
Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 1/30

Editor:
Roland Klemke (OUNL)

Wearable Experience for Knowledge Intensive Training

Project No 687669

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 2/30

Revision History
Version Date Contributor(s) Modification

0.1 06-10-2016 Roland Klemke Initial Outline

0.2 10-10-2016 Roland Klemke,
Fridolin Wild,

Daniele Di Mitri

Methodology and refined structure

0.3 19-10-2016 Roland Klemke,
Daniele Di Mitri,

Bibeg Limbu,
Jan Schneider

Design requirements and existing
prototype

0.4 10-11-2016 Puneet Sharma,
Bibeg Limbu,
Fridolin Wild,

Roland Klemke,
Daniele Di Mitri,

Tre Azam,
Jan Schneider

API Specification, Recommendations, and
Conclusions

0.5 18-11-2016 Kaj Helin,
Istvan Koren

Review

0.6 25-11-2016 Roland Klemke,
Daniele Di Mitri,

Jan Schneider,
Bibeg Limbu

Final version

1.0 30-11-2016 Cinzia Rubattino Final edits

Disclaimer: All information included in this document is subject to
change without notice. The Members of the WEKIT Consortium make
no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for
a particular purpose. The Members of the WEKIT Consortium shall not
be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 3/30

Software Prototype with Sensor Fusion

API Specification and Usage Description

WP 3 | D3.3

Editors:

Roland Klemke (OUNL)

Authors:

Daniele Di Mitri (OUNL)
Bibeg Limbu (OUNL)
Jan Schneider (OUNL)
Puneet Sharma (UiT)
Fridolin Wild (OBU)
Tre Azam (MP)

Reviewers:
István Koren (RWTH)
Kaj Helin (VTT)

Deliverable number D3.3

Dissemination level Public

Version 1.0

Status Final

Date 30.11.2016

Due date M12

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 4/30

Table of Contents

Executive summary ... 5

1. Introduction... 5

2. Methodology ... 5

3. Design Requirements .. 7

3.1 Framework and Methodology (WP1: D1.3 & D1.4) .. 7

3.2 Requirements Derived from Sensor Specifications (D3.1) .. 10

3.3 First Prototype: Documentation, Experiences and Requirements 12

3.3.1 Sensor Fusion Component .. 12

3.3.2 User Interface .. 14

3.3.3 Backend infrastructure .. 16

4. Experience Capturing API Specification .. 16

4.1 API to Hardware .. 17

4.2 API to Application Modules ... 19

4.3 Backend API ... 21

5. Recommendations & Usage .. 27

6. Conclusions.. 27

References ... 28

Articles ... 28

Related WEKIT Deliverables .. 28

Other references ... 29

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 5/30

Executive summary
This deliverable reports on the components of the first functional prototype of the WEKIT sensor

fusion API and the experiences made with it. The development of these components is based on

previous work on the WEKIT framework and methodology, requirements and scenarios, as well

as technological selections and limitations. The deliverable specifies the key interfaces between

the software component and the hardware, the backend infrastructure, and the front-end

application modules. Furthermore, it contains usage recommendations. This deliverable

represents the first of two iterations. The second iteration is due in month 27.

1. Introduction
As outlined in the WEKIT project description, the objective of this deliverable (D3.3) is to
describe the software prototype and specify the sensor fusion API. It involves reviewing existing
deliverables and transform their outcomes into formal specifications:

● D1.3 WEKIT Framework and Training Methodology
● D1.4 Requirements for Scenarios and Technological platform
● D3.1 Requirement Analysis and Sensor Specifications

This deliverable is delivered together with further technology-oriented deliverables:

● D2.1 Functional and Modular Architecture: Requirements and Specification
● D2.2 Learning Experience Content Model Draft
● D3.2 Hardware Prototype with Component Specification and Usage Description

The results of this deliverable will be used to further develop the experience capturing API
(iteration of this deliverable), to provide further input to hardware specification and
development activities (D3.2) and to guide the development of application modules, which are
based on the API (WP2, WP4).

The rest of this deliverable is organised as follows. In Section 2, we outline the methodology
used. In Section 3, we analyse the starting points for this deliverable: input from previous
deliverables, coordination with accompanying deliverables, and input from related research
activities. Section 4 contains the core specification of the experience capturing API split into
three parts: (1) API for interaction with the hardware, (2) API offering high level functionality to
application modules, (3) Backend considerations for the API. In Section 5, we condense a set of
recommendations for the usage of the experience capturing API.

2. Methodology
In order to tackle the challenges WEKIT faces in technology selection and development, data

storage and analysis, user interface design, and pedagogic instruments, the project relies on

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 6/30

several pillars in its technology development activities, which are represented by parallel

deliverables to be delivered along this one:

● Deliverable D2.1 (functional and modular architecture) specifies the overall bird's eye

view on the project's infrastructure, components, and their connections.

● Deliverable D2.2 (learning experience content model draft) describes how data formats

and protocols can be put in place to allow for storage, communication, and retrieval of

captured experiences.

● Deliverable D3.2 (hardware prototype with component specification) specifies the

hardware components to be used and connected as the wearable solution for WEKIT.

This deliverable is connected to these parallel deliverables, in that it specifies a software

component (Experience Capturing API, short XCAPI), which connects the hardware components

(D3.2, sensors and their integration and abstraction, wearable devices) to the backend storage

(D2.2 & D2.1). Additionally, this deliverables offers methods for the development of high-level

end-user applications.

To minimize the impact of interdependent work aspects, the first version of the technical

prototype has been developed in an agile, rapid prototyping manner. In several iterations,

sensor integration component, storage formats, user interface prototype, capturing and re-

enactment functionality, as well as editing functionality have been developed and tested.

These development cycles lead to experience with respect to:

● sensor communication

● data amounts and formats

● interaction requirements and limitations

● functionality requirements and constraints

Based on these experiences, the following development cycles will work towards improved,

stabilized, usable and functionally more complete versions of the XCAPI and its connected

components. Figure 1 shows an overview over this structure.

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 7/30

Figure 1. XCAPI and its Connections to Frontend, Backend, and Hardware

3. Design Requirements

3.1 Framework and Methodology (WP1: D1.3 & D1.4)

The WEKIT framework at its core collects attributes of an expert and methods to train these to
novices using AR & WT. The general attributes of the expert, termed “Expertise” here on, are
entities that are demonstrated by experts in different domains. Expertise can be regarded as
higher form of skills in experts which is domain specific and need to be learnt through
experience. The methods to train this expertise, termed “Transfer Mechanisms”, are more than
mere instructions to practice the skills (see Table 1). In addition to skills, the Transfer
Mechanisms allow trainees to experience the experts performance by augmenting the skills with
expertise. [Refer to document “Framework Information Collector” from D1.3]. The framework
information collector document consist of a classification of the Transfer Mechanism based on
focal areas of expertise. Of the 7 identified categories, Gaze Behaviour, Point of View, Audio &
Motor Performance are relevant for the XCAPI and the context of this document. This is not to
say we do not address the rest of the categories. They do not rely on captured data from expert
and thus are outside the scope of XCAPI specifications. These are addressed in the “pre/post
recording phase”. This section elaborates on how we can provide an API to the UI designers,
Instructional designers and front end software developers so that they meet our framework
standards to achieve the best results with their application.

Table 1. Template for Transfer Mechanisms

Category Based on Resource of Expertise

Hololens

Sensor
Processing
Unit (SPU)

XC
API

Backend
Repository

Cont
roller

Ra
w

Capture Re-
enact

P
U

P
U

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 8/30

● Classification of the Transfer Mechanism based on focal areas of expertise. It should be noted that while

a task may have many forms of expertise involved, capturing them would require focus on different

aspects of the expert.

General Descriptor
● How can the feature be described?

Requirements for Recording
● How is this mechanism enabled during recording?

● Which conditions need to be met to enable this feature?

● Which functionalities does the feature have to offer?

Requirements for Training
● How is this feature enabled by/for the learner?

● What does this feature do?

● Which conditions need to be met to allow this feature to be present?

● Which interaction means does the learner have?

It should be noted that each transfer mechanism represents an instructional approach in its own

right, thus having a design and use case. Additionally, the requirement sections in the Transfer

Mechanism list any possible types of requirements from technical to human aspects. Each

Transfer Mechanism in the document has a “Requirement for Recording” and “Requirement for

Training” section. It seems only logical to separate the APIs based on these categories even

though there might be instances where some of them might overlap. Since the front end

application will need to record the expert data and then create a training application as well,

APIs need to be provided for both instances. Therefore APIs will be designed to meet these

requirements stated by Transfer Mechanisms and the requirements envisioned from the

elaboration of use case of each Transfer Mechanism.

The process of capturing expertise is done in the 3 steps of pre-recording, recording and post
recording. As stated, the pre-recording phases consist of planning tasks such as task analysis and
sensor setup. It involves the expert and the person performing the task analysis. Task analysis
provides us with a structure of the complex task that is broken down into subtasks along with
crucial explicit information that can assist in proper recording of the expert such as the
granularity of breaking down the task. The expert records each subgoal individually by breaking
each subgoal into a number of linear steps. During the recording, the expert will be allowed to
perform the task fluidly with no interruptions of having to explain or divide the task into a
number of steps. When the recording is done, the expert will be allowed to review his recording
to further improve the instructions. During this phase, he may chose to annotate particular
hardware, provide a verbal explanation, choose to keep the video data or delete it based on the
type of data that was captured. In order to facilitate the phase of post recording, the sensor data
must be provided in a simplified manner to the expert and allow any common modifications on
the data that seems relevant. It also means that it must be recorded in a sensible manner. For
example, the eye tracker could provide only the areas that were focused for longer duration and
frequency rather than having to play the whole video through and manually deleting the noise.
Therefore, each packet of data should be tagged with the ID that follows
“goal/subgoal/step_number….”. The packet should also handle empty calls for data of sensors
that are not used in that particular step. For this, the same type of recording such as eye tracking

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 9/30

should share the same naming convention in all the packets. Each type of data should also be
individually accessible.

During the training phase, the trainee will follow a natural sequence of activities unless explicitly
needed in which case he may have the option to search for the required step from the task
hierarchy provided by the expert. He/she should start the task in the same settings, environment
and orientation. The picture of how the end user system will look like depends on the application
developer. Table 2 summarizes the functional requirements followed by non-functional
requirements but the APIs will satisfy the requirements for re-enactment for each Transfer
Mechanism.

Table 2. Functional requirements

Functional Requirements

Capture Training

● Synchronized Fusion of sensor data
● Each sensor data will be stored in

packets that correspond to the
annotation (see below) based on
experts task analysis.

● Each packet must be able to perform
functions of their parent’s sensor which
might be required for the editing or re-
enactment.

● Each packet must handle empty calls
for data of sensors not available in that
packet.

Gaze Behaviour
● Must allow deletion of points of focus.
● Must be coupled with the video

relevant to the captured data.
Point of View

● Must allow video to be cut into clips.
● Must allow deletion of clips.
● Allow cropping of the video.
● Should allow taking pictures which

might be a clue to understanding the
complex step and tag it.

Audio
● Allow clipping of audio.
● Allow tagging audio in dimensional

space and time.
Motor Performance
● Augmenting the performance of the

expert.
Task Analysis

Gaze Behaviour
● Only provide points of significance

which has higher gaze duration and
gaze rate.

● Allow each point to be tagged to a
physical object location in the scanned
3D model of the room.

Point of View
● Provide video control options such as

speed
Audio

● Provide audio control options.

Motor Performance

● Define tolerable range based on expert
movement to provide haptic feedback.

● Allow enriching the replay of expert 3D
model with augmented instructions.

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 10/30

● Allow artefacts to be tagged.
● Define artefacts’ individual

characteristics.

3.2 Requirements Derived from Sensor Specifications (D3.1)

For the WEKIT project, we aim to use binocular augmented reality glasses. Taking into
consideration all the factors (mentioned in the sensor specification deliverable D3.1), Microsoft
Hololens (Hololens, 2016) with features including: environment capture, gesture tracking, mixed
reality capture, Wi-Fi 802.11ac, and fully untethered holographic computing, is the best
candidate for the project.

While the main design of the prototype will be based around Microsoft Hololens, to keep the
prototype open for other augmented reality glasses and emerging technologies such as: Snap
glasses or the ODG R-7 augmented reality glasses.

For EEG, the MyndBand and Neurosky chipset (MyndBand, 2016; Neurosky, 2016) are favoured
for the WEKIT project due to the processed data, ease of use, simple setup, low cost and ability
to provide research grade data on attention, relaxation levels, and eye blinks.

For eye tracking, we need a wearable eye tracking component that can work in conjunction with
the augmented reality/smart glasses. However, there are no eye-tracking solutions available for
Microsoft Hololens or ODG R-7 (ODG, 2016). To this end, we plan to use Hololens’ gaze, which
is not based on the eyes, but, on the position and orientation of the user's head. It acts as a laser
pointer originating from the center of two eyes, and by intersecting with a spatial mapping mesh
(provided by Hololens) gives a good estimate on the gaze direction of the user.

For capturing the point of view of the expert or trainee in the the Industrial scenarios, we aim
to use the point of view camera associated with augmented reality glasses (e.g., Microsoft
Hololens). In doing so, we use more sensors from the existing augmented reality glasses,
thereby, reducing the complexity of the overall system design.

For capturing the voice of the expert or novice in industrial training scenarios pertaining to
aviation, space and medical use cases, the built-in microphone of the augmented reality glasses
can be used.

For detecting hand movements and gestures, camera based sensors such as: Leap Motion (Leap,
2016) and Intel RealSense (Intel, 2016), can be used. For sensor-based arm (and, to a limited
degree also hand-gesture) tracking, the Myo armband (Myo, 2016) can be employed.

For detecting the posture, we plan to use Lumo Lift (Lumo, 2016) or Alex posture tracker (Alex,
2016) (sensor-based system).

Table 3 summarizes the selected sensors and the corresponding requirements.

Table 3. Selected Sensors and Requirements for Interaction, Capturing, and Re-enactment (see also
table 1 in parallel deliverable D3.2)

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 11/30

Sensors Technical specifications Requirements for

interaction
Requirements for

capturing
Requirements for

re-enactment

Augmented
Reality Glasses
(Microsoft
Hololens)

See-through holographic
lenses (waveguides, 2 HD
16:9 light engines,
Automatic pupillary
distance calibration.
Holographic resolution:
2.3M total light points,
holographic density:
>2.5k radiants (light
points per radian), 4
environment
understanding cameras,
inertial measuring unit,
depth camera.

Track location of user
in the environment,
mapping the
environment for
optimal placement of
virtual objects.

Track location of user
in the environment,
track objects in the
environment.

View instructions,
activity, videos, and
virtual post-its,
application, in the AR
display.

Augmented
Reality Glasses
(ODG R-7)

Dual 720p Stereoscopic
See-thru displays at up to
80fps, 80% See-through
transmission, Magnetic
Removable
Photochromic Shields.

Same as Hololens
(above).

Same as Hololens
(above).

Same as Hololens
(above).

Point of view
camera
(Microsoft
Hololens)

1 2MP photo, high
definition video camera

None Start and stop video
recording, take digital
pictures, enable and
disable point of view
camera, capturing
current point of view.

Capturing current
point of view, enable
and disable point of
view camera.

Built-in
microphone
(Microsoft
Hololens)

4 microphones Voice as input for
interaction

Start and stop the
microphone, enable
and disable
microphone.

Start and stop the
microphone, enable
and disable
microphone.

Gaze (Microsoft
Hololens)

Gaze cursor Estimate gaze
direction, select
objects in the
environment, place
virtual post-its.

Estimate gaze
direction, select
objects in the
environment, place
virtual post-its.

Estimate gaze
direction, select
objects in the
environment, place
virtual post-its.

MyndBand and
Neurosky
chipset

Raw-Brainwaves, EEG
power spectrums (Alpha,
Beta, etc.), Attention,
Meditation, and other
future metrics, detect
poor contact, and
whether the device is off
the head.

None Estimate attention,
focus eye blinks, and
other metrics, enable
and disable EEG.

Estimate attention,
focus eye blinks, and
other metrics, enable
and disable EEG.

Intel RealSense Range: front-facing: 20-
180 cm, rear-facing 50-
500 cm. Depth camera

Use hand movements
and gestures to
interact with the

Recognize hand
movements and
gestures.

Recognize hand
movements and
gestures.

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 12/30

with 640x480 resolution
(30 fps).

environment and the
application.

Leap Motion Range: 1m, Frame rate:
200 fps, precision: 0.7
mm.

Use hand movements
and gestures to
interact with the
environment and the
application.

Recognize hand
movements and
gestures.

Recognize hand
movements and
gestures.

Myo Sampling data rate for
electromyography is 200.
Hz, sampling date rate
for Inertial Sensor is 50
Hz.

Use gestures to
interact with the
environment and the
application

Recognize gestures, Recognize gestures,
use vibrations as
feedback on some
activities.

Lumo Lift Vibrational posture
feedback, Bluetooth
communication.

None Recognize posture. Vibration feedback.

Alex posture
tracker

Vibrational posture
feedback, Bluetooth
communication.

Same as Lumo
(above).

Same as Lumo
(above).

Same as Lumo
(above).

3.3 First Prototype: Documentation, Experiences and

Requirements

Several components of the WEKIT system have been developed. In this section, we describe

these components, their structure and the experience gained. The first version of the prototype

aims to explore the following essential functions of the WEKIT system:

1. Sensor fusion: with this prototype, we aim to explore the combination of different kinds

of sensors within one infrastructure.

2. User interface: the sensor fusion component should be supplied with an experimental

user interface for configuring the sensor usage, recording, editing, and visualizing sensor

data in order to test use case coverage.

3. Backend infrastructure: we aim to explore architectural insights into storing/retrieving

high amounts of recorded data.

3.3.1 Sensor Fusion Component

For the first prototype of the sensor fusion component, we decided to take a set of off-the-shelf

sensor products and combine them into one infrastructure. These sensor products are selected

according to the recommendations derived from Deliverable D3.1 (Sensor Specification) and

comprise:

● Microsoft Kinect (motion and posture tracking, full-body) (Kinect, 2016)

● Leap Motion (motion and posture tracking, hands only)

● Myo (motion and gesture tracking, arm movement)

● audio

● video

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 13/30

As a first step, we explored the amount of data delivered by each sensor per frame and

calculated storage requirements for uncompressed/compressed storage of raw sensor data. We

assumed a data resolution of 60 frames per second for each sensor. Table 4 lists the raw and

compressed data amounts for various sensors as measured per frame, second, and minute.

Table 4. Amount of Data (in Kilobytes) for Individual and Combined Sensors

 Device

Duration Kinect

Myo

Armband

Leap

Motion

(No hands)

Leap

Motion (1

hand)

Leap

Motion (2

hands)

1 file

(Kinect,

Myo, Leap

(no

hands))

1 file

(Kinect,

Myo, Leap

(2 hands))

Raw Data

1 Frame 7 0.8 1 2 2.5 10 11

60 Frames 343 4 3.5 19 31 352 380

3600 Frames 20,000 205 148 1,000 1,800 21,000 22,500

Compressed Data

1 Frame 1.5 0.5 0.5 0.8 0.9 2 2.4

60 Frames 41 1.2 1 3 5 43 48

3600 Frames 2,400 37 28 133 222 2,500 2,600

With this information, we designed a file format to combine sensor data from the sensors

selected into a combined data stream. This format is XML-based and follows the logic of multi-

track recordings in order to allow to select, replace, or edit tracks individually. For each sensor,

the original sensor data stream is included as binary data into the sensor's track inside the file.

To opt for extensibility of the sensor fusion component, an architecture has been defined, which

specifies a general base class (WEKITPlayer). This base class defines the infrastructure for

capturing and replaying sensor data. For each specific sensor device, a special subclass is

available (AudioPlayer, KinectPlayer, MyoPlayer, etc.), some of which define own specialised

data types (MyoData, CapsuleHand). This architecture allows for easy extension (new sensor

types) while maintaining a common interface (see figure 2).

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 14/30

Figure 2. Class Diagram of First Prototype

3.3.2 User Interface

The first version of the user interface is designed for using the sensor fusion component as a

standalone system on a PC. It's main aim is to serve as a functional prototype, which enables to

access and test the sensor fusion component's functionality allowing to experiment with the

recording and re-enactment of the various supported sensors.

The first prototype offers the following use cases (see Figure 3 for a screenshot):

● Configuration of sensor components and specification of different recording and re-

enactment setups. This functionality refers to the design of various different transfer

mechanisms: each transfer mechanism as specified in deliverable D1.3 (WEKIT

Framework and Methodology) corresponds to specific sensor requirements (see D3.1,

sensor specification).

● Starting a new recording session. The system visualises the captured sensor data during

recording for all sensors selected to be part of the session.

● Loading and replaying a recorded session. The system re-visualizes the sensor data from

the recording for all recorded sensors.

● Editing a recorded session. The editing feature allows to replace individual tracks in a

recording with re-recordings. To do so, it visualizes all recorded tracks (except for the

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 15/30

one to be re-recorded) and records and visualizes the selected sensor synchronised to

the existing tracks.

Figure 3. Screenshot of the Sensor Integration Component

We conducted first trials (see Figure 4) where we recorded different assembling actions for Lego

Mindstorm using the described framework. Findings from these tests show that it is really

difficult to make sense out of the sensor data alone. This means that using the sensor data alone

in order to identify actions and give feedback on them does not seem to be a practical solution.

Therefore, we propose to follow a very structured approach to capture the learning experiences,

as described in the process model definition (section 4.3.1).

Figure 4. First Wearable Enhanced Learning Experience Capturing Experiment

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 16/30

3.3.3 Backend infrastructure

The current version of WEKIT's backend infrastructure is a Repository of Learning Experiences
which is based on the ECO Learning Analytics infrastructure. It implements a version of the
Learning Record Store (LRS) developed by the OUNL for the ECO project (Ternier et al., 2016)
and also used for a similar multimodal data collection study called Learning Pulse (Di Mitri et al.,
2016). This LRS is able to pull the data from the third-party APIs, transform them into learning
records and handing out their identifiers. The learning records are stored into a “fact table”
(Learning Locker) and assigned Universally unique Identifiers. As shown in Figure 5, ECO Learning
Analytics (ECO LA) has three components running on the Google Cloud: an xAPI master a
BigQuery and a Learning Locker. This setup allows to balance the load of data on a distributed
architecture for scalability purposes.

From the Learning Locker the data are synchronised into a Big Query index which, contrarily to
the Learning Locker, allows to query the distributed learning statements with SQL language. The
synchronisation between the Learning Locker and the BigQuery Index happens using a queue,
such that no learning records get lost. As the amount of data being received from the sensor
could get really big, the computational approach used to develop the ECO LA is MapReduce, a
framework developed by Google for executing very large amounts of computation in a short
time. At the core of MapReduce there are two functions: a map function which starts from an
object and generates a set of key/value pairs for this object. A reduce function merges all values
that are associated to one key.

Figure 5. ECO Learning Record Store Architecture

4. Experience Capturing API Specification
While chapter 3 reports on the existing components and infrastructures of the WEKIT XCAPI

prototype, this section specifies the XCAPI for further development into the final version. In

important aspect of moving towards the final prototype is its transfer into the final architecture,

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 17/30

which includes the technical architecture for the wearable part as depicted in figure 1 and

detailed in the parallel deliverable D3.2 (Hardware prototype with component specification and

usage description), but also refers to the overall system architecture as described in the parallel

deliverable D2.1 (Functional and modular architecture).

This section is organised along the three main connection points of the Experience Capturing

API (XCAPI):

● API to Hardware describes how the XCAPI interacts with the low-level API provided by

the sensor component. Here, function calls to retrieve/accept sensor updates are

bundled and methods to activate/deactivate specific sensors are provided.

● API to Application Modules describes the high-level functionality as offered to end-user

application level software. These build on the general functionalities offered in the first

prototype mapped to the wearable scenario.

● Backend API describes the interaction of the XCAPI with the backend infrastructure for

storing/retrieving recorded data.

4.1 API to Hardware

The core functionality of the XCAPI is to capture sensor data for the selected sensor component
in real-time or close to real-time. Hence, data from multiple sensors needs to be gathered,
processed, and prepared for storage.

Additionally, previously captured and stored sensor data needs to be synced with current sensor
data to allow for editing, comparison, and guidance (this concept is similar to "ghost tracks" as
known from e.g. racing games).

Furthermore, the XCAPI relies on an abstracted access to each sensor device category provided
by the sensor controller component. This means, that e.g. independent from the concrete
manufacturer of an EEG sensor, the XCAPI receives the attention level from the sensor
controller, rather than the raw sensor data. Some sensors, where raw data is essential (e.g. audio
data) may be exceptions to this approach.

Based on these core requirements, the XCAPI defines a number of PUSH (the sensor controller
actively informs the XCAPI about events and updates) and PULL (the XCAPI queries information
from the sensor controller) methods, to interact with the sensors.

Consequently, for each high-level function (attention, stress level, heart rate, etc.) the following
methods are defined:

● PUSH methods: activation, deactivation, updating, events/errors. Below we list these
functions using the attention (EEG) sensor as an example:

○ activateAttention: called by the sensor controller, as soon as an attention sensor
(EEG) is connected and ready to be used.

○ deactivateAttention: called by the sensor controller, when the attention sensor
(EEG) is disconnected and can no longer be used.

○ updateAttention: called by the sensor controller to indicate a significant change
in the attention value.

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 18/30

○ attentionEvent: called by the sensor controller to indicate specific events such
as low battery.

● PULL methods: querying availability of a sensor, querying sensor state, opening/closing
a sensor input stream:

○ isAttentionAvailable: called by XCAPI to check, if an attention sensor is available
in the infrastructure.

○ getAttention: called by XCAPI to get the most current attention value from the
sensor controller.

○ openAttentionStream/readAttentionStream/closeAttentionStream: if the
sensor controller ensures data for a sensor to be available in a specific frequency
(e.g. 10 values per second), stream based access can be used.

Accordingly, other sensors and corresponding high-level functions are mapped to the XCAPI.
Table 5 lists these different high-level functions and the key functions (PUSH and PULL) to be
provided for them.

Functionality: at lowest levels the drivers will be presented as a C++ library with a standardised
API plus device specific extensions. Upon this a language-agnostic abstraction layer should be
built. One suggestion is protocol buffers from Google (proto-buf)
https://developers.google.com/protocol-buffers/ which is light-weight, but only supports C++,
C#, Go, Java, and Python. Another suggestion is https://thrift.apache.org/ . Thrift has a much
larger list of supported languages. Both are well supported, have permissive licensing, and are
able to run both locally and and across network connections, thereby offering flexibility of
architecture.

Both proto-buf and Thrift use an underlying communication method, most usually RPC, which
allows cross-platform support. The details of the operating system on either end is hidden by
the framework. It also allows the API to be accessed over a network. As detailed in D3.2, Apache
Thrift has been chosen as the communication library.

Table 5. XCAPI Calls from/to hardware modules

HighLevel
Value

Pull Functions Push Listeners Return Value
Type and
Range

Sensors

Attention getAttention
isAttentionAvailable
openAttentionStream
closeAttentionStream

activateAttention
deactivateAttention
updateAttention
attentionEvent

Integer, 0-
100

EEG

HRV getHRV/getHR activateHrv
deactivateHrv
updateHrv
hrvEvent

Integer HR tracker

StressLevel getStressLevel activateStressLevel
deactivateStressLevel
updateStressLevel
stressLevelEvent

Integer, 0-
100

Skin
conductance

Location isRelLocationAvailable activateRelLocation Coordinates GPS, Depth

https://developers.google.com/protocol-buffers/
https://thrift.apache.org/

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 19/30

(relative to a
specific
reference
location /
absolute to
geographic
location)

getRelLocation
openRelLocationStream
closeRelLocationStream
isAbsLocationAvailable
getAbsLocation
openAbsLocationStream

deactivateRelLocation
updateRelLocation
relLocationEvent
activateAbsLocation
deactivateAbsLocation
updateAbsLocationListener
absLocationEvent

Camera

Posture getPosture
isPostureAvailable
openPostureStream
closePostureStream

activatePosture
deactivatePosture
updatePosture
postureEvent

3D Model,
Skeleton of
Joints

Depth
Camera,
Kinect

HandPosture
(separate for
left / right
hand)

getRightHandPosture
getLeftHandPosture
isRightHandPostureAvaila
ble
openRightHandPostureStr
eam
closeRightHandPostureStr
eam
isLeftHandPostureAvailabl
e
openLeftHandPostureStre
am
closeLeftHandPostureStre
am

activateRightHandPosture
deactivateRightHandPosture
updateRightHandPosture
RightHandPostureEvent
activateLeftHandPosture
deactivateLeftHandPosture
updateLeftHandPosture
leftHandPostureEvent

3D Model,
Skeleton of
Joints

Leap, Depth
Camera

Direction getDirection 3D Vector

Gaze getGaze Relative
Coordinates
(x,y,z)

Video isVideoAvailable
openVideoStream
closeVideoStream

 Video

Audio isAudioAvailable
openAudioStream
closeAudioStream

4.2 API to Application Modules

XCAPI will offer functionalities that will allow flexible implementation by end-user applications

regardless of which Transfer Mechanism is implemented. These APIs will allow standard

mechanisms for the application to access the stored interpreted data. These APIs are guided by

the WEKIT framework which defines the core functionalities of each type of sensor data. The

functionalities partly ensure successful adherence to the framework at the level of end-user

application. XCAPI defines standard data storage formats for each data type. Each type of sensor

data in every packet will inherit from their parent methods. A parent class will include all

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 20/30

common methods for a particular sensor data type, for example the “Gaze Behaviour” class

would have a method DeletePoint() which would allow deleting certain points in any packet of

expert data regardless of the device used to capture the gaze behaviour data.

Table 6. XCAPI to Application

High-level Value Functions Return Type

Gaze behaviour getData()
isDataAvailable()
getPacketId()
deletePoints()
gazeCompare(node, current
gaze)

Gaze co-ordinates (x,y,z)

Point of View getData()
isDataAvailable()
getPacketId()
CreateClips(time1,time2)
tagClips()
replay(speed)

Video

Audio getData()
isDataAvailable()
getPacketId()
tagAudio()
replay()

Audio

Motor Performance getData()
isDataAvailable()
getPacketId()
ghostReplay()
makeTaggable(3djoints)
compareTolerance()

3D model recording in free space

Through the user interface, users can get access to the different sensors’ information and
recorded learning materials. For this, the user interface needs to have an API to access the data
streams provided by the different sensor components as well as the recorded material.

The API should also provide:

● Selection of sensors to be used for the recording.
● Retrieve recorded material from the cloud.
● Levels of authentication, this deals with different restrictions and priorities that the

different type of users can have. For example, experts by default have their recordings
and annotations public, while learners might have them private by default.

● A feature to create, store and retrieve annotations.

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 21/30

4.3 Backend API

Process Model Definition

The process will allow the capture and reenactment of expert's experience, so that it can be
transferred to the learner later. One important step in capturing the expert's experience is to
identify and define the actions performed by an expert in order to complete some predefined
task. Experts are usually not good at identifying all the actions needed in order to perform a task,
therefore it is important that experts together with educational designers define the tasks. One
problem in the definition of actions is to define a consistent and useful level for granularity of
them. The definition here is inspired by the emerging ARLEM standard (see also parallel
deliverable D2.2, Learning Experience Content Model Draft). ARLEM defines a standard for
abstracted, high level experiences, which will be complemented by the low level, sensor data
specific model and storage concept as defined here.

Our current proposal is to define an action as following:

Action: Atomic meaningful procedure performed by the learner or expert.

Example: Following the 1st step of an instruction Manual X (we used Lego Mindstorm assembly
as a first example in our trials and here refer to it as Manual X). See Table 7 for a reference of
the information stored as Actions.

Once the actions are defined, experts and learners can record them using the WEKIT framework.
These recorded actions are stored as Action Runs. The definition of an Action Run is the
following:

Action Run: It is the instantiation of an action performed by an expert or a learner.

The action runs contain a sensor recording that contains the data streams of all of the sensors
that were used to capture the action performed by the user. Before the recording of each action
run, users can select the type of sensors needed for it. We recommend that experts together
with educational designers come up with a list of the recommended sensors to be used for the
recording of each of the actions, in order to use this list of sensors as default for the recordings
of the action runs.

Sensor Recording: A saved stream of sensor data extracted by one or multiple sensors used for
the recording of an activity or annotation.

Each sensor recording is built by one or many sensor data streams. Sensor Recordings are
captured to memory, stored locally on the wearable device and communicated to the backend
storage asynchronously.

Sensor Data Stream: It is the data stream of one particular type of sensor for a sensor recording.

One important part of the WEKIT is to use AR to provide learners with information that will help
them to learn and to perform the actions in a correct manner. This information should be

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 22/30

available to the users while performing an action run. In order to do that we propose to add
Annotations to each of the actions.

Annotations: Extra information that can help the learner to perform the action correctly. These
annotations can be referred to the transfer mechanisms already identified.

Examples of annotation types are: post-it notes, videos, audios, sensor recordings, etc.

Annotations have some condition on when or where to be shown, for example: showing arrows
pointing the direction where to look at when the user is facing the wrong way. Experts and
learners can add annotations to every action, therefore by default the recommendation is to
have expert annotations as public and learners’ annotations as private. A whole action run could
also be annotated to an action, serving a similar function to the learner as a ghost track in racing
games as mentioned above.

Examples for the Action-Annotation process model:

● Expert together with educational designers define an action, such as following first step
of Manual X.

● Expert with the help of educational designers start creating annotations for the Action.
○ The annotations can be the sensor recording of an Action Run (the whole action

performed by the expert).
○ Video fragments with voiceover
○ Post it notes
○ Recorded gestures using leap motion.

● Learner selects to perform the first step of Manual X.
● Learner creates an action-run and starts performing the action.
● While performing the action, the learner through the system starts presenting to the

learner the annotations that belong to the action.
● The learner can pause the recording and create a new annotation to the action (post-it

“remember to hold Tool X with left hand”).
● After finishing the action run and saving it. The learner adds this action run as an

Annotation to the action so that the next time he performs the action he can compare
its current performance against his previous one (similar as the “Mario Kart Ghost”).

Table 7 exemplifies how actions could be defined for assembling the wheels of the Lego
Mindstorm. The Action_id represents the steps in the manual. As seen in the table the first step
Mindstorm_Tracker_Wheels_1 has no previous actions, and it is followed by the action
Mindstorm_Tracker_Wheels_2. For each action there are some required materials, in the
example shown in the table for the first step a 13-holes black long piece is needed. The table
also shows examples on how annotations can be added to the specific actions. As an example
the first row of the table in the field of annotations points out that all the assembled connectors
should point to the same side.

Table 7. Example Actions Required to Assemble the Wheels of the Lego MindStorm Based on the

Manual

Action_id Previous Actions Following Actions Required Material Description Annotations

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 23/30

Mindstorm_Tracker_Whe
els_1 none

Mindstorm_Tracker_
Wheels_2

13-holes black long
piece…

First place the
2…

Avoid placing
connectors pointing to
different directions

Mindstorm_Tracker_Whe
els_2

Mindstorm_Tracker_Wheel
s_1

Mindstorm_Tracker_
Wheels_3

Two 3-wholes black
piece … ...

Mindstorm_Tracker_Whe
els_3

Mindstorm_Tracker_Wheel
s_2

Mindstorm_Tracker_
Wheels_4 Rin, 8-connector … …

Mindstorm_Tracker_Whe
els_4

Mindstorm_Tracker_Wheel
s_3

Mindstorm_Tracker_
Wheels_5 yellow stopper … …

Mindstorm_Tracker_Whe
els_5

Mindstorm_Tracker_Wheel
s_4

Mindstorm_Tracker_
Wheels_6

8-connector, 2-hole
black bar, 2-hole
black bar … …

Mindstorm_Tracker_Whe
els_6

Mindstorm_Tracker_Wheel
s_5

Mindstorm_Tracker_
Wheels_7

2-hole bar, black
connector … …

Mindstorm_Tracker_Whe
els_7

Mindstorm_Tracker_Wheel
s_6

Mindstorm_Tracker_
Wheels_8

5-connector, red-
stopper, thin-rin,
thin-rin … …

Mindstorm_Tracker_Whe
els_8

Mindstorm_Tracker_Wheel
s_7

Mindstorm_Tracker_
Wheels_9

5-connector, yellow-
stopper, rin … …

Mindstorm_Tracker_Whe
els_9

Mindstorm_Tracker_Wheel
s_8

Mindstorm_Tracker_
Wheels_10

13-hole black long
piece … …

Mindstorm_Tracker_Whe
els_10

Mindstorm_Tracker_Wheel
s_9

Mindstorm_Tracker_
Wheels_11 black connector … …

Mindstorm_Tracker_Whe
els_11

Mindstorm_Tracker_Wheel
s_10

Mindstorm_Tracker_
Placing_Wheels Rubber band … …

Storage Architecture

In order to implement the previously presented process model definition the following list of
tables is required:

Actions

Action_id Name Description

Action-Flow

Action(action_id) Follows(Action_id) Condition

Action-material

Action_id Material Quantity Picture

Actions-Run

Action_Run_id Action_id User_Id Sensor_Recording_Id

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 24/30

Annotation

Annotation_id Type Link User_id Action_Id privacy

Sensor_Data_Stream

Sensor_Data_id Sensor_type Link

Sensor_Recording

Sensor_Recording_id Sensor_Data_id User_id

Users

User_id Name Level of expertise

By looking at the tables it is possible to see that we have only defined links to access the sensor
data or other types of data used for the annotations. The idea is to store them as blobs or as
files that can be accessed through a link.

Experience API Integration

The instances of the actions which are the Action Run can be mapped one-to-one to an
Experience API (xAPI) statement1. xAPI is an open source RESTful web service through which
systems send learning information to the Learning Record Store. The xAPI was inspired by the
Resource Description Framework xAPI is made by triples of having the format actor-verb-object
which are generated and exchanged in JSON format, opportunely validated by and stored in the
LRS. The main advantage of using xAPI is interoperability: learning data from any system or
resource can be captured and eventually queried by third party authenticated services.
The JSON code shown in Listing 1 shows a sample xAPI statement taken from the Dutch
Specification of Learning Activities (Scheffel et al. 2016) of the type: “user likes a blog-post”. We
think an Action Run like “user assembles wheels” can have similar structure. The context place
would be the section where which points to some specific sensor data.

{
 "timestamp":"2015-06-01T08:30:48Z", "id":"abcdefghijk123456789",

 "actor":{
 "objectType":"Agent",
 "account":{
 "homePage":"http://URL_of_the_Source_LMS?With_The_UserID=0388437472",
 "name":"0388437472"
 }
 },
 "verb":{
 "id":"http://activitystrea.ms/schema/1.0/like",

1 xAPI (Experience API) must not be confused with XCAPI (Exeperience Capturing API)

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 25/30

 "display":{
 "en-US":"Indicates the learner liked something"
 }
 },
 "object":{
 "objectType":"Activity",
 "id":"http://URL_of_the_Source_LMS/exampleblogpost.html",
 "definition":{
 "name":{
 "en-US":"name of the blogpost"
 },
 "description":{
 "en-US":"This is a blog post"
 },
 "type":"http://www.ecolearning.eu/expapi/activitytype/blogpage"
 }
 },
 "context":{
 "extensions":{
 "http://activitystrea.ms/schema/1.0/place":{
 "definition":{
 "type":"http://activitystrea.ms/schema/1.0/place",
 "name":{
 "en-US":"Place"
 },
 "description":{
 "en-US":"Represents a physical location."
 }
 },
 "id":"http://vocab.org/placetime/geopoint/wgs84/X-15.416497Y28.079203.html",
 "geojson":{
 "type":"FeatureCollection",
 "features":[
 {
 "geometry":{
 "type":"Point",
 "coordinates":[
 -15.4164969,
 28.0792034
]
 },
 "type":"Feature"
 }
]
 },
 "objectType":"Place"
 }
 },
 "contextActivities":{
 "parent":{
 "id":"http://URL_of_the_Source_LMS/exampleMOOC.html",
 "objectType":"Activity",
 "definition":{
 "name":{
 "en-US":"name of the MOOC"
 },
 "description":{
 "en-US":"This is the originating MOOC"
 },
 "type":"http://adlnet.gov/expapi/activities/course"
 }
 }
 }
 }
}

Listing 1. Example xAPI Statement

Retrieval Processes

Considering the previously defined process model and corresponding storage architecture Table
8 presents the interfaces needed to store, manipulate and access the recorded data.

Table 8. Interfaces to access, store and manipulate the recorded data

Method Input Output Explanation

getActions List of all Actions

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 26/30

getAction id_action Action

insertAction Description
Name

true/false

insertActionMaterial id_action
<List of Material>

true/false

getActionMaterial idAction List of materials

insertActionFlow id_action(current
action)
id_action(previous
action)
condition

true/false

getFollowingAction id_action Action

getPreviousAction id_action Action

insertActionRun Action_id
User_id
<list>SensorData

true/false This method should also
upload the sensorData and
create the corresponded
entries for the
SensorRecordings

getActionRun id_Action_run Action Run

insertSensorRecording <list>SensorTypes
<list>SensorData
user_id

true/false

getSensorRecordings <list>Sensor
Recordings

getSensorRecording sensorRecording_id Sensor Recording

getSensorRecordingBy
Sensor

sensorRecording_id
sensor

Sensor_data_stream

insertAnnotation User_id
Action_id
Type
Annotation_data(senso
r, videos, audios,
text,etc.)

true/false This method should upload
the Annotation_data into a
file or a blob, and save the
link to the file or blob in the
new created entry.

getAnnotationsByActio
ns

Action_id <list>Annotation

getAnnotationsByActio
nUser

Action_id
User_id

<list>Annotations

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 27/30

getAnnotationsByActio
nUserExperience

Action_id
User_Experience

<list>Annotations

5. Recommendations & Usage
XCAPI provides to different developers (e.g. application developer, infrastructure provider, and

hardware specialist) methods to implement the WEKIT framework efficiently. However,

effective implementations should consider recommendations that the WEKIT framework has

established. Strict adherence to the methodological approaches toward capturing and enacting

data is required to extract the highest potential of XCAPI. Expert, Application developers and

Instructional designers have equally important and closely tied roles in framing the learning

platform.

The capturing of the expert’s performance is complemented by the task analysis during which

experts, application developers and instructional designers need to collaborate. The expert

should take the lead in defining the granularity of actions and validating each captured packet.

While application developers are required to support the expert and instructional designers by

creating tools that allow easy handling of the data packets. We strongly recommend having two-

fold recording phases where during the initial phase the expert records his performance. This

recording does not need to be executed with the WEKIT framework, a simple video recording

can do the work. This recording should be reviewed by experts in coordination with educational

designers and programmers in order to identify aspects such as the granularity of the actions

and the important aspects to be annotated in each of them. Once this first analysis is conducted,

we suggest to record the experience of the expert once more using the WEKIT framework

following the previously defined structure and taking in consideration the findings from the

analysis of the first recording.

It should be noted that XCAPI does not handle high-level pedagogic methods such as feedback

and reflection. These elements are defined in the task analysis and it is in the best interest to

adapt these to the particular problems being addressed. We also recommend that the recording

and re-enacting to be performed in similar if not exact environments and that the starting

orientation of the user in that the relative 3D space (room) be aligned by certain methods. In

that perspective the 3D space captured during the expert recording may be re utilized for the

ideal implementations. Therefore the editing of the packet data may also be performed in the

same 3D space for consistency. Allowing an expert to view his recording from a third perspective,

while being able to annotate assets into the 3D space will make editing easier and innovative.

6. Conclusions
In this document we present the first iteration of the defined interfaces to be used in order to

access the data from the available sensors that capture the user experience. To create these

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 28/30

interfaces, a corresponding data structure that allows to store the learning materials is defined.

This learning materials include:

● A data structure to define the actions performed by a learner or expert to complete a

task.

● The captured learning experiences

● Annotations to the actions

Following this data structure the document also provides a proposed interface to store, retrieve

and manipulate the learning material. This procedure is outlined along the complete procedure

from capturing the data to making it available for implementation. An accompanying set of

recommendations for using XCAPI makes the whole implementation more rigid. Thid deliverable

furthermore elaborates on how the XCAPI adapts the WEKIT framework and requirements

generated in D1.3 and D1.4.

Together with the parallel deliverables D2.1 (Functional and Modular Architecture:

Requirements and Specification), D2.2 (Learning Experience Content Model Draft), and D3.2

(Hardware Prototype with Component Specification and Usage Description), this deliverable

sets the foundation for the next iteration of the WEKIT technology development and thus

immediately guides activities towards the first integrated version of the WEKIT.One solution.

References

Articles

Di Mitri, D., Scheffel, M., Drachsler, H., Börner, D., Ternier, S., & Specht, M. (2016). Learning
Pulse: using Wearable Biosensors and Learning Analytics to Investigate and Predict Learning
Success in Self-regulated Learning. CEUR Proceedings, 1–6. Retrieved from ceur-ws.org/Vol-
1601/CrossLAK16Paper7.pdf

Scheffel, M., Ternier, S., & Drachsler, H. (2016). The Dutch xAPI Specification for Learning
Activities (DSLA) – Registry. Retrieved from http://bit.ly/DutchXAPIreg

Ternier S., Loozen K., Viñuales J., Tejera S., Tomasini A., Unruh S. (2016) D3.6 Report on
implementation of the ECO Federated Search infrastructure. Retrieved from
http://project.ecolearning.eu/wp-content/uploads/2016/03/ECO_D3.6-
Report_of_ECO_Federated_Search_Infrastructure.pdf

Related WEKIT Deliverables

D1.3 WEKIT Framework and Training Methodology (v1, M5)

D1.4 Requirements for Scenarios and Technological platform (v1, M6)

D2.1 Functional and Modular Architecture: Requirements and Specification (M12)

http://bit.ly/DutchXAPIreg
http://project.ecolearning.eu/wp-content/uploads/2016/03/ECO_D3.6-Report_of_ECO_Federated_Search_Infrastructure.pdf
http://project.ecolearning.eu/wp-content/uploads/2016/03/ECO_D3.6-Report_of_ECO_Federated_Search_Infrastructure.pdf

Wearable Experience for
Knowledge Intensive Training

WEKIT consortium Dissemination: Public Page 29/30

D2.2 Learning Experience Content Model Draft (M12)

D3.1 Requirement Analysis and Sensor Specifications (M12)

D3.2 Hardware Prototype with Component Specification and Usage Description (M12)

Other references

Alex (2016). Alex posture tracker product page: http://alexposture.com/

Hololens (2016). Microsoft Hololens product page: https://www.microsoft.com/microsoft-

hololens

Intel (2016). Intel RealSense developer documentation:
https://software.intel.com/sites/landingpage/realsense/camera-
sdk/v1.1/documentation/html/index.html

Kinect (2016). Microsoft Kinect developer page: https://developer.microsoft.com/en-

us/windows/kinect

Leap (2016). Leap Motion product page: https://www.leapmotion.com/

Lumo (2016). Lumo lift posture coach product page: http://www.lumobodytech.com/

MyndBand (2016). MyndPlay MyndBand + MRT research toolkit product page:

http://store.myndplay.com/products.php?prod=10

Myo (2016). Myo armband product page: https://www.myo.com/

Neurosky (2016). Neurosky homepage: http://neurosky.com/

ODG (2016). ODG R-7 product page: http://www.osterhoutgroup.com/products-r7-glasses

http://alexposture.com/
https://www.microsoft.com/microsoft-hololens
https://www.microsoft.com/microsoft-hololens
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html
https://software.intel.com/sites/landingpage/realsense/camera-sdk/v1.1/documentation/html/index.html
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://www.leapmotion.com/
http://www.lumobodytech.com/
http://store.myndplay.com/products.php?prod=10
https://www.myo.com/
http://neurosky.com/
http://www.osterhoutgroup.com/products-r7-glasses

Wearable Experience for
Knowledge Intensive Training

WEKIT project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 687669. http://wekit.eu/

http://wekit.eu/

