Foliations

As shown in Fig. 4 frame (c), the preimages of the nodes form the critical graph Γ, the surface is sliced along Γ and
decomposed into 3g − 3 topological cylinders. Different cylinders are rendered using different colors, all the fibers
within one cylinder are homotopic to each other.

For each edge γi ∈ G, its preimage is a cylinder Ci. The restriction of the harmonic map on the cylinder Ci,
fi := f |Ci , can be treated as a harmonic function, fi : Ci → [0, hi]. The gradient of fi can be expressed explicitly.
Suppose a face [vp, vq, vr] is in the cylinder Ci, the gradient of the piece-wise linear map fi on this face is
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where n is the normal to the face, by abusing the symbols, vr represents the position of the vertex vr. The Hodge star
operator is defined as �∇ fi := n × ∇ fi.

When the mesh triangulation is refined enough, the integration lines of the vector field �∇ fi give the so-called
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we can select four boundary points {p0, p1, p2, p3}, which divide the boundary of the surface into four segments,
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Then we perform the double covering operator: make a copy of M, denoted as M̄, reverse the orientation of all
faces of M̄, then glue M and M̄ along the boundary segments γ0 and γ2, to form a topological cylinder M̃.

Then we compute a harmonic map from the doubled mesh M̃ to the unit interval, f : M̃ → [0, 1], such that the
boundary loops of M̃ are mapped to the end points of the interval. Then level sets of f gives a foliation F . The
integration curves of �∇ f gives the conjugate foliation �F . The restriction of the {F , �F } on the original mesh gives
the desired pair of conjugate foliations. The harmonic map here can be obtained by solving a sparse linear system.
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Open Surfaces with Negative Euler Numbers. Given a surface M, χ(M) < 0, with boundary curves ∂M = {γ1, γ2, · · · , γn},
we first use double covering to obtain a symmetric closed surface M̃. Then we extend {γ1, γ2, · · · , γn} to a set of cutting
loops, generate the pants decomposition, and compute the harmonic map from M̃ to the pants decomposition graph,
in turn obtaining a foliation F . By construction, the boundary loops of the original mesh {γi} become the fibers of F .
Furthermore, we use the Hodge star operator to obtain the conjugate foliation ∗F . The restriction of the {F , �F } on
the original mesh gives the desired pair of conjugate foliations.

Fig. 7 demonstrates the foliation F on a genus zero surface with multiple boundaries. The original cat model is
genus zero surface with 2 boundaries which are the two eyes. To obtain a better foliation, we further puncture through
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Model # of vertices # of faces Genus Boundary Figure # of quadrilaterals Time(ms)
Alex face 80598 160058 0 1 6 289 2274

Kitten 10000 20000 1 0 5 1536 135823
Blood vessel 72312 144620 1 12 8 86840 565012

Eight 3776 7556 2 0 4 7200 32561
Nut 29840 59684 2 0 10 12032 267234

3-hole torus 5996 12000 3 0 9 3840 15142
Deco-cube 7492 15000 5 0 2 14120 10008

Star cup 31029 62062 2 0 11 17408 131114

Table 1: The computation time of foliations of different models.

the bottom of the four feet, the tip of the tail and the two ears, therefore there are 7 more boundary components. In
the end, we got a genus zero surface with 9 boundaries.

4. Experimental Results

In this section, we report our experimental results. We have tested our algorithm on synthetic surfaces 9, surfaces
scanned from real life 6 and 5, surfaces from mechanical CAD design 10 and reconstructed from medical images 8.
Our algorithm is implemented using generic C++, the numerical computation is based on Eigen library [23]. All our
experiments are performed on a desktop computer with Intel(R) Core(TM) i7-4770 3.4GHz CPU and 16GB RAM.

Fig. 8: Quadrilateral mesh for the blood vessel model.

Fig. 9: Quadrilateral meshes for genus two and three models
Topological Generality. As shown in Table 1, in order to test the topological generality of our proposed algorithm,
we have process geometric models with various topological types. The scanned human facial surface in Fig. 6 and
the cat model Fig. 7 are of genus zero with boundaries; the scanned kitten model Fig. 5 and the blood vessel model
Fig. 8 reconstructed from the medical images are of genus one; the eight model Fig. 9 and the mechanical part Fig. 10
are genus 2 surfaces; the three-holed torus Fig. 9 and Decocube model Fig. 2 are with high genus. These results show
that our algorithm is general enough to handle surfaces with all topological types.

Efficiency and Stability. We report the running time of our algorithm in this section. The time of computing the
foliation are shown in Table 1. The most time-consuming part in the algorithm pipeline is the non-linear heat-diffusion
step. From our experiments, we can observe that the computation time is independent of the topology of the surface,
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and roughly proportional to the number of vertices except the Alex example which can be solved by using linear
system rather than non-linear heat-diffusion. Furthermore, according to the elliptic partial differential equation theory,
the solutions smoothly depends on the geometry and the boundary conditions. Namely, the algorithm is stable in
terms of geometric noises, insensitive to the triangle mesh qualities.

Quad-Mesh Quality. By examining the figures, especially Fig. 9, Fig. 8, one can observe that the quadrilateral meshes
produced by our proposed algorithm have the following merits:

1. Global tensor product structure with the minimal number of singularities;
2. All singularities are with even number valence 6;
3. The foliation leaves except the singularities are of C∞ smoothness;
4. The whole algorithmic pipeline is fully automatic. It also offers the user the flexibility to choose the optimal one

from infinite many choices.

(a) (b) (c) (d)
Fig. 10: Conjugate foliations on a genus 2 mechanical part surface.

On the other hand, our proposed method has the following disadvantages:

1. The sizes of the quadrilateral cells are non-uniform, as shown in the kitten model in Fig. 5 and Fig. 11; Take the
starcup model in Fig. 11(c)(d) for example, the quadrilateral cells on the bottom of the starcup are quite huge,
and the quadrilateral cells on the handles of the starcup model are very small.

2. The foliation leaves may not align the sharp features, as shown in the mechanical part model in Fig. 10. Some
industrial applications may request that the edges of the quadrilateral cells should align the sharp feature of the
model. In Fig. 10 (a), the blue curve indicates one sharp feature of the mechanical part surface. (c) shows the
vertical foliation on the surface, and we can see the foliation leaves are going through the sharp feature curve
rather than aligning it. Eventually the edges of the quadrilateral mesh do not align the sharp feature curve as
shown in (d).

5. Conclusions

This work introduces a novel algorithm for quad-mesh generation. It discovers a new category of quad-mesh - gen-
eralized regular quad-mesh, which can be applied for surfaces with general topologies and has higher regularity than
semi-regular quad-meshes; The generalized regular quad-mesh reduces the number of singularities to the theoretic
lower bound; the global tensor product structure is with C∞ smoothness; the algorithm has solid foliation theory and
can be fully automatic.

In the future, we will explore further along foliation mesh generation approach, to find feasible way to improve the
uniformity of the cell sizes and the sharp feature alignment.
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[3] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. Quad-mesh generation and processing: A survey. Computer
Graphics Forum, 32(6):51C76, 2013.

[4] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart. Rectangular multi-chart geometry images. In Eurographics Symposium on Geometry
Processing, pages 181–190, 2006.

[5] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. ACM, 1998.
[6] S. Chern. An elementary proof of the existence of isothermal parameters on a surface. Proceedings of the American Mathematical Society,

6(5):771–782, 1955.
[7] S. Dong, P. T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral surface quadrangulation. In ACM SIGGRAPH, pages 1057–1066,

2006.
[8] H. M. Farkas and I. Kra. Riemann Surfaces. Springer, 2004.
[9] M. Gromov and R. Schoen. Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. Math. IHÉS,
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Fig. 11: Conjugate foliations on a genus two star-cup model.


