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Abstract In the present studies we investigate the connection between
atomistic simulation methods, i. e. molecular dynamics (MD) and phase-
field crystal (PFC), to the mesoscopic phase-field methods(PFM). While
the first describes the evolution of a system on the basis of motion
equations of particles the second uses a Cahn–Hilliard type equation
to described an atomic density field and the third grounds on the evolu-
tion of continuous local order parameter field. The first aim is to point
out the ability of the mesoscopic phase-field method to make predic-
tions of growth velocity at the nanoscopic length scale. Therefore the
isothermal growth of a spherical crystalline cluster embedded in a melt
is considered. We also show simulation techniques that enable to com-
putationally bridge from the atomistic up to the mesoscopic scale. We
use a PFM to simulate symmetric thermal dendrites started at an early
stage of solidification related to nucleation. These techniques allow to
simulate three dimensional dendrites from the state of nuclei (≈ 50 Å)
converted from MD up to a size of some µm where ternary side-arms
start to grow.

1 Introduction

Computer-aided scientific investigations of materials are carried out on the atomic
and mesoscopic scale, to capture the physical processes acting on both scales [1]
and to track the transfer of properties across the scales. An understanding of the
effects on each scale allows to transfer information, physical properties across different,
well-established methods. Bragard et al. for instance, use parameters obtained from
molecular dynamics (MD) simulations, to compute nickel dendrites on a micrometer
length scale with the phase-field method (PFM). Provatas et al. [2] use a phase-field
crystal (PFC) model on the atomistic length scale as an alternative concept, compared
to MD, in order to provide input data for PFM simulations [3, 4], whereby PFC can
be regarded as the time-related averaging of the particle position in MD [5].

On the atomistic scale, MD is a widely used computational method to describe the
atom positions and ordering mechanisms, however, it has high computational effort,
such that only small simulations are practicable [6–10]. In recent years, PFC type ap-
proaches are developed and contribute to the variety of atomistic material modelling
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methods [11–16]. In contrast to MD, they build on a minimization of atomic energy
density functionals and promise to represent the dynamics in a temporal range some
orders of magnitude larger than classical MD. PFM usually acts on the mesoscopic
scale of several micrometers and is applied to compute microstructure evolution such
as dendrites, eutectic or peritectic patterns, (e. g. [17–21]) at which an atomic reso-
lution is no longer possible. Over almost two decades, various model derivatives are
formulated so as to study solidification in pure and multi-component systems, e. g.
[22–26], microstructure evolution in solid phase systems [27, 28], and general motion
of grain boundaries, e. g. [29].

In the next section, we introduce the PFM. In section 3, we describe the conversion
from the atom positions and their local order parameter in MD to an interpolated
continuous field in PFM, as well as from MD through PFC to PFM. In section 4,
we subsequently show an application for pure metals, where pure nickel MD data
[30] are mapped into the continuous PFM format. To illustrate the path, we set a
nucleus of 50 Å diameter in an undercooled melt. On the atomic scale, we compare
the growth of nickel nucleus predicted by both methods: MD and PFC. With the
PFM, the calculation of the nucleus is continued, until it results in a dendrite with
ternary side arms. In section 5, we return to the atomic scale and present the PFC
model, which is also used for the calculation of colloids. In section 6, we conclude by
carving out the results.

2 Phase-Field Model

The growth process in the PFM is modelled by the variables of the inner energy e,
and two order parameters, φs (solid) and φ` (liquid), called phase-fields. In a two
phase system, the phase-field variables fulfill the constraint φs + φ` = 1, so that
a single phase-field variable φ = φs is sufficient to describe the evolution of the
phase boundaries in the system. The variable φ(x, t) denotes the local fraction of the
considered phase.

The phase-field model is based on an entropy density functional, to ensure con-
sistency with classical, irreversible thermodynamics

S(e, φ) =

∫
Ω

s(e, φ)−
(
εa(∇φ) +

1

ε
w(φ)

)
dx. (1)

The bulk entropy density s depends on the internal energy density e and the phase-
field variable φ. The functions a(∇φ) and w(φ) reflect the thermodynamics of the
interfaces, and ε is a small length scale parameter related to the thickness of the
diffuse interface.

Taking the functional derivatives of Eq. (1) results to the dynamic equations for
the non-conserved phase-field variable φ and the conservative energy

τε
∂φ

∂t
=
δS
δφ
, (2)

∂e

∂t
= −∇ · L00(T, φ)∇δS

δe
, (3)

where τ is a kinetic mobility. In case of temperature dependent and anisotropic ki-
netics, τ depends on the temperature and the orientation of the phase boundary, i. e.
τ = τ(T,∇φ). The mobility coefficient L00(T, φ) is related to the thermal conductivity
K(φ). It is simplified to the expression L00 = KT 2 for constant K(φ) = K.



Will be inserted by the editor 3

The evolution of the phase-field variable is described by

τε
∂φ

∂t
= ε∇ · ∂∇φ a(∇φ)− 1

ε
∂φ w(φ)− ∂φf(T, φ)

T
, (4)

where ∂∇φ and ∂φ denote the partial derivatives with respect to ∇φ and φ. The bulk
free energy density reads

f(T, φ) = Ls(T )
T − Tm
Tm

h(φs) +
∑

α∈{s,`}

(∫ T

Tm

cαv (T̃ )dT̃ − T
∫ T

Tm

cαv (T̃ )
dT̃

T̃

)
h(φα),

(5)

where h(φ) is a monotonic function on [0, 1] with h(0) = 0, h(1) = 1 and h′(0) =
h′(1) = 0. Ls(T ) is the latent heat and cαv (T ) is the volumetric heat capacity for solid
(α = s) and liquid (α = `), which both depend on the temperature T . Tm is the
melting temperature.

We further define w(φ) = 16
π2 γs`φ(1 − φ) for φ ∈ [0, 1] and elsewhere w(φ) = ∞

as an obstacle type potential and a(∇φ) = γs`γ (n̂)
2 |∇φ|2 as the gradient energy

density with the anisotropic interface free energy γ from MD. We used the notation
n̂ = ∇φ

|∇φ| .

The kinetic coefficient τ depends on the temperature by

τ(T,∇φ) =
Lα(T )

TTmk (n̂)
, (6)

with an anisotropic kinetic parameter k provided from the MD model EAM F85.
The evolution of the temperature can be derived from the thermodynamic relation

e = f + TS and the entropy S = − ∂f
∂T by

e(T, φ) = f(T, φ)− T ∂f(T, φ)

∂T
(7)

with T (x, t) and φ(x, t), which are both functions in space and time.
Subsequently, the time derivative of e follows as

∂e

∂t
=
∂f

∂T

∂T

∂t
+
∂f

∂φ

∂φ

∂t
− ∂T

∂t

∂f

∂T
− T

(
∂2f

∂T 2

∂T

∂t
+

∂2f

∂T∂φ

∂φ

∂t

)
=

(
−T ∂

2f

∂T 2

)
∂T

∂t
+

(
∂f

∂φ
− T ∂2f

∂T∂φ

)
∂φ

∂t
. (8)

With δS
δe = 1

T for pure substances, we get from Eq. (3)

= −∇ · L00∇
1

T
.

Rearranging the formulae, results in the evolution equation for the temperature field

∂T

∂t
=
−∇ · L00∇ 1

T −
(
∂f
∂φ − T

∂2f
∂T∂φ

)
∂φ
∂t

−T ∂2f
∂T 2

. (9)

In our studies, we consider pure Ni in two phase states solid and liquid phase. The
data and properties from [30] computed with the MD model Embeded Atom Method
potential developed by Foiles et al. [31]. For the comparison to MD in section 4.1, the
PFM simulations are calculated for isothermal undercooling conditions, so the free
energy provides a constant term to the equation of motion (4): ∂φf = const · h′(φ).
In this case, the temperature field is constant and Eq. (9) is not calculated. The
temperature equation is calculated for the dendritic growth in section 4.2.
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3 Data conversion from different atomistic methods to mesoscopic
PFM

phase-field

convert

PFC simulatio
n

co
n

ve
rt

atom positions (MD)

1-mode
filling

density (PFC)

Figure 1: Conversion of atomic data from MD to PFC and from PFC to continuum
data for PFM.

In order to compare the results of different atomistic models, we developed meth-
ods to convert data from different formats MD to PFC, vice versa, MD to PFM and
PFC to PFM as illustrated in Fig 1. Discrete atom positions, as generated by MD
are converted to atom-densities used for PFC by setting a normal distribution at the
atom positions. This is very similar to the 1-mode filling method, where different
crystallographic modifications, such as fcc and bcc, serve as initial density profiles.

Conversely, the atom positions can be extracted from local maxima of density
profiles obtained by PFC. These atom positions can be used to analyze local structure
using order parameters such as the local bond order parameter q6q6 [32].

In order to convert PFC to PFM, we exploit the free energy calculated out of
the density profile, to extract a phase-field order parameter profile. The q6q6 order
parameter from MD data can be applied to generate an appropriate diffuse interface
profile.

With these conversion methods, we are able to compare atomistic properties of dif-
ferent methods, and transfer data from atomistic scales to simulate large microstruc-
ture formations on mesoscopic scales.
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melting temperature Tm = 1748 K
solid density ρs(T ) = (8901.6− 0.20379T − 6.142 · 10−5T 2)kg/m3

liquid density ρ`(T ) = (8992.3− 0.66704T − 3.3161 · 10−5T 2)kg/m3

latent heat L(T ) = (−15980 + 324.75T − 8.1098 · 10−2T 2)J/kg
solid specific heat capacity csv(T ) = ρs(T )(419.452 + 2.0388 · 10−2T )J/kgK2

liquid specific heat capacity c`v(T ) = ρ`(T )(563.023− 6.952 · 10−2T )J/kgK2

thermal diffusivity α = 2.1 · 10−7 m2
/s

kinetic growth coefficient k0 = 0.319205 m/sK, εk = −0.196511, δk = 0.230331
interface free energy γ0 = 0.302 J/m2, ε1 = 0.10191, ε2 = −0.00134, ε3 = 0.00876
interface width parameter ε = 4 Å
interface entropy density γs` = 0.1728 · 10−3 J/m2K

Table 1: Parameters and functional expressions from MD composed for PFM simula-
tions.

(a) (b) (c) (d)

Figure 2: Snapshots of MD (a) and (b) and PFM (c) and (d) simulations at a tem-
perature of 1550 K. The evolution of the crystalline cluster of PFM in (c) and (d) is
displayed for the same volume fractions as MD

4 Simulation applications to metals

4.1 Comparison between MD and PFM structures on atomistic scale

We start with initial Ni nuclei of 5 nm in diameter and simulate some hundreds
picoseconds up to a size of 15 nm with the help of MD. The properties of Ni required
in the PFM simulations were obtained from MD simulations [30, 33] using the EAM
F85 model [31] and listed in Tab. 1. An anisotropic kinetic coefficient is modelled by

k(n̂)

k0
= 1− 3εk + 4εkQ+ δk (P + 30S) (10)

with Q = n41 +n42 +n43, P = n61 +n62 +n63 and S = n21n
2
2n

2
3. n̂ = (n1, n2, n3) is the unit

vector normal to the local interface. The orientational dependence of the interface
free energy is described by a cubic harmonic expansion of the form

γ(n̂)

γ0
= 1 + ε1

(
Q− 3

5

)
+ ε2

(
3Q+ 66S − 17

7

)
+ ε3

(
5Q2 − 16S − 94

13
Q+

33

13

)
.

(11)

The initial nucleus and final MD atom cluster at T = 1550 K is shown in Fig. 2
in comparison with PFM growth structures. The nature of PFM smoothens the in-
terface roughness, so that a direct comparison between MD and PFM is inapplicable.
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Figure 3: Asymptotic radial velocity versus temperature. Values of MD and PFM are
obtained from the asymptotic limit.

Therefore, we assume an exponential velocity dr
dt of the interface over the approxi-

mated sphere radius where r is calculated from the volume of the nuclei, under the
assumption, that it is a sphere. Due to the fact that the MD computation is per-
formed for an isothermal temperature, we also assume isothermal conditions for the
PFM simulations.

Fig. 3 shows the PFM and MD simulation results for spherical nuclei and for planar
growth with different crystal orientations. For a spherical nucleus, the theoretical
kinetic kavg =

∫
S2 k(n̂)dA/

∫
S2 1dA is expected, details in [34]. Due to the nature of

PFM, a spherical nucleus forms 111-facets, so that kavg is an upper and k111 a lower
bound for the velocity.

4.2 Iterative up-scaling method

The continuum PFM has the property of simply scaling the length. However, the
diffuse interface has a width of about 10 grid points, such that scaling by a factor of 2
does not disturb the interface significantly. We start with a nucleus, set in one corner
of a simulation cube of 1453 grid points, with a numerical cell spacing of ∆x = 1 Å
and assume trivial symmetry of a cubic crystal shape (see upper left of Fig. 4a). The
initial temperature is set at 1450 K. Before boundary effects occur, i. e. the nucleus
or the temperature reache the boundary, the growth is interrupted. ∆x is doubled
such that the physical size increases, but the simulation box remains at the same
extensions, the nucleus is scaled to this box. The free area inside the domain is set
by pre-defined values. The stability criteria of the numerical solution scheme allow an
increase of the time step by a factor of 4 for each up-scaling step. This procedure can
be continued for some time, however, it is bounded by the stability of the phase-field
interface. We find, that for the parameter set of Tab. 1, the maximum grid point
distance is ∆x = 5 Å. For larger ∆x, the interface becomes asymmetric [35].

4.3 Hill tetrahedron construction

A further upscaling can be achieved by enlarging the simulation box, so as to simulate
larger crystals. We expect a symmetrical dendrite with 6 arms, where 3 of them lie in
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(a) (b)

Figure 4: (a) Four iterative up-scaling steps of a dendritic crystal. Each row shows the
different cell spacing. (b) Resulting dendrite and applied simulation box according to
half of a Hill tetrahedron.

the simulation box. Based on this symmetry assumptions, the number of calculated
grid points can be reduced. It is simple to see that one Hill tetrahedron contains the
whole information of the symmetric crystal. Fig. 4b shows a dendrite composed of
the part calculated in half of a Hill tetrahedron [36]. We remark that calculating only
the symmetric part will always develop symmetric arms, even with an induced noise
in the simulation.

5 Phase-field crystal model for pure substances

The phase-field crystal model (PFC) is represented by an atomic density field ψ. The
dynamics is simulated dissipatively, according to the minimization of the free energy
functional

F =

∫
dr

{
ψ(r)

2

(
−ε+ (1 +∇2)2ψ(r)

)
+

1

4
ψ(r)4

}
(12)

which leads to the evolution equation

∂ψ

∂t
= ∇2

[(
−ε+ (1 +∇2)2

)
ψ + ψ3

]
, (13)

where ε corresponds to the undercooling.
As proposed in [37], we use an operator-splitting, semi-implicit Fourier-spectral

method to solve the PFC equations which allows to easily incorporate different model
formulations such as the 4th and 8th-order models discussed in ([11], [13] and [38]).
For the following comparison between hard spheres and PFC, we employ the model
system given in Eq. (12).

As presented in [39] the wave number q0 for the lowest free energy and the equi-
librium densities ψ̄`, ψ̄s for the liquid and solid phases, can be determined by means
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of a Monte Carlo-based n-mode expansion. Applying the wave number q0,a crystal
without boundary effects can be set in a simulation domain with periodic boundary
conditions. In equilibrium state, we measure the interface energy [38] for different
crystal directions by

γ =
1

Ω

∫
Ω

dr

{
f −

(
fs
ψ − ψ̄`
ψ̄s − ψ̄`

− f`
ψ − ψ̄s
ψ̄s − ψ̄`

)}
. (14)

The initial setting is a one-mode approximation of the fcc-structure. The PFC
simulations recover the expected interface energies γ for the different crystal orien-
tations. The {100}-direction has the highest energy and the {111}-direction has the
lowest energy (Fig. 5 and [40]).

(a) density of an fcc crystal in {100} direction

(b) {100}: γ = 1.134e− 04 (c) {110}: γ = 7.637e− 05 (d) {111}: γ = 5.677e− 05

Figure 5: (a) Rod of 10 unit cells. (b)-(d) Dimensionless interface energy γ for different
crystal directions showing one unit cell.

5.1 Colloids PFC simulations

The PFC model can be interpreted as a time interpolation of atomic positions. There-
fore it acts on a higher time scale than MD. If PFC is simulating atoms, it acts nat-
urally on the atomistic length scale and can replace classical MD to deliver initial
states for further scale-bridging simulations. However, it is not as much developed
as MD. Jaatinen et al. have developed a quantitative PFC model for iron. Wu et
al. have extended this approach fcc-structure metals like nickel in a non-quantitative
manner. The main physics of PFC lies in its correlation function and potential. So an
interpretation of the peaks as colloids, as done by Teeffelen et al. [41], is a valid step
that increases the length scale. Fig. 6 shows an example of a grown fcc-structure. An
extended model to Eq. (12) with a functional of the form

F =

∫
dr

{
ψ(r)

2

(
BL +BS(2∇2 +∇4)

)
ψ(r) +

v

6
ψ(r)3 +

1

12
ψ(r)4

}
(15)

is numerically solved with BL = 0.288725134, BS = 0.288675134 and v = 0.658037006
introduced in [42]. The simulation was started with a small cubic fcc-nucleus of 32
cells in a domain of 1024 cells in each direction with ∆x = 0.72552 and ψ0 = −0.04.



Will be inserted by the editor 9

Figure 6: Atom position distribution of an fcc-structure computed with PFC

6 Conclusion

In this contribution we have introduced conversion and up-scaling methods to bridge
the scales. The atomistic models, such as the MD and PFC model are of course,
limited to the atomistic length scale, in order to computationally resolve atoms. Thus,
greater structures can only be calculated in larger volume elements. This means, that
the calculation effort dramatically increases to non feasible amounts. At this point
the advantage of the continuum models, such as the PFM, becomes inevitable, as
there is (almost) no physical limitation of the length scale. So the length scale can be
set to the atomic level without difficulty.

To supply the necessary material quantities for microstructure simulations on the
mesoscopic scale of several µm, the atomistic models provide the parameters for the
PFM. Alternatively the data are already input parameters in the atomistic model,
or the model can be calculated from atomistic simulations, which was exemplarily
shown by specifying the interface energy.

In section 4.1, we compare PFM with MD on an atomic level. Apart from the
smoothing property of the PFM, the growth rates exhibit good agreements. The
crystals do not grow faster than the average growth rate kavg and approach the
growth rate k111 after the development of {111} facets.

In section 5 it is shown that the PFC model can also provide physical parameter
for the PFM.

Due to the restrictions of the interface width with respect to numerical grid reso-
lution, the very efficient up-scaling method presented in section 4.2, reaches its limits
such that an increase of the domain and hence computational effort is mandatory. Be-
cause of the symmetry properties of a dendrite, the domain, however, can be adapted
in such a way, that only one Hill tetrahedron, and thus only 1/48, has to be calculated.
Both methods enable a calculation of a thermal dendrite on a mesoscopic scale, where
ternary side arms start to develop.

The authors gratefully acknowledge the financial support by the German Research Founda-
tion (DFG) in the Priority Program SPP 1296.
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