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ABsTRACT
On the basis of Kedem-Katchalsky equations a mathematical analysis of volume flow (Jv) of a binary solution 

through a membrane (M) is presented. Two cases of transport generators have been considered: hydrostatic (Dp) 
as well as osmotic (DP) pressure difference. Based on the Poiseuille's law we derive the formula for the membra
ne filtration coefficient (Lp) which takes into account the membrane properties, kinetic viscosity and density of 
a solution flowing across the membrane. With use of this formula we have made model calculations of the filtra
tion coefficient Lp and volume flow Jv for a polymer membrane in the case when the solutions on both sides of the 
membrane are mixed.

KEY WORDs: membrane, filtration coefficient, viscosity coefficient, Poiseuille's law.

INTRODUCTION

Synthetic polymer membranes have been widely applied 
in membrane transport research, engineering and also in

Nomenclature

Js - solute flux (mol m-2 s-1)
Jv - volume flow (m s-1)
Dp, DP - hydrostatic and osmotic pressure differences (Pa) 
Lp - hydraulic coefficient (m3 N-1 s-1)
w -solute permeability coefficient (mol N-1 s-1) 
s - reflection coefficient (-) 

c- -mean concentration (mol m-3)
Dc - concentration difference (mol m-3)
c1, c2 - solutions concentrations (mol m-3)
p1, p2 - solutions pressures (Pa)
dr/dc - concentration density gradient (kg mol-1)
rw, r - density of water and solutions (kg mol-1)
R -gas constant (J mol-1 K-1)
T - absolute temperature (K)
g - gravitational acceleration (ms-2)
hw, h -dynamic viscosity coefficients of water and solutions, respec

tively (Pa s)
vw, v - kinetic viscosity coefficients of water and solutions, respec

tively (m2 s-1)
V -volume of solution (m3)
S -cross section of the membrane (m2)
n - number of pores (-)
r -pore radius (m)
Dt -time (s) 

medicine, in separation techniques field. Transport through 
such membranes is well described by the Kedem-Katchal- 
sky (K-K) equations for volume flow (Jv) and solute flow 
(Js). These equations have been derived from the principles 
of linear non-equilibrium thermodynamics (LNET) and 
can be well applied to both synthetic and biological mem
branes. The classical version of the K-K equations applies 
to homogeneous membrane systems with well mixed solu
tions. For the case of poorly stirred solutions the lack of 
mixing leads to a formation of concentration boundary lay
ers (CBLs) in the vicinity of the membrane. Such layers 
participate in the transport and therefore the K-K equations 
have to be modified.

The aim of this paper is to investigate the membrane 
transport described by the K-K equations for the case in 
which the transport is generated by the hydraulic pressure 
gradient (Dp) as well as the osmotic pressure gradient 
(DP). We consider the special case of ideal mixing of solu
tions. On the basis of the Darcy's law and the Poiseuil- 
le's law we derive the formula for the hydraulic coefficient 
Lp (also called filtration coefficient), as a function of dyna
mic viscosity, for fixed concentration of the solution flo
wing across the membrane. To test the validity of the for
mula and to get more insight into the membrane transport 
we consider a model of a cell, which consists of a single 
membrane that separates two binary solutions, having con
centrations c1 and c2 and pressures p1 and p2 respectively. 
We assume that the following conditions are fulfilled for 

mailto:jarzynska@op.pl


94 POISEUILLE'S LAW IN MEMBRANE TRANSPORT Jarzyńska M.

the cell: c1 > c2, p1 > p2 and T = const. From the Van't Hoff 
equation the osmotic pressure difference reads DP = RTDc 
(Kedem and Katchalsky 1958; Katchalsky and Curran 
1965; Kedem and Katchalsky 1963; Gumiński 1962; Doło
wy et al. 2003) and the hydrostatic pressure difference Dp 
= Pi - P2- For this model we also derive the formula for vo
lume flow Jv and include the influence of the concentration 
of the solution on Lp and Jv. We discuss the results for two 
cases of transport: generated either by Dp or DP. The re
sults presented below may apply to polymer membranes, 
used in medicine, and aqueous glucose solutions for the ca
se when the transport is stationary and the solutions on 
both sides of the membrane are well mixed.

The Kedem-Katchalsky equations
Membrane transport for binary non-electrolyte solutions, 

generated by the hydrostatic pressure difference (Dp) and 
the osmotic pressure difference (DP), can be described by 
the Kedem-Katchalsky equations. The K-K equations have 
been derived from the principles of linear thermodynamics 
of irreversible processes. Such transport is described by the 
equations for the volume flow, (Jv) and the solute flow (Js) 
(Kedem O., Katchalsky A. 1958; Katchalsky A., Curran 
P.F. 1965; Kedem O., Katchalsky A. 1963):

Jv = LpAp-LpcMI (1)

J s =G> An + (1 - o )cJ v (2)

where c- stands for mean concentration, 

and (Lp, s, w) are coefficients of filtration, reflection and 
permeation, respectively. The above equations have widely 
been used in research on substance permeability through 
artificial and biological membranes (Ginzburg and Kat- 
chalsky 1963). The application of the K-K equations in 
their classical version is limited to membrane systems with 
two-component solutions, sufficiently diluted and well stir
red (Koter 2005; Bacchin et al. 2006; Ślęzak et al. 2004; 
Jarzyńska 2005).

The membrane system
The system under consideration consists of a 1-membra- 

ne cell, presented in the sketch in Figure 1. The membrane

Fig. 1. Sketch of a membrane cell: M is the homogeneous membrane of 
thickness Dx; c1 and c2 are the concentrations of solutions in compart
ments separated by the membrane, Dc = c1 - c2; p1 and p2 are the values 
of the hydraulic pressure in appropriate compartments, Dp = p1 - p2; Jv is 
the solution volume flux through the membrane M. 

(M) divides the cell into two compartments filled with bi
nary non-electrolyte solutions of concentration c1 and c2 
and pressures p1 and p2 in isothermal conditions. The 
osmotic pressure difference between the solutions (DP) is 
given by Van't Hoff equation DP = RT (c1 - c2), and the 
mechanical pressure difference is Dp = p1 - p2. The mem
brane is characterized by following parameters: filtration 
coefficient (Lp), reflection coefficient (s) and permeability 
coefficient (w).

Transport across the membrane depends on the rate of 
mixing of the solutions. When the solutions are poorly or 
not at all mixed, the effect of forming of boundary layers 
h and l in the vicinity of the membrane occurs and both the 
membrane and the layers (h / M / l) participate in transport. 
In the case when the solutions are mixed, only the mem
brane takes part in transport. In this paper we restrict ourse
lves to the second case assuming equally mixed solutions. 
We also assume that the transport is stationary.

Derivation of the filtration coefficient (Lp) formula
The filtration coefficient describes the ability of a pore 

environment to permeate fluid when a pressure gradient 
exists, while filtration is the fluid ability to permeate thro
ugh the pore environment.

In 1856 Henry Darcy, on the basis of his experiments, 
derived the linear filtration law, called nowadays Dar
cy's law. He showed that for laminar flow the volume of 
fluid (V), permeating through a pore medium, is proportio
nal to the cross-section area (S) of the medium, flow time 
(t), the hydraulic pressure drop (Dp) and the filtration coef
ficient (Lp), called also the hydraulic conductivity of 
a membrane. According to the Darcy's law the filtration 
coefficient describes not only the pore medium itself, but 
also the medium-fluid pair e.g. membrane-solution, mem
brane-water and so on.

Let us consider the Kedem-Katchalsky equation (1) for 
the volume flow Jv through a membrane. When the flow is 
forced only by hydrostatic pressure difference Dp (DP = 
0), (1) reads

Jv = LpDp (3)

One can rewrite Eq. (3) in the form

where DV is the volume of the solute permeating through 
the area S of the pore in time Dt.

On the basis of the Poiseuille's law the volume DV is 
expressed as follows

, (5)
r| 8/

where
DV - volume flow rate,
r - inner radius of the capillary (pore), 
h- fluid dynamic viscosity coefficient,
Dp - pressure difference at the ends of the capillary,
l- length of the capillary.
The Poiseuille's law describes the relation between volu

me flow rate, viscosity, pressure gradient, that causes the 
fluid flow, and the capillary parameters (its length and ra
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dius). For the stationary, laminar flow of viscous fluid th
rough a cylindrical pipe (i.e. a pore with constant, circular 
cross-section) the volume flow rate is proportional to the 
pressure gradient along the pipe and thus to the pressure 
difference at the ends of the pipe.

Taking into (for n pores) account Eq. (5) equation (4) ta
kes on the form

r~
Jv = n----- Ap

' 8Zr|
From (3) and (6) we get

(6)

(7)

where Dx is the thickness of the membrane and his the dy
namic viscosity of the fluid. In order to determine the value 
of Lp for an arbitrary solution and a membrane one can use 
the value of the filtration coefficient obtained for water and 
the same membrane (Lpw), taking into account the change 
of viscosity and density while changing concentration of 
investigated solution. From Eq. (7) the hydraulic conducti
vity of the membrane and solvent (water) reads 

(8)

where hw is the viscosity of water (solvent), n is the num
ber of pores within the membrane.

If we express the fluid kinetic viscosity (v) by fluid dyna
mic viscosity (h) and fluid density (r)

the formula for the membrane filtration coefficient Lp for 
the solution with a given concentration, is of the form

v p ri7- _ 7- w r w T _ T 1M’
or (10)vp r|

where
v - solution kinetic viscosity,
p - solution density.
Next, inserting (10) into (1) the K-K equation for the vo

lume flow Jv is given by

j, =i,.^^(Ap-oAn). (u,
VP

In order to test Eq. (11) we have performed the calcula
tions for the membrane cell presented in Figure 1. A poly
mer (cellophane) membrane, that may be used in medicine, 
separates two aqueous glucose solutions having concentra
tions c1 and c2. The transport parameters of such a mem
brane are (Ślęzak et al. 2004): hydraulic conductivity Lp = 
5x10-12 m3 N-1s-1, reflection coefficient s = 0.068, permea
bility coefficient w = 8x10-10 mol x N-1s-1. The difference 
of concentrations of the solutions in two compartments, 
forcing the transport through the membrane, is Dc = 0.1 
mol m-3, c1 = nDc n, = 1, 2, 3, ..., 201; kinetic viscosity and 
density in solutions for corresponding concentrations fulfill 
the conditions v(n) = vw + nDv and r(n) = r(w) + nDr, where 
v = 1.012x10-6 m2 x s-1 and p = 998 kg x m-3 are water ww
kinetic viscosity and water density, respectively; the values 
of the increase of kinetic viscosity and density with increa

sing concentration of the solution are Dv = 0.00004 m2 X s-1 
and Dr = 0.006 kg X m-3, respectively. The values of Dv 
and Dr have been empirically determined (Ślęzak et al. 
2004). The remaining parameters are as follows: gas con
stant R = 8.31 J X mol-1 K-1; gravitational acceleration g = 
9.81 m X s-2. All calculations have been carried out for iso
thermal conditions at temperature T = 295 K.

RESULTS AND DISCUSSION

Dependence Lp = f(c)
In Figure 2 we present the results obtained for the filtra

tion coefficient Lp as a function of concentration of the so
lution c. The calculations have been carried out with the 
use of Eq. (10) with the threshold value of water filtration 
coefficient: Lp = 5x10-12 m3 N-1s-1.

c [mol/m3]

Fig. 2. Graphic illustration of the dependence Lp = f(c). The membrane 
filtration coefficient is inversely proportional to the concentration of the 
solution.

Dependence Jv = f(Lp)
The results for Lp as a function of the solution flux 

(Jv)Dp=0 flowing through the membrane are presented in Fi
gure 3. Transport is generated by the osmotic pressure gra
dient DP (Dp = 0) for the case when the solutions concen-

A n m°ltration difference changes from to
rrf

The calculations of Jv have been carried out using Eq. (11).
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Fig. 4. Graphic illustration of the dependence Jv = ((Dp), DP = 0. All 
plots are obtained for different values of solutions concentration with the 
assumption c1 = c2 (mol / m3). The influence of the solution concentration 
on the filtration coefficient Lp is taken into account.

Fig. 5. Graphic illustration of the dependence Jv = ((Dc)Ap=0, Ap=0. Plot 1 
is taken for Lp = const, plot 2 with the influence of the solution concentra
tion onLp: 4.9977X10-12 m3N-1s-1, ... , 4.5786X10-12 m3N-1s-1.

Dependence Jv = f(Dp)Ap=0
The dependence of the volume flow Jv on the mechanical 

pressure difference Dp is presented in Figure 4. In this case 
DP = 0 thus the only source of transport is the hydraulic 
pressure. The five plots correspond to the different values 
of the solutions concentrations with c1 = c2. We see that the 
volume flow decreases with increasing concentration of the 
solutions.

Dependence Jv = f(Dc)Dp=0

In this section we show how the volume flow Jv depends 
on the solution concentration for the case when the flow is 
generated by the osmotic pressure difference DP (Dp = 0). 
In Figure 5, plot 1 shows the results obtained for the case 
when the value of the filtration coefficient Lp does not de
pend on the concentration of the solution (Lp = const), plot 2 
the results for the case when this dependence is taken into 
account.

CONCLUSIONS

In this paper we have presented the results of the model 
calculations of the Kedem-Katchalsky equations applied to 
a 1-membrane cell filled with a non-electrolyte binary so
lution. To be specific, we have used the polymer membra
ne applied in medicine and the well-mixed aqueous gluco
se solution. On the basis of the Darcy's and Poiseuil- 
le's laws we have derived new the formula for the filtration 
coefficient (Lp) and then, using the K-K equations, the for
mula for the volume flow Jv. It was found out that Lp de
pends essentially on the properties of the membrane and 
the fluid properties, i.e. it is inversely proportional to kine
tic viscosity and density of permeating fluid. The obtained 
results are in agreement with the Darcy's law.

It tunes out that, the filtration coefficient Lp not only de
pends on physical or chemical properties of the membrane 
itself but also on the properties of the fluid flowing through 
the membrane.
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