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Impact of energy dissipation on 
interface shapes and on rates for 
dewetting from liquid substrates
Dirk Peschka1, Stefan Bommer2, Sebastian Jachalski1, Ralf Seemann2 & Barbara Wagner1

We revisit the fundamental problem of liquid-liquid dewetting and perform a detailed comparison of 
theoretical predictions based on thin-film models with experimental measurements obtained by atomic 
force microscopy. Specifically, we consider the dewetting of a liquid polystyrene layer from a liquid 
polymethyl methacrylate layer, where the thicknesses and the viscosities of both layers are similar. 
Using experimentally determined system parameters like viscosity and surface tension, an excellent 
agreement of experimentally and theoretically obtained rim profile shapes are obtained including 
the liquid-liquid interface and even dewetting rates. Our new energetic approach additionally allows 
to assess the physical importance of different contributions to the energy-dissipation mechanism, 
for which we analyze the local flow fields and the local dissipation rates. Using this approach, we 
explain why dewetting rates for liquid-liquid systems follow no universal power law, despite the fact 
that experimental velocities are almost constant. This is in contrast to dewetting scenarios on solid 
substrates and in contrast to previous results for liquid-liquid substrates using heuristic approaches.

The evolution of many physical systems is governed by thermodynamical or mechanical energetic principles1–4. 
Such principles are versatile instruments that allow the derivation of underlying physical equations5. For flows of 
incompressible liquids, energy-dissipation principles are known for a long time6–8. In particular for thin-film 
flows, the great success in the quantitative understanding of viscous flows with contact-line motion has supplied 
a universal tool that enables the nano- and microstructuring and functionalization of surfaces, but moreover 
allows to relate flow patterns with liquid properties and substrate chemistry9. Typical phenomena governed by 
such principles are the dewetting of liquids from solid substrates and from liquid substrates, or general wetting 
and spreading phenomena10–14, where the balance of the decline of energy and the dissipation = − ≤ 0E D  can 
be used to derive power-law rates for the velocity of moving contact lines, see Fig. 1.

When such a power-law rate xc ~ tβ exists, its exponent β reveals the dominant physical effect, e.g., gravity, 
surface tension, viscous dissipation in bulk and on interfaces, and the geometry of the problem15. One basic 
assumption behind such rate estimates is that there exists a simple relationship between the rate of change of the 
energy and the shape of the time-dependent domain Ω ⊂t( ) 3 occupied by the liquid layer, often also including 
assertions about the self-similarity of the evolution. For instance, for a large class of free boundary problems 
where a liquid ( ) dewetts from a substrate (s) with a straight contact line, the change of surface energy can be 
approximated by

� �� � � �γ γ γ= |Γ| + |Γ | + |Γ | ≈ ×S x( ) , (1)t s s
d
d s s , , c

where γ γ γ= − + <
 

S ( ) 0s s,  is the spreading coefficient of the system constructed from the corresponding 
surface- and interface-tensions γα of interfaces Γα with surface area |Γα| and xc is the contact line velocity. 
However, it is challenging or even impossible to find a general and similarly simple closed-form approximation 
for the energy-dissipation rate

 ∫ τ= ∇
Ω

x y zu u u( ) ( ): d d d , (2)
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since the flow field Ω →u: 3 and the corresponding shear stress τ(u) have a complicated local structure that 
depends on fine details of the shape of Ω. Therefore, one requires a deeper understanding of the specific dissipa-
tion mechanisms and of the domain evolution in order to understand the dynamics of the corresponding 
processes.

In the pioneering works for liquid-liquid dewetting by Joanny13 and Brochard-Wyart et al.14 dewetting rates 
for small equilibrium contact angles and for limiting regimes of the liquid-liquid viscosity ratios were predicted. 
While both works combine valid hydrodynamical and dissipation arguments to derive expressions for contact 
line velocities, the impact of non-trivial interface shapes on the flow and dissipation remained unclear. Since then, 
many theoretical studies are concerned with the derivation of appropriate thin-film models to study the long-time 
morphological evolution of the liquid layers. Apart from investigations into stationary states and how they are 
approached16,17, a number of studies focussed on modes of instability in liquid-liquid dewetting using stability 
analysis and numerical simulations of the thin-film models18–22 even with additional surfactants23.

On the experimental side dewetting rates and morphologies for liquid-liquid model systems such as poly-
styrene on polymethyl methacrylate have been investigated systematically by Krausch et al.24,25 by varying the 
heights and viscosities of the liquid layers. Similar experimental studies were performed by Pan et al.26 for further 
layer viscosities and heights. However, the shapes observed by Krausch et al.25 differ considerably from the empir-
ical predictions used to derive dewetting rates13,14, which were found to be constant.

To the best of our knowledge, fundamental dynamic properties like dewetting rates have not been settled up 
to now. The main reason for this is certainly the absence of theoretical confirmations for the observed shapes 
of dewetting rims, which then might help to understand the mechanisms behind certain dissipation balances 
and dewetting rates. Additionally, a quantitative study also requires the key parameters of the experimental sys-
tem, i.e., surface tensions, viscosities, and layer thicknesses, to be determined sufficiently precise. The focus of 
this study is thus to supply a quantitative understanding of the dewetting mechanics by detailed comparisons of 
experimentally obtained rim shapes, their evolution, and their dewetting dynamics with those computed from 
thin-film equations. Additionally, we examine the underlying mechanisms by discussing flow fields and energy 
dissipation mechanisms.

Experimental and Theoretical Methods
As a model system we consider a layer of viscous liquid polystyrene (PS) Ω



 above a viscous liquid substrate con-
sisting of polymethyl methacrylate (PMMA) Ωs. Both liquids are immiscible and the total liquid domain is 

∪Ω = Ω Ω
 s and depends on time. Using the functions 



h , hs to represent the thickness of fluid and substrate 
layer, one can parametrize the domains at time t

 
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Ω = ∈ < < +
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as indicated in Fig. 1. Initially, at room temperature both polymer layers are in a glassy state. The substrate layer 
(PMMA) has a constant thickness = =h t x y h( 0, , )s s and is supported by a solid silicon wafer at z = 0. The 
contour of the upper liquid layer (PS) is piecewise constant with an almost rectangular edge = =

 

h t x y h( 0, , )  
for x > xc(t = 0) and = =



h t x y( 0, , ) 0 for x ≤ xc(t = 0), which is generated by the preparation process. During 
the evolution the domain shape Ω will remain approximately translational invariant in direction parallel to the 
straight three phase contact line, so that it is sufficient to consider cross sections of the domain and of the velocity 

Figure 1.  Fluid domain Ω(t), interfaces Γi(t), and contact lines at xc(t) (left) for dewetting from a solid substrate 
where Ω = Ω



t t( ) ( ) and (right) for the considered situation of liquid dewetting from a liquid substrate, where 
∪Ω = Ω Ω



t t t( ) ( ) ( )s .
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fields in the x-z-plane. The layered polymer system was prepared using standard thin film preparation tech-
niques17 as shown in Fig. 2. In a first step, the underlying liquid PMMA substrate is directly spun from a toluene 
solution onto a silicon substrate that was previously cleaned with Piranha etch. Simultaneously, the upper PS layer 
is spun from a toluene solution onto freshly cleaved muscovite mica. In a second step, the PS layer is transferred 
onto the surface of ultra clean water and picked up from there with the PMMA coated silicon substrate. During 
the transfer of the thin PS layer onto the water, the PS layer ruptures into smaller pieces, which are subsequently 
transferred onto the spin coated PMMA layer. Straight boundaries of these patches that are sufficiently remote not 
to be disturbed from neighboring patches are selected to observe the dewetting process. The cross section of these 
patches are almost ideal rectangular steps and thereby correspond to the start configurations at t = 0 introduced 
above. The typical film-thicknesses 



h h, s used in our dewetting experiments range from 45 nm to 250 nm and we 
performed experiments for various ratios 



h h: s.
To remove potential nanoscopic air bubbles that might have been been trapped between the PMMA and the 

PS layer during the transfer process, the samples were allowed to set after preparation for at least 24 h. The dewet-
ting process is then started by heating the materials above the glass transition temperature and monitored by in 
situ atomic force microscopy (AFM). The dewetting experiments were conducted at a temperature of T = 140 °C. 
The shape of the PS-air and PMMA-air interface can be determined in situ using AFM in soft tapping mode. 
Quenching the sample to room temperature the shape of the buried PS-PMMA interface can be additionally 
determined by AFM in tapping mode after stripping the upper PS layer with a selective solvent (cyclohexane, 
Sigma Aldrich)17. The full shape of all polymer interfaces is obtained by composing PS-air, PMMA-air and 
PS-PMMA surfaces, a procedure which generates shapes as shown in Fig. 3. This composition of the 3-D image 
requires rotation, shift and tilt of upper and lower AFM scan as postprocessing for a perfect match. The contact 
line is also aligned parallel to the y-axis, so that cross sections can be averaged over a few scan lines in the 
y-direction. Both polymers were purchased from Polymer Standard Service Mainz (PSS-Mainz, Germany) with 
polydispersity of Mw/Mn = 1.05 and molecular weights of Mw = 64 kg/mol and Mw = 9.9 kg/mol for PS and 
PMMA, respectively. The glass transition temperatures are Tg = 100 ± 5 °C for PS(64 k) and Tg = 115 ± 5 °C for 
PMMA(9.9 k). The viscosities of these polymers at T = 140 °C were determined for PS as μ ≈



700kPas and for 

Figure 2.  (a–d) Experimental preparation of thin-film bilayer system and (e,f) AFM measurement and (g) 
postprocessing.

Figure 3.  Measured 3-D shape of a dewetting rim composed of AFM scans of PMMA-air, PS-air, and PS-
PMMA interface with liquid PS layer = ±



h (125 5)nm and liquid PMMA substrate = ±h (125 5)nms  after 
dewetting for 24 h at T = 140 °C.
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PMMA as μs ≈ 700 kPas applying the method of self-similarity profiles of stepped polymer films27,28. Using sta-
tionary droplet profiles17 we experimentally determined the involved surface tensions to γ = . ± .



31 5 0 2mN/m, 
γs = 32 ± 0.2 mN/m and γ = . ± .



1 2 0 2mN/ms, , compatible with values reported in literature29. Using the 
Neumann triangle construction

γ γ γ
γ γ

ϑ + ϑ =
ϑ − ϑ =

 

 

cos cos ,
sin sin 0,

1 s, 2 s

1 s, 2

these values correspond to contact angles of the PS-air interface with respect to the undisturbed PMMA-air inter-
face ϑ1 = 2° and of the PS-PMMA interface with respect to the undisturbed PMMA-air interface of ϑ2 = 64° and 
imply a spreading coefficient of S = (−0.7 ± 0.6)mN/m. However, a quantitative agreement of experimental meas-
urement and numerical simulations concerning the temporal evolution and concerning the observed interface 
shapes requires setting the viscosities to μ μ= =



1100kPass  and the spreading coefficient to S = −1.5 mN/m. 
These determined parameters are in the range of values reported in literature and compatible with the experimen-
tal values. We use these parameters consistently for all film thicknesses. The parameters μ μ ∼



: 1s  and ∼


h h: 1s  
suggest, that initially dissipation in the substrate and in the liquid are of the same order.

The fluid flow at time t is described by the continuous velocity field Ω →u: 3 and satisfies a no-slip condition 
at the solid substrate, i.e., u(x, y, z = 0) = 0. In particular, this flow is incompressible ∇ ⋅ =u 0 and according to 
(2) it dissipates the energy


  



∫ ∫ ∫τ ττ= ∇ = ∇ + ∇
Ω Ω Ω

x y z x y z x y zu u u u u u u( ) ( ): d d d ( ): d d d ( ): d d d ,
(5)s s s

s

where we introduced the shear stress for a two-phase system consisting of Newtonian liquids as

τ μ μ
μ

μ
= ∇ + ∇ =






∈ Ω

∈ Ω
Τ 

x y z
x y z
x y z

u u u( ) ( ), where ( , , )
( , , )
( , , )

,
(6)s s

and denote with ui and τi the restriction of u and τ to Ωi for ∈ i {s, } representing the substrate or the liquid. By 
construction, we have =



u us  on Γ
s,  and us = 0 at z = 0.

From the experimental dewetting rates discussed later one can anticipate shear rates in the PS film of 
γ ≈ ⋅ −


3 10 4 s−1. Using the fitted polymer viscosities and the shear modulus of GPS = 0.2 MPa for PS30 and 
GPMMA = 3 MPa for PMMA31, the relaxation time of the polymers τPS = μPS/GPS ≈ 4 s and τPMMA ≈ 0.2 s can be 
calculated. The resultant Weissenberg numbers τ γ=


Wi  are ≈ −

Wi 10 1PMMA
4  and ≈ −

Wi 10 1PS
3 , so 

that viscoelastic effects can be safely neglected32 and the treatment of the PS-PMMA system as Newtonian liquids 
is justified.

The energy from (1) is defined γ γ γ= |Γ| + |Γ | + |Γ |
   s ss s , , , where we can use the representation via 



h , hs to 
write

∫
∫
∫

|Γ | = + |∇ |

|Γ | = + |∇ + |

|Γ | = + |∇ |

ω

ω
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
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(7)
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s
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\
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2

2

where we introduced the wetted area as the time-dependent support set of 


h  using



 ω = ∈ > ⊂ .t x y h t x y( ) {( , ) : ( , , ) 0} (8)2 2

The apparent problem of an infinite energy   in (7) for unbounded ω in (8) can be circumvented by formally 
restricting the whole domain to a sufficiently big finite box. For given dissipation  and energy   it is basically 
known since the works of Helmholtz6 and Rayleigh7, that the evolution of the system is given by a minimal dissi-
pation principle

D E=


 + 〈 〉



u v vargmin 1

2
( ) D , ,

(9)v

or equivalently upon differentiation by the weak formulation a(u, v) = f(v) for all divergence-free v, where using 
(5) we have the bilinear form ∫ τ= ∇

Ω
a x y zu v u v( , ) ( ): d d d  and the linear functional = −〈 〉f v v( ) D , . The 

computation of f requires the formal variation of surface measures |Γi| with respect to perturbations of the surface 
by a flow v. This variation involves the Laplace-Beltrami operator33 and for our energy   can be expressed as

 

f a a sv v v f v( ) id: d 2 d d ,
(10)i s

i
i

i
{ ,s, }

cl
i i

∫ ∫ ∫∑ ∑ νγ γ κ= − ∇ ∇ = ⋅ − ⋅
∈ Γ Γ ∂Γ

where κν is the mean curvature vector on Γ


 and ∇ the tangential gradient. The Young force νγ= ∑f i i icl  appears 
at the contact line ∂Γ and is generated by performing integration-by-parts using the Laplace-Beltrami on sur-
faces. In the context of finite elements discretization for non-parametrized surfaces this method was introduced 
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by Dziuk34. This finishes the construction of the variational structure behind the energy-dissipation equality 
E D= −  that holds by construction.

When one derives the partial differential equation that formally corresponds to (9), then one usually intro-
duces an additional pressure Ω →p:  variable that acts as a Lagrange multiplier to enforce the incompressibility 
condition. The resulting model for the flow of highly viscous Newtonian fluids is the coupled Stokes system

τ−∇ ⋅ + ∇ =

∇ ⋅ =

p 0
u

,
0, (11)

i i

i

with shear stress τ μ= ∇ + ∇u u( )i i i i
T  as introduced in (6) and solved in Ωi for ∈ i {s, } in the substrate and the 

liquid. The equations in the two regions are coupled by interface/boundary conditions: no-slip us = 0 at z = 0, 
continuity =



u us on Γ
s , , tangential and normal stress conditions due to surface tension at the free surfaces 

Γ Γ


,s , and corresponding jump conditions on the interface Γ
s ,  generated by (10). This implies a condition for the 

pressure-jump at the interface Γ
s, . At the contact line the Young force fcl = 0 imposes further conditions on the 

triple junction using the Neumann triangle. When the velocity field is computed by solving (11), the domain Ω(t) 
is evolved according to the velocity field u, so that in particular the velocity uΓ of points on the free boundary 
satisfy the kinematic condition

ν− ⋅ =Γu u( ) 0, (12)

on the free interfaces and surfaces Γi. The fact that the domain shape Ω(t) is part of the unknowns makes the 
problem a free boundary problem. In the following we understand the evolution of the domain shapes para-
metrized using non-negative functions 



h t x y h t x y( , , ), ( , , )s  as introduced in (3) and (4) and shown in Fig. 3. For 
simplicitly the dependence of 



h h,s  on y will be dropped, since the solutions are assumed translation invariant in 
y-direction due to the particular experimental setup.

The system of Eq. (11) is now non-dimensionalized using



μ γ= = =x z H t H[ ] [ ] , [ ] / , (13)s

and we replace the dimensional parameters by γ =


1s , γ γ γ=�� �/ s, γ γ γ=� � �/s, s, s, and γ=S S/ s. Consequently, all 
experimental and numerical lengths are normalized to the initial film height =



H h . However, when stating 
experimental times we rather use the scaling 



t h/  since the multiplication with 


h  gives a direct conversion to the 
physical time and the factor μ γ



/ s in (13) is constant in all the experiments. Following the standard thin-film 
approximation we assume that the interfaces are shallow |∂ | h 1x s , |∂ | ��h 1x . Then, a formal asymptotic calcu-
lation shows that hs, 



h  are solutions of a system of degenerate parabolic equations defined separately on the wet-
ted region  ω = ∈ > ⊂



t x h t x( ) { : ( , ) 0}  and its complement. For x ∈ ω(t) we have



π π
π π

∂ = ∂ ∂ + ∂
∂ = ∂ ∂ + ∂

h M M
h M M
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( ), (14)

t x x x

t x x x

s 11 1 12 2

21 1 22 2

with mobility matrix μ=M h /(3 )11 s
3 , μ= =



M M h h /(2 )12 21 s
2 , μ= +

 

M h h h/3 /22
3

s
2 , viscosity ratio μ μ μ=



/s , 
pressures π1 = δE/δhs and π δ δ=



E h/2  using thin-film energy E obtained by expanding   for shallow slopes

� � �� � � � ∫ ∫γ γ γ= + |∇ + | + + |∇ | + + |∇ |
ω ω

( ) ( ) ( )E h h h h h x h x( , ) 1 ( ) 1 d 1 d , (15)s
1
2 s

2
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1
2 s

2

\
s

1
2 s
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which explicitly gives π γ γ γ= − + ∂ − ∂� � �� � � �h h( ) xx xx1 s, s , π γ γ= − ∂ − ∂� �� � �h hxx xx2 s . On the complement  ω\  only 
hs is unknown and solves the standard thin-film equation

π∂ = ∂ ∂h m( ), (16)t x xs 1

with degenerate mobility μ=m h h( ) /(3 )s s
3  and pressure π1 = δE/δhs = −∂xxhs. Additional boundary conditions 

and a kinematic conditions need to be imposed at the contact line xc = ∂ω. We have ≡


h t x t( , ( )) 0c  and hs(t, x) 
continuous at xc, which implies for the time-derivatives the essential interface conditions

+ ∂ =

+ ∂ = + ∂

� �
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� �h x h

h x h h x h
0,

lim lim ,
x

x x
x

x x
x

c

s c s s c s
c c

so that hs, ∂xhs are discontinuous at xc. Furthermore we require continuity of π1 and impose conservation of mass 
by natural interface conditions for the fluxes in (14) at xc. Contact angles at xc appear as a natural conditions, 
enforced by boundary terms in the variation of the energy (15) using Reynolds transport theorem. Note that once 
the solution is known, we can recover the horizontal component of the flow field ui = (ui, wi) in the thin-film 
approximation as

π
μ

π

=
∂

+ +

=
∂

+ +
  

u t x z t x z c t x z c t x

u t x z t x z c t x z c t x

( , , ) ( , )
2

( , ) ( , ),

( , , ) ( , )
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( , ) ( , ),
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for x ∈ ω. The functions 
 

c c c c, , ,s,1 s,2 ,1 ,2 depend on (t, x) and are determined using the boundary conditions us = 0 
at z = 0, μ− = ∂ − =

 

u u u u( ) 0zs s  at z = hs, ∂ =


u 0z  at = +


z h hs  as before. The flow field in the comple-
ment is determined analogously. The formal derivation of this model was performed by Kriegsmann and Miksis20. 
In order to be able to predict interface shapes for this model, we developed a novel finite-element based numerical 
scheme35, which uses advanced energetic arguments to discretize the contact line motion with the natural and 
essential interface conditions at xc mentioned above.

Discussion of Shapes and Rates
For a fixed thickness ratio (13) shows that, due to the absence of other intrinsic time and length scales for 
Newtonian liquids, the influence of the absolute height is to scale time proportionally without changing the res-
caled rim profiles. To check this prediction two experimental liquid-liquid systems with thickness ratio 

=


h h: 1:1s  but absolute film thicknesses ≈


h 100nm and ≈


h 250nm were observed. An overlap of the 
emerged rim profiles is shown in Fig. 4 for corresponding dewetting distances. The good reproducibility of the 
characteristic rim profiles within experimental errors confirms the previously made assumption that the fluids 
can be considered Newtonian and allows us to focus our study on different aspect ratios. Comparing experimen-
tally measured and theoretically computed interface profiles, we find an excellent agreement of both the charac-
teristic shapes of the liquid-air/substrate-air interfaces measured by in-situ AFM in Fig. 5 and the full profile 
when combining the upper interfaces with the AFM measurement of the burried liquid-liquid interface obtained 
for selected experiments after removing the PS layer in Fig. 6(a–d). The material of the dewetting liquid (PS) 
accumulates in a rim which, by conservation of mass, grows in time when the liquid retracts from the substrate 
(PMMA). Away from the rim the interfaces decay in an oscillatory fashion into their prepared constant states 

→
 

h t x h t x h h( , ), ( , ) ,s s . Also some material of the liquid substrate is dragged along generating a depletion near 
x < xc and an accumulation of substrate material near x > xc. The contact line itself is elevated by the flow, a 
dynamic feature quite common for soft substrates36 but not observed in stationary droplets for sufficiently thick 
substrates17. Right next to the contact line, the liquid-liquid interface extends deeply into the substrate and gener-
ates a trench which generates additional resistance against the dewetting motion. The size of this trench depends 
only weakly on the size of the dewetting rim, i.e., the dewetting distance.

Compared to the ratio =


h h: 1:1s  in Fig. 6(a,b), thickness ratios of 2:1 or 1:2 do not lead to qualitatively new 
features. For smaller aspect ratio =



h h: 1:2s , cf. Fig. 6(c), the above described characteristic features of the rim 
profile grow and for bigger aspect ratio =



h h: 2:1s , cf. Fig. 6(d), these features shrink in size slightly. For →h 0s  
we expect to observe shapes similar to that of a film dewetting from a solid substrate. The match of experiment 
and simulation is in all cases almost perfect, within the limits of reproducibility that can be estimated from Fig. 4.

For small dewetting distances, the dewetting rates in Fig. 7 suggest a linear behavior xc ~ t for all thickness 
ratios in agreement with the results by Lambooy and coworkers24. For fixed substrate film thickness hs, the dewet-
ting rates are larger for liquid layers thinner than the substrate, <



h hs, and smaller for thicker liquid layers, 
>



h hs. But, a close inspection of the seemingly constant dewetting rates in Fig. 7 (left) indicates that the dewet-
ting velocity slowly decreases over time. This fact is most apparent for aspect ratio 2:1, while for aspect ratio 1:2 
the velocity even appears to increase. However, the experimental accuracy is not sufficient to fully clarify this 
claim.

To clarify the dependence of the dewetting rates, results from simulation are plotted in Fig. 7 (right) for phys-
ical dewetting times of several month, which are not accessible experimentally together with further results for 
other film thickness ratios. Note the small variation in the velocities during dewetting, which explains why dewet-
ting rates appear almost constant. However, the intricate transient behavior of the velocity xc featuring inflection 
points in the simulations coincides with the before mentioned experimental observation. For instance, for an 
aspect ratio of 2:1 and the experimentally accessible (normalized) times t = 10−1 … 100 h nm−1, cf. Fig. 7 (left), the 
dewetting rate decreases, while for an aspect ratio of 1:2 the rate slightly increases within the observed dewetting 

Figure 4.  Experiments with film thickness ratio ≈


h h: 1:1s  and different absolute film thicknesses when the 
rim height is about ≈

 

h hmax 3 . Dashed lines: = ± = ±


h h(248 2)nm: (256 2)nms , solid lines: 
= ± = ±



h h(117 3)nm: (122 2)nms .
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interval. Note the striking agreement of all experimental and theoretical rescaled rates xc(t) also suggests the 
validity of the introduced parameters, i.e., viscosities and surface tensions. Furthermore, for all simulated param-
eters we find that for large times the velocity slowly decays to zero. Next, we are going to discuss the physical dis-
sipation mechanism behind the observed transient dewetting rates.

Figure 5.  Experiments (full lines) and theory (dashed lines) for film thickness ratio ≈


h h: 1:1s  and film 
thicknesses =



h 256nm at different times using a series of in-situ scans of upper PS-air and PMMA-air 
interface. The three additional theoretical profiles are at t = 0.84, 1.13, 1.41 h/nm, where the dotted line shows 
the PS-PMMA of the latest profile.

Figure 6.  Overlap of experimental and theoretical interfaces for different thickness ratios 


h h: s and dewetting 
times t at T = 140 °C. Rim profiles are chosen at times t where in (a,c,d) ≈

 

h hmax 2  and in (b) ≈
 

h hmax 3 . 
(a,b) ≈ = ± ±



h h: 1:1 (248 2) nm:(256 2) nms  at times (a) t = 0.13 h/nm and (b) t = 0.42 h/nm, (c) 
≈ = ± ±



h h: 1:2 (47 1) nm: (90 2) nms  at t = 0.09 h/nm, (d) ≈ = ± ±


h h: 2:1 (89 2) nm: (44 2) nms  at 
t = 0.18 h/nm. Experimental profiles are averaged over 30 scan lines of a straight front.
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Discussing the Role of Dissipation
Since the thin-film model accurately predicts shapes and speeds of the liquid-liquid dewetting, we extend our 
approach and discuss local flow features that are experimentally inaccessible in order to explain the observed 
dewetting dynamics. For instance, the rescaled dissipation balances with the driving surface tension in a 2-D cross 
section according to

∫ ∫= ∂ + ∂ = − ×
∼ μ

Ω Ω
��

�
�

u x z u x z S x( ) d d ( ) d d ,
(18)z z

1
2 s

2
2

2
c

s



with rescaled spreading coefficient γ γ γ= − +� � � �� �S ( )s s, . While the driving force is straightforward to understand, 
the dissipation depends on local details of the flow field. As a representative example to discuss the qualitative 
behavior we use numerical solutions with thickness ratio 1:1 and show rim profiles at different times overlapped 
with the dominant horizontal component of the velocity reconstructed using (17) in the left panel of Fig. 8 and 
the corresponding dissipation ∂



u( )z
2 and μ(∂zus)2 in the right panel. This gives an unprecedented insight to where 

the flow is resisting to the driving force.
The flow fields in the left panels of Fig. 8 point mainly in the positive x-direction with its maximum at the 

contact line. Away from the rim | − | x x 0c  the flow field vanishes. Below the depression of the liquid-substrate 
interface there is a rather strong and localized backflow in the liquid substrate. This backflow is created due to 
conservation of mass, which forces the flow in the substrate to balance the forward transport of the depression. 
Due to the boundary conditions ∂ =



u 0z s,  the dissipation vanishes at the liquid/air and substrate/air interfaces, 
whereas the flow field is zero at the solid/substrate interface z = 0. The latter results in a large shear rate and a large 
energy dissipation at the solid interface, cf. right panels of Fig. 8. Close to the backflow and close to the contact 
line the maximal dissipation density is reached. However, due to the small size of these regions the integrated 
dissipation near the contact line and in the remaining rim are of the same order, at least for the transient times and 
moderately large rims considered here. To visualize this fact, we additionally show the cumulative dissipation 
inside the (liquid) substrate and inside the (dewetting) liquid in Fig. 8 for different times. Since the shear rate is 
large at the solid interface where z = 0, clearly the dissipation for an aspect ratio 1:1 is large in the substrate for the 
short and intermediate times considered experimentally. Nevertheless, with the volume of the liquid rim increas-
ing in time, ultimately the dissipation in the liquid layer will dominate for large times or for higher aspect ratios. A 
slightly more detailed visual description of this dynamics and the corresponding experiments is provided in the 
attached supplemental video.

Accordingly, one can identify two different zones where the energy is dissipated in the liquid and the substrate. 
A significant amount of the dissipation is produced in a small region near the contact line. This can be seen in the 
steep increase of the cumulative dissipation in the right panels of Fig. 8. The remaining contribution to the dissi-
pation is more or less evenly distributed over the rim width resulting in a moderate and constant increase of the 
cumulative dissipation over the width of the rim. For large times this bulk contribution will dominate the dissipa-
tion and forces the velocity to decay to zero. This can also be seen in the temporal evolution of the dissipation 
profiles, which is decreasing due to the quadratic dependence on the velocity scale in (18). This variable contribu-
tion to the energy dissipation ∼ directly impacts the observed dewetting rates. This can be best explained on the 
basis of the known dewetting behavior on solid substrates, which qualitatively also applies for dewetting from 
liquid substrates. When the contact line position is xc(t) and starts at xc(t = 0) = 0, then asymptotically the rim 
cross-sectional area grows proportionally to ×



x hc  by volume uptake from the unperturbed liquid layer. 
Consequently, assuming self-similar growth, typical rim geometry such as rim width or like rim height grow 
proportionally to xc . Additionally, we assume self-similar growth of the dissipation according to

Figure 7.  (left) Non-dimensional dewetted distance xc for thickness ratios ≈ = ±


h h: 1:1 (248 2)s  
±nm:(256 2) nm and ≈ = ± ±



h h: 2:1 (89 2) nm:(44 2) nms  and ≈ = ± ±


h h: 1:2 (47 1) nm:(90 2) nms  
from experiment and numerical simulation suggesting constant dewetting rates ≈ . ⋅ −

x 4 4 10 nm/sc,1:1
2  and 

≈ . ⋅ −
x 3 0 10 nm/sc,2:1

2  and ≈ . ⋅ −
x 5 2 10 nm/sc,1:2

2 , where longer simulation times (right) reveal that rates xc 
decrease depending on details such as the aspect ratio.
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 ∼
∼ α

x xu( ) ( ) , (19)c c
2

where it remains to specify α using the dominating dissipation mechanism and its dependence on rim geometry. 
In the intermediate slip model11, the dominant contribution comes from a substrate dissipation, so that the total 
dissipation is proportional to the rim width and thereby α = 1/2 in (19). Then, the energy-dissipation balance 
produces ∼ − ×α

 x x S x( )c c
2

c leading to an asymptotic xc(t) ~ tβ dewetting law with β = 2/3. Another example11 is 
the no-slip model, where the dissipation is predominantly localized near the contact line and in the bulk domain. 
The contact line area does not scale with the volume, whereas the gradients in the dissipation in (18) cancel the 
growth of the cross-sectional area, thereby both leading to α = 0 in (19). This produces a linear dewetting law 
β = 1, however with logarithmic corrections37. Similarly, the power-law dewetting rates on liquid substrates pre-
dicted by Brochard et al.14 rely on the assumptions that the dissipation is generated in only one such localized 
zone together with a nearly self-similar growth of rim shapes. However, these assumptions fail in the considered 
situation of liquid-liquid dewetting since dissipation is clearly not generated in one single zone but accumulates 
in the substrate, in the liquid and near contact lines on a similar order of magnitude. This explains why in our 
setting the liquid-liquid dewetting process is not in a regime dominated by a specific dissipation mechanism that 
would admit a simplification to a power-law rate, and thereby challenges the applicability of the theoretical results 
by Joanny13 and Bochard-Wyart et al.14 to experimental systems considered in this paper in early stages. However, 
the weak scaling of the dissipation with increasing xc theoretically explains the nearly linear dewetting rate, that 
was observed experimentally by Krausch24 and in the present work.

The consideration of the liquid-liquid dewetting using thin film models with explicit contact line dynamics, 
conducted here, allows to describe the variable energy dissipation in a liquid-liquid system and to quantitatively 
derive rim shapes and dewetting rates. Nevertheless, the predicted slowdown of the dewetting velocity is expected 
when the dissipated energy is not soley confined to the contact line. The exact slopes in the log-log plot of Fig. 7 
(right) depend on details such as thickness ratio and viscosities, and thereby do not support a universal power-law 
behavior. This observation confirms previous speculations by Krausch et al.24 that were based on experimental 
findings about the transient nature of the experimentally measured dewetting dynamics.

Figure 8.  (left) Flow fields in the liquid substrate us(t, x, z) and in the dewetting liquid 


u t x z( , , ) and (right) the 
corresponding energy dissipation Ds(t, x, z) = (∂zus(t, x, z))2 and μ= ∂

 

D t x z u t x z( , , ) ( ( , , ))z
2 on a logarithmic 

scale normalized to their respective maximal values computed numerically from the thin-film model during 
dewetting of liquid-liquid system with aspect ratio 1:1 at times t = 0.005, 0.36, 1.07, 1.77 h/nm increasing from 
top to bottom. The addidional curves in the right panel show the cumulative dissipation in the substrate 

∫ ∫−∞
D z xd dx h

0 s
s  (blue line) and in the liquid ∫ ∫

+


D z xd d
x

x

h

h h

c s

s  (red line) normalized with an arbitrary but time-
independent constant.
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Conclusion
Motivated by the long-standing puzzle between theoretically predicted and experimentally observed rates for 
liquid-liquid dewetting, we performed a combined theoretical and experimental investigation of the transient 
interface shapes and dewetting rates. Conducting a full simulation of the sharp interface thin-film model for 
Newtonian liquids without any a priori assumptions on rim shape development or energy dissipation we obtained 
a full agreement with experimentally determined interface shapes and dewetting dynamics using the relevant 
experimental parameters like viscosities, aspect ratios, and surface energies. As the main tool to assess the tran-
sient nature of the flow, we reconstructed local flow and dissipation fields. Such a detailed analysis of a local 
energy balance provides deep insights into underlying mechanisms driving such a process.

By analyzing the local energy dissipation, we have found that the liquid-liquid dewetting system is in a tran-
sient state with no self-similar behavior and the dissipation is not distributed exclusively at the contact line, in 
the substrate, or in the bulk. While the dewetting rate in the observed experimental regime is almost constant and 
thereby of powerlaw type in the strict sense, the absence of self-similarity and localization of dissipation under-
lines the absence of a dominant mechanism behind this rate. A similar energetic argument provided the explana-
tion why, for very large times beyond experimental reach, the dewetting velocity slowly decreases to zero. Such 
predictions would be impossible using heuristic approaches, since the transient internal flow is rather complex 
and results from a complex interaction of substrate and liquid. Without such a theoretical toolbox, the observed 
dewetting rates might otherwise be misinterpreted as a regime with potential dominant physical effects. The 
demonstrated ability to use energetic arguments to quantitatively describe liquid-liquid systems thus set grounds 
for a similarly complete understanding as already obtained for liquid-solid dewetting systems. In particular, the 
analysis of the local dissipation distribution provides a powerful tool to identify dominant physical regimes or 
their absence. It might be in particular possible to extend this approach also to fluids with complex rheological 
behavior.
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