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Abstract

The understanding of the fundamental processes determining the efficiency of electronic excita-

tion energy (exciton) transfer in photosynthetic light-harvesting is of vital importance for the

design of new solar energy driven materials. Recently, quantum coherence involving exciton-

vibrational coupling has been realized to play an important role for the high efficiency of the

energy transfer process. In this thesis, a Quantum Master Equation approach is applied to

describe the exciton dynamics of the Fenna-Matthews-Olson complex, paying special attention

to the effects of vibrations that are taken into account explicitly. Two different models are

contrasted, namely the one- and two-particle approximation to the exciton-vibrational basis,

and compared with a purely excitonic model. It is found that (i) explicit inclusion of vibrations

into the relevant system influences the trapping at the reaction center site considerably and (ii)

the differerence between the one- and two-particle approximation is of qualitative nature. In a

further application an excitonic model is applied to the description of the LH2 antenna complex

of the bacterium Alc. vinosum. Here the goal has been to unravel the origin of the unusual

B800 absorption band splitting and to connect this to observed exciton relaxation rates. A key

point of the model is the particular arrangement of transition dipoles in combination with B800

and B850 pigment pool specific relaxation rates.

In the second part of the thesis the focus is put on hybrid systems consisting of metal

nanospheres and aggregates composed of organic dyes. A density functional theory-based tight

binding approach yielding a discrete representation of the electronic quantum mechanical charge

density in terms of atom-centred Mulliken charges is used for the description of the molecules. It

is self-consistently linked to the classical polarization field of the nanosphere. Particular emphasis

is put on the analysis of the energetics of the static case and here on the influence of system

parameters such as the nanosphere’s radius, the type of molecule and there mutual distance. It

is found that charge-neutral and charged molecules show a rather different non-trivial distance

dependence of the interaction energy.

Finally, excitation of the hybrid system by an external field is considered. Molecules next to

the surface of the nanosphere experience an additional near field which enhances their excitation

as compared to further away molecules, e.g. in an aggregate. Conditions are identified where

the excitation dynamics of the nanosphere-aggregate hybrid system can be described using an

effective single particle model. The polarization effect of the nanosphere on the dynamics is

shown to be noticeable for the charged-molecule case.
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Zusammenfassung

Das Verständnis der fundamentalen Prozesse, welche die Effizienz des elektronischen Anregungs-

energietransfers in photosynthetischen Lichtsammelkomplexen bestimmen, ist von großer Bedeu-

tung für das Design neuartiger Materialien zur Nutzung der Solarenergie. In den vergangenen

Jahren hat es sich herausgestellt, dass Quantenkohärenz im Zusammenspiel mit der Elektron-

Schwingungswechselwirkung an dieser Stelle eine entscheidende Rolle spielt. In der vorliegenden

Arbeit wurde der Zugang der Quanten-Master-Gleichung genutzt, um die Dynamik im Fenna-

Matthews-Olson Komplex zu untersuchen. Besondere Aufmerksamkeit wurde dabei auf Effekte

von explizit berücksichtigten Schwingungen gelegt. Zwei Näherungen wurden gegenübergestellt

und mit einem rein exzitonischen Modell verglichen. Resultate zeigen, dass (i) die explizite

Berücksichtigung von Schwingungen einen erheblichen Einfluss auf die Population des Reakti-

onszentrums hat und (ii) Ein- und Zweiteilchennḧerungen in der Exziton-Schwingungsbasis zu

qualitativ unterschiedlichen Ergebnissen führen. In einer zweiten Anwendung wurde ein exzi-

tonischen Modell für den LH2 Antennenkomplex der Bakterienform Alc. vinosum untersucht.

Im Zentrum stand dabei die Erklärung der ungewöhnlichen Form der B800 Absorptionsbande

und deren Beziehung zu den beobachteten Exziton-Relaxationsraten. Es zeigte sich, dass ins-

besondere die spezielle Anordnung der Dipolmomente sowie die für B800 und B850 Pigmente

spezifischen Relaxationsraten wichtig sind.

Im zweiten Teil der Arbeit wurden Hybridsysteme aus Metallnanokugeln und Farbstoff-

aggregaten untersucht. Dazu wurde ein Dichtefunktionaltheorie-basierter tight-binding Zugang

genutzt, der eine diskrete Darstellung quantenmechanischer elektronischer Ladungsdichten er-

laubt. Diese Ladungen wurden selbstkonsistent an das klassische Polarisationsfeld der Nanokugel

gekoppelt. Besondere Aufmerksamkeit wurde dem statischen Fall gewidmet, wobei der Einfluss

von Systemparametern wie dem Radius der Nanokugel, der Molekülladung sowie dem Abstand

analysiert wurden. Es zeigte sich unter anderem, dass die Abstandsabhängigkeit der Wechsel-

wirkungsenergie durch die Ladungs des Moleküls in nicht-trivialer Weise bestimmt wird.

Abschließend wurde die Anregung eines Hybridsystems mit einem externen Laserfeld be-

schrieben. Für ein Aggregat ergibt dies ein zusätzliches Nahfeld, das insbesondere auf das un-

mittelbar zur Nanokugel benachbarte Molekül einwirkt. Der Effekt der Polarisation auf die

Dynamik ist für geladene Moleküle besonders ausgeprägt. Im Rahmen der Untersuchungen wur-

den schließlich Bedingungen identifiziert, unter denen das Hybridsystem mit einem effektiven

Einteilchenmodell beschrieben werden kann.
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Chapter I

Introduction

1 Photosynthetic Light-Harvesting

Every day sunlight supports the activities of all life on earth. Even though solar thermal collec-

tors and solar panels are widely used, the photosynthetic organisms are still the largest energy

producers. Solar-energy capture, transfer and conversion are the most important processes in

photosynthetic organisms. Photosynthetic organisms contain light-harvesting complexes (LHCs)

and the reaction center (RC). LHCs are the sophisticated pigment-protein complexes (PPCs),

which surround the photosystem’s RC. LHCs are important models for the research on pho-

tosynthetic efficiency, protection and acclimation, since they have evolved to capture photons

and perform excitation energy transfer (EET) to the RC on a 10-100 picosecond time scale with

high efficiency [1, 2, 3]. LHCs consist of several chromophores (sites) mutually coupled by dipole

interactions and embedded in a protein environment. Due to their coupling, light induced exci-

tations can undergo energy transfer from site to site towards the RC. In the RC the excitation

energy triggers the conversion to chemical energy [4]. During this process, the conversion from

light to photosynthetic energy can reach very high efficiency (conversion for initial processes

>95%) [5], much higher than that in solar thermal collectors or solar panels.

There are only four classes of chromophores used for photosynthetic organisms: chlorophylls

(Chls) and bacteriochlorophylls (BChls), phycobilins, and carotenoids. The chromophores are

bound to proteins, which are mostly from seven major protein families, i.e. the core complex

family, chlorosomes, phycobilisomes, the Fenna-Matthews-Olson (FMO) proteins, the protobac-

terial antenna complexes, the LHCs superfamily, and the preidinin-Chl a protein. In fact, Chls,

BChls, phycobilins and carotenoids all absorb sunlight very strongly. Chls have strong absorp-

tion bands in the blue and red regions of the spectrum. In Chls, Chl a has bands peaking near

380 and 780 nm, and Chl b near 460 and 650 nm. BChls have similar absorption bands and

intense absorption strength as Chls. For example, a 0.1 mM solution of BChl a in 1 cm cuvette

can absorb about 99% of the energy in a 770 nm light beam [4].

LHCs are contained in green, purple bacteria and so on. The green and purple bacteria are

anoxygenic phototrophs, i.e. anoxic conditions are required for phototrophic growth. They par-

ticipate in the anoxic cycling of carbon as primary producers and light-stimulated consumers.

Green bacteria have large cigar-shaped complexes appressed to the surface of the cytoplasmic

membrane and they are two families: green sulfur bacteria (Chlorobiaceae) [6] and green non-
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CHAPTER I. INTRODUCTION

sulfur bacteria (Chloroflexaceae) [7]. The FMO is a water-soluble protein and only found in

the green sulfur bacteria. It transfers the excitation energy from chlorosome to the RC. FMO

has been the first crystallized chlorophyll-protein with a high resolution structure as reported

by the Matthews group in 1979 [8]. In their work, FMO consists of three monomers, each of

which contains seven BChls a. However, the location of the FMO protein in the green sulfur

bacteria is still uncertain. For example, the FMO is modelled as a layer between the chlorosome

baseplate and the RC [9] or embedded in the lipid bilayer near by the RC [10]. And in 2009, the

eighth BChl a was revealed in the structures of the FMO [11]. Although very weakly coupled

with other BChls a, this eighth BChl a is believed to act as a linker between the chlorosome

and the other monomers [12].

The purple bacteria are composed by BChl a,b and various carotenoids. They are easy to

cultivate and best understood of all LHCs. The protobacterial antenna complexes for many

photosynthetic purple bacteria are composed by larger core reaction-centre LHCs (LH1) and

the peripheral antenna complex of purple bacteria (LH2). The LH1 forms a ring of 16-fold

symmetry and has only a single absorption maximum around 875 nm. LH2 is the main part for

absorbing the sun light and rapidly transfer the energy via LH1 to the RC. The LH2s are ring-

like oligomers formed by α-polypeptides and β-polypeptides, which non-covalently bind three

BChls a and one carotenoid. Carotenoids are chromophores which act as antioxidant agents,

absorb in the blue-green region light and transfer the excitation energy to BChls. A special

feature of the LH2 is that the BChl a molecules are arranged in two concentric rings with a

common symmetry axis perpendicular to the plane of the rings. One ring consists of weakly

interacting BChl a molecules (B800) with the absorption band around 800 nm. And the other

is composed by a group of strongly interacting BChl a (B850) in near van der Waals contact

with an absorption band around 850 nm.

The first high-resolution crystal structure was solved by McDermott and co-workers for

the bacterium Rhodopseudomonas acidophila (Rps. acidophila) in 1995 [13] with 9 subunits.

In the following, the bacterium Rhodospirillum molischianum (Rsp. molischianum) with 8

subunits was cultivated by Koepke et al. in 1996 [14]. The high-light LH2 from Allochromatium

vinosum (Alc. vinosum) was reported by Sami Kerëıche et al. in 2008 [15]. It features an

unusual spectrum where the B800 band is split into a doublet. The antenna for this type is

assumed to contain 12 subunits as concluded from ensemble circular dichroism spectroscopy and

polarisation-resolved single-molecule spectroscopy [16].

EET is the energy transfer between different molecules by the coupling of electronic excita-

tions and also called fluorescence resonance energy transfer. Fig. I.1 a shows EET process in

the general scheme. D represents the excitation energy donor and A is the excitation energy

acceptor. At the beginning, the donor molecule has been excited and the acceptor molecule is in

its ground state. Then due to the Coulomb interaction JDA between the donor and acceptor, the

excitation energy is transferred to the acceptor molecule, i.e. the donor molecule is deexcited

and the acceptor molecule is excited at the end. Fig. I.1 b shows the same system including vi-

brational states. During this process, the donor is deexcited from excited state with vibrational

quantum number MeD to ground state with NgD and the acceptor is excited from ground state

with NgA to the excited state MeA . In this case, the Coulomb coupling between the molecules

2



CHAPTER I. INTRODUCTION

Figure I.1: Schematic of EET between a donor molecule D and an acceptor A. a) the general
case with the Coulomb interaction JDA. b) the scheme with exciton-vibrational coupling. FC is
the FC overlap integral.

is JDA · FC, where the Franck-Condon (FC) overlap integral between the vibrational states has

been introduced.

EET has been of interest for decades, not only in the quest for very high efficiency but also

as a widely used tool to study the structure and dynamics in photosynthesis systems, such as

the FMO complex [17] and LH2 [18, 19, 20, 21, 22]. The early theory for a rate description was

introduced by Förster in 1946 [23, 24]. In the Förster theory, the interaction between the donor

and acceptor JDA is treated as the interaction between two oscillating electric dipoles and the

EET rate yields

kFörsterEET =
1

τD

(
R0

RDA

)6

(I.1)

whereRDA is the distance between the donor and acceptor, τD represents the fluorescence lifetime

of the donor, and R0 is the Förster radius, which depends on the fluorescence yields of the donor,

the overlap between the emission spectra of the donor and the absorption spectra of the acceptor,

and the relative orientation. All the factors can be accessed in the experiment [25]. The first

experiment was made by H. J. Dutton and his coworkers in 1943, which observed EET from

fucoxanthin to Chl a in a dimer using monochromatic excitation [26]. But the Förster theory is

limited to weak coupling JDA and the surrounding environment is assumed to be homogeneous

to get the Förster radius R0.

When the coupling for EET is sufficiently large, a quantum-mechanical (QM) superposition

state may be formed, which is known as Frenkel exciton. In Frenkel theory, the Frenkel exciton

represents an electron-hole pair at the same molecule, i.e. the Frenkel exciton is local, but

upon the coupling the Frenkel exciton state is delocalized. Frenkel excitons occur in associated

and noncovalent supramolecular complexes. For decades, Frenkel exciton theory is used for the

description of EET in photosynthetic antenna.

Exciton-vibrational coupling (EVC) exists in all EET processes in real systems. However

owing to the smallness of the FC coupling for BChl and limitation of experimental technology,

EVC was long considered to guarantee directed downhill energy transfer only. But in the recent

years by applying the two-dimensional electronic spectroscopy (2DES) long-lasting quantum

3



CHAPTER I. INTRODUCTION

coherence was observed in several LHCs both at cryogenic temperature [27, 28, 29] and room

temperature [30, 31]. Then it was realized that quantum coherence involving EVC may play an

important role in the high efficiency energy transfer process [32, 33, 34]. Therefore during recent

years, the impact of EVC according to the model in Fig. I.1 b on the dynamics of biological

systems beyond the role of a heat bath has triggered more and more interest [35]. For example,

based on theoretical calculation, Nalbach and coworkers predicted that the transfer towards

the RC in the FMO complex at 300 K is speed up by 24% if specific vibrations are taken into

account [36].

2 Nanostructures

Nanostructures have at least one dimension less than 100 nm and are widely studied because

of site-dependent physical and chemical properties. The applications include optical systems,

catalysis, optical data communication and storage, etc. Nanoparticles have unique electronic,

magnetic, optical and other important material properties which are applied in molecular sens-

ing, catalysis and biological technologies. For example, the optical properties of nanoparticles

can be tuned gradually by their size and shape. The nanoparticle-based composites have both

the specific characteristics of the individual nanoparticles [37, 38] and of the total structure (e.g.

periodic arrangement) [39, 40]. Semiconductor nanoparticles have been already used successfully

as solar cells for converting sunlight to electricity [41].

An applied external field can cause the delocalized electrons at the surface of the nanoparti-

cles to oscillate, which is called a surface plasmon. When the induced electric field resonates with

the external field, surface plasmon resonance occurs. Especially if the size of the nanoparticle

is smaller than the wavelength of the light, the surface plasmon resonance can cause different

field distributions near the surface, which is considered as a kind of polarization and called

localized surface plasmon resonance [42]. Such near-fields with nanometer spatial resolution

can be controlled by localized electronic processes. Popular examples that utilize this scheme

include surface-enhanced Raman spectroscopy (SERS), where Raman scattering from the sur-

face adsorbates is extremely enhanced by near-fields generated at surface roughnesses [43] or

in the adjacent metal clusters and nanoparticles [44, 45, 46]. It is worth noting that SERS is

not limited to stationary spectroscopy, and ultrafast nonlinear SERS is used as a tool to study

molecular dynamics with unprecedented sensitivity [47].

Nanoparticles are much smaller than everyday objects described by Newton’s laws of motion,

but larger than single atoms or molecules and it is too expensive to compute all the dynamics

using quantum mechanics. Several theoretical models have been proposed to understand the

behavior of nanoparticle-organic hybrid systems [48, 49, 50]. For a few cases, the nanoparticles

have been described by QM methods [51, 52], however, here nanoparticle sizes are much smaller

than those of practical interest. For this reason different groups devised approximate models

to use a QM description for the molecule, but a classical electromagnetic description for the

nanoparticles either as a continuous dielectric [53, 46, 54, 55, 56] or a collection of polarizable

atoms [57, 58, 59]. In fact, a nanostructure brought into close proximity of a molecule will

not only enhance the field of an incident external laser pulse, but also react on the presence of

the molecular charge density via an additional polarization field. In principle the theoretical
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description would require to solve Maxwell’s equations for the fields, self-consistently with the

Schrödinger equation for the material system nanostructure plus molecule. Since this is far from

being feasible for any real system, various approximations have been developed.

Figure I.2: a) Scheme of a molecular aggregate-NS system with the transition dipole moments
drawn as red arrows. b) Energy level scheme of the aggregate-NS system. Eg is the aggregate-
NS ground state, Eα are the exciton energies and El refers to the multipole excitation energy
(whole set m = −l, · · · , l) of the metal NS with broadened levels (orange) reflecting their short
lifetime. They are connected via coupling Vα,lm. Reprinted with permission from Y. Zelinskyy,
Y. Zhang, and V. May, Supramolecular complex coupled to a metal nanoparticle: computational
studies on the optical absorption, J. Phys. Chem. A, 116, 11330 (2012). Copyright 2012 by the
American Chemical Society.

For instance in ref. [60], May and coworkers used a fully QM description based on model

Hamiltonians for the considered metal nanosphere (NS) interacting with a molecular aggregate.

The aggregate-NS and energy level scheme is shown in Fig. I.2. One finds the arrangement of

the aggregate in the model (cf. Fig. I.2 a) being strictly linear. In the theory, they assumed the

conduction band electrons of the metal NS interact strongly with the transitions in the aggregate.

As in Fig. I.2 b, the aggregate system is described in single-excited state representation, which

means that the aggregate Hamiltonian is directly expanded in the relevant molecular electronic

states without the effect of the metal NS. Ground |Eg⟩ and excited aggregate states |Eα⟩ are

shown in Fig. I.2 b. The Hamiltonian of the metal NS has been represented in a collective

plasmon excitation approximation. Then based on Mie theory and multipole expansion for

metal NS, the NS Hamiltonian is finally described by energies Elm with multipolar indices l,m

as shown in Fig. I.2 b. The coupling between aggregate and metal NS Vα,lm is calculated by the

transition dipole moments of the aggregate and the metal NS. Then the aggregate-NS system

is propagated in density matrix theory treating plasmon decay and EVC by dephasing rates.

Special attention has been paid to the absorption line shape for the hybrid system.

Although this type of microscopic model has been proven to provide valuable insight in a

numbers of applications [61, 62, 63], it lacks a self-consistent description of the coupled NS-

aggregate system.

3 Goals of this Thesis

EET plays an important role in photosynthetic systems and hybrid system composed of nanopar-

ticles and assemblies of dye molecules. In this work, I focus on various processes affecting EET

5
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in the photosynthetic and NS-organic hybrid systems.

In Section III.1, the EET dynamics, especially coupled exciton-vibrational dynamics, are

investigated in the FMO complex using a quantum master equation (QME) approach. Different

approximations to the EVC basis are used to analyse the vibronic and vibrational effects on

EET. Further the cause and effects of the B800 band splitting in the LH2 of Alc. vinosum is

investigated in Section III.2.

In Chapter IV, hybrid systems of a NS and different molecules are studied in a semiclas-

sical self-consistent method. Here, the near-field of the NS due to the molecule is studied in

classical multipole expansion. Placing different dye molecules in the vicinity of the NS, the mu-

tual electronic polarization is investigated using the Self-Consistent-Charge Density-Functional

Tight-Binding (SCC-DFTB) method in Section IV.1. Finally the effect of an additional external

field driving electronic excitation dynamics is investigated in Section IV.2.

6



Chapter II

Theoretical Background

This chapter presents the basic theory. The first section discusses the molecular Hamiltonian.

Subsequently, the second section focusses on the transfer of electronic excitation energy. The

effect of NS on the electronic properties of molecules are discussed in the third section. The

Density-Functional Tight-Binding (DFTB) method is introduced in the last section (All the

equations below are in the atomic units unless mentioned otherwise).

1 Molecular Hamiltonian

The molecular Hamiltonian is introduced and the stationary Schrödinger equation is formulated

by separating the electronic and nuclear degrees of freedom (DOFs) using the Born-Oppenheimer

approximation [64].

Let us consider a molecule composed of Nn nuclei with the atomic number Z1, ..., ZNn ,

coordinates R⃗k, momenta P⃗k and Ne electrons with the Cartesian coordinates r⃗i and conjugate

momenta p⃗i. The Hamiltonian operator of the molecule yields the Schrödinger equation

HmolΦ(r⃗, R⃗) = (Te + Vee + Ven + Tn + Vnn) Φ(r⃗, R⃗) = εΦ(r⃗, R⃗) (II.1)

where the kinetic energies of the electrons and nuclei are

Te =

Ne∑
i=1

p⃗ 2
i

2
(II.2)

Tn =

Nn∑
k=1

P⃗ 2
k

2Mk
(II.3)

with Mk being the mass of the kth nucleus. Since both kinds of particles interact via Coulomb

forces, the repulsive interactions in Eq. (II.1) become

Vee =
1

2

∑
i ̸=j

1

|r⃗i − r⃗j |
(II.4)

Vnn =
1

2

∑
k ̸=l

ZkZl

|R⃗k − R⃗l|
(II.5)
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CHAPTER II. THEORETICAL BACKGROUND

and the attractive interaction in Eq. (II.1) is

Ven = −
∑
j,k

Zk

|r⃗j − R⃗k|
(II.6)

Due to the large mass difference between electrons, me, and nuclei, Mk (me/Mk < 10−3), one

can expect that the electrons move much faster than the nuclei on average. Therefore, in many

situations the electronic motions are assumed to respond instantaneously to any changes in the

nuclear configuration, i.e. the electronic wave function can be described by stationary states.

In other words, the electronic wavefunction evolves adiabatically with nuclear configuration, i.e.

there are no transitions between different stationary states. Thus, it is reasonable to define an

electronic Schrödinger Hamiltonian which parametrically depends on the nuclear coordinate:

He(R⃗)Ψa(r⃗; R⃗) = (Te + Vee + Ven)Ψa(r⃗; R⃗) = Ea(R⃗)Ψa(r⃗; R⃗) (II.7)

Hence, the molecular wave function for Eq. (II.1) can be expanded in the basis as

Φ(r⃗, R⃗) =
∑
a

χa(R⃗)Ψa(r⃗; R⃗) (II.8)

where χa(R⃗) depends on the configuration of the nuclei. Inserting Eq. (II.8) into Eq. (II.1), one

obtains

HmolΦ(r⃗, R⃗) =
[
He(R⃗) + Tn + Vnn

]∑
a

χa(R⃗)Ψa(r⃗; R⃗)

=
∑
a

[
Ea(R⃗) + Vnn

]
χa(R⃗)Ψa(r⃗; R⃗) +

∑
a

Tnχa(R⃗)Ψa(r⃗; R⃗)

= ε
∑
a

χa(R⃗)Ψa(r⃗; R⃗)

(II.9)

Using the orthogonality of the adiabatic basis, multiplication from the left by Ψ∗
b(r⃗; R⃗) and

integration yields∫
Ψ∗

b(r⃗; R⃗)HmolΨa(r⃗; R⃗) = [Eb(R⃗) + Vnn]χb(R⃗) +
∑
a

∫
Ψ∗

b(r⃗; R⃗)TnΨa(r⃗; R⃗)χa(R⃗)

= εχb(R⃗)

(II.10)

Considering that the electronic wave functions depend on the nuclear coordinates, one obtains

by the product rule for differentiation

TnΨa(r⃗; R⃗)χa(R⃗) =
∑
k

1

2Mk

{
[P⃗ 2

kΨa(r⃗; R⃗)]χa(R⃗) + 2[P⃗kΨa(r⃗; R⃗)]P⃗kχa(R⃗)

+ Ψa(r⃗; R⃗)P⃗ 2
kχa(R⃗)

} (II.11)

Since the last term is simply the kinetic energy operator acting on χa(R⃗), one can define the

8
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other terms as so-called nonadiabaticity operator

Θab =

∫
Ψa(r⃗; R⃗)TnΨb(r⃗; R⃗) +

∑
k

1

Mk

[∫
Ψa(r⃗; R⃗)P⃗kΨb(r⃗; R⃗)

]
P⃗n (II.12)

Thus, one can obtain an equation for χa(R⃗) from Eq. (II.11):[
Tn + Ea(R⃗) + Vnn +Θaa − ε

]
χa(R⃗) = −

∑
b ̸=a

Θabχb(R⃗) (II.13)

This result can be interpreted as the stationary Schrödinger equation for the motion of nuclei,

with the respective wave functions χa(R⃗). The solution to Eq. (II.13) requires to know the

electronic spectrum for all configurations of the nuclei. Due to the electronic nonadiabatic

coupling Θab, transitions between individual adiabatic electronic states become possible. Θab is

a consequence of the nuclear motions which enter by their momentum as Eq. (II.12). In fact, the

diagonal part Θaa is usually a small perturbation to the nuclear dynamics in a given electronic

state.

However often, it is possible to neglect the nonadiabatic coupling Θab, which is called Born-

Oppenheimer approximation. Thus, the nuclear Schrödinger equation for the states |Ψa⟩ reads

Ha(R⃗)χa(R⃗) =
[
Tn + Ua(R⃗)

]
χa(R⃗) = εχa(R⃗) (II.14)

and the adiabatic molecular wavefunction is

Φ(r⃗, R⃗) = χa(R⃗)Ψa(r⃗; R⃗) (II.15)

Here the potential energy surface for the nuclear motion is introduced when the electronic

system is in its adiabatic state |Ψa⟩:

Ua(R⃗) = Ea(R⃗) + Vnn(R⃗) (II.16)

2 Excitation Energy Transfer

The excitation energy delocalization and transfer are explained in the so-called Frenkel exciton

model. In this model, the moving excitation energy is completely represented by an intramolec-

ular excitation and there is no charge transfer between different molecules. The interaction of

the exciton system with the mentioned bath is described by a QME [64].

2.1 Frenkel Exciton Hamiltonian

The aggregate Hamiltonian is given by the Frenkel exciton Hamiltonian, which is based on the

assumption that the interacting sites (i.e. monomers) retain their chemical identity. Hence the

site adiabatic states |am⟩ = |Ψa,m⟩ can be used to represent the diabatic monomeric states and

the inter-site Coulomb coupling. Here, a = g, e is the monomeric adiabatic electronic state

and m = 1, . . . , N labels the site of the aggregate. If only considering situations up to a single

9
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excitation, the ground state |g⟩ and the one-exciton states |m⟩ of the aggregate are given by

|g⟩ =
∏
m

|gm⟩, |m⟩ = |em⟩
∏
n̸=m

|gn⟩ (II.17)

Of course, higher-order excitations, such as higher excited adiabatic states or multiple excitations

at different sites, can be incorporated similarly into the description. Including the ground state

and one-exciton states, the Frenkel Hamiltonian is

Hagg = Hg|g⟩⟨g|+
∑
m

Hm|m⟩⟨m|+
∑
m ̸=n

Jmn|m⟩⟨n|+Hfield(t) (II.18)

Here, the coupling element Jmn is the interaction between different exciton states and Hfield(t)

represents the interaction with external fields.

The interaction between different one-exciton states is given by the Coulomb integral (Here

and in the following
∫
dr⃗ ′ is abbreviated as

∫ ′
, and

∫
dr⃗ as

∫
)

Jmn =

∫∫ ′ N (m)
ab (r⃗)N (n)

cd (r⃗ ′)

|r⃗ − r⃗ ′|
(II.19)

Here r⃗ is an electronic coordinate and N denotes the generalised molecular charge density [64]

where electrons and nuclei contribute according to

N (m)
ab (r⃗) = ρ

(m)
ab (r⃗)− δab

∑
A∈m

ZAδ(r⃗ − R⃗A) (II.20)

with the electronic density

ρ
(m)
ab (r⃗) = ⟨am|n(r⃗)|bm⟩ = Nm⟨am|bm⟩ (II.21)

where n(r⃗) is the one-particle electron density operator and Nm is the number of electrons for

molecule m.

In fact, often the intramolecular distance is much larger than the extension of the electron-

nuclei densities N (r⃗). Thus, a dipole-dipole approximation can be used to simplify Eq. (II.19).

Defining the mass center of the molecule m as r⃗m and the extension of the electron-nuclei density

as x⃗, the term 1/|r⃗−r⃗ ′| from Eq. (II.19) could be replaced by 1/|r⃗m−r⃗n+x⃗−x⃗ ′|. If |X⃗|/|r| ≪ 1,

the term 1/|r⃗ + X⃗| can be expended as

1

|r⃗ + X⃗|
=

1

|r⃗|
+ X⃗∇r

1

|r⃗|
+

1

2
(X⃗∇r)(X⃗∇r)

1

|r⃗|
+ o

(
|X⃗|
|r|

)3

=
1

|r⃗|
− X⃗r⃗

|r⃗|3
− X⃗2

2|r⃗|3
+

3(X⃗r⃗)2

2|r⃗|5
+ o

(
|X⃗|
|r|

)3
(II.22)

Assuming r⃗ = r⃗mn = r⃗m − r⃗n and X⃗ = x⃗ − x⃗ ′ in Eq. (II.22) and considering the charge

10
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neutrality, Eq. (II.19) is expanded in the second-order as

Jmn ≈
∫∫ ′

dx⃗dx⃗ ′N (m)
ab (x⃗+ r⃗m)N (n)

cd (x⃗ ′ + r⃗n)

[
x⃗x⃗ ′

|r⃗mn|3
− 3(x⃗r⃗mn)(x⃗

′r⃗mn)

|r⃗mn|5

]
(II.23)

Set the transition dipole moment as

µ⃗mab =

∫
r⃗N (m)

ab (r⃗) =

∫
r⃗ρ

(m)
ab (r⃗)− δab

∑
A∈m

ZAR⃗A (II.24)

one can obtain the Coulomb coupling in dipole-dipole approximation by the transition dipole

moment

Jmn ≈
µ⃗m,abµ⃗n,cd

|r⃗mn|3
− 3

(r⃗mnµ⃗m,ab)(r⃗mnµ⃗n,cd)

|r⃗mn|5
(II.25)

In dipole approximation, the last term in Eq. (II.18) is given by

Hfield(t) = −µ⃗ · E⃗ext(t) (II.26)

with the external laser field E⃗ext and the total transition dipole for the considered two level case

is

µ⃗ =
∑
m

µm,ge|m⟩⟨g|+ h.c. (II.27)

In Eq. (II.18), the adiabatic states should depend on the intra-molecular nuclear coordinates

R = (
−→
R 1,

−→
R 2, . . .), i.e. |m⟩ = |m(R)⟩. The Hg and Hm are given by the electronic state energy

and a contribution representing potential energy and kinetic energy of the nuclei. Then the

corresponding on-site elements of the system Hamiltonian are given by

Hg(R) = Eg + Ug(R) + Tg

Hm(R) = Em + Um(R) + Tm

(II.28)

Here Eg and Em are the bare electronic energy for state |g⟩ and |m⟩. In the second order

Taylor expansion of the potential energy around its minimum with respect to R, combined with

a normal mode transformation yields the harmonic oscillator model (assuming a description in

terms of ground state models and no Dushinsky notation)

Hg(q) = Eg +
1

2

∑
m

∑
ξ

(
p2ξ,m + ω2

ξ,mq2ξ,m
)

Hm(q) = Em +
1

2

∑
n̸=m

∑
ξ

(
p2ξ,n + ω2

ξ,nq
2
ξ,n

)
+

1

2

∑
ξ

(
p2ξ,m + ω2

ξ,m(qξ,m − dξ,m)2
) (II.29)

with p2ξ,m and ω2
ξ,m are the momentum and the harmonic frequency associated with the ξth mode

of monomer m, the relevant normal coordinate qξ,m and dξ,m represents the shift of the excited

state oscillator along qξ,m with respect to the ground state potential energy surface. Note that

the normal coordinates are mass-weighted. Introducing intrinsic harmonic oscillator variables,

p̃ξ,m =

√
1

ωξ,m
pξ,m , q̃ξ,m =

√
ωξ,mqξ,m (II.30)

11
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gives

Hg(q̃) = Eg +
∑
m

∑
ξ

ωξ,m

2

(
p̃2ξ,m + q̃2ξ,m

)
Hm(q̃) = Em +

∑
n̸=m

∑
ξ

ωξ,n

2

(
p̃2ξ,n + q̃2ξ,n

)
+
∑
ξ

ωξ,m

2

(
p̃2ξ,m + (q̃ξ,m − d̃ξ,m)2

) (II.31)

The dimensionless shift d̃ξ,m can be represented by the Huang-Rhys factor Sξ,m ≡ d̃2ξ,m/2. Then

the one-exciton Hamiltonian can be expanded as

Hm(q̃) = Em +
∑
n

∑
ξ

ωξ,n

2

(
p̃2ξ,n + q̃2ξ,n

)
−
∑
ξ

ωξ,m

√
2Sξ,mq̃ξ,m +

∑
ξ

ωξ,mSξ,m (II.32)

In this equation, the last term is the reorganization energy for the relaxation in the excited state

after a vertical transition from the ground state. Thus, it is related to the Stokes shift in linear

spectroscopy.

Treating Eq. (II.32), one needs to consider the effect from vibrational degrees of freedom on

the spectrum. To this end Eq. (II.17) is supplemented by vibrational states

|g,M⟩ =
∏
m

|gm,Mgm⟩, |m,M⟩ = |em,Mem⟩
∏
n̸=m

|gn,Mgn⟩ (II.33)

where Mam is the vibrational quantum number for site m. It refers to a vibronic excitation if

site m is in state |em⟩ or to a vibrational excitation if site m is in state |gm⟩. The vibronic

and vibrational quantum numbers are comprised into the index M ≡ {. . . ,Mem , . . . ,Mgn , . . .}.
Eq. (II.32) is expanded as

Hagg =
∑
M

Eg,M|g,M⟩⟨g,M|+
∑
m

∑
M

Em,M|m,M⟩⟨m,M|

+
∑
m̸=n

∑
M,N

Jmn (FC)MN|m,M⟩⟨n,N|+Hfield(t)
(II.34)

Here, Em,M is the energy of the exciton-vibrational state |m,M⟩ and the product of FC overlap

integral between sites m and n is (assuming the Condon-approximation to be valid)

(FC)MN = ⟨Mem |Ngm⟩⟨Mgn |Nen⟩
∏

i ̸=m,n

δMgiNgi
(II.35)

Then the one-exciton eigenstates in this basis are

|α⟩ =
∑
m,M

Cm,M|m,M⟩ (II.36)

To treat high-dimensional situations, the n-particle approximation was proposed [65], which

is shown in Fig. II.1. In the one-particle approximation (OPA) only vibronic excitations are al-

lowed, i.e Mgn = 0 and Mem = 0, . . . ,Mmax
em . In the two-particle approximation (TPA) there are

vibronic excitations for one site and a second site only is vibrationally excited, while others are

12
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Figure II.1: Schematic of the n-particle approximation

in their vibrational ground state, i.e Mem = 0, . . . ,Mmax
em , Mgn = 0, . . . ,Mmax

gn , and Mgk ̸=m,n
= 0.

And in the n-particle approximation besides the vibronic excitations, n − 1 vibrationally sites

are excited and the others are still in their ground state.

2.2 System-Bath Approach and Redfield Equations of Motion

In the previous section, it has been assumed that all vibrational DOFs are treated equally and

at the same QM level as the electronic DOFs. However, photosynthetic antenna systems or

molecular aggregates are usually very complex, consisting of several chromophores embedded in

a protein environment or a solution. It is practically impossible to consider all DOFs for the

system in an explicit QM treatment. Therefore the total system is reduced to only a few DOFs,

which are of interest because they provide insights into the physical processes. All other DOFs

are treated as a heat bath, which interacts with the system DOFs. The Hamiltonian of the total

system is separated as

H = HS +HB +HS−B (II.37)

with HS and HB denoting the system and bath Hamiltonian, respectively. HS−B represents the

interaction between the system and bath. This separation implies that one will solve the QM

equations of motion for the relevant system DOFs, treating the influence of the bath DOFs

approximately. In this case, the density operator of the system is called a reduced density

operator (RDO), ρ(t) = trB{W(t)}.
The equation of motion for the RDO according to the Liouville-Von Neumann equation is

∂

∂t
ρ(t) = trB

{
∂

∂t
W (t)

}
= −i trB {[HS +HB +HS-B,W (t)]}

= −i [HS, ρ(t)]− i trB {[HS-B +HB,W (t)]}
(II.38)

Note here to get the final equation, it is assumed that the basis which defines the trace in the

bath space is time independent. Then the system Hamiltonian HS is not affected by the bath

trace. Based on the cyclic invariance of the trace for HB, which acts exclusively in the state

space of the bath, one has trB {HBW (t)} = trB {W (t)HB}. Eq. (II.38) can be reduced to

∂

∂t
ρ(t) = −i [HS, ρ(t)]− i trB {[HS-B,W (t)]} (II.39)

and W (t) is assumed to factorize into ρ(t) and an operator R(t) which is defined only in the

13
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Hilbert space of the bath and that obeys trB{R} = 1. Assuming that the system-bath interaction

Hamiltonian can be factorized into system parts Kµ and bath parts Φµ, HS-B becomes

HS-B =
∑
µ

Kµ(s)Φµ(Z) (II.40)

Here, s and Z comprise the coordinates of the system and bath respectively. The index µ counts

the different contributions that may follow from a particular microscopic model for the coupling

between the system and bath. Then the approximate equation for the RDO becomes

∂

∂t
ρ(t) = −i

[
HS +

∑
µ

KµtrB {ΦµR(t)} , ρ(t)

]
(II.41)

Considering the general time evolution operator U(t− t0) = exp (−iH(t− t0)), the “free” time-

evolution operator is defined according to

U0(t− t0) = exp (−iHS(t− t0)) exp (−iHB(t− t0)) ≡ US(t− t0)UB(t− t0) (II.42)

Then in the interaction representation, we have

H
(I)
S-B = U+

0 (t− t0)HS-BU0(t− t0) (II.43)

ρ(I)(t) = U+
S (t− t0)ρ(t)US(t− t0) (II.44)

Taking an equilibrium assumption for R(t) i.e. R(t) ≡ Req with

Req =
exp (−HB/kBT )

trB{exp (−HB/kBT )}
(II.45)

the equation of motion for the RDO up to second order with respect to HS-B reads

∂

∂t
ρ(I)(t) =− i trB

{
Req

[
H

(I)
S-B(t), ρ

(I)(t)
]}

−
∫ t

t0

dτ ′trB

{[
H

(I)
S-B(t),

[
H

(I)
S-B(τ

′), Reqρ
(I)(τ ′)

]]}
+

∫ t

t0

dτ ′trB

{[
H

(I)
S-B(t), ReqtrB

{[
H

(I)
S-B(τ

′), Reqρ
(I)(τ ′)

]}]}
(II.46)

Defining the correlation function as (Here and in the following trB{Req . . .} = ⟨. . .⟩B)

Cµν(t) = ⟨Φµ(t)Φν(0)⟩B − ⟨Φµ(t)⟩B⟨Φν(0)⟩B = ⟨∆Φµ(t)∆Φν(0)⟩B (II.47)

the equation of motion for RDO follows as

∂

∂t
ρ(I)(t) =− i

∑
µ

⟨Φµ⟩B
[
K(I)

µ , ρ(I)(t)
]
−
∑
µ,ν

∫ t

t0

dτ ′
(
Cµν(t− τ ′)

[
K(I)

µ (t),K(I)
ν (τ ′)ρ(I)(τ ′)

]
−Cνµ(−t+ τ ′)

[
K(I)

µ (t), ρ(I)(τ ′)K(I)
ν (τ ′)

])
(II.48)
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Following Eq. (II.44) the equation of motion for the RDO can be transformed from the interaction

representation into the Schrödinger representation as

∂

∂t
ρ(t) =

∂

∂t

[
US(t− t0)ρ

(I)(t)U+
S (t− t0)

]
=− i [HS, ρ(t)] + US(t− t0)

∂

∂t
ρ(I)(t)U+

S (t− t0)

=− i

[
HS +

∑
µ

⟨Φµ⟩BKµ, ρ(t)

]
− US(t− t0)

∑
µ,ν

∫ t

t0

dτ ′
{
Cµν(t− τ ′)

×
[
U+
S (t− t0)KµUS(t− t0), U

+
S (τ ′ − t0)KνUS(τ

′ − t0)U
+
S (τ ′ − t0)ρ(τ

′)US(τ
′ − t0)

]
− Cνµ(−t+ τ ′)

[
U+
S (t− t0)KµUS(t− t0), U

+
S (τ ′ − t0)ρ(τ

′)US(τ
′ − t0)

× U+
S (τ ′ − t0)KνUS(τ

′ − t0)
]}

U+
S (t− t0)

(II.49)

Combining products of time-evolution and replace t−τ ′ by τ , one obtains the QME in Schrödinger

representation

∂

∂t
ρ(t) =− i

[
HS +

∑
µ

⟨Φu⟩BKµ, ρ(t)

]
−
∑
µ,ν

∫ t−t0

0
dτ {Cµν(τ) [Kµ,

US(τ)Kνρ(t− τ)U+
S (τ)

]
− Cνµ(−τ)

[
Kµ, US(τ)ρ(t− τ)KνU

+
S (τ)

]} (II.50)

The term ∼ ⟨Φµ⟩B contains the mean-field contribution to the system dynamics, which is of

first order in the system-bath interaction. The second term, which depends on the correlation

function Cµν , is responsible for energy dissipation from the relevant system into the bath and

decoherence of the system’s dynamics.

Considering the interaction representation the Markov approximation can be involved ac-

cording to

ρ(t− τ) = US(t− τ − t0)ρ
(I)(t− τ)U+

S (t− τ − t0)

≈ US(−τ)US(t− t0)ρ
(I)(t)U+

S (t− t0)U
+
S (−τ)

= U+
S (τ)ρ(t)US(τ)

(II.51)

The dissipation part of the QME becomes(
∂ρ(t)

∂t

)
diss

= −
∑
µ,ν

∫ ∞

0
dτ
{
Cµν(τ)

[
Kµ,K

(I)
ν (−τ)ρ(t)

]
− Cνµ(−τ)

[
Kµ, ρ(t)K

(I)
ν (−τ)

]}
(II.52)

where K
(I)
ν (−τ) = US(τ)KνU

+
S (τ). A more compact form is obtained after introduction of the

operator

Λµ =
∑
ν

∫ ∞

0
dτCµν(τ)K

(I)
ν (−τ) (II.53)

H
(eff)
S = HS +

∑
µ

Kµ [⟨Φµ⟩B − iΛµ] (II.54)
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With this definition the final result in the Markov approximation for Eq. (II.50) is

∂

∂t
ρ(t) = i

(
H

(eff)
S ρ(t)− ρ(t)H

(eff)+
S

)
+
∑
µ

(
Kµρ(t)Λ

(+)
µ + Λµρ(t)Kµ

)
(II.55)

Here the operator Λ
(+)
µ following from Λµ by replacing Cµν(τ) with Cνµ(−τ) (if any term of

HS-B is Hermitian, then Λ
(+)
µ = Λ+

µ ). And H
(eff)+
S needs to be understood as the Hermitian

conjugation of H
(eff)
S except all Λµ are replaced by Λ

(+)
µ .

Correlation Function

For the reservoir of many systems, the atoms or molecules have high symmetry and the vibrations

only appear as small oscillations around the equilibrium positions. Thus the reservoir usually

is described by a harmonic approximation. Then if one performs a Taylor expansion of HS-B

with respect to the reservoir coordinates and focus on the lowest-order contribution only, HS-B

in Eq. (II.40) will become linear with respect to the harmonic oscillator coordinates Z = {Zξ}:

HS-B = K(s)Φ(Z) = K(s)
∑
ξ

h̄γξZξ (II.56)

here γξ is the system-reservoir coupling constant. Since dealing with decoupled normal-mode

oscillators, one can define the reservoir part Φ(Z) by using normal-mode frequency ωξ and its

harmonic oscillator eigenstates |Nξ⟩ = (C+
ξ )Nξ |0ξ⟩/

√
Nξ! as

Φ(Z) =
∑
ξ

h̄ωξgξ(Cξ + C+
ξ ) (II.57)

with gξ = γξ
√

h̄/2ω3
ξ . If simply writing Qξ = Cξ + C+

ξ , Eq. (II.47) will become

C(t) =
∑
ξ,ξ′

ωξgξωξ′gξ′trB{ReqQξ(t)Qξ′}

=
∑
ξ,ξ′

ωξgξωξ′gξ′
∑
{Nζ}

⎛⎝∏
ζ

fNζ
⟨Nζ |

⎞⎠Qξ(t)Qξ′

⎛⎝∏
ζ′

|Nζ′⟩

⎞⎠
=
∑
ξ,ξ′

ωξgξωξ′gξ′
∑

Nξ,Nξ′

fNξ
⟨Nξ|⟨Nξ′ |Qξ(t)Qξ′ |Nξ⟩|Nξ′⟩

=
∑
ξ

ω2
ξg

2
ξ

∑
Nξ

fNξ
⟨Nξ|

[
Cξe

−iωξt + C+
ξ eiωξt

] [
Cξ + C+

ξ

]
|Nξ⟩

=
∑
ξ

ω2
ξg

2
ξ

∑
Nξ

fNξ

(
[1 +Nξ]e

−iωξt + eiωξtNξ

)

(II.58)

with the thermal distributions fNξ
= 1/Z × exp(−Nξh̄ωξ/kBT ). Introducing the Bose-Einstein

distribution, which is the mean occupation number of a harmonic oscillator mode

n(ωξ) =
∑
Nξ

NξfNξ
=

1

exp{h̄ωξ/kBT} − 1
(II.59)
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one obtains

C(t) =
∑
ξ

(ωξgξ)
2
{
[1 + n(ωξ)]e

−iωξt + n(ωξ)e
iωξt
}

(II.60)

The Fourier-transformed form is

C(ω) =
∑
ξ

2π(ωξgξ)
2 {[1 + n(ωξ)]δ(ω − ωξ) + n(ωξ)δ(ω + ωξ)} (II.61)

If one defines spectral density J(ω) as

J(ω) =
∑
ξ

g2ξδ(ω − ωξ) (II.62)

The Fourier-transformed correlation function reads

C(ω) = 2πω2[1 + n(ω)][J(ω)− J(−ω)] (II.63)

Relaxation and Dephasing Rates

Transforming the QME (II.50) into the energy representation assuming HS|a⟩ = Ea|a⟩. The

reduced density matrix (RDM) will be given by ρab(t) = ⟨a|ρ(t)|b⟩. Introducing the elements

of the system part of the system-bath coupling according to ⟨a|Kµ|b⟩ = K
(µ)
ab , one obtains the

dissipative part of QME for Eq. (II.52) as(
∂ρab
∂t

)
diss.

= −
∑
c,d

∑
µν

∫ ∞

0
dτ
{
Cµν(τ)

[
K(µ)

ac K
(ν)
cd eiωdcτρdb(t)−K

(µ)
db K(ν)

ac eiωcaτρcd(t)
]

− Cνµ(−τ)
[
K(µ)

ac K
(ν)
db eiωbdτρcd(t)−K

(µ)
db K

(ν)
cd eiωdcτρac(t)

]} (II.64)

with ωab = (Ea − Eb)/h̄. Defining the tetradic matrix

Mab,cd(t) =
∑
µν

Cµν(t)K
(µ)
ab K

(ν)
cd (II.65)

Eq. (II.64) becomes(
∂ρab
∂t

)
diss.

= −
∑
c,d

∫ ∞

0
dτ
{
Mcd,db(−τ)eiωdcτρac(t) +Mac,cd(τ)e

iωdcτρdb(t)

−
[
Mdb,ac(−τ)eiωbdτ +Mdb,ac(τ)e

iωcaτ
]
ρcd(t)

} (II.66)

In this equation, the real part introduces an irreversible redistribution of the amplitudes con-

tained in the RDM. And the imaginary part represents the term, which can be interpreted as a

modification of the transition frequencies and the respective mean-field matrix elements. It will

be neglected in the following. Next one introduces the damping matrix as the real part of the

Fourier-transformed tetradic matrix:

Γab,cd(ω) = Re

∫ ∞

0
dτeiωτMab,cd(τ) = Re

∑
µν

K
(µ)
ab K

(ν)
cd

∫ ∞

0
dτeiωτCµν(τ) (II.67)
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Considering the definition of Λµ in Eq. (II.53), the damping matrix can also be written as

Γab,cd(ωdc) = Re
∑
µ

⟨a|Kµ|b⟩⟨c|Λµ|d⟩ (II.68)

Using this notation, Eq. (II.66) becomes(
∂ρab
∂t

)
diss.

= −
∑
c,d

{Γbd,dc(ωcd)ρac(t) + Γac,cd(ωdc)ρdb(t)

− [Γca,bd(ωdb) + Γdb,ac(ωca)] ρcd(t)}
(II.69)

If one further defines the relaxation matrix as

Rab,cd = δa,c
∑
e

Γbe,ed(ωde) + δb,d
∑
e

Γae,ec(ωce)− Γca,bd(ωdb)− Γdb,ac(ωca) (II.70)

The dissipative term of the RDM can be simplified as(
∂ρab
∂t

)
diss.

= −
∑
cd

Rab,cdρcd(t) (II.71)

The transition rate ka→b from state |a⟩ to state |b⟩ is

ka→b = 2Γab,ba(ωab) = 2Re

∫ ∞

0
dτeiωabτMab,ba(τ) =

∑
µν

Cµν(ωab)K
(µ)
ab K

(ν)
ba (II.72)

This rate is also called energy relaxation rates. From the equation, one finds the amplitude

for relaxation is determined by the matrix elements of the operators Kµ and the value of the

correlation function at the respective transition frequency Cµν(ω = ωab).

According to Eq. (II.69), the coherence dephasing rate γab is

γab =
∑
e

[Γae,ea(ωae) + Γbe,eb(ωbe)]− Γaa,bb(0)− Γbb,aa(0) (II.73)

This expression determines the damping of the off-diagonal elements of the RDM. One notices

the first part of this equation represents the transitions out of states |a⟩ and |b⟩ according to

Eq. (II.72). The remaining part, usually denoted by γ
(pd)
ab , describes an elastic type of collision

where no energy is exchanged between system and bath.

3 The Polarization-Field of a Spherical Nanoparticle

The model system of an uncharged dielectric sphere and a single external point charge is shown

in the Fig. II.2. Considering the size, the polarization of the NS is treated in classical approxi-

mation [66].

The total electrostatic potential V 1
tot(r⃗) for this system is obtained by the Poisson equation

as

∇2V 1
tot(r⃗) = −ρ(r⃗)

ε
(II.74)
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q1

→

r1

→

r

θ

→

n

R

ε2

ε1

Figure II.2: An uncharged dielectric sphere of relative permittivity ε2 was embedded in an
infinite ε1 medium. A point charge q1 is located outside the sphere.

where ρ(r⃗) is charge density and ε = ε0εi with ε0 being the vacuum permittivity and i = 1, 2.

Considering ρ(r⃗) = q1δ(r⃗− r⃗1) and the azimuthal symmetry for this model, Eq. (II.74) becomes

the Laplace equation when r⃗ ̸= r⃗1:

∇2V 1
tot(r, θ) =

1

r2
∂

∂r

(
r2

∂V 1
tot

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V 1
tot

∂θ

)
= 0 (II.75)

with r = |r⃗| and θ being the angle between r⃗ and r⃗1 as shown in Fig. II.2. As is known, the

general solution for the Laplace equation is given by [67]

V 1
tot(r⃗) =

∞∑
l=0

[
Mlr

l +Nl
1

rl+1

]
Pl(cos θ) (II.76)

with Pl(cos θ) being the Legendre polynomial and coefficient Ml, Nl in the order l.

The electrostatic potential V 1
tot(r⃗) must be finite at r = 0, thus inside the sphere r ≤ R it

reads

V 1
tot(r, θ) =

∞∑
l=0

Mlr
lPl(cos θ) (II.77)

In addition, the potential of the point charge q1 reads

V 1
point(r, θ) =

q1
ε1|r⃗ − r⃗1|

=

⎧⎪⎪⎨⎪⎪⎩
∑∞

l=0

q1r
l

ε1r
l+1
1

Pl(cos θ) r < r1∑∞
l=0

q1r
l
1

ε1rl+1
Pl(cos θ) r > r1

(II.78)

Due to the fact that V 1
tot(r⃗) must be finite at r → ∞, the electrostatic potential outside the
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sphere r > R is

V 1
tot(r, θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑∞

l=0

[
Nl

rl+1
+

q1r
l

ε1r
l+1
1

]
Pl(cos θ) r < r1

∑∞
l=0

[
Nl

rl+1
+

q1r
l
1

ε1rl+1

]
Pl(cos θ) r > r1

(II.79)

According to Maxwell’s equations, the boundary conditions on the spherical interface at

r = R satisfy ⎧⎨⎩
(
D⃗1

tot|r=R+ − D⃗1
tot|r=R−

)
· n⃗ = 0(

E⃗1
tot|r=R+ − E⃗1

tot|r=R−

)
× n⃗ = 0

(II.80)

where n⃗ = r⃗/r is a unit normal vector on the surface as in Fig. II.2. In Eq. (II.80) it is

E⃗1
tot = −∇V 1

tot and D⃗1
tot = εE⃗1

tot. Thus combining Eqs. (II.77) and (II.79) into Eq. (II.80), it

follows ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε1

[
Nl(l + 1)

Rl+2
+

q1lR
l−1

ε1r
l+1
1

]
= −ε2MllR

l+1

Nl

Rl+1
+

q1R
l

ε1r
l+1
1

= MlR
l

(II.81)

Solving the Eq. (II.81) for the coefficients Ml and Nl yield⎧⎪⎪⎨⎪⎪⎩
Ml =

q1(2l + 1)

rl+1
1 [ε1(l + 1) + ε2l]

Nl =
q1R

2l+1(ε1 − ε2)l

ε1r
l+1
1 [ε1(l + 1) + ε2l]

(II.82)

Finally, the polarization potential V 1
pol(r) outside of the dielectric sphere (r ≥ R) due to the

point charge q1 is obtained by Eq. (II.78) and (II.79) with (II.82)

V 1
pol(r, θ) = V 1

tot(r, θ)− V 1
point(r, θ) =

∞∑
l=1

q1(ε1 − ε2)l

ε1[(ε1 + ε2)l + ε1]

R2l+1

rl+1rl+1
1

Pl(cos θ) (II.83)

Thus the total polarization potential of the NS due to the molecule can be expressed in

multipolar form

Vpol(r⃗) =

N∑
A=1

m∑
l=1

qA(1− εr)l

(1 + εr)l + 1

R2l+1

rl+1Rl+1
A

Pl(cos θ) (II.84)

where R is the radius, εr is the relative permittivity of the NS and the upper summation limit

m is the chosen highest order to reach convergence. N is the number of atoms in the molecule

with Mulliken charge qA at distance RA from the center of the NS (A = 1, ..., N).

When the uncharged dielectric sphere is in the external field E⃗ext(t) as Fig. II.3, the total

potential V f
tot(r⃗) can be also expanded with the associated Legendre polynomials in Eq. (II.76)

due to the azimuthal symmetry. For this model, it must satisfy that V f
tot(r⃗) is finite when r → 0,

i.e. Nl = 0 for r ≤ R. And V f
tot(r⃗) has to be replaced by −Eext(t)r cos θ when r → ∞. Thus the
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E

r

θ

R

ε
2

ε
1

Figure II.3: An uncharged dielectric sphere of relative permittivity ε2 embedded in an infinite
ε1 medium with external field E⃗ext(t).

potential of the NS reads

V f
tot(r, θ, t) =

⎧⎨⎩
∑∞

l=0Mlr
lPl(cos θ) r ≤ R∑∞

l=0

Nl

rl+1
Pl(cos θ)− Eext(t)r cos θ r > R

(II.85)

The continuous boundary conditions for this model are⎧⎪⎨⎪⎩
V f
tot|R− = V f

tot|R+

ε2
∂V f

tot

∂r

⏐⏐⏐⏐
R−

= ε1
∂V f

tot

∂r

⏐⏐⏐⏐
R+

(II.86)

Consider −Eext(t)r cos θ = −Eext(t)rP1(cos θ), thus when l ̸= 1 the coefficients satisfy⎧⎪⎨⎪⎩
MlR

l =
Nl

Rl+1

ε2lMlR
l−1 = −ε1

Nl(l + 1)

Rl+2

(II.87)

And for l = 1, they follow as ⎧⎪⎨⎪⎩
M1R =

N1

R2
− EextR

ε2M1 = −ε1
2N1

R3
− ε1Eext

(II.88)
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Solving the Eqs. (II.87) and (II.88), one finds⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M1 = − 3ε1Eext

ε2 + 2ε1

N1 =
(ε2 − ε1)EextR

3

ε2 + 2ε1
Ml = Nl = 0 l ̸= 1

(II.89)

Finally, the total potential of NS with relative permittivity εr due to external field Eext is

V f
tot(r⃗, t) =

⎧⎪⎪⎨⎪⎪⎩
−3Eext(t)

εr + 2
r cos θ r ≤ R

−Eext(t)

[
1− (εr − 1)R3

(εr + 2)r3

]
r cos θ r > R

(II.90)

with θ being the angle between r⃗ and the external field E⃗ext(t) as in Fig. II.3. Considered the

relation between the potential and field Ef
tot = −∇V f

tot, the total field induced by the external

field is

Ef
tot(t)(r⃗, t) =

⎧⎪⎪⎨⎪⎪⎩
3Eext(t)

εr + 2
cos θ r ≤ R

Eext(t)

[
1 +

2(εr − 1)R3

(εr + 2)r3

]
cos θ r > R

(II.91)

4 DFTB-Based Calculation of Electronic States

The charge and energy transfer in molecules is described by the electronic Schrödinger equation.

Often ab initio methods are exploited to solve this equation. Here attention is focused on the

simpler SCC-DFTB method and an approximate Time-Dependent Density-Functional Theory

(TDDFT) [68].

4.1 SCC-DFTB Theory in Time-independent Constant External Field

DFT is the most popular theoretical method to determine the electronic structure. It can

reach high accuracy using generalized gradient approximation for the exchange-correlation (XC)

functional. DFTB is an approximate method based on the DFT framework, but doesn’t require

many empirical parameters and has a better computational scaling. SCC-DFTB is an extension

of DFTB to improve total energies, forces, and transferability by the Self-Consistent-Charge

(SCC) approach. It is based on a second-order expansion of the Kohn-Sham (KS) total energy

with respect to charge density fluctuations. From Eq. (II.7), a system of electrons obeys the

Schrödinger equation

HeΨ(r⃗) = [Te + Vee + Vext] Ψ(r⃗) = EΨ(r⃗) (II.92)

where Vext is the external potential for the system of electrons, which is a sum of the nuclear

potential Ven and an electric field potential Vfield(r⃗).

Based on the Hohenberg-Kohn theorem [69], there exits a one-to-one correspondence between

the external potential and the one-body density. But to obtain the density of an interacting

system is very hard. To solve this, Kohn and Sham introduced an auxiliary system of non-

interaction particles [70], whose dynamics are governed by a potential chosen such that the
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density of the KS system equals the density of the interacting system. This potential VKS is

local in real space, but highly non-locally dependent on the density ρ(r⃗). The KS molecular

orbitals obey [
−∇2

2
+ VKS(r⃗)

]
Ψi(r⃗) = EΨi(r⃗) (II.93)

The density of the interacting system follows from the KS orbitals as

ρ(r⃗) =
occ∑
i

|Ψi(r⃗)|2 (II.94)

The KS potential in Eq. (II.93) is given by

VKS(r⃗) = Vext(r⃗) + VHartree(r⃗) + Vxc(r⃗) (II.95)

The first term is again the external potential. The second term is the classical electrostatic

potential between the electrons

VHartree(r⃗) =

∫ ′ ρ(r⃗ ′)

|r⃗ − r⃗ ′|
(II.96)

The last term, the XC potential Vxc(r⃗), comprises the non-trivial many-body effects and is a

functional of the density and defined by the XC energy Exc as

Vxc(r⃗) =
δExc[ρ]

δρ(r⃗)
(II.97)

The energy of a molecule comprised of Ne electron and Nn nuclei can be expressed with the

KS states Ψi(r⃗) as

E[ρ] =

occ∑
i

⟨Ψi(r⃗)| −
∇2

2
+ Vext[ρ] +

1

2

∫ ′ ρ(r⃗ ′)

|r⃗ − r⃗ ′|
|Ψi(r⃗)⟩+ Exc[ρ] + Vnn (II.98)

Following Foulkes and Haydock [71] the electronic density can be treated as the sum of a

reference density and the deviation to the actual density:

ρ(r⃗) = ρ0(r⃗) + δρ(r⃗) (II.99)

The reference density ρ0 is the superposition of contributions from free neutral atoms. Inserting

Eq. (II.99) into Eq. (II.98) (Here and in the following ρ = ρ(r⃗) and ρ′ = ρ(r⃗ ′) as shorthand

notations) yields

E =

occ∑
i

⟨Ψi(r⃗)| −
∇2

2
+ Vext(r⃗)] +

∫ ′ ρ′0
|r⃗ − r⃗ ′|

+ Vxc[ρ0]|Ψi(r⃗)⟩ −
1

2

∫∫ ′ ρ′0(ρ0 + δρ)

|r⃗ − r⃗ ′|
(II.100a)

−
∫

Vxc[ρ0](ρ0 + δρ) +
1

2

∫∫ ′ δρ′(ρ0 + δρ)

|r⃗ − r⃗ ′|
+ Exc[ρ0 + δρ] + Vnn (II.100b)
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Next, Exc[ρ0 + δρ] is expanded to the second order term in a Taylor series:

Exc[ρ0 + δρ] = Exc[ρ0] +

∫
δExc

δρ

⏐⏐⏐⏐
ρ0

δρ+
1

2

∫∫ ′ δ2Exc

δρδρ′

⏐⏐⏐⏐
ρ0

δρδρ′ (II.101)

Consider Eq. (II.97), the total energy in DFT is

E =
occ∑
i

⟨Ψi(r⃗)| −
∇2

2
+ Vext(r⃗)] +

∫ ′ ρ′0
|r⃗ − r⃗ ′|

+ Vxc[ρ0]|Ψi(r⃗)⟩ (II.102a)

− 1

2

∫∫ ′ ρ′0ρ0
|r⃗ − r⃗ ′|

+ Exc[ρ0]−
∫

Vxc[ρ0]ρ0 + Vnn (II.102b)

+
1

2

∫∫ ′
(

1

|r⃗ − r⃗ ′|
+

δ2Exc

δρδρ′

⏐⏐⏐⏐
ρ0

)
δρδρ′ (II.102c)

In the equation, the first line Eq. (II.102a) is usually treated as a reference Hamiltonian H0

which depends only on ρ0:

H0 = −∇2

2
+ Vext(r⃗) +

∫ ′ ρ′0
|r⃗ − r⃗ ′|

+ Vxc[ρ0] (II.103)

The second line Eq. (II.102b) is denoted as the repulsive contribution Erep, which is strictly

pairwise, repulsive and short ranged. And, the last line Eq. (II.102c) is denoted as E2nd.

Non-SCC DFTB theory

In fact, the standard DFTB, zeroth-order non-SCC approach, is to neglect the E2nd term.

Further, a frozen-core approximation usually is applied to reduce the computational effort by

only considering the valence orbitals. Thus the core-core repulsion in Eq. (II.102a) is a sum of

one- and two-body potentials [71] and the total energy becomes

ETB
0 =

occ∑
i

⟨Ψi|H0|Ψi⟩+ Erep (II.104)

The KS equations are solved by the linear combination of atomic orbitals (LCAO) method.

Here the single-particle wave function Ψi is expanded into the atomic valence orbitals:

Ψi(r⃗) =
∑
ν

bνiφν(r⃗ − R⃗A) (II.105)

By applying the linear variational principle to Eq. (II.104), the non-SCC KS equation in the

atomic basis reads

M∑
ν

bνi
(
H0

µν − εiSµν

)
= 0, ∀µ, i, (II.106)

H0
µν = ⟨φµ|H0|φν⟩, Sµν = ⟨φµ|φν⟩, ∀µ ∈ A, ν ∈ B (II.107)
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For the Hamiltonian matrix elements H0
µν the following form is used [72]:

H0
µν =

⎧⎪⎨⎪⎩
εneutral free atom
µ if µ = ν

⟨φA
µ |T + V A

0 + V B
0 |φB

ν ⟩ if A ̸= B

0 otherwise

(II.108)

with T is the kinetic energy. Since the wavefunctions φµ and atomic potentials V0 are centred

on the atoms, only two-center Hamiltonian matrix elements are evaluated in combination with

the two-center overlap matrix elements. The diagonal elements give the energy of the free atoms

to guarantee the correct limit of isolated atoms.

By solving Eq. (II.106), the total energy becomes a sum over all occupied KS orbitals εi

with the occupation number ni. The Erep can be obtained as a function of distance by taking

the difference of the DFT cohesive energy such as given by a self-consistent field local-density

approximation [73] and the corresponding tight binding band-structure energy for a suitable

reference system

Erep(R) =

{
EDFT(R)−

occ∑
i

niεi(R)

}⏐⏐⏐⏐⏐
reference system

(II.109)

This non-SCC DFTB works very well for systems in which the polyatomic electronic density

can be represented by a sum of atom-like densities, i.e. homonuclear covalent systems or highly

ionic systems [74, 75, 76].

SCC-DFTB theroy

The error of non-SCC DFTB increases if the chemical bonding is controlled by a delicate charge

balance between different atomic constituents, especially in heteronuclear molecules and polar

semiconductors. For this case, long-range Coulomb interactions must be considered and E2nd in

Eq. (II.102c) can not be neglected [77].

To this end, δρ is decomposed into atom-centred contributions δρA, which decay fast with

increasing distance from the corresponding center. This gives

E2nd =
1

2

N∑
A,B

∫∫ ′
(

1

|r⃗ − r⃗ ′|
+

δ2Exc

δρδρ′

⏐⏐⏐⏐
ρ0

)
δρAδρ

′
B (II.110)

where δρA(r⃗) can be expanded in a series of radial function FA
ml and spherical function Ylm:

δρA(r⃗) =
∑
l,m

KmlF
A
ml(|r⃗ − R⃗A|)Ylm

(
r⃗ − R⃗A

|r⃗ − R⃗A|

)
(II.111)

Considering the most important contributions which are coming from the monopole and thus

avoiding a substantial increase in the numerical complexity of the scheme, the deviation to

the reference density on atom A can be truncated after the monopole term in the multipole

expansion.

δρA(r⃗) ≈ ∆qAF
A
00

(
|r⃗ − R⃗A|

)
Y00 (II.112)

25



CHAPTER II. THEORETICAL BACKGROUND

while the total charge in the system is preserved as

∑
A

∆qA =

∫
δρA(r⃗)dr⃗ (II.113)

Then the simple final expression for the second-order energy term is

E2nd =
1

2

N∑
A,B

∆qA∆qBγAB (II.114)

where

γAB =

∫∫ ′
(

1

|r⃗ − r⃗ ′|
+

δ2Exc

δρδρ′

⏐⏐⏐⏐
ρ0

)
FA
00

(
|r⃗ − R⃗A|

)
FB
00

(
|r⃗ − R⃗B|

)
4π

=

∫∫ ′
ΥA(r⃗)

(
1

|r⃗ − r⃗ ′|
+

δ2Exc

δρδρ′

⏐⏐⏐⏐
ρ0

)
ΥB(r⃗

′)

(II.115)

with

ΥA(r⃗) =
1

NA

∑
µ∈A

|φµ(r⃗)|2 (II.116)

The quantity NA is the number of basis functions on atom A. To solve Eq. (II.114), γAB

needs to be analysed. When the intratomic separation is very large (R = |R⃗A − R⃗B| → ∞),

the XC term vanishes and E2nd will reduce to the Coulomb interaction between two point

charges limR→∞ γAB(R) = 1/R. In the opposite case, when the interatomic distance tends to

zero (R → 0), γAB will describe the electron-electron interaction within the atom A and can

be related to the chemical hardness ηA or Hubbard parameter γAA = 2ηA = UA. Based on

Pariser’s observation [78], γAA can be approximated by the difference of the atomic ionization

potential IA and the electron affinity AA, γAA ≈ IA − AA ≈ 2ηA ≈ UA. The γAB only depend

on the distance between the atoms A and B, and the parameters UA and UB, which means

γAB(R) = γAB(UA, UB, R). But these parameters are neither adjustable nor empirical values.

In fact the necessary corrections for the TB energy by the charge fluctuations turns out to

be a typical Hubbard-type correlation in combination with a long-range interatomic Coulomb

interaction.

Finally, the total energy of Eq. (II.102) in second order DFTB is

ETB
2 =

occ∑
i

⟨Ψi|H0|Ψi⟩+
1

2

N∑
A,B

γAB∆qA∆qB + Erep (II.117)

As mentioned in the previous subsection, the contribution to H0 depends only on the ρ0. The

atomic charges are only related to the single-particle wave functions Ψi. The self-consistent

procedure is to find a minimum for Eq. (II.117) by adjusting the change fluctuations ∆qA.

To solve the problem, the single-particle wave function can be expanded as the same form

26



CHAPTER II. THEORETICAL BACKGROUND

like Eq. (II.105).Then the charge localized on the atom A is

qA =

occ∑
i

∫
VA

|Ψi(r⃗)|2dr⃗ =

occ∑
i

∑
µν

b∗µibνi

∫
VA

φ∗
µ(r⃗)φν(r⃗)dr⃗ (II.118)

where the integrations is over the volume VA belong to atom A. Let’s consider three cases : 1)

If neither µ nor ν belong to atom A, there is no contribution for qA; 2) If µ and ν both belong

to atom A, the integration becomes δµν , because the orbitals φν are orthonormal on the same

atom; 3) If only one of µ and ν belong to atom A, i.e. µ belongs to atom A and ν belongs to

atom B, then the integral becomes∫
VA

φ∗
µ(r⃗)φν(r⃗)dr⃗ ≈ 1

2

∫
V
φ∗
µ(r⃗)φν(r⃗)dr⃗ =

1

2
Sνµ (II.119)

and the Mulliken charge is approximated [79] as

qA =
occ∑
i

∑
µ∈A

∑
ν

1

2

(
b∗µibνiSµν + bµib

∗
νiSνµ

)
(II.120)

The charge fluctuation is ∆qA = qA − q0A, if the charge of atom A in the reference system is q0A.

Inserting the LCAO expansion into Eq. (II.117), one obtains

M∑
ν

bνi (Hµν − εiSµν) = 0, ∀µ, i, (II.121)

Hµν = ⟨φµ|H0|φν⟩+
1

2
Sµν

N∑
ξ

(γAξ + γBξ)∆qξ

= H0
µν +H1

µν ∀µ ∈ A, ν ∈ B (II.122)

When there are local external potentials V A
ext on the atoms A, then in the spirit of two-center

approximation Eq. (II.122) will become

Hµν = H0
µν +H1

µν +

∫
φ∗
µ(r⃗)Vext(r⃗)φν(r⃗)dr⃗

≈ H0
µν +H1

µν + V A
ext

∫
VA

φ∗
µφν + V B

ext

∫
VB

φ∗
µφν

≈ H0
µν +H1

µν +
1

2

(
V A
ext + V B

ext

)
Sµν ∀µ ∈ A, ν ∈ B

(II.123)

The smoothly varying external potentials can also shift the matrix Hµν . Thus the SCC-

DFTB based self-consistent procedure for the hybrid system, consisting of a metal NS and

different molecules, is as follows: from guessed initial charge fluctuations {∆q} one can obtain

H1
µν by Eq. (II.122) and the external potential V A

ext on atom A from the polarization potential Vpol

by Eq. (II.84). Then by solving the Eq. (II.121), new coefficients {bνi} are obtained. Finally, one

obtains new charge fluctuations {∆q} and continues the iteration till self-consistency is achieved.
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4.2 Approximate TDDFT in an External Field

This approximate TDDFT is a mixed quantum-classical approach to simulate the coupled dy-

namics of electrons and nuclei in nanoscale molecular systems [80].

In the time-dependent systems, the QM action is

A[Ψ] =

∫ t1

t0

dt⟨Ψ(t)|i ∂
∂t

−He(t)|Ψ(t)⟩ (II.124)

with Ψ(t) and He(t) is the total electronic wavefunction and Hamiltonian. Based on the Runge-

Gross theorem [81], there is the one-to-one correspondence between the potential Vext(r⃗, t) and

the one-body density ρ(r⃗, t). And the exact density should satisfy the stationary condition

δA[ρ]/δρ(r⃗, t) = 0. Thus in the stationary case, the time-dependent Kohn-Sham (TDKS) molec-

ular orbitals obey the time-dependent Schrödinger equation.

Assuming that the XC contributions are local in time [82], the equation of motion is derived

by applying the Lagrange formalism. The Lagrangian depending on the TDKS states Ψi(r⃗, t)

and the nuclear positions R⃗A reads

L =
∑
A

1

2
MA

˙⃗
R2

A −
occ∑
i

⟨Ψi(r⃗, t)|H[ρ](r⃗, t)− i
∂

∂t
|Ψi(r⃗, t)⟩ − EDC − Vnn (II.125)

In this equation, the first and last term are the classical kinetic energy and interactions for nuclei,

while from the TDDFT functional the remaining terms are obtained under the assumption that

the XC contributions are local in time. In the adiabatic local density approximation, standard

ground state functionals can be used in the time dependent case simply replaced by the time

dependent density. In addition EDC comprises the double counting terms

EDC = −1

2

∫∫ ′ ρ(r⃗, t)ρ(r⃗ ′, t)

|r⃗ − r⃗ ′|
+ Exc[ρ]−

∫
Vxc[ρ]ρ(r⃗, t) (II.126)

Eq. (II.125) can be solved in the spirit of DFTB. First, the electronic density is written as

the sum of a reference density ρ0(r⃗), which is given as a superposition of atomic (ground state)

densities, and the deviation to the actual density, i.e. the fluctuation density δρ(r⃗, t):

ρ(r⃗, t) = ρ0(r⃗) + δρ(r⃗, t) (II.127)

Next Eq. (II.125) is expanded in second order as

L ≈
∑
A

1

2
MA

˙⃗
R2

A −
occ∑
i

⟨Ψi(r⃗, t)|H[ρ0](r⃗)− i
∂

∂t
|Ψi(r⃗, t)⟩ (II.128a)

+
1

2

∫∫ ′ ρ0(r⃗)ρ0(r⃗
′)

|r⃗ − r⃗ ′|
− Exc[ρ0] +

∫
vxc[ρ0]ρ0(r⃗)− Vnn (II.128b)

− 1

2

∫∫ ′( 1

|r⃗ − r⃗ ′|
+

δvxc[ρ](r⃗, t)

δρ(r⃗ ′, t)

)
δρ(r⃗, t)δρ(r⃗ ′, t) (II.128c)

In Eq. (II.128a) the second term contains all the contributions linear in δρ through the TDKS

states. The terms in Eq. (II.128b) are denoted as Erep. Erep is a sum of strictly pairwise,
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repulsive, and short ranged potentials, which is only a functional of the atomic species and the

interatomic distance in the frozen-core approximation. Since Erep only depends on the time

independent reference density ρ0, it is exactly the same as used in the ground state DFTB

scheme. The terms in Eq. (II.128c) are of second order in δρ and will be called E2nd(t).

Since H[ρ0](r⃗) and Erep are independent on the time, the KS equations can be solved based

on the LCAO method. Therefore the single-particle wave function Ψi(r⃗, t) is expanded in the

basis of non-orthogonal atomic orbitals φµ with time-dependent coefficients bµi(t):

Ψi(r⃗, t) =
∑
µ

bµi(t)φµ(r⃗ − R⃗A) (II.129)

Using arguments similar to the discussion of Eq. (II.114) in SCC-DFTB, the second order

term of Eq. (II.128c) is approximated as follows:

E2nd(t) ≈ −1

2

∑
AB

∆qA(t)γAB∆qB(t) (II.130)

where the Mulliken charge fluctuation ∆qA(t) is ∆qA(t) = qA(t) − q0A. And q0A is the Mulliken

charge for the free atom. In this basis, the Mulliken charge on atom A becomes

qA(t) =
1

2

occ∑
i

∑
µ∈A,ν

(
b∗µi(t)bνi(t)Sµν + b∗νi(t)bµi(t)Sνµ

)
(II.131)

Inserting Eq. (II.129) and Eq. (II.130) into Eq. (II.128), L is obtained as a function of the

nuclear position R⃗ and the time-dependent coefficients bµi as

L(bµ,i, R⃗A) =
∑
A

1

2
MA

˙⃗
R2

A − Erep −
1

2

∑
AB

∆qA(t)γAB∆qB(t)

−
occ∑
i

∑
µν

[
b∗µi
(
H0

µν − i⟨φµ|φ̇ν⟩
)
bνi − ib∗µiSµν ḃνi

] (II.132)

Note that the atom-centred basis functions φµ implicitly depend on time due the motion of the

nuclei. In fact, based on the chain rule for differentiation of the basis function, one can find the

derivative
d

dt

∂L
∂ḃ∗µi

=
∂L
∂b∗µi

= 0 (II.133)

and

∂L
∂b∗µi

= −
occ∑
i

∑
ν

⎡⎣(H0
µν − i⟨φµ|φ̇ν⟩

)
bνi − iSµν ḃνi +

1

2
Sµνbνi

∑
ξ

(γAξ + γBξ)∆qξ

⎤⎦ (II.134)

Finally the electronic motion follows from

ḃνi = −
∑
δµ

S−1
µδ

[
iHδµ +

∑
A

˙⃗
RA⟨φδ|

∂

∂R⃗A

φµ⟩

]
bµi (II.135)
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with

Hµν = ⟨φµ|H[ρ0]|φν⟩+
1

2
Sµν

∑
ξ

(γAξ + γBξ)∆qξ(t)

= H0
µν +H1

µν ; ∀µ ∈ A; ν ∈ B

(II.136)

By the same procedure, the force on the atom A is

MA
¨⃗
RA =−

occ∑
i

∑
µν

b∗µibνi

(
∂H0

µν

∂R⃗A

+
∂Sµν

∂R⃗A

∑
B

γAB∆qB

)

+

occ∑
i

∑
µνδξ

(
b∗µi⟨

∂φµ

∂R⃗A

|φν⟩S−1
νδ Hδξbξi + c.c.

)
−∆qA

∑
B

∂γAB

∂R⃗A

∆qB − ∂Erep

∂R⃗A

(II.137)

In order to simulate the interaction with external electromagnetic fields, the Hamiltonian

(II.136) needs to be supplemented by respective terms. This is usually achieved by substituting

the momentum p⃗ by the generalized form p⃗ − A⃗, where A⃗(r⃗, t) is the vector potential of the

external field. Since the LCAO basis functions for the DFTB method are known, one can get

the matrix elements of the Hamiltonian H
[
r⃗, p⃗− e

c
A⃗
]
by numerical integration and use it to

propagate the wave function. Using the approximation of the time-dependent matrix elements

proposed by Graf and Vogl [83], the Hamiltonian is

H
[
r⃗, p⃗− A⃗(r⃗, t)

]
= exp

[
i

∫ r⃗

A⃗(s, t)ds

]
H(r⃗, p⃗) exp

[
−i

∫ r⃗

A⃗(s, t)ds

]
(II.138)

Since the wavelengths of the fields studied here are much larger than the molecular size

(λ > 100nm), the vector potential can be approximated as constant in the integration region,

which means
∫ R⃗A A⃗(s, t)ds ≈ A⃗(t)R⃗A. Then the time-dependent Hamiltonian matrix elements

are

Hµν

[
r⃗, p⃗, A⃗(t)

]
=

∫
φµ(r⃗ − R⃗A)H

(
r⃗, p⃗− A⃗

)
φν(r⃗ − R⃗B)dr⃗

=

∫
φµ exp

[
i

∫ r⃗

A⃗(t)ds

]
H(r⃗, p⃗) exp

[
−i

∫ r⃗

A⃗(t)ds

]
φνdr⃗

= exp

[
i

∫ R⃗A

A⃗(s, t)ds

]
exp

[
−i

∫ R⃗B

A⃗(s, t)ds

]∫
φµH(r⃗, p⃗)φνdr⃗

= exp
[
i(R⃗A − R⃗B)A⃗(t)

]
Hµν [r⃗, p⃗] µ ∈ A, ν ∈ B

(II.139)

Below, a hybrid system in the induced field is studied by the following steps: first, one

obtains the self-consistent result for the hybrid system without the induced field according to

Section II.4.1. Second, the total field E⃗f
tot induced by the external field E⃗ext is obtained by

Eq. (II.91). Finally, the propagation of the electronic states of the molecule in the total field is

obtained by Eq. (II.139).
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Chapter III

Disspative Exciton Dynamics in LH

Complexes

1 Vibrational and Vibronic Coherences in FMO Complex

In recent years, the energy transfer and the spectroscopy of photosynthetic light-harvesting

pigment-protein complexes [65] triggered substantial interest. Here the FMO complex has played

a prominent role.

The FMO complex, which consists of three identical subunits, serves as an energy funnel

linking the light-harvesting chlorosome with the RC in green sulphur bacteria [84]. Every subunit

is formed by an aggregate of seven BChl a molecules as shown in Fig. III.1, which are embedded

in a protein environment [85]. In fact, there is an eighth BChl a molecule, which will not be

considered here. For the FMO a comparison between the electronic energy level structure and

the experimentally determined spectral density [86] suggested a mode around 180 cm−1 to fulfil

the conditions for reasonably strong mixing between excitonic and vibronic (i.e. local electron

vibrational) excitations or, in terms of dynamics, for vibrationally assisted exciton transfer [87].

In system-bath approaches by construction the dynamics is obtained explicitly only for the

relevant system, whereas the bath is traced out in the RDO [64]. With recent advances in the

numerical solution of the Schrödinger equation for high-dimensional Hamiltonians by means of

the multi-layer multi-configuration time-dependent Hartree method [88] it became possible to

approach exciton–vibrational dynamics in the FMO complex by discretization of the spectral

density yielding a high-dimensional model [89]. Here, indeed it has been found that vibrational

modes in a window around 180 cm−1 are appreciably excited in both the electronic ground and

excited states. It should be noted that the model of Ref. [89] applies to the zero temperature

case and the description of relaxation is limited by the finite discretization of the bath. In order

to have a proper description of relaxation while having access to the dynamics of vibrational

degrees of freedom, models have been suggested where a single vibrational mode is kept “active”

as part of the relevant system. The latter has been either a molecular dimer [90, 91] or a model

of the FMO complex [36, 92].

In the present section such an extended relevant system is investigated using a QME, as

introduced in Sec. II.2.2. Sacrificing the non-Markovian and non-perturbative treatment of
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Figure III.1: Structure of the monomeric subunit of the FMO complex of Prosthecochloris aes-
tuarii formed by seven BChl a molecules (labelled) embedded in a protein environment of folded
α-sheets (not shown).

most of the bath (except for the modes which are part of the relevant system), allows us to

focus on the difference between OPA and TPA. Working within the TPA gives further access

not only to the vibronic (as in OPA), but also to the vibrational coherences. Indeed, in view of

the results of Ref. [89] the inclusion of vibrational motion in the local electronic ground states

appears to be mandatory. Emphasis is put on the effect from the vibrational coherence on the

exciton transfer. The present focus is on the dynamics of the RDM and not on spectroscopic

signals.

1.1 FMO Model

The Hamiltonian can be written in system-bath form as Eq. (II.37). In the following two models

are considered: First, only the exciton subspace is taken as the relevant system (model I). From

Eq. (II.18), the system Hamiltonian without ground state represents

H
(I)
S =

∑
mn

(Emδmn + Jmn)|m⟩⟨n| (III.1)
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where Em is the site energy and Jmn the Coulomb coupling between sites m and n taken from

Ref. [93] as (in units of cm−1)

H
(I)
S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

310 −97.9 5.5 −5.8 6.7 −12.1 −10.3

−97.9 230 30.1 7.3 2.0 11.5 4.8

5.5 30.1 0 −58.8 −1.5 −9.6 4.7

−5.8 7.3 −58.5 180 −64.9 −17.4 −64.4

6.7 2.0 −1.5 −64.9 405 89.0 −6.4

−12.1 11.5 −9.6 −17.4 89.0 320 31.7

−10.3 4.8 4.7 −64.4 −6.4 31.7 270

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the Hamiltonian, the site energies Em are obtained from quantum chemical/electrostatic

calculations. And the Coulomb couplings Jmn are calculated in the dipole-dipole approximation.

The labelling of the sites follows the structure of the Hamiltonian matrix, e.g., site m = 3 has

the lowest energy 12195 cm−1 which is taken as zero energy in the above.

In the second case (model II) each site m contains a single intramolecular harmonic vi-

brational mode with coordinate Q
(H)
m , frequency Ω

(H)
m , and Huang-Rhys factor S

(H)
m . From

Eq. (II.34), the Hamiltonian reads:

H
(II)
S =

∑
m

∑
M

Em,M|m,M⟩⟨m,M|+
∑
m̸=n

∑
M,N

Jmn (FC)MN|m,M⟩⟨n,N| (III.2)

In the spirit of the n-particle approximation, the OPA and TPA as shown in Fig. II.1 are used.

To reduce the unnecessary calculations, the maximum vibrational quantum numbers {M} act as

a convergence criterion with regard to the basis size in the numerical simulations and have been

chosen as follows. A certain upper energy limit is defined from a vertical excitation at sitem = 1,

i.e. if exciton-vibrational levels exceed that limit there is only little influence on the results. The

FC mediated Coulomb coupling between the sites causes the situations that even if a level would

be energetically accessible, the coupling is too small to lead to sizeable exciton-vibrational state

mixing. This has been checked by calculating exciton-vibrational eigenstates and subsequently

an additional criterion is used for restricting the state space of the dynamics simulations. The

Huang-Rhys factor is so small that only a few vibronic levels are necessary to be included at the

initially excited site m = 1; the actual value is also dependent on the temperature due to the

thermal population of vibrational states in the electronic ground states. At T = 77 KM
(max)
e1 = 2

is found to be sufficient, which yields for the levels included in the other sites, i.e. maximal energy

for all sites with {M} is approximately equal or below M
(max)
e1 = 2: M

(max)
e2...e7 = (3, 4, 3, 2, 2, 3).

In case of the TPA the electronic ground states M
(max)
gn = 2 are used for all n. However at

T = 300 K the vibrational numbers need to be increased to M
(max)
e1...e7 = (3, 4, 5, 4, 3, 3, 4) and

M
(max)
gn = 3. For the chosen setups there are 133 and 338 exction-vibrational eigenstates for

T = 77 K and 300 K, respectively. For OPA the same vibronic excitation Mem as for TPA and

all Mgn = 0 at T = 77 K and 300 K.

For both cases the bath, which contains solvent and protein environment as well as fur-

ther intramolecular vibrations, is represented by a set of uncoupled harmonic oscillators with
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dimensionless coordinates {xi}, and frequencies {ωi}, i.e.

HB =
∑
i

ωi

2

(
− ∂2

∂x2i
+ x2i

)
(III.3)

The system-bath coupling for model I is given by

H
(I)
S−B =

∑
m,i

ωigixi|m⟩⟨m| (III.4)

The dimensionless coupling constant gi is simply assumed to be independent of the site (see

the study of the site dependence in Ref. [94]). Based on a fit of low temperature fluorescence

line narrowing spectra of B777 complexes by Renger and Marcus [95], the spectral density is

suggested as

J (I)(ω) =
∑
i=1,2

si
7! 2ω4

i

ω3e−
√

ω/ωi (III.5)

where s1 = 0.8, s2 = 0.5, ω1 = 0.6 cm−1, and ω2 = 1.9 cm−1 [95].

The above spectral model has been extended by Renger and Adolphs in Ref. [96] by adding

a discrete mode. Thus the spectral density yields

J(ω) = S0J
(I)(ω) + S(H)δ(ω − Ω(H)) (III.6)

The parameters Ω(H) = 180 cm−1 and S(H) = 0.22 had been chosen for the vibrational mode,

together with a Huang-Rhys factor S0 = 0.5 for the protein environment. Later it was suggested

that this vibrational mode was considered as a mode which effectively combined three modes

around 180 cm−1 yielding a reduced Huang-Rhys factor of S(H) = 0.027 (see, e.g., Ref. [36]).

Following Nalbach and coworkers [36, 92], one extends the model behind Eq. (III.6) and

includes a damping of this effective mode. This is accomplished by choosing the system-bath

Hamiltonian for model II as follows:

H
(II)
S−B =

∑
m,i

[
ciΩ

(H)
(
(Q(H)

m −
√

2S(H))|em⟩⟨em|+Q(H)
m |gm⟩⟨gm|

)
xi + ωigixi

]
|m⟩⟨m| (III.7)

This coupling Hamiltonian contains two contributions, where the coupling strengths are assumed

to be independent on the site. First, the coupling between the electronic excitation and the pro-

tein environment is taken as in Eq. (III.5) again. Second, a bilinear coupling between the system

vibrational coordinate and the bath coordinates is assumed with coupling strength ci. Notice

that the bilinear coupling is defined by the minimum of the potential for the coordinate Q
(H)
m

in the respective electronic state. The Huang-Rhys factor for the mode Q
(H)
m , which determines

the FC factors in Eq. (III.2), will be taken as S(H) = 0.027 for all sites [36].

The influence of the bilinear coupling for the selected vibrational mode from the bath is

modelled by an Ohmic spectral density, i.e.

ω2J (H)(ω) = η(H)ωe−ω/ωc (III.8)
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Figure III.2: The spectral density according to Renger and Marcus (red), Eq. (III.5), and the
Ohmic spectral density (black), Eq. (III.8). Also shown is the position of the effective vibrational
mode at 180 cm−1.

with η(H)=0.05 and ωc = 180 cm−1. The choice of ωc is reasonable for the present purpose as it

gives the most effective coupling, but otherwise arbitrary since nothing is known about J (H)(ω)

in the FMO complex. The coupling strength η(H) has been chosen such as to give a relaxation

time 246 fs of vibrational transition from the M = 1 to M = 0. A similar relaxation time has

been reported in Ref. [97] for the LH1. It should be emphasized that the TPA model requires to

contain a damping of the Q
(H)
m mode to guarantee relaxation also in the electronic ground states.

In the OPA model, as a consequence of the mixing between excitonic and vibronic excitations,

relaxation of vibronic excitations occurs already with the coupling according to Eq. III.1. Figure

III.2 summarizes the spectral densities used in this work.

The dynamics of the two models will be investigated within the QME approach. Thereby,

non-Markovian effects are neglected for model I, whereas for model II the dynamics of the

selected modes is treated beyond perturbation theory and Markov approximation. This simpli-

fication allows one to address the exciton-vibrational dynamics beyond the OPA, i.e. to include

vibrational motion at those sites, which are in their electronic ground states.

The system-bath couplings are of the form of Eq. (II.40). Thus the QME for the RDO ρ(t)

from Eq. (II.55) becomes

∂

∂t
ρ(t) = −i [HS, ρ(t)]−

∑
m

[
Km,Λmρ(t)− ρ(t)Λ(+)

m

]
(III.9)
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Let’s specify these equations for the considered models. In model I one obtains

K(I)
m = |m⟩⟨m| (III.10)

whereas in model II this operator gives the full K
(II)
m as

K(II)
m = Ω(H)

(
(Q(H)

m −
√

2S(H))|em⟩⟨em|+Q(H)
m |gm⟩⟨gm|

)
|m⟩⟨m| (III.11)

Using the spectral density models as given in Fig. III.2 one has neglected correlations between

different terms in Km, i.e. Jmn(ω) = J(ω) and accordingly Cmn(t) = C(t). Further, the time

evolution operator in Eq. II.53 has been evaluated in the eigenstate representation in order to

guarantee proper equilibration [64]. In order to describe the effect of an energy sink at site

3, i.e. the RC, one has used the approach of Ref. [19], which treats the coupling to the sink

perturbatively under the assumption of a constant spectral density of the interaction between

site 3 and the sink. Thus the transfer towards the RC is treated as an incoherent population

decay on a purely phenomenological level, i.e. with the sink it has

∂

∂t
ρ(t) = −i [HS, ρ(t)]−

∑
m

[
Km,Λmρ(t)− ρ(t)Λ(+)

m

]
− ΓRC

∑
M

|3,M⟩⟨3,M| (III.12a)

∂

∂t
ρRC(t) = ΓRC

∑
M

|3,M⟩⟨3,M| (III.12b)

with a constant decay rate ΓRC = 1 ps−1 [36]. In addition, the initial density ρ(0) of the system

was set to ρ11(0) = 1 in model I. In model II in thermal equilibrium yields

ρ1M,1M(0) =
exp(−E1M/kBT )∑
M exp(−E1M/kBT )

(III.13)

1.2 Results

Exciton Population Dynamics

Fig. III.3 shows the site populations Pm(t) = ρmm(t) after initial excitation at site m = 1 for

system-bath model I (no explicit vibrations) at two temperatures (T = 77 and 300 K) and

with/without (upper/lower panels) a sink. At T = 77 K pronounced coherent oscillations are

observed between the populations at site m = 1 and m = 2, and similar to those reported in

many other researches (see, e.g. Ref. [65]). After 5 ps the population virtually has relaxed to the

lowest-energy site m = 3, with obvious population at site m = 4. At T = 300 K the oscillations

almost disappeared and a redistribution of population away from the exit site m = 3 resulted

from the Boltzmann population.

Upon inclusion of the sink attached to site m = 3 (in following “with sink” means inclusion

of a sink attached to site 3) one finds no appreciable change in the dynamics at sites m = 1, 2.

However, the population at site m = 3 decays afterwards with a maximum rate around 1400 fs.

Most of the population is at the sink after 5 ps. At T = 300 K a similar observation holds true

with the notable exception that the rate for population of the sink is slowed down (Notice that

the sink is not part of the equilibrated system). This results from the fact that more population
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Figure III.3: Time evolution of the FMO site populations, Pm = ρmm, without explicit vibra-
tional modes (model I) for T = 77 K (left column) and T = 300 K (right column) for the initial
population ρ11(0) = 1. The upper row gives the populations without the sink and the lower row
with a sink attached to site m = 3.

is quickly and temporarily trapped at sites m = 4− 7, which are not directly connected to the

RC as it is the case for site m = 3. Figure III.3 will be taken as a reference for the following

discussion of the influence from the inclusion of explicit vibrations.

In Fig. III.4 the TPA population dynamics of model II are compared with that of the bare

electronic model I and the OPA without the sink. In total, inclusion of explicit vibrations results

in changes according to the bare electronic case, which are of the order of 20% at T = 77 K

and 35% at T = 300 K. Resulting from the more complicated level structure the oscillations

between site m = 1 and 2 are less regular, but still discernible at T = 77 K. At this temperature

the vibrations accelerated clearly the trapping to the lowest site m = 3. However there is no

pronounced acceleration at T = 300 K. In fact, the initial behaviour of the populations at sites

m = 1 and 2 indicate a transient trapping, which will be discussed below in the context of

the density matrices. Comparing TPA and OPA in the lower panels of Fig. III.4 differences of

about 15% and 7% are found at 77 K and 300 K, respectively. It is the most significant that the

trapping to the lowest site m = 3 is accelerated in the TPA as compared to the OPA at both

temperatures.

Fig. III.5 compares the same population dynamics but with the sink. Overall, inclusion of
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Figure III.4: Time evolution of the FMO site populations, Pm = ρmm without the sink for model
II, in TPA approximation (upper panels). The population difference, ∆Pm, with respect to the
bare electronic and the OPA model is shown in the middle and lower panels, respectively. The
initial condition is a vertical FC transition from the Boltzmann populated ground state at site
m = 1.

explicit vibrations leads to the same changes for both the bare electronic and OPA cases. At

T = 77 K the change is of the order of 15%, and is 5% smaller than in the case without the

sink in Fig. III.4. That is because there is an accelerated trapping at the RC with the sink from

site 3, which is of the order of 15%. But there is no discernible change at T = 300 K. In the

lower panels comparing TPA and OPA, the RC trapping is accelerated in the TPA as compared
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Figure III.5: Same as Fig. III.4 for system with the sink.

to the OPA at both temperatures. The difference is about 10% and 5% at 77 K and 300 K

respectively. Also there are little changes at 77 K comparing with the case without the sink for

the same reason. Overall the trapping at the sink doesn’t change the trend of the influence of

the vibrations.

Fig. III.6 shows the dependence of the population dynamics with the sink on the coupling

strength η(H) for T = 77 K. At this temperature the vibrational relaxation time for the 0 → 1

transition is 246 fs for the reference case η(H) = 0.05. Panel (a) compares the population dy-

namics with that of η(H) = 0.3 (relaxation time 41 fs). The transition out of site 1 is decelerated

in the first 200 fs, which is in the order of 14% , and then accelerated before 2000 fs in the order

of 5%. During all the period the transition out from the site 2 is accelerated in the order of
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the coupling η(H) in Eq. (III.8). As a reference η(H) = 0.05 is used as before. Panel (a) and (b)
show ∆Pm = Pm(η(H) = 0.3)−Pm(η(H) = 0.05) and ∆Pm = Pm(η(H) = 0.005)−Pm(η(H) = 0.05),
respectively. The temperature is T = 77 K.

14%. Trapping at the site 3 and RC is also accelerated in the order of 5% and 3%. Panel (b)

compares the population dynamics to the case of η(H) = 0.005 (relaxation time 2460 fs). For this

case the transition out of the site 1 is accelerated during the first 200 fs in the order of 3% and

decelerated before 2000 fs in the order of 5%. From t =200 fs to 400 fs, the transition out from

site 2 is decelerated in the order of 3%. In all other period (from 0 fs to 200 fs and from 400 fs to

5000 fs) it is mostly accelerated in the order of 3% to the site 3 and RC are decelerated during

all the time in the order of 5%. Overall, the changes are essentially below 10 %. Decreasing the

vibrational relaxation time leads to a more rapid population of site m = 3 and therefore of the

sink. If the relaxation time is increased the opposite behaviour is observed.

Vibronic and Vibrational Dynamics

The dynamics of vibronic excitations in model II is studied using the density matrix

ρmMem ,nNen
(t) =

∑
Mgk

ρmMemMgk
,nNenMgk

(t) (III.14)
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where Mgk contains all vibrational quantum numbers for sites k ̸= m,n. Notice that in OPA

the quantum numbers are all equal to zero, however in TPA one of the Mgk can be different

from zero. The following results have been calculated for the case without inclusion of a sink.
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Figure III.7: Vibronic density matrix (ReρmMem ,nNen
) in TPA at t = 100 and 5000 fs and for

two temperatures, T = 77 and 300 K.

The left column of Fig. III.7 shows the vibronic density matrix at 100 fs after an instantaneous

FC transition at site m = 1. At T = 77 K on-site coherences are found, which represent vibronic

wave packet dynamics at sites m = 1 and 2. Furthermore, these sites are attached by inter-site

coherences. There are weaker inter-site coherences between sites m = 1 and 2 and essentially all

other sites. Generally the inter-site coherences involving the vibronic ground state are strongest

due to the smallness of the Huang-Rhys factor. If increasing the temperature to T = 300 K
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most of on-site and inter-site coherences are suppressed owing to the more rapid dephasing.

The right column of Fig. III.7 shows the vibronic density matrix at t = 5 ps. At this time,

with respect to Fig. III.3 the system is virtually equilibrated in the one-exciton vibrational

manifold. Therefore, the density matrix reflects the projection of the thermally populated

eigenstates onto the site basis. At T = 77 K the vibronic density matrix is dominated by

contributions from sites m = 3 and 4, with pronounced inter-site coherences between m = 3

and essentially all other sites. At T = 300 K almost all sites are obviously populated with site

m = 3 still dominating. The almost equal population of sites causes a suppression of off-diagonal

elements.
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Figure III.8: Vibronic density matrix (ReρmMem ,nNen
) in TPA and OPA at t = 200 and 1000 fs

and for T = 77 K.
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Figure III.9: Vibronic density matrix (Re ρmMem ,nNen
) in TPA and OPA at t = 200 and 1000 fs

and for T = 300 K.

In order to illustrate the difference between TPA and OPA important vibronic density matrix

elements are shown for t = 200 fs and 1 ps at T = 77 K in Fig. III.8. It is simple to find that

TPA and OPA give rather different results. At t = 200 fs this concerns all matrix elements,

some of them are not only different in amplitude but also in phase (sign). After 1 ps phase and

energy relaxation have been effective, causing more similar OPA and TPA results. However,

there are still important differences such as the different phase for the off-diagonal elements at

site m = 3.

Fig. III.9 shows the similar situation at T = 300 K. Here, the differences are not so noticeable

for sites m = 1 and 2. Instead substantial differences exist in the inter-site coherences between
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Figure III.10: Real part of the ground state vibrational density matrix, Eq. (III.15) at T = 77 K
(left panel) and 300 K (right panel) for different times as indicated. Shown are only the elements
with M,N = 0, 1 since others are rather small.

these two sites and sites m = 3 and 4. These are predicted by the OPA to be more important.

Evidently, the denser level structure on the TPA results in faster dephasing of the inter-site

coherences. The faster relaxation at T = 300 K causes more similar vibronic density matrix

elements after 1 ps, though there are still differences, e.g., in the inter-site coherences between

site m = 1, 2 and m = 3, 4.

Compared with the OPA, the TPA allows for vibrational dynamics in the electronic ground

states. Vibrational dynamics can be obtained from the RDM by tracing out the vibronic states.

With respect to a single site this gives the electronic ground state density matrix

RMgk
,Ngk

(t) =
∑
m ̸=k

∑
Mem

ρmMemMgk
,mMemNgk

(t) (III.15)

Fig. III.10 shows the real part of this quantity for different propagation times and at T = 77 K
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(left panel) and 300 K (right panel). Because of the initial conditions, i.e. a vertical excitation

at site m = 1, RMg1 ,Ng1
(0) = 0, whereas the population at all other sites is in the Boltzmann

distribution. Subsequently, some coherent vibrational wave packet dynamics exist at T = 77 K.

Initially, this mostly is related with sites m = 1 and 2. At the other sites triggered by the

initial conditions, off-diagonal elements rapidly decay except at site m = 4. The vibrational

relaxation time at 77 K is 246 fs (for an 1→0 transition in site basis). However, vibrational

coherences are regenerated continuously by the exciton transfer until the equilibrium is reached.

The density matrix RMgk
,Ngk

at 5 ps mostly reflects the equilibrated state. Off-diagonal elements

represent contributions from the site basis to the exciton-vibrational eigenstates. The vibrational

relaxation time decreases to 147 fs at T = 300 K. Therefore, the ground state density matrix

RMgk
,Ngk

is essentially diagonal for all times except at site m = 1, where there are off-diagonal

elements during the first 1 ps.

Discussion of Exciton Transfer

In order to discuss the excitonic site populations in the presence of explicit vibrational DOFs

the site population at site m is considered to be obtained from the equations of motion in the

absence of dissipation. In second order of the Coulomb coupling from Eq. (II.34) one obtains [64]

∂

∂t
Pm = −2Re

∑
n

∑
Mem ,Mgn

∑
Nen ,Ngm

|Jmn|2|⟨Mem |Ngm⟩|2|⟨Mgn |Nen⟩|2

×
∫ t

0
dτei[ωmn−Ω(H)(Ngm−Mem+Nen−Mgn )]τ

× [Pm,MemMgn
(t− τ)− Pn,NgmNen

(t− τ)] (III.16)

where ωmn = (Em−En) is the bare excitonic transition frequency. Furthermore, the population

of a certain exciton-vibrational state Pm,MemMgn
is introduced, which is the diagonal element of

the respective density matrix. Thus the efficiency of transfer between sites m and n is decided

by a sum over many vibrational channels, where the individual contribution is given by the FC

mediated Coulomb coupling, the resonance condition ωmn−Ω(H)(Ngm −Mem +Nen −Mgn) ≈ 0,

and a population difference.

Due to the smallness of the Huang-Rhys factor of S(H) = 0.027 one would not expect an

involvement of any vibrational or vibronic excitation. Here, the resonance condition plays its

role in facilitating vibrationally assisted transfer. For the present model the relevant excitonic

energy gaps represent ω21 = 0.44Ω(H), ω31 = 1.72Ω(H), and ω32 = 1.28Ω(H). It is interesting that

in terms of transfer between the local sites this is not at all optimal. In addition, the energy

gap between sites m = 4 and n = 3 is ω43 = Ω(H), but the pathway via site m = 4 is only of

minor importance according to weak Coulomb couplings.

In accordance with this discussion let us return to the results shown in Figs. III.5-III.10.

Comparing Fig. III.5 with III.7 it is noticed that at T = 77 K since the FC excited vibronic

states are partly off-resonant the initial depopulation for site m = 1 is slowed down. Thus,

vibronic relaxation is necessary for improving the resonance conditions. In the initial plan the

channel involving two vibronic excitations is also active. However at later times there are only

channels with one vibronic excitation in the transfer (Fig. III.8). From Fig. III.10 one could

45



CHAPTER III. DISSPATIVE EXCITON DYNAMICS IN LH COMPLEXES

observe the participation of ground state vibrations up to N = 1. This will reduce energy gaps

if the vibronic excitation is too high. At T = 300 K the phase and energy relaxation is more

obvious and many channels are suppressed. This decelerates the depopulation of site m = 1

considerably. Effectively no net acceleration of trapping at the sink is found if compared with

the bare excitonic case (model I).

In case of the OPA, the summations in Eq. (III.16) are limited to Mgn = 0 and Ngm = 0.

Hence, no vibrational excitation can cause additional transfer channels via establishing resonance

conditions, e.g. for higher excited vibronic levels. As a result OPA yields a slower depopulation

of the initial site and thus a slower population of the sink site comparing with TPA (Fig. III.5).

2 LH2 of Alc. vinosum: B800 Band Splitting

There are different explanations for the B800 absorption band splitting shown in Fig. III.16.

The two B800 sub-bands will be labelled as B800b (blue side) and B800r (red side). One

indicates that the splitting may be due to the sample which contains a mixture of two spectrally

different LH2 complexes which can’t be separated [98]. The second hypothesis assumes that

the two B800-type BChl a molecules in the individual LH2 complex have alternating distances,

thus leading to excitonic dimerization. It is supported by polarization-resolved single-molecule

spectroscopy [16]. However, in earlier transient absorption experiments the excitonic coupling

and the simultaneous bleaching of the B800 bands upon selective excitation of one sub-band was

not observed [99]. A third hypothesis is that due to the weakly and strongly hydrogen-bonded

BChl chromophores for the two B800 sub-bands, proton dynamics will cause conformational

changes under illumination, which is supported by hole-burning experiments [100]. In addition,

some experiments supported the energetic heterogeneity of the B800 molecules. It plays a

significant role during the B800 to B850 transfer leading to different transfer rates and the peak

splitting [101, 102].

In Ref. [102], Schröter and coworkers presented unambiguous evidence for the excitonic

interaction shaping the B800 band through crosspeaks appearing in 2DES. By using a global

kinetic fitting procedure, they obtained the depopulation time for LH2 sub-bands in Fig. III.11.

Note that depopulation times of 1800 fs for B800b→B850 and 2800 fs for B800b→B800r had

been obtained in Ref. [99]. In the present work, an excitonic model is used to understand the

possible origin of these time scales and their relation to the absorption spectrum.

2.1 Model System

In principle, the crystal structure of LH2 can be obtained using X-ray crystallography combined

with electron microscopy and there are different structures purified from different membranes.

However the actual structure strongly depends on the preparation conditions [102]. In Ref. [102]

the split B800 band exists in the absorption spectrum (black dotted line in Fig. III.16), which

means the structure for LH2 in the experiment is probably close to the assumption of the paper

of Löhner and his coworkers [16].

In Ref. [16] the arrangement of the B800 and B850 rings was developed from Rps. molischi-

anum to reach the best agreement for their experiment for LH2 of Alc. vinosum. The subunits
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Figure III.11: Experimental scheme of energy transfer shown together with the 2DES. The main
exciton (sub-) bands are in dashed horizontal lines and the energy transfer pathways are shown
by the red arrows with the depopulation time. Reprinted with permission from M. Schröter, M.
J. P. Alcocer, R. J. Cogdell, O. Kühn, and D. Zigmantas, Origin of the two bands in the B800
ring and their involvement in the energy transfer network of allochromatium vinosum, J. Phys.
Chem. Lett. 9, 1340–1345 (2018). Copyright 2018 by the American Chemical Society.

Figure III.12: Scheme of the BChl a molecular arrangement with B850 (red) and B800 (yellow)
as proposed by Löhner et al. [16]. The inset shows the basic subunit for A and B on an expanded
scale. Reprinted with permission from Springer: A. Löhner, A.-M. Carey, K. Hacking, N. Picken,
S. Kelly, R. Cogdell, and J. Köhler, The origin of the split B800 absorption peak in the LH2
complexes from allochromatium vinosum, Photosynth. Res. 123, 23 (2015). Copyright 2015 by
Springer Science Business Media Dordrecht. All Rights Reserved.
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of BChl a molecules are arranged as shown in the Fig. III.12. One can find that there are two

kinds of B800s in A and B subunits. A-kind B800 molecules are located vertically almost on top

of one B850 molecule. A B-kind B800 is located vertically approximately on top of the center

in between two B850 molecules. In the total structure B800/B850 molecules are all positioned

on rings with radius 38.5Å. The center to center distance between B800 and B850 rings is 17Å.

Three angles for the molecular dipole moment µ⃗ are fitted to match the absorption as shown in

Fig. III.13: αm is the angle between the projection for dipole moment µ⃗m and local tangent n⃗m

of m molecule in ring-plane. βm is the angle between the dipole moment µ⃗m and the cylinder

axis z⃗. And γ is the rotation (torsion) angle between B800 and B850 rings.

a) z b)

z

α
n

μ

c)
β

μ
γ

38.5 Å
17 Å

Figure III.13: Scheme of the set of angles for BChl a molecules (B850 or B800) in the LH2 rings.
a) the direction of dipole moments for the B800 (top) and B850 (bottom) and torsion angle γ.
b) the definition for angle α between the tangent n⃗ of the ring and projection of dipole moment
µ⃗ in the ring plane. c) the angle β between µ⃗ and axis z⃗.

The fitting of the set of angles by Löhner et al. [16] has been performed using the fluorescence

excitation spectrum for the complex embedded into a polymer matrix at 1.2 K. The authors

also report a spectrum for LH2 in a buffer/glycerol matrix. Here the B800 double peak is more

pronounced and in fact looks closer to the one reported in Ref. [102], also measured in glycerol,

but at 77 K. Therefore, the parameters of Ref. [16] can’t be used and a new parameterization ac-

cording to the absorption spectrum of Ref. [102] is performed. Since a fit to the absorption alone

is not necessarily unique, density matrix simulations of the population dynamics are performed

and compared with the relaxation time scales reported in Ref. [102].

The LH2 complex will be treated using the system-bath model I from Eq. (III.4), which is

studied as in Ref. [19]. For the spectral density an experimental result is used (see Fig. III.14),

which was obtained from Ref. [103]. In the following, the single-exciton eigenstates without
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Figure III.14: The BChl a spectral density obtained from fluorescence line narrowing in
Ref. [103].

vibrational states will be used. They are expressed as

|α⟩ =
∑
m

cm,α|m⟩ (III.17)

The respective transition dipole matrix elements are given by

µ⃗α =
∑
m

µ⃗m,gecm,α (III.18)

Restricting the model to population relaxation and coherence dephasing (Bloch model) only,

the single-exciton terms for the relaxation matrix defined from Eq. (II.70) are given by

Rαα,ββ = −kβ→α + δαβ
∑
γ

kα→γ (III.19a)

Rαβ,αβ = Γ̂αβ +
1

2

∑
γ ̸=α

kα→γ +
1

2

∑
γ ̸=β

kβ→γ (III.19b)

where kα→β is the transition rate from Eq. (II.72). In the eigenstate basis the rates can be

simplified as

kα→β =
∑
m

Cm(ωαβ)|cm,α|2|cm,β|2 (III.20)

The same shape of the spectral density is assumed for all sites (cf. Fig. III.14). Specificity

is introduced via the coupling coefficient am between the bath and molecule m, such that the
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correlation function Cm(ω) from Eq. (II.63) becomes

Cm(ω) = amC(ω) (III.21)

In addition, the pure dephasing rate Γ̂αβ, as Γaa,bb(0) from Eq. (II.67), in eigenstate basis

becomes

Γ̂αβ =
∑
m

Γ̂m(T )(|cm,α|2 − |cm,β|2)2 (III.22a)

Γ̂α0 =
∑
m

Γ̂m(T )|cm,α|4 (III.22b)

where Γ̂m(T ) is pure dephasing rate for molecule m at temperature T . Thus the phase relaxation

rates for the excitonic transitions from Eq. (II.73) read

γα =
∑
β ̸=α

kα→β + 2Γ̂α0 (III.23)

Inhomogeneous broadening is accounted for using the model of diagonal static disorder,

which assumes an independent Gaussian distribution of site energies with variance σdis. The

results presented below have been obtained by averaging over 5000 realizations. Thus the linear

absorption spectrum of LH2 is obtained from

A(ω) =

⟨∑
α

γα|µ⃗α|2

(ω − ωα)2 + γ2α/4

⟩
disorder

(III.24)

The equation of motion for the RDM with the external field E⃗ext(t) is given by

d

dt
ρ(t) = −i [HS +Hfield(t), ρ(t)]−Rρ(t) (III.25)

Thus based on the interaction with the external field Hfield(t) according to Eq. (II.26) and the

dissipative matrix R from Eq. (II.71), the equations of motion in the eigenstate basis reads

d

dt
ραβ(t) =− iωαβραβ(t)− (1− δαβ)Rαβ,αβραβ(t)− δαβ

∑
α′

Rαα,α′α′ρα′α′(t)

+ iE⃗ext(t) [µ⃗αρ0β(t)− µ⃗βρα0(t)] (III.26a)

d

dt
ρα0(t) =− (iωα0 + γα)ρα(t) + iE⃗ext(t)[µ⃗αρ00(t)−

∑
β

µ⃗βραβ(t)] (III.26b)

ρ00(t) =1−
∑
α

ραα(t) (III.26c)

2.2 Results

Absorption Spectra

The interaction in the B800 and B850 molecules are all simply obtained in the dipole-dipole

approximation Eq. (II.25) using the geometry of Ref [16] (cf. Fig. III.12) with dipole moment
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directions according to Fig. III.13. The various parameters for the models are summarized in

Table III.1. The common parameters for all the models taken from Ref. [16] are as follows:

all the site energies for B850 and B800 BChls a are set to E =12900 cm−1. The angles for

the dipole moment µ⃗ are α800 = 0◦ and β800 = 90◦ for B800 BChls a, α850 = 10◦/170◦ and

β850 = 110◦/70◦ for B850 BChls a (cf. two directions for B850 in Fig. III.13a), and γ = 10◦.

Instead of changing the geometry, several parameters related to the energetics and the system-

bath coupling are introduced for fitting the absorption spectrum at 77 K (see Table III.1). Here

Ref. [16] corresponds to Model 1 as far as the exciton Hamiltonian is concerned. Es is the

energy difference between the A- and B-kind B800 subunits, ai (i = 800/850 for B800/B850) is

the coupling coefficient with the bath from Eq. (III.21) and Γ̂i is the pure dephasing Γ̂i0 defined

in Eq. (III.22), assuming ai and Γ̂i are the same for all B800 or B850 BChls a in the complex.

Finally, except for Model 1 the magnitude of the monomeric transition dipole moment has

been chosen as |µm,eg| = 8.25 D. In addition the B800-B850 coupling has been scaled by a factor

of two in Model 4.

Table III.1: Parameters of the different models used in this work.

Model 1 Model 2 Model 3 Model 4

B800 dipole moment (D) 8.25 8.25 8.25 8.25
Maximal B800-B800 interaction (cm−1) 186 186 186 186

Pure dephasing rate Γ̂800 (cm−1) 0 0 300 300
Coupling coefficient a800 0.15 0.15 0.098 0.01
Energy shift Es for B800 (cm−1) 0 -250 -250 -250

B850 dipole moment (D) 7.5 8.25 8.25 8.25
Maximal B850-B850 interaction (cm−1) 629 761 761 761

Pure dephasing rate Γ̂850 (cm−1) 0 0 1750 1750
Coupling coefficient a850 0.15 0.15 0.098 0.01

Maximal B850-B800 interaction (cm−1) 60 66 66 132

First, the different models are analysed in terms of their eigenvalue/eigenvectors for the case

of no disorder. Fig. III.15 shows the eigenvalues, the coefficient cα =
∑

m∈i |cm,α|2 and oscillator

strength for Models 1-4. Inspecting the mixture of the eigenstates one notices that there is a

clear separation between B850-like and B800-like states. The former cluster at upper and lower

band edges, while the latter are located in the band center. Due to the high symmetry, oscillator

strength is distributed over a few transitions only. As far as the B800-like states are concerned

one notices that going from the original Model 1 to Models 2,4 the ratio of oscillator strengths

around 800nm is (approximately) reversed.

Using a Gaussian distribution of site energy with variance σdis = 150 cm−1 , the averaged

absorption spectra of 5000 simulated samples can be calculated by Eq. (III.24) for all models.

Results are shown in Fig. III.16 together with absorption spectra from Ref. [102]. Model 1

is using the original data from Ref. [16], whose spectrum is shown in Fig. III.16 a. (Note that

in Ref. [16] a much simpler model for the linewidth has been assumed.) There is an obvious

B800 band splitting, however, the spectrum doesn’t agree with the experiment of Ref. [102] (see

comment on sample preparation above). In contrast to Ref. [16] the intensity ratio of the peaks

of B800 bands is different, and the splitting between the B800 peaks and the B850 peak is also
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Figure III.15: Eigenvalues, state character as measured by the coefficient cα =
∑

m∈i |cm,α|2 (red
line for i =B850 and blue line for i =B800 and oscillator strength (black triangles) for Model
1 (a), Model 2,3 (b) and Model 4 (c).

different.

To improve the agreement, first it was found that the dipole moment for B850 BChls a

must be increased from 7.5 D to 8.25 D (the same as B800) to match the B800-B850 splitting.

Further once an energy shift Es = −250 cm−1 is introduced the ratio of the B800 peak heights

is reversed, which is shown for Model 2 in Fig. III.16 b. (In fact, introducing an energy shift

between B800 and B850 subunits can match the splitting between B800 and B850, however, the

ratio of the B800 peaks can’t be matched due to the interdependence between the ratio and that

energy shift.) However in Model 2 compared with the experiment of Ref. [102], the peak for

B800 is too high, and an extra peak appears near 765 nm. From Fig. III.15, it is found that the

eigenvalues for the extra peak are mainly from B800 subunits.

Second, when the coupling coefficients ai are in the magnitude of 0.01, the time scales for

the population flow are close to the result in Fig. III.11. Of course, if the coupling with bath

becomes so small (more than 10 times smaller than the original coefficient in Model 1), the

spectra are very narrow. Thus, the pure dephasing rates Γ̂800 = 300 cm−1 and Γ̂850 = 1750 cm−1

are used to broaden the peaks to match the experiment data, which is shown for Model 3 in

Fig. III.16 c. Based on the Eqs. (III.19) and (III.26), the pure dephasing rates Γ̂α0 don’t affect

the population flow. But there is no obvious splitting in the B800 bands for Model 3.

52



CHAPTER III. DISSPATIVE EXCITON DYNAMICS IN LH COMPLEXES

                

a
b
s
o
rp

ti
o
n
 (

a
rb

. 
u
n
it
s
)

Model 1a

                

 

 

Model 2b

760 800 840 880

 

 wavelength (nm)

Model 3c

760 800 840 880

 

 

Model 4d

Figure III.16: Absorption spectra (full line) averaged from 5000 samples for 4 different models are
compared with the experimental spectra (black dashed line) from Ref. [102]. Model parameters
are given in Table III.1.

In principle, two coefficients can directly lead to excitonic dimerization, which are the energy

shift Es and the intramolecular coupling J800−850 between B800 and B850 BChls a. But the

former is used to match the other requirements. It is found when the coupling J800−850 becomes

two times larger with the maximum reaching 132 cm−1, it gives the best agreement with the

experimental absorption spectrum, which is shown for Model 4 in Fig. III.16 d.

Fig. III.17 shows the phase relaxation rates ⟨γα⟩ and wavelengths ⟨Eα/hc⟩ for Model 4 after

averaging over an inhomogeneous ensemble (5000 realizations). From the data, one can find that

although Γ̂i is large, the γα is still in a reasonable range compared with data from Ref. [104].

Population Dynamics

In order to investigate the time scales of population flow in Model 4, an external field with a

Gaussian pulse shape

E⃗ext = E⃗0 cos(ωt) exp

(
−(t− t0)

2

2σ2

)
(III.27)

is introduced. Here E⃗0 =1.1×107 V/m, t0 = 200 fs and σ = 42.5 fs (i.e. the FWHM of the pulse

is 100 fs.) have been used for illustration.
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Figure III.17: The phase relaxation rates ⟨γα⟩ and wavelength ⟨Eα/hc⟩ after averaging over an
inhomogeneous ensemble (5000 realizations) for Model 4.

Figure III.18: The populations dynamics of Model 4 from 760 nm to 900 nm (step 4 nm) for
excitation at the two B800 band maximal.(contour value from 0.001 to 0.01 by 0.001).

Based on the Eq. (III.19), the Redfield tensor elements are calculated from the parameters in

Table III.1 forModel 4. Then the population flow in LH2 can be obtained by solving Eq. (III.26)

for the 5000 samples representing the Gaussian disorder. To account for the averaging over

samples, population dynamics will be assigned to certain wavelength ranges as Pab =
∑

α ραα if

Eα ∈ [λa, λb]. To focus on the time scales for the peaks of B800 BChls a, two excitation cases

are introduced as follows: the case B800b/B800r excitation corresponds to excitation within

the wavelength range [788,800] nm/[800,812] nm. In other words B800b and B800r matches

the lower and higher wavelength peak, respectively. In both cases the direction and frequency

of the external field are assumed to be the same as the direction and eigenvalue for the largest

dipole moment µ⃗α in the considered frequency range. The population dynamics for the two cases
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Figure III.19: The population for the three peaks in the LH2 absorption spectra, B800b:[788,800]
nm, B800r:[800,812] nm and B850:[852,876] nm and the two excitation conditions of Fig. III.18.

during 2000 fs is shown in Fig. III.18. First, let’s consider excitation of the lower wavelength

band (B800b), cf. left panel of Fig. III.18. Here the states in B800b are dominantly excited

and in B800r are weakly excited by the external pulse. After the pulse, the excitation energy

transfers from B800b to B850 quickly. However, it’s found that there is no obvious reduction

of the populations in B800r range from 400 fs to 800 fs but after 1200 fs depopulation sets in,

which is more clearly observed from the left panel of Fig. III.19. The reason is that shortly

after the pulse the direct relaxation from B800b to B800r keeps the populations in B800r range

approximately unchanged, but after some time there is not enough population flow to the B800r

range to compensate the transition from B800r to B850. Second, we focus on the case where the

higher wavelength band is excited (B800r), cf. right panels of Fig. III.18 and Fig. III.19. Here

the states in B800b are weakly excited and in B800r are strongly excited by the external pulse.

Using Fig. III.19, one can find that there is a difference for depopulation times for B800b and

B800r excitation.

B800b

B800r

B850

1.13ps

3.25ps

1.43ps

Figure III.20: The relaxation time for Model 4 assuming an effective 3-level scheme.

In principle, the time scales for the population dynamics of the LH2 model can be simply

obtained from the range population of B800b/r excitation in Fig. III.19. By fitting the population
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of B800b in the left figure and B800r in the right figure, one can get the total depopulation

time for B800b which is 840 fs and a depopulation time from B800r to B850 of 1430 fs. The

depopulation time from B800b to B800r is 3250 fs by fitting the population of B800r in the left

figure and from B800b to B850 is 1130 fs. In total, the depopulation time for Model 4 is shown

in Fig. III.20 which compares well with the results by a global kinetic fitting of the 2DES data

in Fig. III.11.

Furthermore, the time scales for the population flow are calculated and compared with the

experimental result. It is found that the energy transfer from B800b to B850 band is via two

pathways: direct transfer to B850, which is the main pathway, and indirect transfer via B800r

to B850. The obtained time scales are in accord with Ref. [102].
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Chapter IV

Polarization Effects and Exciton

Dynamics in Hybrid Systems

Due to the growing research in plasmonics, there is an interest to study the change of opti-

cal properties of single molecule or EET among molecules which are strongly modified by the

nearby NSs. Field enhancement provides a means to manipulate photophysical and photo-

chemical molecular dynamics, even in the weak field regime (see, e.g., [105, 106]). In fact, the

nanostructure brought into close proximity with a molecule will not only enhance the field of

an incident external laser pulse, but also react on the presence of the molecule’s charge density

via an additional polarization field. Vice versa, the electronic structure of the molecule will be

modified by the nanostructure. Hence a self-consistent description is mandatory.

In Section IV.1, a DFTB-based exploratory study of the self-consistent interaction of a NS-

molecule hybrid system is provided in the static limit. To that end the simplified test case of a

metal NS in close proximity of molecules is considered. Whereas the molecular charge density

is modelled via DFTB-based atom-centred Mulliken charges (cf. Sec. II.4.1), the response of

the NS to the molecular charges is incorporated via a high-order multipole-expansion (cf. Sec.

II.3).

Real time TDDFT applied to systems as complex as molecular aggregates is computationally

rather demanding. Here, an alternative the considerably more efficient TDDFT [80] is employed

to study the optical properties of the molecule near NSs in presence of a laser field. To reduce

the computation, the external field in the molecule is assumed being uniform.

The time-dependent evolution of molecules in external laser was discussed in the Section II.4.2.

Considering that the enhancement effect of a NS is very short-ranged, the molecule nearest to

NS would be affected strongly by the enhancement of NS. Thus the simulation of the molecule

nearest to NS is discussed in Section IV.2.

1 Static Case

1.1 Model Systems

Two model systems are studied in this approach: First, the neutral tetracene (C18H12), abbre-

viated as TET in Fig. IV.1a, is considered as being a representative of molecular crystal forming
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simple aromatic hydrocarbons [107]; Second, a cationic carbocyanine (CCY) dye, the posi-

tively charged 5,5’,6,6’-Tetraethyloro-1,1’,3,3’-Tetraethyl-Benzimidazolyl -Carbocyanine Chlo-

ride ([C21H19Cl4N4]
+), is chosen. It is a simple derivative of the 5,5’,6,6’-tetrachlorobenzimida-

carbocyanine (TBC) chromophore, see Fig. IV.1b. TBC derivatives have been widely stud-

ied [108, 109] and show, in particular, a rich aggregation behavior depending on the counter ion

and pH, solvent and type of derivative [110, 111]. Note that, in order to focus on polarization

effects due to a charged species, the counter ion is not considered here. Further the study does

not focus on the practical realization of such systems, but on the principal effect of a nearby NS

on the molecular charge density.

(a) (b)

Figure IV.1: Mulliken charges for free TET (a) and CCY (b) together with the respective
chemical structures. Blue and red color refer to negative and positive charge, respectively. The
radii of the spheres are proportional to the magnitude of the respective charge. The maximum
negative charge is -0.123 e and -0.273 e for panel (a) and (b), respectively.

The Mulliken charges at the DFTB equilibrium geometry in the electronic ground state are

shown in Fig. IV.1. Compared with TET (panel a), the pattern of Mulliken charges in CCY

(panel b) is considered to be more structured. A net charge of 0.65 e is carried by each of two

benzimidazolo moieties, whereas a net charge of -0.3 e is in the trimethine bridge. The HOMOs

of both molecules reflect the extended π system (shown in Fig. IV.2) for the planar geometries

(apart from methyl groups in case of CCY which conform to the Cs symmetry). TET has no

permanent dipole moment, whereas a dipole moment of magnitude 1.1 D is oriented along the

short axis of CCY. Finally, the dimension of the π-system is about 11×5 Å for TET and about
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17×6 Å for CCY; in the following the lengths of the long axes will be represented as Lmol.

a b

Figure IV.2: HOMO of TET (a) and CCY (b).

Since the investigated molecules are virtually planar, two geometries for the hybrid system are

discussed as shown in Fig. IV.3, i.e. the perpendicular orientation and the parallel orientation

where the normal vectors of the molecule’s plane and the NS surface are perpendicular and

parallel to each other, respectively. Further, d is the distance of the center of mass of the

molecule to the surface. Based on the theory from Sec. II.4.1 and II.3, the electronic structure

of TET and CCY with/without NS is calculated by the dftb+ code [108] together with the

halorg-0-1 Slater-Koster parameter set [77, 112]. The code has been modified such as to include

the potential (II.84), which by itself is calculated with a home-made program. Given some initial

set of Mulliken charges obtained without the NS, potential and Mulliken charges are iteratively

adjusted until self-consistency. The threshold for the latter was set to 10−5 for changes in Vpol(r⃗).

The self-consistent polarization energy ESC
pol(r) = eVpol(r⃗) will be discussed below.

In the following, the influence of the polarization of the molecule due to the NS will be

studied in dependence on the orientation and distance of the molecule and the radius of the

NS. The analysis will be based on the change of Mulliken charges from Eq. (II.120) due to the

interaction with the NS, i.e. ∆qA = qα − qfreeA , here qfreeA are the Mulliken charges of the bare
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R+d x

y

z

R+d x

y

z

perpendicular parallel

Figure IV.3: The perpendicular and parallel orientations of the molecule with respect to the
spherical NS. R is the NS’s radius and d is the distances from the sphere’s surface to the
molecule’s center-of-mass. Within the respective planes the molecules are positioned such that
the center-of-masses are at the origin of the molecule-fixed coordinate system as indicated and
the principal axes point along the local x, y, z-axis.

atom. As a global measure the root-mean-squared deviation

∆q =

√∑
A

(
qA − qfreeA

)2
(IV.1)

will be used. Further, the change in dipole moment is given by ∆µ = µ−µfree, and the fluctu-

ation in total energy of the molecule due to the polarization potential of the NS is represented

as ∆E = E −Efree. Here, µfree/Efree are from the case without the NS. Focusing on the energy

change, i.e. the interaction energy, results from the solutions of the DFTB equations will be

compared with the classical expression for the energy of the Mulliken charges in the polarization

potential

Epol =
∑
A

qAVpol(RA) (IV.2)

1.2 Results

Case of Tetracene

The convergence of Vpol in Eq. (II.84) for the upper summation limit m is chosen with respect

to changes with a threshold of 10−5. Typical values for the m are different due to the radius R

of NS and distance d, which is shown in Tab. IV.1. From the numbers, one can find the order

m needs to be higher to reach the threshold when the radius R becomes larger or the distance

d becomes smaller.

Fig. IV.4a shows the polarization potential in the perpendicular orientation for a NS with

radius R = 100 Å ≫ Lmol and d = 3.5 Å (Noting the width across the short axis of TET is

5 Å, in this case the distance for the closest atom of TET to the surface of NS is 1Å). Thus

ESC
pol is shaped by the positive partial charges at the H atoms, which are closest to the NS. The

maximum potential difference is about 0.15 eV across the short axis of the molecule. The change
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Table IV.1: Expansion order m for TET with different R and d in the perpendicular/parallel
orientations.

R (Å)
d (Å) 3 6 12 50 100

3.5 11/11 16/15 24/18 65/71 109/134
4 11/11 12/11 19/16 55/56 89/100
4.5 11/11 11/11 16/15 47/48 79/85
5.5 11/11 11/11 13/12 39/37 66/63
6.5 11/11 11/11 11/11 33/33 56/57
7.5 11/11 11/11 11/11 29/29 50/51
12.5 11/11 11/11 11/11 19/20 32/34
17.5 11/11 11/11 11/11 14/15 24/25

Figure IV.4: Left: The self-consistent polarization potential ESC
pol (color bar in eV, contour values:

-0.22, -0.18, -0.14, -0.1, -0.06, -0.02) for TET in perpendicular orientation and for R = 100 Å
and d = 3.5 Å (The grey area corresponds to the NS.). Right: The change of Mulliken charges
∆qA; maximum at 0.0039 e.

in the electron density as expressed by the Mulliken charges is very small, which is shown in

Fig. IV.4b. It reaches a maximum value of 0.004 e or 5% in relative change for the close hydrogen

atoms.

The influence from the NS on the molecule’s electron density is more obvious if TET is in the

parallel orientation as shown in Fig. IV.5. Here, ESC
pol is shaped by the negative partial charges

from the C atoms in the center of TET (cf. Fig. IV.1a). The change of ESC
pol across the molecule

is about 0.5 eV and causes the change in Mulliken charges of maximum up to 0.02 e. Although

still small in absolute number, it reaches a relative change of about 40%.

Figs. IV.6 – IV.7 show the results for R = 3 Å < Lmol at the same distances and orientations

as discussed before. In perpendicular orientation, the maximum potential difference is only
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Figure IV.5: Left: The self-consistent polarization potential ESC
pol (color bar units in eV, contour

values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) for TET in parallel orientation and for R = 100 Å and
d = 1.0 Å. Right: The change of Mulliken charges ∆q; maximum at 0.0172 e.

Figure IV.6: Left: The self-consistent polarization potential ESC
pol (color bar in eV, contour

values: -0.1, -0.08, -0.06, -0.04, -0.02) for TET in perpendicular orientation and for R = 3 Å
and d = 3.5 Å (The grey area corresponds to the NS). Right: The change of Mulliken charges
∆qA; maximum at 0.0026 e.
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about 0.08 eV across the short axis. And the change for the Mulliken charges reaches a maximum

value of 0.003 e or 3% in the relative change. In parallel orientation, the maximum potential

difference is about 0.22 eV across the short axis. And the change for the Mulliken charges reaches

a maximum value of 0.0089 e or 21% in relative change. Comparing the results for different

radii of NS from Figs. IV.4 – IV.7, one finds that the polarization potential and the magnitude

of the changes in Mulliken charges will decrease when the radius of the NS become smaller.

And the trend for the change of Mulliken charge is very similar in the perpendicular orientation.

However the changes in the parallel case are only on the nearest two carbon orientation due to

the small radius and distance from the surface of NS.

Figure IV.7: Left: The self-consistent polarization potential ESC
pol (color bar units in eV, contour

values: 0.02, 0.05, 0.08, 0.11, 0.14, 0.17, 0.2, 0.23, 0.26) for TET in parallel orientation and for
R = 3 Å and d = 1.0 Å. Right: The change of Mulliken charges ∆q; maximum at 0.0089 e.

Fig. IV.8 shows the dependence of ∆E, ∆q, and ∆µ on the distance from the NS and the

different NS radii. In total, the effect of the NS on the molecular charge density is short-ranged

and the influence on ∆E and ∆q is larger in the parallel orientation as compared with the

perpendicular one. In addition, the influence of the NS could be neglected essentially once the

distance to the closest atom exceeds about 5 Å, independent on the radius of the NS. More

specifically the distance dependence of ∆E is determined by the actual orientation. Using

numerical fitting, one finds for short distances as shown in Fig. IV.8 ∆E ∝ d−7 and ∝ d−8

for R =3 Å and 100 Å, respectively, in case of the perpendicular orientation. For the parallel

orientation it is roughly ∆E ∝ d−2 in both cases.

Looking at the dependence on the NS radius R, we notice that the changes in interaction

energy and Mulliken charges decrease in magnitude with increasing R/Lmol. Closer inspection

shows that in this case parts of the molecule are essentially too far away from the now much

smaller NS, such that the respective charge densities do not contribute to the polarization field.
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Figure IV.8: The dependence of interaction energy, ∆E, change of Mulliken charge, ∆q, and
dipole moment, ∆µ, on the distance, d, from the surface of the NS and its radius (in Å) for the
case of TET.

The quantum mechanical DFTB interaction energy ∆E, can be compared to the classical

expression in Eq. (IV.2). The difference ∆Ecom = ∆E −Epol is shown in Fig. IV.9. Differences

occur only for short distances and are very small. In fact for all perpendicular cases and around

d ≈ 4− 5 Å Epol contributes above 95 % to ∆E, whereas for the parallel cases it is above 90 %.

The dipole moment is also changed by the polarization field as shown in panels c and f

of Fig. IV.8. In the perpendicular orientation (plane of molecule is xy) the x-component of
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Figure IV.9: The dependence of energy difference ∆Ecom between ∆E and Epol on the distance,
d, from the surface of the NS and its radius (in Å) for the case of TET.

dipole moment for TET changes due to the positive charge accumulation close to the NS (cf.

Fig. II.84). In the parallel orientation (plane of molecule is yz) there is not an obvious change

in the dipole moment, which is a consequence of the symmetry of the setup.

Case of CCY

The charge neutrality of TET yielded the effect of the NS on the electron density to be rather

small. The situation is expected to change for CCY, which carries a net charge of +1 e. The

convergence of Vpol in Eq. (II.84) for the upper summation limit m is also chosen with respect

to changes with a threshold of 10−5. Typical values for the m are also different due to the radius

R of NS and distance d for TET, which is shown in Tab. IV.2. From the number, one can find

the order m needs to be higher to reach the threshold when the radius R becomes larger or the

distance d becomes smaller.

Table IV.2: Expansion order m for CCY with different R and d in the perpendicular/parallel
orientations.

R (Å)
d (Å) 9 18 36 100

4 31/32 64/61 124/115 286/294
4.5 24/25 45/47 76/85 196/167
5 20/19 35/33 63/60 151/150
6 16/16 27/28 48/49 114/121
7 14/14 23/23 39/40 92/89
8 12/12 19/19 33/32 75/72
13 11/11 13/13 21/20 46/45
18 11/11 11/11 16/16 35/35

Fig. IV.10 shows the polarization potential ESC
pol in the parallel orientation for a NS with

radius R = 100 Å ≫ Lmol and d = 4 Å (Noting the width across the short axis of CCY is 6 Å,

in this case the distance for the closest atom of CCY to the surface of NS is also 1 Å). Overall,

the potential change across the molecule is about 2 eV and the maximum change in Mulliken
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Figure IV.10: Left: The self-consistent polarization potential ESC
pol (color bar units in eV, contour

values: -3.5, -3, -2.5, -2, -1.5, -1) for CCY in perpendicular orientation and for a R = 100 Å and
d = 4.0 Å. Right: The change of Mulliken charges ∆q; maximum at 0.0291 e.

Figure IV.11: Left: The self-consistent polarization potential ESC
pol (color bar units in eV, contour

values: -4, -3.5, -3, -2.5, -2, -1.5) for CCY in parallel orientation and for a R = 100 Å and
d = 1.9 Å. Right: The change of Mulliken charges ∆q; maximum at 0.0343 e.

charge is 0.029 e, i.e. 42% in relative change. The largest change occurs for the H-atoms, which

are closest to the NS. In addition, negative charge is accumulated at the Cl-atoms.
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In the parallel orientation from the results shown in Fig. IV.11 one first notices that compared

with TET the polarization potential has a significantly lower symmetry in accord with the

different symmetry group the two molecules belong to. The potential changes about 3 eV across

the molecule and maximum changes of the Mulliken charges reach 0.034 e or 50% in relative

change. They are especially pronounced for those H-atoms which are out of the molecular plane

and thus closest to the surface of the NS. Moreover Cl-atoms acquire some extra negative charge.

Figure IV.12: Left: The self-consistent polarization potential ESC
pol (color bar units in eV, contour

values: -1.5, -1.25, -1, -0.75, -0.5, -0.25) for CCY in perpendicular orientation and for a R = 9 Å
and d = 4.0 Å. Right: The change of Mulliken charges ∆q; maximum at 0.0151 e.

Figs. IV.12 – IV.13 show the polarization potential with radius R = 9 Å < Lmol in the same

distance and orientations. Overall, the potential change across the molecule is about 1.3 eV

and the change in Mulliken charge is 0.015 e, i.e. 22 % in relative change for the perpendicular

orientation case. And in parallel orientation, the potential change across the molecule is about

1.5 eV and the change in Mulliken charge is 0.024 e, i.e. 35 % in relative change. Comparing

with the result for different radius of NS, one can find the polarization potential and the change

will decrease with the decreasing radius, and the trend is very similar in both orientations.

Fig. IV.14 shows the dependence of ∆E, ∆q, and ∆µ on the distance d from the NS for

different radii R. First,we note that the effect of the NS is not as short-ranged as in the case of

TET due to the presence of a net charge. Further, for ∆E and ∆q the orientation is much less

important than in the case of TET. Only the orientation dependence of ∆µ is as pronounced

for CCY as it is for TET.

Inspecting the distance dependence of ∆E in the ranges shown in Fig. IV.14 one finds by

numerical fitting irrespective of the NS’s radius ∆E ∝ d−2 and ∆E ∝ d−1 in case of the

perpendicular and parallel orientation, respectively. Comparing with the result for TET in
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Figure IV.13: Left: The self-consistent polarization potential ESC
pol (color bar units in eV, contour

values: -1.8, -1.6, -1.4, -1.2, -1, -0.8, -0.6, -0.4, -0.2) for CCY in parallel orientation and for a
R = 9 Å and d = 1.9 Å. Right: The change of Mulliken charges ∆q; maximum at 0.0239 e.

Fig. IV.8, one can find that the changes for CCY are larger than for TET. Especially even if

the distance from the closest atom to the surface of NS exceeds 10 Å, the energy change is

∆E ≈ −0.5 eV in both orientation, i.e. for CCY the effect of the polarization potential of the

NS is long-ranged.

Concerning the dependence on the radius of the NS, the trend is rather similar to the case

of TET, i.e. for NSs with R ≪ Lmax parts of the molecular charge density are located outside

the range of effective interaction. Fig. IV.15 shows the difference ∆Ecom between the DFTB

interaction energy ∆E and the classical expression Epol from Eq. (IV.2). For all perpendicular

cases and around d ≈ 4− 5 Å Epol also contributes above 95 % to ∆E.

Some Estimates

In the following the previous results will be compared with a simple classical model. In particular,

the dependencies on the different distances and the sphere radius observed for the charged CCY

and the neutral TET will be discussed. Two classical cases for the polarization energy from

Eq. (IV.2) are considered to investigate CCY and TET, i.e. a single point charge and a dipole

oriented along the surface normal. The results for the classical cases can be simple obtained

from an ideal uncharged metal sphere, which has the following analytical solution

Eideal(r) =
qq′

4πϵ0

(
1

r − r′
− 1

r

)
(IV.3)

with the image charge q′ = −qR/r at position r′ = R2/r.
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Figure IV.14: The dependence of interaction energy, ∆E, change of Mulliken charge, ∆q, and
dipole moment, ∆µ, on the distance from the surface of the NS and its radius for the case of
CCY.

Fig. IV.16 shows the distance and sphere radius dependence for the two ideal cases, CCY

and TET in the perpendicular orientation. One notices that for large distances the interaction

energy ∆E for TET tends to the ideal dipole model and for CCY tends to the ideal point charge

model. However, in the short distance for TET the interaction energy from DFTB is smaller

than the ideal result. It is understood easily that when TET very close to the NS, TET is more

like some point charges for the NS than the ideal dipole moment and should have lower energy.
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Figure IV.15: The dependence of energy difference ∆Ecom between ∆E and Epol on the distance,
d, from the surface of the NS and its radius (in Å) for the case of CCY.

−0.016

−0.012

−0.008

−0.004

 0

3   6   9   12   
d (Å)

∆
E

 (
eV

)

TET perpendicular

d=1 R=6
d=1 R=100

TET R=6
TET R=100

3   6   9   12   
−2.5

−2

−1.5

−1

−0.5

 0

d (Å)

∆
E

 (eV
)

CCY perpendicular

point R=9
point R=100

CCY R=9
CCY R=100

Figure IV.16: Left panel: the dependence of the polarization energy from Eq. (IV.3) for a dipole
of strength d = 1 D (dipole oriented parallel to the surface normal) on the distance d from
the surface of a NS is compared with the interaction energy ∆E for TET in the perpendicular
orientation with different radius R. In right panel the ideal polarization energy for a single charge
q = 1 e is compared with the interaction energy ∆E for CCY in the perpendicular orientation.

Similarly, for CCY when very close to the NS, CCY could not be assumed as single ideal point

charge. This is the reason for the polarization energy of an ideal point charge being lower than

∆E for small distances. Similar results are obtained for the parallel orientation.

2 External Field Driven Dynamics

2.1 Model System

The scheme of the hybrid system in the external field is shown in Fig. IV.17. From the result

in Sec. IV.1, it is clear that the effect of the NS on the molecule is small enough to be neglected

for distances > 15 Å. In addition, the enhancement of the external field Eext due to the NS is

proportional to (R/r)3 from Eq. (II.91). So the NS’s near-field approximately affects the nearest
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molecule only. Thus it is not necessary to calculate the hybrid system all in TDDFT, but to

use the Frenkel exciton theory from Sec. II.2.1. Thus it is assumed that all molecules except

the nearest one are not affected by the near-field Enf of NS. In the following the near-field is

understood to contain the polarization field, from Epol = −∇Vpol from Eq. (II.84) as well as the

enhancement field from Eq. (II.91), i.e.

Enf(r⃗, t) =
2Eext(t)(εr − 1)R3

(εr + 2)r3
cos θ −

N∑
A=1

m∑
l=1

qA(t)(1− εr)l

(1 + εr)l + 1

R2l+1

rl+1Rl+1
A[

(l + 1)r⃗Pl(cos θ)

r2
+

l(cos θPl(cos θ)− Pl−1(cos θ)

sin2 θ

(
R⃗A

rRA
− r⃗ cos θ

r2

)] (IV.4)

Hence the molecule next to the NS experiences the total field

Etot(r⃗, t) = Eext(t) + Enf(r⃗, t) (IV.5)

whereas all other molecules interact with the external field only. Note that according to

Eq. (II.39) the time dependent fields are taken to be constant across the molecule, i.e. with

the value at its center of mass.

NS

•••

a

x

NSb

y

•••

Figure IV.17: The scheme of the hybrid system in an external field Eext. a) for TET and b) for
CCY. Blue and red arrows indicate the interaction via the NS’s near-field. Note that different
orientations of the coordinate axes are used for better comparison of the molecular properties
with Sec. IV.1.

Based on this assumption to build the Frenkel system, the hybrid system can be described
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by three parts. First part is the NS, which is treated by classical electrodynamics as in Sec. II.3.

Second part is the molecule nearest to the NS. Its charge distribution is affected by the total field

Etot in Eqs. (II.123) and (II.139), which is shown as the red arrow in Fig. IV.17. In addition the

change of Mulliken charges will affect the NS via Eq. (II.84), which is assumed as the feed back

from the nearest molecule to the NS, blue arrow in Fig. IV.17. Thus the nearest molecule need

to be analysed by the approximate TDDFT (using a code from T. Niehaus [80]) to obtain the

information for the Frenkel system. Note that only the static polarization field will be described

self-consistently, similar to Sec. IV.1. During the TDDFT propagation the feed back loop is as

follows. At each time step (∆t =2.4 as) the Mulliken charges are calculated in the total field,

which contains the polarization field obtained from Eq. (II.123) using the Mulliken charges from

the previous time step. The third part consists of the other molecules, which are not directly

affected by the Enf of NS. They are connected with the molecule nearest to the NS and among

themselves by Coulomb couplings (Eq. (II.19)) as obtained from linear response TDDFT. For

the propagation of the aggregate in the external field, a Frenkel exciton description in terms of

single particle excitations is performed.

2.2 Dynamics of the Molecule Nearest to the NS

As discussed in Sec. IV.2.1, one molecule near the NS (i.e. parts one and two) is simulated first

to check the influence from the nearby NS in the external pulse. The external field is chosen as

Eext(t) = E0 cos(ωt) sin
2

(
2πt

tmax

)
θ(t)θ(tmax − t) (IV.6)

where E0 is the field strength, ω is the frequency, tmax is the duration time, i.e. Eext(t) = 0

when t > tmax.

First to prepare for a description of the molecule in the Frenkel basis, the molecular orbitals

and absorption spectra need to be analysed, which is shown in Fig. IV.18 for TET and CCY.

The results are obtained from the linear response TDDFT code [80] together with the halorg-0-1

Slater-Koster parameter set [77, 112]. In the figure, the first excited state E1 for TET is at 2.24

eV with the transition weight 99.93% from HOMO to LUMO and transition dipole moment

µ⃗1 = (2.23, 0, 0) D. For CCY the first excited state E1 is at 2.67 eV with the transition weight

99.86% from HOMO to LUMO with the transition dipole moment µ⃗1 = (0, 12.91, 0.003) D

(assuming the short axis of the molecule as x-direction and long axis as y-direction). Thus

single electron molecular orbitals (HOMO and LUMO) are sufficient for an effective model if

the field is resonant to the first excited state.

In the following the arrangements of the NS and molecules will be used as shown in Fig. IV.17a

for TET and Fig. IV.17b for CCY. The dynamics will be analysed by taking the molecular or-

bitals for the free molecule as the reference, which means that the time evolution of the basis

for the nearest molecule need to be projected into the reference framework. Note that the coef-

ficient bµi in Eq. (II.129) is time-dependent in the external field however the occupation number

Nocc is time-independent from Sec. 4.2 in approximate TDDFT [80]. Thus from Eq. (II.129)

the time-dependent occupation number N f
occ(i, t) for the nearest molecule in the free molecular

72



CHAPTER IV. POLAR. EFFECTS AND EXCITON DYNAMICS IN HYBRID SYSTEMS

a
b

c

Figure IV.18: The molecular orbitals from HOMO-2 to LUMO+2 and absorption spectrum for
free TET and CCY. The first excited state E1 is at 2.24 eV for TET and at 2.67 eV for CCY.
The absorption spectrum of TET is a bit red-shifted as compared to the available low-resolution
experimental data (first peak around 2.9 eV) [113]. For CCY no gas phase experimental data
are available. DFT calculations for a closely related compound yield the maximum absorption
at 2.5 eV [114].

state basis Ψf
i(r⃗) reads

N f
occ(i, t) =

occ∑
j

Nocc(j)⟨Ψf
i(r⃗)|Ψj(r⃗, t)⟩⟨Ψj(r⃗, t)|Ψf

i(r⃗)⟩ =
∑
j

Nocc(j)C
∗
ij(t)Cik(t) (IV.7)

with the coefficients overlap

Cij(t) = ⟨Ψj(r⃗, t)|Ψf
i(r⃗)⟩ =

∑
µν

b∗µj(t)ϕ
∗
µb

f
νiϕν =

∑
µν

b∗µj(t)b
f
νiSνµ (IV.8)

Results for the time dependent of occupation numbers of molecular orbitals (i = HOMO −
2, ...,LUMO + 2) for TET and CCY with an external pulse resonant to the first excited state

E1, are shown in Fig. IV.19. Here, tmax = 20 fs, for TET E0 = (5, 0, 0)× 109 V/m and ω = 2.24

eV with a R = 100 Å NS at a distance of d = 3.5 Å, and for CCY E0 = (0, 5, 0)× 108 V/m and

ω = 2.67 eV at d = 9.5 Å. One can find that the transition are almost of HOMO-LUMO type
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Figure IV.19: Time-evolution for molecular orbital occupation i = HOMO−2, ...,LUMO+2 for
TET and CCY for a R = 100 Å NS with an external pulse tmax = 20 fs, for TET E0 = (5, 0, 0)×
109 V/m and ω = 2.24 eV at a distance of d = 3.5 Å, and for CCY with E0 = (0, 5, 0) × 108

V/m and ω = 2.67 eV at d = 9.5 Å.

for CCY. However, for TET although the HOMO-LUMO transition is dominant, there are also

noticeable transitions such as from HOMO-2 to LUMO+1 due to the strong external field.

Fig. IV.20 shows the time evolution for the hybrid of a NS and one TET molecule with a

strong external field as in Fig. IV.19. In Fig. IV.20b the x-component of the polarization field

Epol,x obtained from Eq. (II.84) is taken at the mass center of TET as the reference to show the

changes. One can find that the polarization field oscillates with the frequency of the external

field and a phase shift about 136◦. There is also an oscillation with the same frequency for the

dipole moment of TET, whose x-component, µx, is shown in Fig. IV.20c. Fig. IV.20d shows the

change of Mulliken charges ∆q from Eq. (IV.1). It is found that the oscillation of ∆q is driven

by the external field. After the pulse one observes several oscillation frequencies according to

the particular charge rearrangement in the molecule.

To check the influence from the NS, the x-component of the polarization field Epol,x at

the mass center and the dipole moment µx for TET are shown for different distances d in

Fig. IV.21. Due to the different self-consistent electron distributions for TET coupled with

the NS (Sec. IV.1) there are different initial polarization fields and dipole moments, which are

found at t = 0 from Fig. IV.21. However, the initial polarization field is so small that though

it changes the molecular orbitals, there is no obvious difference for the resonant energy (smaller

than 0.001 eV). From the left panel, it is found that the oscillation amplitude of the polarization

field becomes smaller with distance, but the oscillating frequency is independent of the distance

and only dependent on the frequency of the external pulse. In the right panel due to the fact

that |Epol| ≪ |Eext| the difference in the oscillation amplitude of the dipole moment is very

small for different distances. From Figs. IV.20 and IV.21, the effect of the NS on the molecule

is mainly on the follows. First, due to the classical enhancement of the external field from the

metal NS by Eq. (II.91), the molecule is more strongly excited than without NS. Second, due

to the polarization field calculated from Eq. (II.84), after the pulse there is also a change of

the oscillations of the Mulliken charges ∆q, which means that weak excitation occurs by the
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Figure IV.20: The time evolution for the external field Eext, the x-component of the polarization
field Epol,x at the mass center, x-component of the dipole moment µx and change of Mulliken
charges ∆q for TET in arrangement as shown in Fig. IV.17a with a R = 100 Å NS and a distance
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Figure IV.21: The time evolution for the polarization field at the mass center and the dipole
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with a R = 100 Å NS.
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polarization field.
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Figure IV.22: The time evolution for the external pulse Eext, the y-component of the polarization
field Epol,y at the mass center, y-component of the dipole moment µy and change of Mulliken
charges ∆q for CCY in arrangement as shown in Fig. IV.17b nearby a R = 100 Å NS with a
distance of d = 9.5 Å.

Considering the charged CCY which has a larger first transition dipole moment µ⃗1 =

(0, 12.91, 0.003) D and oscillator strength of absorption spectra (Fig. IV.18c), Fig. IV.22 shows

the weaker pulse mentioned for CCY in Fig. IV.19 polarized along y-direction to excite the

hybrid of a NS and one CCY molecule. From Fig. IV.22, there is also an obvious oscillation of

the polarization field, dipole moment and charges with the frequency of the external pulse and a

phase shift about 259◦. Compared to the case of TET in Fig. IV.20 the oscillations are simpler

except for ∆q where a multitude of frequencies are found.

Fig. IV.23 shows the y-component of the polarization field Epol,y at the mass center of the

molecule and the dipole moment µy for different distances d for CCY. Due to large difference

for the initial CCY electronic structure, there are obvious shifts in the polarization field and

dipole moment for different distances at t = 0 fs. Importantly, one can find though the fast

oscillation frequency is also independent on the distance, the slow oscillation frequency becomes

larger with increasing distance.

Next the influence from the feed back on the nearest molecule in the external field is inves-

tigated. To this end the case of no feed back (nfb) is introduced, which neglects the effect from
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−4

−3

−2

−1

 0

 1

 2

 3

 4

      

µ
x
 (

D
)

TET
d=3.5

nfb

      
−10

−7.5

−5

−2.5

 0

 2.5

 5

 7.5

 10

µ
y  (D

)

CCY
d=9.5

nfb

−10

−7.5

−5

−2.5

0

2.5

5

7.5

10

0 20 40 60 80 100

Time (fs)

µ
y
 (

D
)

CCY
d=13.5

nfb

0 20 40 60 80 100
−10

−7.5

−5

−2.5

0

2.5

5

7.5

10

Time (fs)

µ
y  (D

)

CCY
d=18.5

nfb
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and in y-direction µy of CCY with d = 9.5 Å, d = 13.5 Å and d = 18.5 Å compared with the
case of no feedback (nfb).

the charge distribution of molecule on the metal NS, i.e. during all time the polarization field

is assumed to be constant at the initial polarization field from the static case. (Note that in the
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other case at each time step the charge distribution is calculated in the total field, which contains

the polarization field obtained from Eq. (II.123) using the charge distribution from the previous

time step). From Fig IV.24, one can find even when the distance is very small, the difference

between the with and without feed back cases are very small due to the small polarization field

for the neutral TET. However, for the charged CCY with distances d = 9.5 Å and d = 13.5 Å,

the two cases are obviously different.

2.3 Exciton Dynamics in a Model Aggregate

In the previous section, the influence of a NS on a neighbouring molecule was discussed. From

Fig. IV.24, the effect from the NS on a neighbouring TET is very small. Thus a hybrid system

of a R = 100 Å NS and CCY molecules with the nearest distance d = 9.5 Å is calculated as

an example to study EET. As seen from Figs. IV.18 and IV.19, there is only a HOMO-LUMO

transition in CCY excited by the external field for both, free molecules and molecule near NS. So

the hybrid system consisting of CCY molecules and a metal NS is reduced to the Frenkel model

in the HOMO and LUMO basis. From the approximate solution of TDDFT in Sec. II.4.2 and

Mulliken analysis, the transition density for molecule m from occupied single-particle orbital

HOMO (h) to unoccupied LUMO(l) is

ρhlm(r⃗) = ⟨Ψf
l(r⃗)|Ψf

h(r⃗)⟩ ≈
∑
A∈m

qhlA
NA

∑
µ∈A

|φµ(r⃗)|2 =
∑
A∈m

qhlAΥA(r⃗) (IV.9)

with the quantity NA being the number of basis functions on the atom A and ΥA(r⃗) is defined

from the function Eq. (II.116). The transition charge qhlA for atom A from h to l reads

qhlA =
1

2

∑
µ∈A

∑
ν

[
bf∗µhb

f
νlSµν + bf∗νhb

f
µlSνµ

]
(IV.10)

Thus the transition dipole moment for molecule m in Mulliken approximation is

d⃗hlm = ⟨Ψf
l(r⃗)|n̂(r⃗)|Ψf

h(r⃗)⟩ ≈
∑
A∈m

qhlAXA (IV.11)

with the one-particle electron density operator n̂(r⃗) and the coordinateXA of atom A in molecule

m. Using this expressions the Coulomb coupling elements between molecule m and n from

Eq. (II.19) read (for a derivation of this expression in terms of the many-electron transition

charges, see Ref. [115])

Jmn(lh, lh) =
∑
a∈m

∑
b∈n

qlha qhlb ζab

(
|R⃗a − R⃗b|

)
(IV.12)

with the function

ζab

(
|R⃗a − R⃗b|

)
=

∫∫ ′ Υa(r⃗)Υb(r⃗
′)

|r⃗ − r⃗ ′|
(IV.13)

In the following, the analysed hybrid system consists of a R = 100 Å NS and seven CCY

molecules which are positioned linearly in head-to-tail configuration like in Fig. IV.17b with the

distance d = 9.5 Å from NS to the neighbouring CCY molecule (labelled as 1) and 20 Å (long
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axis of CCY is 17 Å) between the center of CCY molecules. Based on the DFTB simulation

for the hybrid of a NS and one CCY in the previous section, one obtains the Coulomb coupling

from Eq. (IV.12) between the molecule 1 and others, Mulliken charges for HOMO and LUMO

states, excitation energy E1 = 2 eV, and the transition dipole moment µ⃗1 =(0.06,11.65,0.003) D

for molecule 1 from Eq. (IV.11) from the self-consistent static case. For the other molecules, a

separate calculation of the free molecule is done using HOMO-LUMO DFTB-values. This gives

the Coulomb coupling between the other molecules (except the molecule 1), excitation energy

Em = 2.02 eV and µ⃗m =(0,12.91,0.003) D (m = 2, 3, · · · ). In the following an aggregate of seven

monomers will be considered.
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Figure IV.25: Eigenvalues (dotted line), the state character |cm,α|2 (red) and oscillator strength
(blue) of seven site model system described by the Hamiltonian Eq. (IV.14). The onsite energies
are E1 = 2 eV and Em=2,··· ,7 = 2.02 eV.

To build the Frenkel system of the hybrid system, the HOMO orbital is assumed as ground

state and the LUMO orbital as excited state configuration for all CCY. With the data mentioned

above, the Hamiltonian of the hybrid system is obtained from the Frenkel exciton theory in

Sec. II.2.1. The Hamiltonian without ground state HS reads (in units of cm−1)

HS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16177 −247 −24 −7 −3 −1.5 −0.9

−247 16290 −254 −26 −7.8 −3.3 −1.7

−24 −254 16290 −254 −26 −7.8 −3.3

−7 −26 −254 16290 −254 −26 −7.8

−3 −7.8 −26 −254 16290 −254 −26

−1.5 −3.3 −7.8 −26 −254 16290 −254

−0.9 −1.7 −3.3 −7.8 −26 −245 16290

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(IV.14)
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Here, it is assumed that the possible effect of intervening molecules can be neglected when

calculating the Coulomb coupling between non-neighboring molecules. Fig. IV.25 shows the

eigenvalues, the state character |cm,α|2 and oscillator strength. Due to the small difference in

site energies and couplings, this system pretty much follows the general result obtained for a

linear chain [64].

The time-evolution of the hybrid system of NS and CCY molecules is obtained by the

Eq. (II.55) with an Ohmic spectral density from Eq. (III.8) with ωc = 180 cm−1 and ηH = 0.05

shown as the black in Fig. III.2 for the following three cases: first, include the feed back between

the Mulliken charge and polarization field from NS (only for molecule 1) at each time step, ab-

breviated as “with PF”, i.e. for molecule 1 at each time step the Mulliken charges are summed

up from Eq. (II.120) by using the time-dependent populations in the total field (Eq. (IV.5)).

The latter contains the polarization field obtained from Eq. (II.123) using the Mulliken charges

from the previous time step. The other molecules are simulated only in the external field. Sec-

ond, only the enhancement part from Eq. (II.91) is considered for molecule 1, abbreviated as

“without PF”. Third, only the bare Hamiltonian Eq. (IV.14) in the external field is considered,

abbreviated as “without NS”.
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Figure IV.26: Time-evolution for the population of CCY molecules nearby a R = 100 Å NS at
a distance of d = 9.5 Å driven by a pulse with tmax = 20 fs, E0 = (0, 5, 0)× 108 V/m and ω = 2
eV with/without PF and without NS (tick spacing for the vertical axes is 0.1).

The population results are shown in Fig. IV.26. From the figure the excited state population
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Figure IV.27: Time-evolution for the population in eigenbasis of CCY molecules in the same
system as Fig. IV.26 (tick spacing for the vertical axes is 0.1).

induced by the external field is largest for the molecule 1 due to the near-field enhancement

by a factor of 3.5. There are oscillations for both “with PF” and “without PF/NS” cases. For

“without PF” case, it is obvious that the oscillation amplitude of all molecules become smaller

with time. This is not observed for the “with PF” case during 200 fs. In addition, it is clearly

found that after the pulse, there is still excitation between ground state and molecule 1 for “with

PF” case.

The populations in eigenbasis are shown in Fig. IV.27. It is found that the nearby NS changes

the absorption characteristic and dynamics of the CCY molecules. The polarization field acts as

a driving force for the polarization dynamics even after the external field is switched off. Overall,

however, the effect of the polarization field is modest only. More dramatic are the changes due

to the NS’s near field. In the right panel of Fig. IV.27 the excitation of the aggregate follows

the distribution of oscillator strength in Fig. IV.25. Including the near field which acts on the

m = 1 molecule only (middle and left panels of Fig. IV.27) breaks the symmetry such that the

selection rules of the bare aggregate no longer apply.
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Chapter V

Conclusions and Outlook

In this work, exciton dynamics photosynthetic light-harvesting complexes as well as in artificial

hybrid system, composed of a metal nanosphere and a dye aggregate have been studied.

In Sec. III.1, the coupling of one-exciton states to vibrational DOFs has been investigated

for a model of the FMO complex with a QME approach using different levels of approximation,

i.e. the one- and the two-particle description as well as purely excitonic description. In the

purely excitonic systems (model I), we only consider the excitation in the bare electronic basis

with a spectral density fitted by the low temperature fluorescence line narrowing spectra of B777

complex. In model II, a single intramolecular harmonic vibrational mode is included in the OPA

and TPA basis with a selected Ohmic spectral density around 180 cm−1 yielding the coupling

between vibrational mode and protein environment. The focus was on the influence of vibrational

and vibronic excitations on the exciton transfer and trapping dynamics. It has been found that

the trapping to the RC is accelerated by non-equilibrium exciton-vibrational dynamics at low

temperature. At room temperature rapid on-site relaxation causes a transient trapping at site

m = 1, which accelerates the transport to the RC. Therefore, the rate of population in the latter

case is not much different comparing with that in the bare electronic case. These observations

are only true for the TPA. According to the more approximate OPA the trapping is accelerated

at both temperatures. To sum up, explicit EVC indeed modifies the transport characteristics of

the FMO complex. However the details not only depend on temperature but also on the level

of approximation in the exact exciton-vibrational wave function.

Having access to the exciton-vibrational density matrix, the magnitude of on- and inter-site

coherences has been studied. While on-site coherences indicate vibronic or vibrational wave

packet dynamics in the site basis, inter-site coherences are key to understand the coupling be-

tween different sites of the complex. It is not surprising that such coherences are very important

for the strong coupling between sites m = 1 and 2. However, vibronic inter-site coherences

connecting the latter two with sites m = 3 and 4 are also of sizeable magnitude. It is important

to emphasize that the OPA predicts a qualitatively different behavior as far as magnitude and

phase of the vibronic density matrix elements are concerned. Further, vibrational wave packet

dynamics in the electronic ground states has been found, which cannot be described by the OPA

at all.

It should be pointed out that, of course, the explicit inclusion of vibrational and vibronic

non-equilibrium dynamics comes at the expense of sacrificing the non-Markovianity of the total
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system. Therefore, a direct comparison with the OPA-like results of Nalbach and cowork-

ers [36, 92] is problematic. In addition in Refs. [36, 92] the exciton Hamiltonian was taken

from Adolphs and Renger [96], which was different from the present one. Nevertheless, within

the used model the discrepancy between OPA and TPA is pronounced. In this respect the re-

cently introduced multi-configuration time-dependent Hartree description of exciton-vibrational

dynamics [89] might, with temperature effects, provide a means for accurate explicit simulation

of exciton-vibrational dynamics in photosynthetic complexes.

In Sec. III.2 the model for LH2 developed by Löhner and coworkers [16] is used to discuss

the experimental results on the population dynamics of Ref. [102]. The original parameters are

changed to fit the peaks of the split B800 bands and the time scales for the population flow.

Besides accounting for different sample preparation, the model of Ref. [16] is supplemented by

a system-bath description of phase and energy relaxation.

In Model 4 of Table III.1, an energy shift Es between A- and B-kind B800 led to a change

of the ratio of B800r and B800b peaks. The coupling coefficients ai are changed to meet with

the time scales for the population flow. Pure dephasing rates Γ̂i are introduced to broaden the

peaks of B800 and B850 bands. Finally, the Coulomb coupling J800−850 has to be chosen 2 times

larger than the dipole approximation to reach the best agreement as shown in Fig. III.16d.

By calculating the state character cα in Fig. III.15, one finds that the B800 double peaks

are in a range where B800 and B850 eigenstates are mixed. This provides evidence that the

splitting of B800 bands is related to the excitonic coupling of B800 and B850 BChls a.

Furthermore, the time scales for the population flow are calculated and compared with the

experimental result. It is found that the energy transfer from B800b to B850 band is via two

pathways: direct transfer to B850, which is the main pathway, and indirect transfer via B800r

to B850. The obtained time scales are in accord with Ref. [102].

In Chap.IV, a proof-of-principle study has been presented to reveal effects of a NS on the

QM charge distribution of a molecule and focus on its dynamics. In the static case, a classical

macroscopic self-consistent description of the polarization potential between a NS and molecules

was combined with a QM model for the charge density in a molecular system. Key to the model

has been a discrete representation of the molecular charge density in terms of Mulliken charges.

They are obtained using the DFTB method, where they constitute the basic quantity for self-

consistent solution of the electronic Schrödinger equation. The latter has been linked to the

polarization field, also in a self-consistent manner.

The approach was applied to two exemplary systems, containing dyes typically used for

building supramolecular structures or molecular crystals. Whereas for the charge neutral TET

the influence of the NS in the hybrid system has been moderate, the positively charged CCY

showed rather pronounced effects. A qualitative comparison yielded a rather different depen-

dence on the distance from the NS’s surface, e.g. the interaction energy decays more rapidly for

TET as compared with CCY. If the molecule’s plane faces the NS (parallel case), the difference

in distance dependence is only moderate. The dependence on the radius of the NS is similar for

the two dyes, i.e. the interaction energy decreases with decreasing radius, which is due to the

fact that parts of the molecular charge density move effectively out of the range of interaction. It

has also been noticed that the charged system shows a less pronounced orientation dependence
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of the interaction energy. The distance dependence has been contrasted to that of an ideal metal

NS, interacting with a point charge and a dipole.

In the time-dependent external field case, an approximate TDDFT propagation is used to

describe the self-consistent influence between a NS and the nearest molecules. The exciton

dynamics molecules are calculated approximately in the molecular orbital basis by the Redfield

theory. Because of the limitation for the approximate TDDFT implementation, the external

field was not spatially different across the nearest molecule. In this case the influence from the

near-field of the NS is very small for the neutral TET. However, the effect on the charged CCY

is obvious not only for the nearest molecule (Fig. IV.24) but also for the EET (Fig. IV.26).

Future work should be directed towards the inclusion of a spatially varying near field into the

calculation of the molecular charge density.
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[64] V. May and O. Kühn, Charge and energy transfer dynamics in molecular systems. Wiley-

VCH: Weinheim, 2011, 3rd ed.
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[112] T. Kubař, Z. Bodrog, M. Gaus, C. Köhler, B. Aradi, T. Frauenheim, and M. Elstner,

“Parametrization of the SCC-DFTB method for halogens,” J. Chem. Theory Comput.,

vol. 9, p. 2939—2949, 2013.

[113] “Nist polycyclic aromatic hydrocarbon structure index.” https://pah.nist.gov/?q=pah040,

accessed Feb. 19, 2019.

[114] S. Karaca and N. Elmacı, “A computational study on the excited state properties of a

cationic cyanine dye: TTBC,” Comp. Theor. Chem., vol. 964, no. 1, pp. 160–168, 2011.
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