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Abstract—We investigate distributed memory parallel sorting
algorithms that scale to the largest available machines and are
robust with respect to input size and distribution of the input
elements. The main outcome is that four sorting algorithms cover
the entire range of possible input sizes. For three algorithms we
devise new low overhead mechanisms to make them robust with
respect to duplicate keys and skewed input distributions. One
of these, designed for medium sized inputs, is a new variant of
quicksort with fast high-quality pivot selection.

At the same time asymptotic analysis provides performance
guarantees and guides the selection and configuration of the algo-
rithms. We validate these hypotheses using extensive experiments
on 7 algorithms, 10 input distributions, up to 262 144 cores, and
varying input sizes over 9 orders of magnitude. For “difficult”
input distributions, our algorithms are the only ones that work at
all. For all but the largest input sizes, we are the first to perform
experiments on such large machines at all and our algorithms
significantly outperform the ones one would conventionally have
considered.

I. INTRODUCTION

Sorting is one of the most fundamental and widely used non-
numerical algorithms. It is used to build index data structures,
to establish invariants for further processing, to bring together
“similar” data, and in many other applications. This wide vari-
ety of applications means that we need fast sorting algorithms
for a wide spectrum of inputs with respect to data type, input
size, and distribution of keys. The motivation for this paper is
that parallel algorithms currently do not cover this spectrum
of possible inputs for very large parallel machines. Although
hundreds of papers on parallel sorting have been published,
there is only a small number of practical studies that consider
the largest machines with many thousands of processors (PEs).
The few studies known to us mostly concentrate on very large
random inputs. Most of these algorithms become slow (or
simply crash) when applied to worst case inputs where the
location of the input data is correlated with key values (skewed
inputs) or which may have large numbers of duplicated keys.

Even for random inputs, these algorithms are slow on small
inputs, where their running time is dominated by a large
number of message startup overheads. Note that sorting small
inputs becomes important for the performance of parallel
applications when it is needed in some frequently repeated
coordination step between the PEs. For example, many ap-
plications perform load (re)balancing by mapping objects to
space filling curves and sorting them with respect to this
ordering [1]. The scalability of the sorting algorithm may then
become the limiting factor for the number of time steps we
can do per second. Note that in this case it is of secondary
importance whether the sorting algorithm itself is efficient
compared to a sequential one – what matters is that it is

faster than the local computations between rebalancing steps.
Siebert and Wolf [2] give another extreme example, pointing
out that the MPI_Comm_Split operation requires sorting
with exactly one input per PE.

The subject of this paper is to systematically explore the
design space of parallel algorithms for massively parallel ma-
chines and propose robust algorithms for the entire spectrum
of possible inputs. As a first design decision, we restrict
ourselves to comparison-based algorithms because they work
for arbitrary data types and are usually less dependent on
the distribution of key values than non-comparison based
algorithms like radix sort. The disadvantage of more local
work for comparison-based algorithms is often irrelevant for
the largest machines since communication overhead is the
main bottleneck. For similar reasons, we abstain from low-
level tuning like exploiting SIMD-instructions or using hybrid
codes with node-local shared memory algorithms.

Let n denote the input size and p the number of PEs. We
assume that each PE has a local input of size O(np ), i.e, the
input is “reasonably” balanced. We consider three major issues
with respect to the robustness of a massively parallel sorting
algorithm: Its scalability, i.e., its running time as a function of
n and p, how the algorithm behaves with respect to skewed
input distributions and how it handles repeatedly occurring
keys.

Our Contributions. A methodological contribution is that we
address the scalability issue by reconciling theory and practice
(to some extent). Classical theoretical algorithms concentrate
on the issue how fast sorting algorithms can be made for small
inputs. For example, Cole’s celebrated parallel mergesort [3]
runs in time O(log p) for n = p on a PRAM. However,
this result and the PRAM machine model are considered
quite impractical. We show that simpler algorithms with
polylogarithmic running time are actually practical for small
n/p. Using asymptotic analysis in a more realistic yet simple
complexity model that distinguishes between startup latencies
and communication bandwidth, we get a consistent ranking of
a large number of algorithms with respect to their performance
over the entire range of values for n/p. We propose three
robust sorting algorithms for different input sizes which can
be used to span the entire parameter space. The first sorts while
data is routed to a single PE, the second is a simple yet fast
work-inefficient algorithm with logarithmic latency (RFIS), the
third is an efficient variant of parallel Quicksort with latency
O(log2 p) (RQuick) and the fourth has latency O(p1/d) when
we allow data to be moved d times (RAMS).

RFIS and RAMS improve our own results from a mostly
theoretical paper [4] that includes a nonrobust proof of concept
implementation and experiments on up to 215 PEs. However,
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these experiments only used uniform inputs and had highly
fluctuating running times. We also concentrated on rather large
inputs (RFIS is used only as a nonrobust subroutine for ranking
samples). Our contribution to RFIS and RAMS are robust
implementations and extensive experiments with various input
distributions on up to 218 PEs. We use the input distributions
from Helman et al. [5], who pioneered robustness experiments
on parallel sorting algorithms. Our quicksort algorithm is new,
incorporating a fast and accurate splitter selection algorithm
and low overhead measures to handle skew and repeated keys.
We conjecture that the expected asymptotic running time for
worst case inputs (skewed but with unique keys) is the same
as for best case inputs where local data is split perfectly in
each step. This algorithm closes the gap between very small
and large inputs where RAMS is still inefficient but the local
work of RFIS begins to dominate its startup latencies. Finally,
we compare our algorithms directly with several state of the
art implementations considered in a recent study [6]. It turns
out that sorting while gathering data on a single PE “sorts”
very sparse inputs the fastest. RFIS is the fastest algorithm on
sparse and very small inputs. Our new quicksort outperforms
its competitors on small inputs, in the range of 23 to 214

elements per core, robustly for all input instances. HykSort
[6] is slightly faster than RAMS for large random inputs but
less robust. Classical sample sort and related algorithms that
communicate the data only once are very slow even for rather
large n/p [5], [7]–[10]. Classical bitonic sorting [11], [12] is
somewhat competitive only for a rather narrow range of input
sizes.

Paper Overview. We give preliminary definitions in Sec-
tion II and describe building blocks for random shuffling and
median estimation in Section III. Section IV compares eleven
parallel sorting algorithms analytically and qualitatively. Our
main new algorithms are described in more detail in Sec-
tions V–VI. Section VII describes an extensive experimental
evaluation.

II. PRELIMINARIES

The input of sorting algorithms are n elements with O(n/p)
elements on each PE. The output must be globally sorted, i.e.,
each PE has elements with consecutive ranks. We also want
O(n/p) output elements on each PE. Sometimes we more
concretely consider perfectly balanced inputs and an output
with at most (1 + ε)n/p elements per PE for some small
positive constant ε.

A naive approach to generating unique keys appends unique
identifiers to the elements. Then, lexicographic ordering makes
the keys unique. However, this approach makes sorting consid-
erably more expensive due to higher communication volume
and more expensive comparisons.

Model of Computation. A common abstraction of commu-
nication in supercomputers is the (symmetric) single-ported
message passing model. Algorithms in this model are often
implemented using the MPI, a standardized message passing
interface [13], that supports point-to-point message exchange
as well as a wide variety of collective operations like broad-
cast, reduction, prefix sum, etc. It takes time α + lβ to send

a message of size l machine words. The parameter α defines
the startup overhead of the communication, while β defines
the time to communicate a machine word. Appendix A gives
further details of the model of computation.

Hypercube Algorithms. A hypercube network of dimension

Algorithm 1 Hypercube algorithm design pattern

Computation on PE i
for j:= d− 1 downto 0 do . or 0..d− 1

send some message m to PE i⊕ 2j

receive message m′ from PE i⊕ 2j

perform some local computation using m and m′

d consists of p = 2d PEs numbered {0, . . . , p− 1}. Two nodes
a and b are connected along dimension i if a = b ⊕ 2i.
For this paper, hypercubes are not primarily important as
an actual network architecture. Rather, we extensively use
communication in a conceptual hypercube as a design pattern
for algorithms. More specifically the hypercube algorithms
shown in Algorithm 1 iterate through the dimension of the
hypercube. Depending on how this template is instantiated,
one achieves a large spectrum of global effects. To describe
and understand hypercube algorithms, we need the concept
of a subcube. A j-dimensional subcube consists of those PEs
whose numbers have the same bits j..d − 1 in their binary
representation. Basic operations such as all-reduce, all-gather,
and routing data for random start or destination nodes [14]
need only O(α log p) startup overheads overall. We call the
hypercube algorithm which places all elements on all PEs
in sorted order all-gather-merge. This operation runs in time
O(βp|a|+α log p). Appendix B describes these operations in
more detail.

III. BUILDING BLOCKS

A. Randomized Shuffling on Hypercubes

It is folklore (e.g. [15]) that data skew can be removed by
shuffling the input data randomly. Helman et al. [5] imple-
mented this for the sample sort algorithm by directly sending
each element to a random destination. Note that this incurs an
overhead of about αp + βn/p. In Appendix C we propose a
technique for small inputs which runs in O((α+ β np ) log p).

B. Approximate Median Selection with a Single Reduction

Siebert and Wolf [2] consider the case where n = p and
propose to select splitters for parallel quicksort using a ternary
tree whose leaves are the input elements. At each internal
node, the median of the children elements is passed upward.
Dean et al. [16] show that for randomly permuted inputs and
a balanced tree this is a good approximation of the median,
i.e., with high probability, one gets rank n/2(1 ± 2n−0.37).
Siebert and Wolf [2] do not permute randomly. Even when p
is a power of two, their method does not produce a completely
balanced tree so that their implementation remains a heuristic.

We fix these restrictions by using a binary tree and working
with randomly permuted inputs: Consider a tuning parameter
k (even). Assume that the local data is a sorted sequence
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a[1..m] and that m is even. Each PE is a leaf of the binary
tree and forwards a[m/2− k/2 + 1..m/2 + k/2] up the tree –
a local approximation of the elements closest to the median.
Undefined array entries to the left are treated like a very small
key and undefined entries to the right as very large keys. If m
is odd, we flip a coin whether a[bm/2c−k/2+1.. bm/2c+k/2]
or a[dm/2e − k/2 + 1.. dm/2e + k/2] is forwarded. Internal
nodes merge the received sequences and use the result as their
sequence a analogously to the leaves. At the root, we flip a
coin whether a[k/2] or a[k/2+1] is returned. Note that in most
MPI implementations, this algorithm can be implemented by
defining an appropriate reduction operator. The overall running
time is O(α log p). For randomly permuted local inputs of
size n/p, it is easy to show that our scheme yields a truthful
estimator for the median, i.e., we get a result with expected
rank n/2. We conjecture that similar quality bounds as from
Dean et al. [16] can be shown for our scheme, i.e., that we get
rank n/2(1 ± cn−γ) with high probability for some constant
c and γ. Our experiments in Appendix H indicate that the
approximation guarantee of the binary tree is about 1.44n−0.39

whereas the approximation guarantee of the ternary tree is
about 2n−0.37.

IV. SORTING ALGORITHMS FROM TINY TO HUGE INPUTS

We now outline a spectrum of parallel sorting algorithms
(old and new), analyze them and use the result to compare
their performance for different values of n and p. Table I
summarizes the results, roughly going from algorithms for
small inputs to ones for larger and larger inputs. We only give
the cost terms with respect to latency (α) and communication
volume (β) per PE because the relevant local work is always
the same O(np log n). We now compare the algorithms with
regard to running time and robustness. Appendices D and E
describe the algorithms in more detail.

We recently proposed Fast Work-Inefficient Ranking
(FIR) [4], a simple but fast ranking algorithm for small inputs
where the PEs are arranged in an array of size O(

√
p) ×

O(
√
p). The result of the algorithm is that each PE knows

the global rank of all input elements in its row. In theory
this is a very good algorithm for n = O(

√
p) since we have

only logarithmic delay. In Section V we propose Robust fast
work-inefficient sort (RFIS) which makes the algorithm robust

TABLE I: Complexity of various parallel sorting algorithms.
Implicit O(·).

Algorithm Latency [α] Comm. Vol. [β] Remarks
(All-)gather-merge log p n II
RFIS [4] log p n/

√
p here:robust

Bitonic [12] log2 p n
p
log2 p deterministic

Minisort [2] log2 p log2 p n = p
HC quicksort [17] log2 p n

p
log p best case

+median of medians [18] log2 p p+ n
p
log p average case

HC quicksort Sect. VI log2 p n
p
log p here:robust

HykSort [6] ≥ k logk p ≥ n
p
logk p not robust

AMS [4] k logk p
n
p
logk p here:robust

Sample sort [7] ≥ p ≥ n/p +sampling cost
Multiway merges. [4], [8] ≥ p ≥ n/p

against identical keys and converts its output to a classical
sorted permutation of the input.

For small inputs the running time of Bitonic sort [11],
[12] is dominated by log2 p startup overheads. This gives it a
similar running time as the parallel quicksort algorithms to be
discussed next. However, for n = ω(pα/β) the term β np log2 p

dominates – all the data is exchanged log2 p times. This makes
it unattractive for large inputs compared to quicksort and other
algorithms designed for large inputs.

There are many parallel variants of quicksort. Hypercube
quicksort uses the hypercube communication pattern, is simple
and can exploit locality of the network. In the simplest original
form by Wagar [17], PE 0 uses its local median as a pivot. This
is not robust against skew and even for average case inputs it
only works for rather large n. One can make this more robust
for average case inputs by using the global median of the local
medians [18]. However, this introduces an additional βp term
and leads to non-polylogarithmic execution time. Therefore in
Section VI we make quicksort robust against skew and propose
to use a median selection algorithm that is both fast and
accurate. Non-hypercube distributed memory quicksort leads
to more irregular communication patterns and has its own load
balancing problems because we cannot divide PEs fractionally.
Siebert and Wolf [2] exploit the special case n = p where this
is no problem.

Quicksort exchanges the data at least log p times. More
general approaches partition the input into k parts on each
recursion level. Those algorithms move the data O(logk p)
times and the lower bound of the running time is

Ω

(
n

p
log n

)
+ β

n

p
logk p+ αk logk p .

Many algorithms have been devised for the special case k = p
[7], [19]. These single level algorithms exchange data only
once. Sample sort [7] achieves the desired bound for relatively
large inputs of n = Ω(p2/ log p). Helman et al. [5] propose
initial random shuffling to make samplesort robust against
skewed input distributions (this was already proposed in [20]).
One can even achieve perfect partitioning by finding optimal
splitters in a multiway mergesort approach [4], [8], [10]. This
requires n = Ω(p2 log p) for achieving the desired bound.
Gerbessiotis and Valiant [9] develop a multilevel sample sort
for the BSP model [21]. However, implementing the data
exchange primitive of BSP requires p startup overheads in each
round. Cole and Ramachandran [22] and Blelloch et al. [23]
give multi-level sorting algorithms for cache oblivious shared
memory models. Translating them to a distributed memory
model appears nontrivial and is likely to result in worse
bounds.

Sundar et al. [6] develop and implement HykSort, a multi-
level generalization of hypercube quicksort. HykSort is “al-
most” robust against skew. However, in the worst case, data
may become severely imbalanced. The paper mentions mea-
sures for solving this problem, but does not analyze them. Fur-
thermore, HykSort uses the operations MPI_Comm_Split
whose current implementations need time Ω(βp). This is why
we put a “≥” in the corresponding row of Table I. HykSort is
also not robust with respect to duplicate keys.
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Our recently published k-way sample sort algorithm, AMS-
sort [4], guarantees a maximum imbalance of εnp for arbitrary
inputs. AMS-sort avoids the data imbalances within target
subcubes that may make HykSort inefficient. Our paper [4]
describes (but does not implement) a way to select com-
munication partners such that each PE sends and receives
Θ(k) messages for a k-way data exchange. Similarly, a tie-
breaking technique is proposed (but not implemented) which
simulates unique keys with very low overhead. In Appendix G
we describe RAMS, our robust implementation of AMS-
sort (see also Section V). Note that the running time of the
multi-level algorithms described above with Θ(log p) levels
is Ω(log2 p). For example, the running time of AMS-sort is
then O(log2 p log log p). However, in this case quicksort is
the simpler algorithm, has a startup latency of O(log2 p) and
smaller constant startup latency factors.

V. ROBUST FAST WORK-INEFFICIENT SORTING AND
MULTI-LEVEL SAMPLE SORT

We propose a fast sorting algorithm (RFIS) for sparse
and very small inputs that is robust against duplicate keys.
Our algorithm computes the rank of each element in the
global data. Then, optionally, a data delivery routine sends
the elements to the appropriate PEs according to their ranks.
For ranking the input data, we use the algorithm we recently
proposed [4] (see also [24] and Appendix D1). Unfortunately
the proposed approach calculates the same rank for equal el-
ements. However, our data delivery technique requires unique
ranks in the range of 0..n − 1 as input to achieve balanced
output. Consider a tie-breaking policy that logically treats an
element as a quadruple (x, r, c, i) where x is the key, r the
row, c the column, and i the position in the locally sorted data.
We can then define a total ordering between these quadruples
as their lexicographical order. We now exploit the fact that
we do not rely on the true column c (row r) but on the
information weather an element came from the left (above)
or from the right (below). A modified all-gather-merge and
a modified compare function implement that policy without
any communication overhead for communicating the (r, c, i)
information. Appendix F describes this policy in more detail.
After computing the ranks of the input elements, we have to
redistribute them to get sorted output. The element with rank
i is mapped to PE ip/n. We now exploit the fact that each PE
column stores the complete ranked input. We thus can afford
to discard all elements that are not mapped to the same column
without losing any element. The data delivery problem now
can be solved locally in each column. We use a hypercube
algorithm for routing the elements to their correct row. In the
i-th iteration of this algorithm, at most n/(p

1
2 2i) elements

have to be delivered in their respective subcube. Even if all
these elements are concentrated on the same PE, this requires
at most α+βn/(p

1
2 2i) time. Summing this over all iterations

yields overall time O(α log p + β n√
p ), i.e., the asymptotical

running time is the same for just ranking or ranking plus data
delivery.

The prototypical implementation of AMS in [4] does not
ensure that each PE communicates with at most O(k) PEs

Algorithm 2 Robust Quicksort on Hypercubes

Input: a = {a1, . . . , an/p} a set of local input elements,
p = 2d number of PEs, PE number i
a← randomly redistribute a . see Section III-A
SORT(a)
for j:= d− 1 downto 0 do . iterate over cube dims

s← calculate splitter in parallel . see Section III-B
if ISEMPTY(s) then return a . no elements in cube
split a into L ·R . see text
i′:= i⊕ 2j . communication partner
if i′ < i then

send L to i′ and receive R′ from i′

a← merge R with R′

else
send R to i′ and receive L′ from i′

a← merge L with L′

return a

in each level of recursion (deterministic message assignment).
Similarly, [4] proposes but does not implement a tie-breaking
scheme to become robust against duplicate keys with almost
no communication overhead. in Appendix G, we present
a complete implementation of AMS-sort (RAMS) including
both improvements outlined above.

VI. ROBUST QUICKSORT ON HYPERCUBES

Previous implementations of hypercube-based quicksort
(e.g. [17], [18]) have three major drawbacks. First, they are
not robust against duplicates as no tie-breaking is performed.
Second, the algorithms do not consider non-uniform input
distributions. It can be shown (e.g. [14]) that skewed inputs
exist where the imbalance increases rapidly over the first log p

2

recursions. After log p
2 recursions, d√pe PEs hold bn/√pc

elements each. This bound even applies for unique input keys
and true medians as a global splitter. Third, a fast high quality
splitter selection with median approximation guarantees is es-
sential. Otherwise, quicksort gets impractical for large p as the
load imbalance accumulates or the splitter selection dominates
the running time for small inputs. Previous quicksort imple-
mentations use one of two different approaches to calculate the
splitter. The first approach [17] selects a random PE which just
broadcasts its local median. The second approach [18] gathers
the local median of each PE and calculates the median of
medians.

We propose a simple but robust hypercube quicksort that
overcomes these problems. Algorithm 2 gives pseudocode.
First, our algorithm randomly redistributes the input (see Sec-
tion III-A). Then the data is sorted locally. The main loop goes
through the dimensions of the hypercube, highest dimension
first. In iteration j, the fast median selection algorithm from
Section III-B is used to approximate the median of the data in
each j+1-dimensional subcube. This key is used as a splitter s
for that subcube. For robustness against repeated keys, we use
a low overhead tie-breaking scheme that works locally without
the need to communicate additional information: Suppose a PE
holds a sorted sequence a of the form a = a` · sm · ar, i.e.,
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the splitter s appears m times locally. We can split a into two
subsequences L = a` ·sx and R = sm−x ·ar where we are free
to choose x ∈ 0..m. We choose x in such a way that |a`sx|
is as close to |a|/2 as possible. In a communication step, PEs
differing in bit j of their PE number exchange these sequences
so that the PE with the 0-bit gets the two L sequences and the
PE with the 1-bit gets the R sequences. These two sequences
are then merged.

Analysis: Here we give evidence why we believe the
following conjecture to be true:

Conjecture 1: Our robust hypercube quicksort runs in ex-
pected time

O
(
n

p
log n+ β

n

p
log p+ α log2 p

)
for arbitrary inputs with unique keys.
The proof is straight-forward for best-case inputs where all se-
quences are split perfectly in each step – we have O(np log n

p )
time for local sorting and time O(β np log p + α log p) for
random permutation (note that this is small compared to the
overall execution time for n� α

β log p). Each iteration of the
main loop costs time O(α log p) for splitter selection and time
O(β np ) for local data exchange and merging.

The initial random shuffling is pivotal for generalizing the
result to worst case inputs. From a general point of view this
is not surprising since it essentially transforms a worst case
input into an average case input. A closer look shows that it
simplifies the algorithm in three different respects:

The first advantage is that this makes the algorithm ro-
bust against skew also in intermediate steps. To see this,
consider the path an input element travels during the exe-
cution of the algorithm. It travels from a random position
(determined by the random shuffle) to its final destination
(governed by the splitters used in the log p levels of recursion).
ANMERKUNG:Element placed at random PEs within the
subcube. Hence, the average case analysis of greedy hypercube
packet routing (e.g., [14]) applies that shows that overall
contention is low with high probability.

The second advantage is that random shuffle also makes it
possible to quickly find a good approximation of the median
using the algorithm from Section III-B. To see that this also
implies good overall load balance, consider the following
calculation. According to Section III-B, the imbalance factor
introduced in recursion level i is bounded by 1+(n/2i)−γ for
some positive constant γ. We use n/2i rather than the actual
(already imbalanced) subproblem size here because, at the end,
the PEs with highest load determine the overall imbalance.
Hence, the most highly loaded subproblems are essential
here. For those, n/2i is an underestimate of the subproblem
size which results in an overestimate of the imbalance factor
introduced by splitting that subproblem. Now we can estimate
the overall imbalance factor I as

I =
∏

i<log p

(
1 +

(
2i

n

)γ)
= e

ln
∏
i<log p

(
1+
(

2i

n

)γ)

= e
∑
i<log p ln

(
1+
(

2i

n

)γ)
≤ e

∑
i<log p

(
2i

n

)γ

= en
−γ∑

i<log p(2
γ)i ≤ e

( pn )
γ

2γ−1 = O(1) for n ≥ p .

The first “≤” uses the Taylor series development of ln and the
second one is a geometric sum. This calculation also shows
that the overall number of elements in any subcube in any
level of recursion is balanced. We argue that the initial random
data distribution also implies a random data distribution of the
elements in each subcube. Therefore, the overall balance of the
number of elements also implies that the individual number
of elements in each PE is not too imbalanced.1

Finally, random data shuffling also helps our simple local
tie-breaking – each PE has a random sample of the globally
available data and hence our local balancing approximates a
global balancing.

VII. EXPERIMENTAL RESULTS

We present the results of a simple binomial-tree gather-
merge (GatherM), all-gather-merge (AllGatherM) from Sec-
tion II, robust fast work-inefficient sorting (RFIS) from Sec-
tion V, robust quicksort on hypercubes (RQuick) from Sec-
tion VI, robust AMS-sort (RAMS) from Section V, and a sim-
ple p-way sample sort implementation (SSort). We compare
the results with our closest competitors, HykSort [6] (HykSort)
and bitonic sort (Bitonic) which HykSort used for small inputs.
We ran our experiment on JUQUEEN, an IBM BlueGene/Q
based system with a 5-D torus network and spent more than
four million core-hours.

We ran benchmarks with eight input instances proposed by
Helman et al. [5]. We report results for the input instances Uni-
form (independent random values), BucketSorted (locally ran-
dom, globally sorted), DeterDupl (only log p different keys),
and Staggered (both designed to be difficult for hypercube-like
routing). We do not show results for Gaussian, g-Group, Zero,
and RandDupl as their results are more or less represented by
results we show: Uniform is similar to Gaussian; BucketSorted
is similar to g-Group and Zero with the difference that RQuick
sorts the instances g-Group and Zero with more than 217

elements twice as slow as RAMS; DeterDupl is similar to
RandDupl. We also included the input instances Mirrored
and AllToOne. The input of Mirrored on PE i are random
numbers between 231(mi)/p and 231(mi + 1)/p where the
bit representation of mi is the reverse bit representation of i.
After log p

2 recursions of a naive implementation of hypercube
quicksort, d√pe PEs hold bn/√pc elements each. The first
n/p− 1 elements of AllToOne on PE i are random elements
from the range [p+(p−i)(232−p)/p, p+(p−i+1)(232−p)/p]
and the last element has the value p − i. At the first level
of a naive implementation of k-way sample sort, the last
min(p, n/p) PEs would send a message to PE 0.

In Section VII-A, we present results for our algorithms and
our closest competitors on 262 144 cores (16 384 nodes), the
largest available jobs on JUQUEEN. In Section VII-B, we

1A full proof may not be trivial however. For example, there are significant
fluctuations in the individual PE loads for n/p = O(log p) . However, these
are likely to only introduce overhead factors dwarfed by the overhead for
median selection as elements are randomly placed on the PEs associated with
the subcube. We also have to take into accout that the probability of a maximal
imbalance factor of 1+ (n/2i)−γ , introduced in recursion level i, decreases
as the load of subcubes decreases. TODO:We might give a benchmark which
tells us that this is not a problem we have to think about!
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Fig. 1: Running times of each algorithm on 262 144 cores. HykSort crashes on input instances DeterDupl and BucketSorted.

compare our robust algorithms to their nonrobust versions. We
show that the nonrobust counterparts are orders of magnitude
slower for hard inputs. See Appendix I for more information
on JUQUEEN, the input instances, and the benchmarking
details. We also give implementation details in Appendix I1,
describe our extensive parameter tuning on 132 072 cores
in Appendix I2, and compare RAMS and HykSort to the
literature in Appendix K.

A. Input Size Analysis and Algorithm Comparison

In this section we present the results of our experiments on
all algorithms executed on 262 144 cores. The smallest inputs
have only one element every 35 (243) PEs whereas the largest
input has 223 elements per core.

Figure 1 shows the running times of each algorithm for
the most interesting input instances (Appendix J gives running
time ratios of each algorithm compared to the fastest algorithm
for the most interesting input instances). We now explain
the most important results. (1) GatherM sorts very sparse
inputs (n/p ≤ 3−3) up to 1.8 times faster than the other
sorting algorithms. AllGatherM is not competitive for any
input size and sorts even the sparsest input twice as slow
as RFIS. However, neither fulfills the balance constraint of
sorted output. (3) For all input instances, RFIS is the fastest
sorting algorithm when 3−3 < n/p ≤ 4. For example, RFIS
sorts Uniform sparse inputs up to 3.6 times faster than its
competitors and a single element per core more than twice
as fast as RQuick and Bitonic. (4) RQuick sorts small inputs
(23 to 214) of Uniform instances up to 3.4 times faster than

any other algorithm (more than 5 times faster if we exclude
our own algorithms). In general, the running times of RQuick
for other input instances do not differ much for sparse and
small inputs. For 215 and 216 elements per PE, RAMS is the
fastest algorithm. For n/p ≥ 217, the situation becomes more
instance dependent. For uniform inputs, HykSort is 1.22 times
faster than RAMS for the largest inputs (and 1.38 times faster
for the isolated case n/p = 219). However, HykSort crashed
on input instances DeterDupl, RandDupl, BucketSorted, g-
Group, and Zero and is up to 1.7 times slower than RAMS
for Staggered inputs. Overall, RAMS seems to be a good
compromise between robustness and performance for large
inputs. RAMS is up to 2.7 (BucketSorted) times faster than
RQuick.

B. Robustness Analysis

We now have a closer look at the impact of various
algorithmic measures to improve robustness.

Robust Quicksort: Figure 2a depicts the running time
ratio of RQuick over RQuick without redistribution (NTB-
Quick). The price of robustness for simple input instances
such as Uniform is an additional data redistribution. For large
Uniform inputs, this slows down RQuick by a factor of up to
1.7. On the other hand, RQuick sorts skewed input instances
such as Staggered and Mirrored robustly. Thus, the additional
redistribution of RQuick decreases the total running time for
large inputs by a factor of up to 9 (n = 215) and RQuick runs
out of memory for n = 216. Our results show that RQuick sorts
other input instances (BucketSorted and DeterDupl) faster
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(d) RAMS vs. SSort and NS-SSort
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Fig. 2: Running time ratios of robust algorithms to nonrobust algorithms. 2a) Ratios of RQuick to NTB-Quick (262 144 cores).
2b) Ratios of RAMS to NTB-AMS (8 192 cores). 2c) Ratios of RAMS to NDMA-AMS (131 072 cores). 2d) Ratios of RAMS
to NS-SSort (131 072 cores).

than NTB-Quick by several orders of magnitude due to tie-
breaking. NTB-Quick even fails to sort such input instances
when the input is large.

Tie-Breaking of RAMS: Figure 2b shows the running
time ratio of RAMS and RAMS without tie-breaking during
local data partitioning (NTB-AMS). When sorting small inputs
without unique keys (e.g., Uniform and Staggered), the extra
work to calculate splitters with tie-breaks slows down RAMS
compared to NTB-AMS (factor of 1.15 for n/p < 212).
However, this effect becomes negligible for the large inputs
(n/p ≥ 216) RAMS is intended for (i.e., when it outper-
forms RQuick). NTB-AMS sorts small inputs of the instance
BucketSorted much slower than RAMS as small instances of
BucketSorted input contain many duplicates. The non-robust
version deadlocks immediately when we sort DeterDupl and
Zero instances.

Message Assignment of RAMS: Figure 2c shows the
running time ratio of RAMS using l = 3 levels of data re-
distribution and deterministic message assignment (DMA) on
131 072 cores with the same algorithm without DMA (NDMA-
AMS). RAMS decides to sort Staggered, BucketSorted, and
DeterDupl inputs without DMA as there would be no impact of
DMA. Our experiments show that the overhead for making that
decision is small. RAMS actively performs DMA for small
inputs (64 to 210) of Uniform instances leading to a certain
overhead. However, for such small instances RQuick would be
used preferable in any case. For the input instance AllToOne,
NDMA-AMS sends O(min(n/p, p)) messages to PE 0 in the

first level. In this case, RAMS actually can take advantage
of DMA as it reduces the startups to O(k). This speeds up
RAMS by a factor of up to 5.2. In Figure 2c, the positive effect
begins for n/p > 8k = 29 elements per core and increases
rapidly. The effect decreases when the time for the message
exchange dominates the startup time.

Simple Sample Sort: The comparisons above are for recent,
highly sophisticated massively parallel sorting algorithms. To
give an impression how big the improvements of the new
algorithms are compared to the majority of parallel sorting
algorithms presented in the past for moderate number of PEs,
we also compare 3-level RAMS with a simple p-way sample
sort that delivers the data directly. Figure 2d shows that RAMS
for Uniform instances is up to 1 000 times faster than SSort.
RAMS is much faster even if we ignore the time for finding
splitters (NS-SSort). When we look at the range where RAMS
is faster than RQuick (at least 215 elements per core), RAMS
outperforms NS-SSort by a factor of 1.5 to 7.4. Experiments
show that this effect increases as p increases. Note that the
curve for NS-SSort acts as a rough lower bound for any
algorithm that delivers the data directly.

VIII. CONCLUSION AND FUTURE WORK

We show how to obtain robustness of massively parallel
sorting with respect to the input size by using three different
algorithms (RFIS, RQuick, and RAMS). Robustness with
respect to skew can be achieved by careful randomization
(RQuick) and message assignments (RAMS). Robustness with
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respect to duplicate keys can be achieved at reasonable over-
head using careful implicit implementations of the brute-force
tie-breaking idea. We plan to release an open-source library
with our algorithms.

Still further improvements are possible. We could remove
the limitation to p being a power of two. This will complicate
the code but should not be a fundamental obstacle. For large
inputs, a specialized shared-memory implementation for node-
local sorting, merging and partitioning seems useful. Porting
to systems with less deterministic behavior than BlueGene/Q
is likely to require sophisticated implementations of collective
communication and data delivery operations – the wide fluc-
tuations of running times mentioned in [4] are already quite
bad on 215 PEs on an oversubscribed InfiniBand-Network.
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putation time, the DFG for partially funding this research and
the SAP AG, Ingo Müller, Sebastian Schlag, Helman et al. [5],
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APPENDIX

A. Model of Computation
A common abstraction of communication in supercomputers

is the (symmetric) single-ported message passing model. It
takes time α+ lβ to send a message of size l machine words.
The parameter α defines the startup overhead of the commu-
nication. The parameter β defines the time to communicate
a machine word. For simplicity, we assume that the size of
a machine word is equivalent to the size of a data element.
For example, broadcast, reduction, and prefix sums can be
implemented to run in time O(βl + α log p) [11], [25] for
vectors of size l. We have α � β � 1 where our unit is the
time for executing a simple machine instruction. Most of the
time, we treat α and β as variables in our asymptotic analysis
in order to expose effects of latency and bandwidth limitations.

B. Hypercube Algorithms

Algorithm 3 Hypercube algorithm design pattern

Computation on PE i
for j:= d− 1 downto 0 do . or 0..d− 1

send some message m to PE i⊕ 2j

receive message m′ from PE i⊕ 2j

perform some local computation using m and m′

A hypercube network of dimension d consists of p = 2d PEs
numbered {0, . . . , p− 1}. Two nodes a and b are connected
along dimension i if a = b ⊕ 2i. For this paper, hypercubes
are not primarily important as an actual network architecture.
Rather, we extensively use communication in a conceptual
hypercube as a design pattern for algorithms. More specifically
the hypercube Algorithms 3 iterate through the dimension of
the hypercube. Depending on how this template is instantiated,
one achieves a large spectrum of global effects. For example,
by repeatedly summing an initial local value a, one gets an
all-reduce, i.e., all PEs get the global sum of the local values in
time O((α+ β|a|) log p). Similarly, if we replace addition by
concatenation, we perform an all-gather operation (i.e., all PEs
get all the local values) which runs in time O(βp|a|+α log p).
If the as are a sorted sequences and we replace concatenation
by merging, all PEs get the elements in all the local as in sorted
order using time O(βp|a|+α log p). We call this operation all-
gather-merge.

We can also use a hypercube algorithm for routing data –
in iteration j, a data object destined for PE t and currently
located on PE i is moved if t and i differ in bit j (e.g. [14]).
This has the advantage that we need only O(log p) startup
overheads overall. However, for worst case inputs, even if
every PE sends and receives only a single object, the required
time can be Ω(

√
p) since many objects can visit the same

intermediate nodes. However, it is known that for random start
or destination nodes, the running time remains O(log p) [14].

To describe and understand hypercube algorithms, we need
the concept of a subcube. A j-dimensional subcube consists
of those PEs whose numbers have the same bits j..d − 1 in
their binary representation.

C. Randomized Shuffling on Hypercubes

It is a folklore observation (e.g. [15]) that data skew can be
removed by shuffling the input data randomly. This is actually
implemented for the sample sort algorithm of Helman et al. [5]
by directly sending each element to a random destination. Note
that this incurs an overhead of about αp+ βn/p. We propose
to use this technique for small inputs where we need smaller
latency. This can be achieved by routing the data according to
a hypercube communication pattern – sending each element to
a random side in each communication step. To achieve even
slightly better load balance, we actually split local data in
two random halves in each communication step. The resulting
running time is

O(

(
α+ β

n

p

)
log p) .

A naive approach labels each element with a random destina-
tion. Then, a hypercube algorithm redistributes the data. This
approach increases the communication volume by a factor of
two.

D. Sorting Algorithms from Tiny to Huge Inputs

1) Fast Work-Inefficient Ranking: We recently proposed a
simple but fast ranking algorithm for small inputs [4]. The PEs
are arranged in an array of size O(

√
p) × O(

√
p) and each

PE has O(np ) elements. We first sort the elements locally in
O(np log n

p ). Then we all-gather-merge the elements of PEs in
the same row as well as between PEs in the same column in
O(α log p+βn/

√
p). Afterwards, each PE stores the elements

of all PEs in its row and column respectively in a sorted way.
Then the PEs rank each element received from their column in
elements received from their row. Finally, we sum up the local
ranks in each column with an allreduce operation. The result
is that each PE knows the global rank of all inputs elements
in its row. In theory this is a very good algorithm for n =
O(
√
p) since we get only logarithmic delay. However, since all

other algorithms need Ω(log2 p) startup overheads, Fast work-
inefficient ranking is interesting up to n = O(αβ

√
p log2 p). In

Subsection F we make the algorithm robust against identical
keys and show how to convert its output to a classical sorted
permutation of the input.

2) Bitonic Sort: Bitonic sort [11], [12] first sorts locally
and then performs O(log2 p) pairwise exchange and merge
operations.

For small inputs this running time is dominated by log2 p
startup overheads. This gives it a similar running time as the
parallel quicksort algorithms to be discussed next. However,
for n = ω(pα/β) the term β np log2 p dominates – all the data
is exchanged log2 n times. This makes it unattractive for large
inputs compared to quicksort and other algorithms designed
for large inputs. Indeed, only for n superpolynomial in p (n =
Ω(plog p)), bitonic sort eventually becomes efficient. But for
such large inputs algorithms like sample sort are much better
since they exchange the data only once.
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3) Parallel Quicksort: Since quicksort is one of the most
popular sorting algorithms, it is not surprising that there are
also many parallel variants. For distributed memory, a variant
using the hypercube communication pattern is attractive since
it is simple and can exploit locality in the network. A recursive
subproblem is solved by a subcube of the hypercube. The
splitter is broadcast to all PEs. Elements smaller than the
pivot are moved to the 0-subcube and elements larger than the
pivot are moved to the right 1-subcube. Since this hypercube
quicksort obliviously splits the PEs in half, the imbalance
accumulating over all the levels of recursion is a crucial
problem. In its simplest original form by Wagar [17], PE 0
uses its local median as a pivot. This is certainly not robust
against skew and even for average case inputs it only works
for rather large inputs. One can make this more robust – even
in a deterministic sense – by using the global median of the
local medians [18]. However, this introduces an additional βp
term into the communication complexity and thus defeats the
objective of having polylogarithmic execution time. Therefore
in Subsection VI we propose to use a median selection
algorithm that is both fast and accurate.

Non-hypercube distributed memory quicksort is also an
interesting option where we can adapt the number of PEs
working on a recursive subproblem to its size. However, it
leads to more irregular communication patterns and has its
own load balancing problems because we cannot divide PEs
fractionally. Siebert and Wolf [2] exploit the special case
where this is no problem, when n = p.

4) Generalizing Quicksort: For large inputs it is a disad-
vantage that quicksort exchanges the data at least log p times.
We can improve that by partitioning the input with respect to
k− 1 pivots at once. This decreases the number of times data
is moved to O(logk p). However, the price we pay is latency
Ω(αk) for delivering data from k partitions to k different PEs.
This gives us a lower bound of

Ω

(
n

p
log n

)
+ β

n

p
logk p+ αk logk p

for running generalized quicksort. Getting an algorithm with
a matching upper bound is not easy though. We have to find
pivots that partition the input in a balanced way and we have to
execute the more complex data delivery problems efficiently.

Many algorithms have been devised for the special case
k = p. Sample sort [7] is perhaps most well known because it
is simple and effective. It achieves the above bound if a sample
of size S = Ω(p log n) is sorted using a parallel algorithm.
Then, every S/k-th sample is used as a splitter. This algorithm
achieves the desired bound for n = O(p2/ log p). Solomonik
and Kale [19] describe the best scaling single level algorithm
we have seen and scales to 215 PEs for large inputs. One can
even achieve perfect partitioning by finding optimal splitters
in a multiway mergesort approach [4], [8], [10]. This requires
n = O(p2 log p) for achieving the desired bound.

Gerbessiotis and Valiant [9] develop a multilevel sample
sort for the BSP model [21]. However, implementing the data
exchange primitive of BSP requires p startup overheads in
each round. See [4] for a more detailed discussion of previous
theoretical multilevel algorithms.

Sundar et al. develop and implement HykSort, a general-
ized hypercube quicksort [6]. HykSort uses a sophisticated
recursive sampling based algorithm for finding high quality
approximate splitters that is something like a compromise
between the single shot algorithms used in sample sort and
the exact (but slower) algorithms used for multiway mergesort.
This makes HykSort “almost” robust against skew. However,
in the worst case, data may become severely imbalanced.
The paper mentions measures for solving this problem, but
does not analyze them. Furthermore, HykSort uses the op-
erations MPI_Comm_Split whose current implementations
need time Ω(βp). This is why we put a “≥” in the correspond-
ing row of Table I. HykSort is also not robust with respect to
duplicate keys.

AMS-sort [4] our recently published k-way sample sort
algorithm which guarantees a maximum imbalance of εnp
for arbitrary inputs. Within each recursion, AMS-sort sorts
O(k log k) samples in parallel. Then it selects and distributes
b · k splitters where b = O( 1√

1+ε−1 ). After the local data
has been partitioned into b · k partitions, a greedy algorithm
assigns global partitions to PE subcubes by minimizing the
load imbalance between subcubes. Then each PE calculates for
its partitions the target PEs within the subcubes. This ensures
perfect load balancing within target subcubes. Thus, by going
away from a (even generalized) hypercube communication
pattern, AMS-sort avoids the data imbalance that may make
HykSort inefficient. Our paper [4] describes (but does not
implement) a way to select communication partners such
that each PE sends and receives Θ(k) messages for a k-
way data exchange. Similarly, a tie-breaking technique is
proposed (but not implemented) which simulates unique keys
with very low overhead. In Subsection G we describe our
robust implementation of AMS-sort.

E. More Related Work

This paper was highly influenced by two landmark papers.
25 years ago, Blelloch et al. [7] carefully studied a large
number of algorithms, selected three of them (bitonic, radix,
and sample sort), and compared them experimentally on up to
215 PEs. Most other papers are much more focused on one or
two (more or less) new algorithms sometimes missing the big
picture. We felt that it was time again for a more wide view
in particular because it became evident to us that a single
algorithm is not enough on the largest machine and varying
n/p. Helman et al. [5] – concentrating on sample sort – took
robustness seriously and made systematic experiments with a
wide variety on input distributions which form the basis for
our experiments. They also propose initial random shuffling
to make samplesort robust against skewed input distributions
(this was already proposed in [20]).

F. Robust Fast Work-Inefficient Sorting

We propose a fast sorting algorithm (RFIS) for sparse and
very small inputs that is robust against duplicate keys. Our al-
gorithm computes the rank of each element in the global data.
Then, optionally, a data delivery routine sends the elements
to the appropriate PEs according to their ranks. For ranking
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Fig. 3: All-gather-merge keeps track where elements came
from. Each PE has three buckets; one bucket stores elements
which came from the left (brown), one bucket stores elements
which came from the right (blue), and one bucket stores
elements initially provided by this PE (black).

the input data, we use the algorithm we recently proposed [4]
(see also [24] and D1). Unfortunately, the proposed approach
calculates the same rank for equal elements. However, our
data delivery techniques require unique ranks in the range of
0..n− 1 as input to achieve balanced output.

Consider a tie-breaking policy that logically treats an ele-
ment as a quadruple (x, r, c, i) where x is the key, r the row,
c the column, and i the position in the locally sorted data. We
can then define a total ordering between these quadruples as
their lexicographical order. A modified all-gather-merge and
a modified compare function implement that policy without
communication overhead for communicating the (r, c, i) infor-
mation. For the all-gather-merge in a row, each PE uses three
arrays {←, H,→} to keep track which elements came from the
left (←), which elements came from the right (→) and which
elements are local elements (H). Assume that we implement
all-gather-merge with a hypercube algorithm starting from the
lowest dimension. When a PE receives data from left (right),
all elements in that message come from left (right) and are
merged into the array← (→). Analogously, for the all-gather-
merge in a column, PEs merge elements from above into
the array ↑ and elements from below into the array ↓. This
classification suffices to perform tie-breaking according to the
lexicographic ordering of the quadruples. Figure 3 shows the
all-gather-merge algorithm in a row. We now update the com-
pare function on PE (r, c) between an element a = (x, r, C, i)
from row r and an element b = (y,R, c, j) from column c
where the arrays C ∈ {←, H,→} and R ∈ {↑, H, ↓} are
used as implicit element labels. Furthermore, i (j) specifies
the position among the locally sorted data if C = c (R = r)
and is undefined otherwise. Then the following table defines
the updated compare function of comparing a > b

b \ a ← c →
↑ a ≥ b a ≥ b a ≥ b
r a > b i > j a ≥ b
↓ a > b a > b a > b

When we rank row elements into column elements, we choose
the correct compare function just once for each combination
of row array {←, H,→} and column array {↑, H, ↓}.

After we computed the ranks of the input elements, we
redistribute them to get sorted output.

G. Robust Multi-Level Sample Sort

The prototypical implementation of AMS in [4] does not
ensure that each PE communicates withO(k) PEs in each level
of recursion. Similarly, [4] proposes but does not implement a
tie-breaking scheme to become robust against duplicate keys.
Here, we present a complete implementation of AMS-sort
(RAMS) including both improvements outlined above.

Even for worst case inputs, the following partitioning ap-
proach splits input as balanced as for input with unique
keys. To do so, we first pick random samples of the local
data and add their positions in the input as tie-breakers to
the samples. Then we rank the samples with the fast work-
inefficient ranking algorithm (see Appendix D1). Next, we
select splitters from the samples and distribute them to all
PEs. Finally, the partitioner of Super Scalar Sample Sort [26]
assigns all local elements to a partition. We modify the element
classifier of Super Scalar Sample Sort to support tie-breaking.
Initially, we classify each input element using its original key.
If this key is equal to the original key of the bounding splitter,
we repeat the search using the positions of the splitters as
tie-breakers. To become cache efficient, we perform multiple
partitioning passes if the number of partitions is large.

Our robust version of AMS-sort implements the determinis-
tic message assignment proposed for AMS-sort. The message
assignment algorithm first routes information about messages
to groups of PEs where the actual message belongs. Then
each group calculates for each message one or more addresses.
Finally, these addresses are sent back to the PEs which will
send the actual messages back to the PE group. However,
the PEs do not know the number of assigned addresses and
thus do not know the number of messages they have to
receive. The algorithm NBX [27], a dynamic sparse data
exchange technique, uses an non-blocking barrier to identify
when the message exchange is complete. We use this method
to efficiently exchange the addressees in O(α log p+αk) time.

H. Experimental Comparison of Median Approximation Trees

We experimentally evaluate the median approximations of
the binary-tree selection proposed in Subsection III-B and the
ternary-tree selection proposed by Dean et al. [16]. We show
that the binary-tree selection gives better median approxima-
tions than the ternary-tree selection and the rank can also be
bounded by n/2(1 ± cn−γ) with better constants c and γ.
Our benchmark runs both selection algorithms on uniformly
distributed random integers in the range [0, 232 − 1] of up
to 220 elements. The input into the binary-tree selection is a
power of two whereas the input into the ternary-tree selection
is a power of three. We execute both algorithms 2 000 times
for each input size. We measure the rank r for each output
element and calculate the rank error∣∣∣∣ r

n− 1
− 1

2

∣∣∣∣ .
Figure 4a shows the rank error in worst cast. Compared to
the ternary-tree selection, the maximal rank error over 2 000
runs of the binary-tree selection is smaller for all input sizes.
Moreover the maximal rank error of the binary-tree selection
can tightly bounded by 1.44n−0.39 but the maximal rank
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Fig. 4: Maximal rank error (a) and variance of the rank error (b) of the ternary-tree median approximation and the binary-tree
median approximation.

error of the ternary-tree selection is just limited by 2n−0.369.
Figure 4b depicts the variance of the rank error for the binary-
tree selection and the ternary-tree selection. For small input
sizes, the variance of the binary-tree median approximation is
smaller by a factor of two. For large inputs, the difference in
the variance even increase to a factor of three.

I. Experimental Results
We ran our experiment on JUQUEEN, an IBM BlueGene/Q

based system of 56 midplanes, each with 512 compute nodes.
The maximum number of midplanes available to us was
32. Each compute node has one IBM PowerPC A2 16-core
processor with a nominal frequency of 1.6 GHz and 16 GByte
of memory. A 5-D torus network with 40 GB/s and 2.5 µsec
worst case latency connects the nodes. The user can specify the
number of midplanes per torus dimension. In our experiments,
we configured the tori such that the size of the dimensions are
as equal as possible.

We ran benchmarks with nine input instances of 64-bit
floating point elements. We use the input instances proposed
by Helman et al. [5]: Uniform (independent random val-
ues), Gaussian (independent random values with Gaussian
distribution), BucketSorted (locally random, globally sorted),
DeterDupl (only log p different keys), RandDupl (32 local
buckets of random size, each filled with an arbitrary value
from 0..31), Zero (all elements are equal), g-Group with
g :=

√
p, and Staggered (both designed to be difficult for

hypercube-like routing). We also included the input instances
Reverse (reverse sorted input) and AllToOne where the first
n/p−1 elements on PE i are random elements from the range
[p + (p − i)(232 − p)/p, p + (p − i + 1)(232 − p)/p] and the
last element has the value p − i. At the first level of a naive
implementation of k-way sample sort, the last min(p, n/p) PEs
would send a message to PE 0.

We repeat each measurement six times, ignore the first run
(used as a warmup) and average over the remaining five runs.
Overall, we spent more than four million core-hours. We do
not show error bars since the ratio between the maximum
execution time and the average execution time is consistently
less than a few percent. The only exception is all-gather-
merge which sometimes fluctuates by up to 50 % for n = p.2

The time for building MPI communicators (which can be
considerable) is not included in the running time since this
can be viewed as a precomputation that can be reused over
many runs with arbitrary inputs.

1) Implementation Details: We call inputs dense when
n/p ≥ 1 and sparse when n/p < 1. Sparsity-factor i
means that only every i-th PE holds an input elements. The
implementations GatherM, AllGatherM, RFIS, RQuick, and
RAMS are in general capable of sorting all inputs. Exceptions
are Bitonic which fails to sort sparse inputs and HykSort which
fails to sort inputs with many duplicates.

For RFIS, we proposed in Subsection V a hypercube
exchange operation to route the elements to their target
PEs. In contrast, our implementation delivers elements in
single messages which is more efficient for n/p < log p.
For those input sizes, we expect RFIS to be faster than its
competitors. Axtmann el al. [4] use a scattered all-reduce
operation to reduce the local ranks in their variant of FIS. We
use MPI_Allreduce instead without observing significant
overheads due to this decision.
l-level RAMS selects b = 2

l
√
1+ε−1 splitters to guarantee

a maximum imbalance of ε = 0.2. In our experiments, the
imbalance was always smaller than 0.1 (except for n/p ≤
16). SSort uses a sample size of 16 log p elements per PE
and calls MPI_Alltoallv to exchange data. The imple-
mentation uses the MPI_Datatype MPI_Byte for every
C++ data type. When we used other MPI_Datatypes, the
MPI_Alltoallv call ran into a machine specific deadlock.
Sundar et al. [6] implemented a nonrobust and a robust version
of k-way sample sort which both use MPI_Alltoall and
MPI_Alltoallv. We did not include their implementation
in our benchmarks as these MPI-calls deadlocked. The dead-
locks may also be a machine specific problem as the imple-
mentation successfully ran on our institute server. Siebert and
Wolf [2] developed Minisort for the case n = p. Unfortunately,
the exact source code used in their experiments is not available
any more. The algorithms are written in C++11 and compiled

2An interesting observation is that the deterministic algorithm Bitonic has
only negligible fluctuations. This indicates that the fluctuations introduced by
the machine itself are very small.
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Fig. 5: Running ratios of each algorithm to the fastest algorithm on 262 144 cores. HykSort crashes on input instances DeterDupl
and BucketSorted.

with version 4.8.1 of the GNU compiler collection, using the
optimization flag -O2. For inter-process communication, we
used the IBM mpich2 library version 1.5, Argonne.

2) Parameter Tuning: We performed extensive parameter
tuning on 131 072 cores, half of the available number due to
a limited number of available core hours. Each algorithm has
a range of input sizes where it is designed to be the fastest.
We optimized each algorithm to run as fast as possible in this
input range. Sundar et al. [6] parallelized the initial sorting
step of Bitonic. In our experiments, we use Bitonic with one
thread per process since the merging step is not parallelized.
Just for n = p, using more threads per process is slightly
faster than Bitonic with one thread per process. We tested
HykSort with all combinations of k = 16, 32, 64 and 2, 8, 16
threads per process and sorted Uniform inputs of up to 220

elements. HykSort did not terminate when we executed the
algorithm with one thread per process. HykSort with k = 32
and 8 threads is the fastest algorithm overall (or is as fast
as RAMS) for at least 217 elements. RAMS with three levels
is the fastest algorithm overall for input of size 215 and 216.
More levels speed up RAMS for small inputs (up to 50%) and
less levels slightly speed up RAMS for larger inputs.

J. Algorithm Comparison with Running Time Rations

Figure 5 shows the running time ratios of each algorithm
compared to the fastest algorithm for the most interesting input
instances.

K. Comparison to the Literature

We compare our results to the literature and the web. MP-
sort [28] is a single-level multiway mergesort running on up
to 160 000 cores of a Cray XE6. For 128 GB of data it is
3 635 times slower than ours for p = 262 144 and 137 GB.
The 2015 winner of the Sort Benchmark (sortbenchmark.org),
FuxiSort [29], [30] sorts 7.7 TB of 100 byte elements with 10
byte random keys using 41 496 cores in 58s (MinuteSort). That
is 9 times longer than RAMS and HykSort take for sorting
1.1 times as much data and 15.7 times more (8-byte) elements
using 6.3 times more cores. FuxiSort has to read/write from/to
disks. However, the disks of that system are not the bottleneck.
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