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Forest	disturbances	leading	to	replacement	of	whole	tree	stands	are	a	cornerstone	25	

of	forest	dynamics,	with	drivers	including	fire,	wind-throw,	biotic	outbreaks	and	26	

harvest.	 The	 frequency	 of	 disturbances	 may	 change	 over	 the	 next	 century,	27	

impacting	the	age,	composition	and	biomass	of	forests.	However,	the	variation	in	28	

disturbance	return	time,	i.e.	the	mean	interval	between	disturbance	events,	across	29	

the	 world’s	 forested	 biomes	 remains	 poorly	 characterised,	 hindering	30	

quantification	of	their	role	in	the	global	carbon	cycle.	Here	we	present	the	global	31	

distribution	of	 stand-replacing	 disturbance	 return	 time	 inferred	 from	satellite-32	

based	observations	of	forest	loss.	Prescribing	this	distribution	within	a	vegetation	33	

model	 with	 a	 detailed	 representation	 of	 stand	 structure,	 we	 quantify	 the	34	

importance	of	stand-replacing	disturbances	for	biomass	carbon	turnover	globally	35	

over	2001-2014.	Return	time	varied	from	less	than	50	years	in	heavily-managed	36	

temperate	 ecosystems	 to	 over	 1000	 years	 in	 tropical	 evergreen	 forests.	 Stand-37	

replacing	 disturbances	 accounted	 for	 12.3%	 (95%	 confidence	 interval,	 11.4-38	

13.7%)	of	annual	biomass	carbon	turnover	due	to	tree	mortality	globally,	and	in	39	

44%	 of	 forested	 area	 biomass	 stocks	 are	 strongly	 sensitive	 to	 changes	 in	40	

disturbance	return	time.	Relatively	small	shifts	 in	disturbance	regimes	 in	 these	41	

areas	would	substantially	 influence	the	 forest	carbon	sink,	 that	currently	 limits	42	

climate	change	by	offsetting	emissions.	43	

	44	

Main	text	45	

	46	

The	 amount	 of	 carbon	 stored	 in	 global	 forest	biomass	 is	 similar	 to	 that	 in	 the	47	

atmosphere1,	and,	excluding	the	effects	of	land-use	change,	has	been	estimated	to	48	

have	grown	at	ca.	1.5	PgC	a-1	over	recent	decades2.	This	uptake	has	significantly	49	
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slowed	the	atmospheric	growth	rate	of	carbon	dioxide	and	thus	the	rate	of	climate	50	

change3.	The	accumulation	of	carbon	in	the	stems	of	growing	trees	results	from	51	

the	balance	between	the	growth	rates	of	vegetation	and	the	average	length	of	time	52	

carbon	 remains	 in	 live	 biomass	 (hereafter,	 “biomass”),	 the	 turnover	 time,	53	

calculated	as	the	carbon	stock	divided	by	the	flux	of	carbon	loss	through	plant	and	54	

tissue	death4.	Quantification	of	this	turnover	time	is	crucial	because	it	governs	the	55	

size	of	biomass	stocks	for	a	given	growth	rate	and	it	is	one	of	the	most	significant	56	

uncertainties	affecting	projections	of	 the	 terrestrial	 carbon	cycle5,6.	 Large-scale	57	

estimates	of	carbon	turnover	times	for	whole	ecosystems	and	for	biomass	have	58	

been	recently	developed7,8,	but	offer	limited	insight	into	the	processes	governing	59	

biomass	 stocks	 because	 the	 turnover	 flux	 could	 only	 be	 approximated	 by	60	

estimates	 of	 net	 primary	 productivity	 (NPP).	 This	 conflates	 turnover	 of	 soft	61	

tissues,	 such	 as	 leaves	 and	 roots,	 with	 that	 of	 the	 woody	 carbon	 pools	 that	62	

dominate	biomass	carbon	stocks1.	To	understand	forest	biomass	turnover	times	63	

globally,	large-scale	tree	mortality	rates	must	be	quantified.	64	

	65	

Tree	death	is	often	the	culmination	of	a	prolonged	period	of	physiological	stress	66	

related	 to	 a	 shortage	of	 essential	 resources	 required	 for	 the	 synthesis	 of	 basic	67	

metabolites,	for	instance,	due	to	shading	by	other	plants,	low	water	availability,	or	68	

a	 shortage	 of	 soil	 nutrients	 such	 as	 N	 and	 P	 in	 plant-available	 forms9,10.	69	

Alternatively,	disturbances	such	as	wind-throw,	fire,	insect	and	disease	outbreaks,	70	

or	 anthropogenic	 activities	 such	 as	 wood	 harvest	 may	 constitute	 the	 cause	 of	71	

death11–16.	Disturbances	act	on	scales	ranging	from	a	single	tree	to	whole	forest	72	

stands	or	landscapes.	Here	we	investigate	stand-replacing	disturbances,	defined	73	

operationally	as	discrete	events	resulting	in	the	death	of	all,	or	almost	all,	living	74	
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tree	biomass	at	a	scale	of	0.1	ha	or	larger.	Such	events	affect	the	average	tree	age	75	

as	 well	 as	 the	 stature,	 density	 and	 composition	 of	 forest	 stands11,17,	 in	 turn	76	

impacting	carbon	storage18.	There	is	evidence	that	the	frequency	of	disturbances	77	

may	be	changing	globally,	with	continued	change	likely	in	the	future8,13–15,19,20.	Yet,	78	

to	understand	the	consequences	of	future	changes,	it	is	first	necessary	to	provide	79	

a	 baseline	 of	 current	 conditions.	 Such	 a	 baseline	 is	 lacking	 for	 stand-replacing	80	

disturbances	across	global	forests.	81	

	82	

The	frequency	of	stand-replacing	disturbances.	We	estimated	the	frequency	of	83	

stand-replacing	 disturbances	 across	 all	 global	 forests	 at	 1°	 spatial	 resolution.	84	

Drawing	on	a	Landsat-based	(2000-2014)	forest-loss	product21,	we	performed	a	85	

space-for-time	substitution,	calculating	the	disturbance	rotation	period,	τ,	defined	86	

as	the	mean	time	period	for	the	area	disturbed	to	equal	the	area	of	the	grid	cell11,	87	

!" 	= %&,(
%),*+++++,%-,*+++++		 (1)	88	

where	i	 is	a	grid-cell	index,	AT	 is	total	forest	area	in	that	1°	x	1°	grid	cell,	./+++	the	89	

annual	mean	 total	 forest	 loss	over	2000-2014	calculated	based	on	all	Landsat-90	

pixels	within	the	grid	cell	and	.0++++	the	annual	mean	forest	loss	due	to	conversion	to	91	

a	non-forest	land-use	type	(Methods).	This	observation-based	τ	is	referred	to	as	92	

τO.	While	rare	disturbances	may	be	undersampled	for	individual	grid	cells,	this	is	93	

less	of	an	issue	across	a	neighbourhood	of	many	grid	cells,	and	the	global-scale	94	

pattern	 is	expected	to	be	robust	(Suppl.	Note	1).	We	take	τ	as	 indicative	of	 the	95	

typical	or	average	disturbance	return	time	from	all	causes	at	any	location	in	a	grid	96	

cell,	reflecting	causes	such	as	wood	harvest,	as	well	as	natural	disturbances	such	97	

as	fires,	large-scale	wind-throws	and	biotic	outbreaks.	Whilst	the	drivers	of	each	98	
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of	 these	 disturbance	 agents	 differ	 markedly,	 their	 consequences	 for	 carbon	99	

turnover	in	live	biomass	are	assumed	to	be	similar	at	large	scales.	Disturbances	100	

associated	 with	 the	 conversion	 of	 forests	 to	 other	 land-uses	 were	 explicitly	101	

excluded	 (Methods),	 allowing	 us	 to	 focus	 on	 dynamics	 within	 closed-canopy	102	

forests	.	103	

	104	

Disturbance	return	time	varies	substantially	across	the	global	forest	area	(Fig.	1a).	105	

The	stand-replacing	disturbances	quantified	here	are	more	common	in	needleleaf	106	

and	mixed	 forests	 (median	 τO	 of	 ca.	 300	 years)	 than	 they	 are	 in	 temperate	 or	107	

tropical	broadleaf	forests	(median	τO	of	830	to	more	than	1000	years),	however	108	

forest	type	emerges	as	a	poor	predictor	of	the	spatial	distribution	of	τO	(Fig.	1c).	109	

In	large	areas	of	forest,	stand-replacing	disturbances	are	actually	very	rare	events;	110	

35%	 of	 forest	 area	 experienced	 stand-replacing	 disturbances	 with	 an	 average	111	

frequency	equivalent	to	less	than	once	every	thousand	years.	In	these	forests	the	112	

vast	 majority	 of	 tree	 mortality	 must	 thus	 be	 non-stand-replacing.	 The	 95%	113	

confidence	 intervals	 for	 τO	 typically	 span	 a	 range	 less	 than	 one	 third	 of	 the	114	

absolute	value	of	τO,	except	in	areas	of	substantial	land-use	change	(Fig.	1b,	Suppl.	115	

Fig.	7).		116	

	117	

We	compared	our	results	against	an	inventory-based	compilation	of	forest	stand	118	

age	(GFADv1.122).	Despite	the	different	scale	and	characteristics	of	inventory	data	119	

we	found	qualitative	consistency	in	tropical	evergreen	and	boreal	forests,	as	well	120	

as	 some	 regions	 under	 intensive	 forest	management,	 but	 also	 suggestions	of	 a	121	

substantial	 amount	 of	 disturbance	 in	 some	 temperate	 forests	 below	 the	 scale	122	

captured	in	the	Landsat	data	and	of	legacies	of	past	afforestation	(Suppl.	Note	2,	123	
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Suppl.	Fig.	1).	We	also	found	consistency	between	our	results	and	previous	studies	124	

of	disturbance	frequencies	in	the	tropics17,23,24	and	Canada25	(Suppl.	Note	3;	Suppl.	125	

Fig.	2),	and	biotic	outbreak	disturbances	in	the	U.S.A.26	(Suppl.	Note	3;	Suppl.	Fig.	126	

3).	127	

	128	

Influence	of	stand-replacing	disturbances	on	the	carbon	cycle.	We	apply	the	129	

gridded	estimates	of	τO	within	a	dynamic	global	vegetation	model	(DGVM)	with	an	130	

explicit	 representation	 of	 forest	 stand	 structural	 development.	 τ	 was	 kept	131	

constant	in	each	grid	cell	for	the	entire	model	simulation,	calculating	the	pseudo-132	

equilibrium	 effect	 of	 τO	 on	 forest	 dynamics.	 Stand-replacing	 disturbances	 are	133	

simulated	 to	 dominate	 overall	 tree	mortality,	 and	 associated	 carbon	 turnover,	134	

across	large	areas	of	the	mid-latitude	and	boreal	forests,	accounting	for	over	60%	135	

in	some	 locations,	but	are	not	 the	dominant	cause	of	mortality	 in	most	 tropical	136	

forests	(Fig.	2a,b).	137	

	138	

The	total	turnover	of	biomass	carbon	as	a	result	of	stand-replacing	disturbances	139	

at	pseudo-equilibrium	in	our	simulations	is	1.00	(95%	confidence	interval,	0.91-140	

1.11)	PgC	a-1,	equivalent	 to	4.4	(4.0-4.9)	%	of	total	biomass	carbon	turnover	 in	141	

closed-canopy	 forests	 (i.e.	 including	 soft-tissue	 turnover)	 (Fig.	 2b,c).	 These	142	

numbers	 are	 supported	 by	 an	 empirical	 cross-check	 based	 on	 satellite-derived	143	

NPP	 and	 biomass	 estimates	 which	 combined	 satellite	 LIDAR	 and	 radar	144	

observations	with	ground-based	reference	plots	(red	dots	in	Fig.	2b,c;	Methods).	145	

The	 fraction	 of	 biomass	 carbon	 turnover	 due	 to	mortality	must	 be	 taken	with	146	

caution,	however,	until	biomass	turnover	rates	from	other	forms	of	mortality	can	147	
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be	 fully	 constrained.	Likewise	 the	 total	 turnover	 flux	 is	dependent	on	accurate	148	

calculation	of	global	biomass	stocks,	which	remain	uncertain1.	149	

	150	

The	tropical	broadleaved	evergreen	forest	type	provides	the	largest	contribution	151	

to	global	biomass	carbon	turnover	from	stand-replacing	disturbances,	followed	by	152	

needleleaved	 evergreen	 forest	 (Fig.	 2c).	 Although	stand-replacing	 disturbances	153	

are	 infrequent	 in	 tropical	 evergreen	 forest,	 the	 disturbance-related	 flux	 is	154	

significant,	as	 the	amount	of	biomass	 in	 these	 forests	 is	very	high	compared	to	155	

elsewhere27–30.	Conversely,	 low	τ	will	 tend	to	suppress	biomass	stocks,	 limiting	156	

the	turnover	flux	generated	in	each	disturbance	event.	Our	estimates	of	biomass	157	

carbon	 losses	 for	tropical	evergreen	forest	will	 tend	towards	the	upper	 limit	of	158	

uncertainty	 because	 τO	 was	 capped	 at	 1000	 years	 for	 reasons	 of	 sampling	159	

(Methods);	disturbance	return	times	could	in	fact	be	even	longer	in	some	parts	of	160	

the	tropics31.	However,	as	demonstrated	below,	the	sensitivity	of	biomass	to	very	161	

high	τ	is	low.	Different	disturbance	agents	cannot	be	distinguished	in	our	data,	but	162	

carbon	emissions	from	wildfire	taken	from	the	GFED	dataset32	summed	over	the	163	

same	global	forest	area	give	a	mean	of	0.12	Pg	C	a-1	over	2000-2014	(Methods),	164	

suggesting	 that	 fires	 are	 globally	 a	 relatively	 minor	 driver	 of	 stand-replacing	165	

disturbances	in	closed-canopy	forests.	166	

	167	

Sensitivity	 of	 forest	 biomass	 to	 disturbance	 return	 time.	We	 ascertain	 the	168	

influence	 on	 ecosystem	 properties	 of	 possible	 changes	 in	 τ,	 or	 errors	 in	 its	169	

determination,	 for	 a	 randomly-selected	 grid	 cell	 from	 each	 of	 the	 tropical,	170	

temperate	and	boreal	zones.	For	each	grid	cell	we	run	100	individual	simulations	171	

varying	τ	sequentially	within	a	plausible	range	of	10	to	1000	years.	The	resultant	172	
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range	 in	 pseudo-equilibrium	 carbon	 stocks	 reflects	 variation	 in	 τ	 alone,	173	

independent	 of	 other	 environmental	 conditions	 or	 vegetation	 attributes	 (in	174	

particular	that	the	resilience	of	vegetation	to	disturbance	does	not	change	with	τ).	175	

The	resulting	curve	of	biomass	carbon	versus	τ	shows	two	distinct	regimes	(Fig.	176	

3a);	 a	 regime	 of	 strong	 sensitivity	 of	 biomass	 to	 τ	when	 τ	 is	 low,	 and	 a	weak	177	

sensitivity	regime	when	τ	is	high.	These	regimes	result	from	shifts	in	the	primary	178	

cause	of	dominant	 tree	death.	With	 low	τ	the	majority	of	 trees	die	 from	stand-179	

replacing	disturbance	before	they	get	old	enough	to	die	from	another	cause.	Thus,	180	

τ	 emerges	 as	 the	 primary	 limit	 on	 simulated	 stand	 biomass	 across	 almost	 all	181	

stands.	In	contrast,	when	τ	is	large	most	canopy	trees	die	from	causes	other	than	182	

stand-replacing	disturbances.	 In	 this	case,	τ	 is	not	a	primary	limit	on	simulated	183	

stand	maximum	biomass	and	changes	in	τ	will	only	affect	a	subset	of	stands	across	184	

the	landscape	at	any	time.		185	

	186	

To	map	the	sensitivity	of	forests	to	changes	in	τ	globally	we	propose	a	new	metric	187	

based	on	a	fractional	reduction	of	τO.	Plotting	τO	against	the	difference	in	simulated	188	

biomass	between	global	simulations	run	with	τO	and	0.5τO	reveals	a	similar	curve	189	

to	 the	 site-based	 simulations	 (Fig.	 3b).	 We	 categorise	 global	 forests	 into	 two	190	

classes	of	sensitivity	to	disturbances:	where	the	biomass	under	0.5τO	is	less	than	191	

90%	of	that	under	τO,	the	forest	is	classified	as	having	strong	sensitivity	to	changes	192	

in	τ	(i.e.	stand-replacing	disturbance	frequency	is	a	strong	control	on	biomass),	193	

with	 other	 areas	 having	weak	 sensitivity	 (i.e.	 other	 forms	 of	mortality	 control	194	

biomass).	The	τ0	at	which	this	sensitivity	threshold,	τcrit,90,	is	crossed	varies	with	195	

forest	 type,	with	a	global	 average	of	444	 (429-457)	years.	This	 implies	a	mean	196	

recovery	time	of	222	years	(i.e.	0.5τcrit,90)	to	90%	of	biomass	stocks	under	τO.	This	197	
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is	substantially	longer	than	the	66	years	reported	for	regain	90%	of	old-growth	198	

biomass	in	individual	tropical	forest	stands33	and	follows	because	our	simulations	199	

take	account	of	succession	and	also	scale	one	stage	further	to	the	net	landscape	200	

change	 in	 biomass.	 I.e.	 individual	 stands	 may	 recover	 rapidly,	 but	 across	 the	201	

landscape	more	stands	are	in	a	recently-disturbed	state.	Overall,	44	(39-49)	%	of	202	

global	forest	falls	into	the	strongly	sensitive	category,	with	23	(20-27)	%	falling	203	

into	 a	 very	 strong	 sensitivity	 category	 in	 which	 halving	 τO	 leads	 to	 biomass	204	

dropping	 below	 80%	 of	 that	 under	 τO	 (τcrit,80).	 Forests	 in	 weak-sensitivity	 τ	205	

regimes	are	particularly	located	in	tropical	and	temperate	zones.(Fig.	3c).	206	

	207	

The	biomass	content	of	weak-sensitivity	forests	would	still	be	vulnerable	to	very	208	

large	reductions	in	τ,	for	instance	through	a	catastrophic	shift	to	an	entirely	new	209	

disturbance	regime34	or	introduction	of	a	new	disturbance	type35,	but	is	robust	to	210	

moderate	changes	 in	τ.	This	 is	demonstrated	 in	additional	simulations	using	τO	211	

adjusted	up	or	down	by	a	 factor	of	up	to	4;	weak-sensitivity	 forests	show	large	212	

biomass	changes	only	with	substantial	reductions	in	τ,	whereas	high-sensitivity	213	

forests	show	a	steep	relationship	with	τ	(Fig.	3d).	 	These	results	were	robust	to	214	

assumptions	on	 the	 type	of	disturbance	 (shaded	areas	 in	Fig.	3d),	 although	we	215	

note	that	selective	effects	of	disturbance	type	on	species	composition35,36,	and	thus	216	

potentially	on	biomass	and	turnover37,	could	only	be	treated	crudely	within	the	217	

plant	 functional	 type	 classes	used	 for	global	 simulation	and	 there	may	be	non-218	

linear	shifts	not	accounted	for	in	the	model38.	The	time	taken	for	forest	biomass	to	219	

approach	a	new	pseudo-equilibrium	state	will	depend	on	the	new	value	of	τ	 to	220	

which	 the	 ecosystem	 is	 subjected.	 In	 general,	 changes	 in	 τ	 will	 only	 be	 fully	221	
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reflected	in	carbon	fluxes	over	the	next	century	if	that	new	τ	is	of	the	order	of	100	222	

years	or	less.	223	

	224	

Unlike	the	influence	of	τ	on	biomass	(Fig.	3d),	its	influence	on	soil	carbon	stocks	is	225	

strongly	 sensitive	 to	 the	 rate	 of	 decompostion	 of	 the	 resulting	 litter	 and	 soil	226	

organic	matter,	and	also	depends	on	biomass	removals,	for	instance	in	conjunction	227	

with	wood	harvest	(Fig.	3e).	When	disturbed	biomass	is	transferred	to	the	litter,	228	

disturbance	only	has	notable	negative	consequences	when	τ	becomes	very	low,	229	

reducing	the	fraction	of	longer-lived	woody	biomass	entering	the	litter.	However,	230	

harvest	 removals	 or	 burning	 of	 biomass	 substantially	 reduce	 the	 input	 rate	 of	231	

carbon	to	the	soil,	 leading	to	a	strong	positive	relationship	between	soil	carbon	232	

density	and	τ.	This	strong	sensitivity	of	soil	carbon	storage	to	the	type,	as	well	as	233	

the	frequency,	of	disturbance,	underlines	the	need	for	improved	discrimination	of	234	

different	disturbance	types	at	the	global	scale39.	Response	times	for	soil	will	 lag	235	

those	 for	 vegetation,	 and	 be	 influenced	 by	 the	 form	 of	 necromass	 left	 after	236	

disturbance40,	 another	 area	 of	 high	 process	 uncertainty.	 Summing	 over	 both	237	

vegetation	 and	 soil,	 a	 widespread	 shift	 in	 disturbance	 regimes	 equivalent	 to	 a	238	

halving	of	τO	across	all	closed-canopy	forests	would	ultimately	release	47-80	Pg	C,	239	

depending	 on	 the	 form	of	 that	disturbance,	while	 an	 increase	 in	 time	 between	240	

disturbances	could	promote	carbon	uptake	(Suppl.	Fig.	10).	241	

	242	

Concluding	remarks.	The	results	of	this	study	allow	us	to	partition	one	important	243	

component	of	overall	biomass	turnover	rates	in	global	forests1,8.	Although	stand-244	

replacing	disturbances	constitute	a	relatively	small	portion	of	the	overall	global	245	

biomass	 turnover	 flux,	 small	 changes	 in	 τ	 would	 exert	 a	 strong	 influence	 on	246	
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biomass	 stocks	 in	 almost	 half	 of	 the	 world's	 forests.	 DGVMs	 and	 land-surface	247	

models	currently	 incorporating	explicit	representations	of	 forest	demography41	248	

must	 properly	 account	 for	 stand-replacing	 disturbances	 to	 avoid	 biases	 in	 net	249	

carbon	uptake	or	erroneous	calibration	of	processes	to	account	for	these	biases.	250	

Our	 study	 highlights	 the	 importance	 of	 accounting	 for	 variability	 in	 forest	251	

disturbance	 regimes,	 yet	 constitutes	 only	 a	 first	 step;	 88%	 of	 global	 carbon	252	

turnover	due	to	tree	mortality	is	not	explained	by	stand-replacing	disturbances.	It	253	

thus	remains	crucial	to	constrain	other	causes	of	mortality,	including	disturbances	254	

below	 stand-scale23,42,	 drought43,	 and	 demography.	 High-resolution	 data	 from	255	

satellites,	along	with	forest	inventories,	will	be	key	in	this	regard.	256	

	257	

Our	 results	provide	a	 snapshot	of	 a	 global	 stand-replacing	disturbance	pattern	258	

that	 may	 be	 undergoing	 rapid	 change13–15.	 Drivers	 of	 such	 change,	 whether	259	

climate,	 management	 or	 otherwise	 are	 uncertain	 and	 likely	 highly	 region-260	

specific13–16,19,20.	 Future	 work	 must	 consider	 how	 carbon	 emissions	 through	261	

changes	 in	τ	 are	 likely	 to	 interact	with	other	aspects	of	 environmental	 change,	262	

such	 as	 the	 fertilising	 effects	 of	 rising	 CO2	 concentrations,	 which	 may	 reduce	263	

vulnerability	 to	 disturbance44,	 as	 well	 as	 seeking	 to	 close	 the	 feedback	 loops	264	

between	disturbances,	climate	and	vegetation	properties.	Changing	disturbances	265	

could	 both	 augment	 and	 offset	 carbon	 loading	 of	 the	 atmosphere	 caused	 by	266	

anthropogenic	 carbon	 emissions3;	 better	 understanding	 the	 role	 of	 forest	267	

disturbances	in	the	carbon	cycle	is	therefore	highly	relevant	to	the	assessment	of	268	

emissions	reductions	necessary	to	meet	climate	targets.	269	

	270	
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Figure	1.	Forest	disturbance	rotation	periods.	a,	τO	calculated	over	2000-2014.	416	

b,	 Uncertainty	 in	 τO,	 displayed	 as	 the	 difference	 between	 the	 95%	 confidence	417	

intervals	divided	by	the	central	estimate.	Uncertainty	values	of	zero	reflect	95%	418	

confidence	that	τO	is	over	1000	years.	c,	Boxplot	of	τO	grouped	by	forest	type	(see	419	

Methods	 for	 codes).	 Circles	 show	 the	 median	 value,	 black	 triangles	 the	 95%	420	

confidence	limits	of	the	median,	thick	lines	the	interquartile	range	and	whiskers	421	

extend	to	a	maximum	of	1.5	times	the	interquartile	range.	Numbers	indicate	the	422	

number	of	grid	cells	for	each	forest	type.	423	

	424	

Figure	2.	Carbon	turnover	fluxes	from	closed-canopy	forest	for	2001-2014.	a,	425	

Fraction	 of	 carbon	 turnover	 fluxes	 resulting	 from	 vegetation	 mortality	 due	 to	426	

stand-replacing	disturbances	(colour	scale	capped	at	50%),	calculated	using	τO	to	427	

drive	 LPJ-GUESS.	 Breakdown	 by	 forest	 type	 of:	 b,	 fraction	 of	 carbon	 turnover	428	

fluxes	resulting	from	vegetation	mortality	(whole	bars)	and	from	stand-replacing	429	

disturbances	(darker	shading);	c,	total	turnover	flux	of	vegetation	carbon	due	to	430	

stand-replacing	disturbance.	Error	bars	show	the	range	of	simulations	driven	by	431	

the	95%	confidence	intervals	of	τO.	Red	dots	show	results	from	an	observationally-432	

based	cross-check	method	(Methods).	Forest	types	as	in	Fig.	1.	433	

	434	

Figure	3.	Sensitivity	of	biomass	to	changes	in	τ.	a,	Simulated	biomass	versus	τ	435	

for	three	random	forested	locations.	Dots	show	individual	simulations	and	lines	a	436	

fitted	exponential	function.	b,	Sensitivity	to	τO	of	difference	in	simulated	biomass	437	

between	simulations	with	τO	and	0.5τO.	c,	Sensitivity	of	biomass	carbon	stocks	to	438	

changes	in	τ.	Shading	indicates	the	sensitivity	regime.	d,	e,	Effect	of	multiplicative	439	

perturbation	 in	 τ	 on	 vegetation	 and	 soil	 carbon	 density	 averaged	 across	 the	440	
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different	sensitivity	classes.	Shaded	areas	show	range	of	sensitivity	simulations	441	

testing	assumptions	on	the	type	of	disturbance	assumed	(solid	lines	for	standard	442	

simulation)	(Methods).	443	

	 	444	
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	445	

Methods	446	

	447	

Calculation	of	τO.	τO	was	calculated	as	defined	in	Eq.	1.	We	first	created	a	forest	448	

mask	by	aggregating	year	2000	forest	canopy	cover	data	at	0.00025°	(ca.	30	m)	449	

resolution21	to	0.01°	resolution.	Grid	cells	with	at	least	50%	canopy	cover	at	0.01°	450	

resolution	 were	 assigned	 as	 closed-canopy	 forest.	 Further	 aggregation	 then	451	

provided	 the	 fractional	 coverage	 of	 closed-canopy	 forest	 at	 1°	 resolution	 (AT).	452	

Across	each	1°	grid	cell	we	then	summed	up	the	total	area	of	0.00025°	pixels	which	453	

underwent	forest	loss	during	2000-2014	and	were	located	within	the	0.01°	grid	454	

cells	assigned	as	closed-canopy	forest.	A	grid	cell	could	only	be	counted	as	 lost	455	

once	during	the	period.	Dividing	this	sum	by	the	length	of	the	14	year	observation	456	

period	provided	./+++.	A	threshold	of	25%	forest	cover	at	the	1°	grid	cell	level	was	457	

used	 throughout	 this	 study	 in	 order	 to	 provide	 sufficient	 statistical	 power	 for	458	

calculation	of	τO.	The	total	 forested	area	meeting	these	conditions	 is	2.71	×	107	459	

km2.	 	 Fig.	 1c	was	 calculated	 from	 the	 gridded	 τO	 estimate	 using	 the	 "boxplot"	460	

function	of	Matlab®	2014b.	461	

	462	

This	above	definition	provides	a	calculation	of	τ	as	a	function	of	forest	area.	An	463	

alternative	definition	of	τ	would	be	to	define	it	relative	to	canopy	area.	In	this	case	464	

AT	would	be	the	total	canopy	area	within	the	0.01°	grid	cells	designated	as	closed	465	

canopy	 forest,	 making	 use	 of	 the	 fractional	 canopy	 cover	 metric	 provided	 by	466	

Hansen	 et	 al.21,	 and	 ./+++ 	would	 be	 the	 sum	 of	 pixels	 undergoing	 forest	 loss	467	

multiplied	by	the	fractional	canopy	cover	of	those	pixels	before	disturbance.	Using	468	

this	canopy-area	definition	slightly	reduces	our	estimates	of	τO	in	most	locations	469	
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(Suppl.	 Fig.	 4),	 but	 the	 forest-area	 definition	 is	 preferred	 as	 it	 recognises	 that	470	

whilst	disturbances	reduce	canopy	cover,	 they	do	not	reduce	the	area	of	 forest	471	

unless	associated	with	a	land-use	change.	472	

	473	

Forest	 losses	due	 to	 land-use	 change,	.0++++,	were	 calculated	 for	 the	period	2000-474	

2014	using	the	ESA	CCI	landcover	product	v2.0.7	(accessed	29th	June	2017).	ESA	475	

CCI	landcover	classes	were	simplified	into	forested	(classes	50,	60,	61,	62,	70,	71,	476	

72,	80,	81,	82,	90,	100,	160,	170)	and	non-forested	(classes	10,	11,	20,	30,	110,	477	

130,	190)	classes,	the	latter	corresponding	to	cropland,	grassland	and	urban	land	478	

uses.	Then	the	area	of	0.0028°	pixels	which	were	classified	as	forested	in	2000	but	479	

non-forested	 in	 2014	 was	 calculated.	 The	 forest	 loss	 due	 to	 land-use	 change	480	

calculated	from	this	dataset	shows	excellent	consistency	with	the	total	forest	loss	481	

dataset	based	on	Hansen	et	al.21,	with	only	very	few	locations	where	the	loss	due	482	

to	land-use	change	is	reported	to	be	larger	than	the	total	(Suppl.	Fig.	5).	483	

	484	

Uncertainties	in	τO	due	to	the	sample	sizes	in	the	forest	loss	data	were	estimated	485	

through	bootstrapping.	In	each	1°	grid	cell	1000	samples	of	./+++	were	created	by	486	

resampling	with	 replacement	 the	 0.01°	 grid	 cells	 designated	 as	 closed-canopy	487	

forest.	 Uncertainties	 in	 .0++++ 	result	 from	 classification	 accuracy	 and	 scaling	488	

differences	between	the	Hansen	et	al.21	and	ESA	CCI	datasets.	Producer’s	accuracy	489	

for	 the	 forest	 and	 non-forest	 classification	 in	 ESA	 CCI	 v2.0.7	 is	 92%	 and	 78%	490	

respectively,	 whilst	 the	 corresponding	 user’s	 accuracy	 is	 78%	 and	 85%45.	491	

However,	because	we	count	 the	whole	area	of	 the	pixel	when	an	ESA	CCI	pixel	492	

changes	from	forest	to	non-forest,	and	the	CCI	pixel	area	is	ca.	100	times	that	of	493	

Landsat,	a	scaling	inaccuracy	is	induced,	whereby	the	fraction	of	forest	conversion	494	
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within	the	grid	cell	may	be	enough	to	cause	a	land-cover	classification	switch,	but	495	

substantially	less	than	complete	deforestation	of	the	ESA	pixel.	To	conservatively	496	

account	 for	 classification	and	scaling	errors	we	 thus	assume	a	95%	confidence	497	

interval	of	+-	50%	in	the	forest	conversion	area	values.	For	each	1°	grid	cell,	1000	498	

samples	of	.0++++	were	taken	from	a	normal	distribution	defined	by	this	confidence	499	

interval.	We	 crossed	 these	 1000	 samples	 of	.0++++ 	with	 those	 from	./+++	to	 create	 a	500	

matrix	 of	 1	 x	 106	 estimates	 of	 the	 denominator	 in	 Eq.	 1.	 The	 2.5th	 and	 97.5th	501	

percentiles	of	this	matrix	were	then	used	to	estimate	the	95%	confidence	limits	of	502	

τO.	 This	 resampling	 of	 the	 forest	 loss	 areas	 within	 the	 1°	 pixel	 addresses	 the	503	

uncertainty	induced	when	the	forest	area	in	the	pixel	is	relatively	small,	in	which	504	

case	confidence	in	the	fidelity	of	the	space-for-time	swap	would	be	reduced.	It	also	505	

accounts	for	classification	errors	if	those	errors	are	not	correlated	across	the	grid	506	

cell.	Hansen	et	al.21	report	a	tendency	to	underestimate	forest	loss	by	ca.	4%	in	the	507	

tropics	and	overestimate	it	by	ca.	6%	in	the	temperate	and	boreal	regions.	These	508	

classification	 biases	 are	 not	 captured	 in	 our	 uncertainty	 estimate,	 nor	 are	509	

potential	biases	from	.1++++	for	which	global	quantification	was	not	available.	Based	510	

on	the	available	information,	these	biases	are	expected	to	be	small	and	focused	in	511	

regions	where	the	uncertainty	is	already	assessed	as	being	large	(Suppl.	Note	4;	512	

Suppl.	Fig.	8).	Note	that	the	capping	of	τO	at	1000	years	often	leads	to	very	low	513	

uncertainty	for	these	grid	cells,	i.e.	there	is	very	high	certainty	that	τO	>	1000	years.	514	

Calculated	 τO	 is	 robust	 to	 subsampling	 of	 the	 14	 year	 observational	 period,	515	

especially	when	the	data	series	exceeds	10	years	(Suppl.	Fig.	6).	516	

	517	

The	resolution	of	ESA	CCI	landcover	means	it	will	have	limited	sensitivity	to	very	518	

small-scale	 land-use	 conversions,	 such	 as	 have	 been	 recently	 reported	 in	 the	519	
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Amazon46.	However,	given	that	our	τO	values	in	the	tropical	evergreen	forests	are	520	

very	high,	even	in	absence	of	the	land-use	correction	(Suppl.	Fig.	7)	we	expect	the	521	

influence	on	our	results	to	be	minimal.	522	

	523	

The	use	of	a	1°	aggregation	resolution	represents	a	compromise	between	spatial	524	

detail	 and	 sufficient	 area	 to	 make	 an	 effective	 space-for-time	 substitution.	525	

Following	the	simplifying	assumption	that	disturbance	events	are	equally	likely	in	526	

all	locations	in	the	grid	cell,	the	maximum	τ	that	we	can	expect	to	reliably	quantify,	527	

τm,	for	a	given	disturbance	size,	D,	can	be	calculated	as:	528	

!2 = %&×4
5 ,	(2)	529	

where	t	is	the	total	number	of	years	sampled.	The	largest	disturbance	events	are	530	

generally	fires,	especially	in	the	Canadian	boreal	region,	for	which	the	typical	large	531	

fire	 size	 is	6000	ha47.	Assuming	a	grid-cell	 area	of	628	000	ha	 (60°	 latitude),	 a	532	

forest	 coverage	 of	 25%	 of	 grid-cell	 area	 (i.e.	 AT	 =	 157	 000	 ha)	 and	 a	 14-year	533	

sampling	 period,	 τm	 is	 350	 years	 at	 this	 scale.	 For	 smaller	 disturbances	much	534	

larger	 values	 of	 τ	 can	 be	 expected	 to	 be	 reliably	 captured.	 Substantial	535	

undersampling	of	large	rare	events	at	1°	resolution	would	be	expected	to	induce	536	

scatter	 in	 our	 results,	 but	 Fig.	 1	 shows	 spatial	 coherence	 in	 variation	 of	 τ,	537	

suggesting	any	 such	under-sampling	 to	have	minimal	effects.	 τO	was	 capped	at	538	

1000	 years	 to	 avoid	 spuriously	 large	 values	 in	 grid	 cells	with	 very	 infrequent	539	

disturbance.	 The	 influence	 of	 this	 capping	on	 simulated	 forest	 biomass	 is	 very	540	

small	(e.g.	Fig.	3b).	541	

	542	

Forest	 type	 classification.	 Forest	 types	 were	 classified	 based	 on	 ESA	 CCI	543	

landcover	v2.0.7.	The	mapping	of	landcover	classes	to	the	forest	types	used	in	this	544	
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analysis	in	shown	in	Suppl.	Table	2.	A	map	of	these	forest	types	is	shown	in	Suppl.	545	

Fig.	11.	There	is	a	small	fraction	of	forest	area	that	is	not	assigned	to	any	of	these	546	

major	 forest	classes,	but	 is	included	 in	the	global	 totals.	Note	that	open	canopy	547	

forests	(<50%	canopy	cover	at	0.01°	scale,	see	above)	are	not	included	in	any	of	548	

the	 calculations	herein.	 Forest	 type	 codes	 are:	 Tropical	 broadleaved	 evergreen	549	

(TrBE),	 tropical	 broadleaved	 deciduous	 (TrBD),	 temperate	 broadleaved	550	

evergreen	 (TeBE),	 temperate	 broadleaved	 deciduous	 (TeBD),	 needleleaved	551	

evergreen	(NE),	needleleaved	deciduous	(ND),	broadleaved-needleleaved	mixed	552	

forest	(MX).	553	

	554	

Forest	age	dataset.	For	cross	comparison	of	spatial	patterns	in	our	results,	we	555	

used	 the	 Global	 Forest	 Age	 Dataset	 (GFAD	 v1.1)22,	 a	 forest	 stand	 age	 dataset	556	

developed	as	part	of	the	EU	FP7	GEOCARBON	project.	It	provides	a	distribution	of	557	

stand	age	and	associated	uncertainties	 in	10-year	age	bins	up	to	an	age	of	140	558	

years	from	a	base	year	of	2010	on	a	0.5°	grid.	The	salient	features	are	summarised	559	

here	and	described	in	more	detail	in	Pugh	et	al.48.	It	combines	datasets	of	forest	560	

age	 distributions	 from	 the	 following	 forest	 inventories:	 United	 States	 Forest	561	

Inventory	 and	Analysis	 (v	 5.1,	 state	 summaries,	 representative	 for	 the	 2000s),	562	

IIASA	 Russian	 Forests	 and	 Forestry	 Database	 (late	 2000s),	 Canadian	 Forest	563	

Inventory	(CanFI,	state	summaries,	2001-2006),	EFISCEN	(Europe,	32	countries,	564	

2000s),	6th	National	Forest	Inventory	(China,	1999-2003),	and	the	national	forest	565	

inventories	of	Kazakhstan	(2000s),	New	Zealand	(2000s),	Mongolia	(2000s)	and	566	

Japan	(2005).	GFAD	estimates	 forest	age	 in	 tropical	regions,	where	widespread	567	

inventories	are	not	available,	by	applying	plant-functional-type-specific	biomass-568	

age	curves49	to	a	large-scale	forest	biomass	dataset50.			569	
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	570	

Forest	modelling.	The	LPJ-GUESS	DGVM	v4.051	was	used	to	calculate	the	effects	571	

of	 τ	 on	 forest	 structure,	 dynamics	 and	 carbon	 cycling.	 LPJ-GUESS	 explicitly	572	

simulates	 forest	 stand	 development	 and	 canopy	 structure	 divided	 among	 age	573	

cohorts	of	trees	co-occurring	in	patches	representative	of	a	wider	landscape.	Leaf	574	

area	to	sapwood	area	ratio	and	maximum	crown	area	for	tropical	evergreen	tree	575	

types	were	set	to	10	000	and	130	m2	respectively,	in	accordance	with	estimates	576	

for	tropical	forests52,53.	Mortality	and	establishment	are	stochastic,	with	replicate	577	

1000	m2	patches	simulated	to	capture	the	distribution	of	stands	of	different	time-578	

since-last-disturbance	 across	 each	 grid	 cell.	 Stand-replacing	 disturbances	 are	579	

simulated	by	clearing	all	trees	in	a	patch	and	transferring	their	biomass	stocks	to	580	

litter	 or	 out	 of	 the	 ecosystem	 (see	 below).	 We	 introduced	 a	 spatially-varying	581	

stochastic	disturbance	 frequency	with	an	annual	probability	defined	by	1/τ.	 In	582	

order	to	allow	LPJ-GUESS	to	simulate	the	closed-canopy	forest	area	unrestricted	583	

by	the	25%	cover	threshold	used	to	calculate	τO,	the	nearest-neighbour	rule	was	584	

used	to	assign	τ	values	to	grid	cells	with	less	than	25%	forest	coverage.	All	forest-585	

type-level	 and	 global	 numbers	 are	 presented	 based	 on	 a	 5%	minimum	 forest	586	

coverage	mask	at	 the	grid-cell	 level	 to	avoid	overextrapolation	of	τO	 to	regions	587	

with	very	 low	 forest	 cover.	The	map	 in	Fig.	2	 is	presented	with	a	25%	closed-588	

canopy	forest	cover	map	for	consistency	with	Fig.	1.	Inclusion	of	τO	in	LPJ-GUESS	589	

improves	the	simulation	of	biomass	compared	to	the	disturbance	settings	in	the	590	

standard	version	of	the	model	(Suppl.	Fig.	12).	591	

	592	

In	the	standard	simulation	setting,	all	cleared	biomass	is	transferred	to	the	litter	593	

pools.	For	sensitivity	simulations	underlying	ranges	in	Fig.	3d,e	and	Suppl.	Fig.	10	594	



	 26	

two	further	setting	types	were	employed	to	test	the	effect	of	the	fate	of	disturbed	595	

material.	In	the	harvest	sensitivity	simulations	fine	root	and	leaf	biomass,	along	596	

with	 34%	 of	woody	 biomass,	 are	 transferred	 to	 the	 litter,	 with	 the	 remaining	597	

woody	biomass	being	removed	from	the	ecosystem,	emulating	product	extraction.	598	

The	fire	sensitivity	simulations	employ	the	interactive	fire	sub-model51,54	with	a	599	

local	probability	of	 fire	occurrence	(burnt	area	 fraction)	set	 to	1/τ,	resulting	 in	600	

most	biomass	carbon	and	some	litter	carbon	being	transferred	to	the	atmosphere.	601	

Stochastic	processes	use	the	same	seed	to	ensure	replication	between	simulations.	602	

Simulations	covered	1901-2014	using	climate,	atmospheric	CO2	mixing	ratio	and	603	

N	deposition	as	described	in	Le	Quéré	et	al.55.	All	model	outputs	shown	are	means	604	

for	2001-2014.	The	standard	simulations	with	τO	and	0.5τO	 	used	100	replicate	605	

patches	per	grid	cell.	Simulations	testing	additional	multiplicative	perturbations	606	

of	τ	(0.25,	2,	4)	and	using	the	confidence	intervals	of	τO	used	10	replicate	patches.	607	

Differences	at	forest-type	level	were	negligible	between	simulations	with	10	and	608	

100	patches.	609	

	610	

Simulations	used	to	create	Fig.	3a	used	the	standard	model	setup	described	above,	611	

but	the	model	was	only	run	for	the	specified	three	grid	cells.	100	simulations	were	612	

carried	 out	 for	 each	 grid	 cell	 using	 levels	 of	 τ	 from	10	 years	 to	 1000	 years.	 A	613	

second-order	exponential	equation	of	the	form	B	=	aebτ	+	cedτ	was	fitted	to	these	614	

simulations	using	the	"fit"	function	of	Matlab®	2014b.		615	

	616	

Sensitivity	metric.	The	metric	is	based	upon	differencing	biomass	between	the	617	

τO	and	0.5τO		simulations.	The	choice	of	a	halving	of	τO	for	the	sensitivity	metric	618	

was	 informed	 by	 recent	 disturbance	 trends	 in	 Europe14,	 and	 is	 also	 similar	 to	619	



	 27	

changes	in	background	mortality	rates	in	the	western	U.S.A.56.	It	thus	represents	620	

a	reasonable	sensitivity	 test.	The	sensitivity	 threshold	τcrit	 (Suppl.	Table	1)	was	621	

estimated	by	 first	plotting	against	τo	the	difference	between	biomass	simulated	622	

with	τ	=	τO	and	that	simulated	with	τ	=	0.5τO,	(Fig.	3b,	Suppl.	Fig.	13).	A	second-623	

order	exponential	 function	was	 fitted	to	the	data	as	 for	Fig.	3a.	These	 fits	were	624	

carried	out	both	globally	and	for	individual	forest	types.	95%	confidence	intervals	625	

for	the	fits	were	calculated	using	1000	bootstrapped	samples	of	the	modelled	grid	626	

cells.	 τcrit,90	 and	 τcrit,80	 were	 taken	 as	 the	 intersection	 of	 the	 fitted	 line	 with	 a	627	

difference	 of	 -10%	 and	 -20%	 biomass	 respectively	 (Suppl.	 Fig.	 13),	 with	628	

confidence	intervals	for	τcrit	estimated	using	the	confidence	intervals	of	the	fitted	629	

lines	.	Scatter	in	the	results	is	caused	by	the	stochastic	nature	of	the	LPJ-GUESS	630	

model,	 as	 well	 as	 variation	 in	 climate	 across	 the	 domain.	 The	 90%	 biomass	631	

threshold	is	consistent	with	recent	work	on	the	recovery	of	forest	biomass33	and	632	

with	the	character	of	the	curve	in	Fig.	3b.	633	

	634	

The	area	of	forest	in	each	sensitivity	regime	(Fig.	3c)	was	created	by	comparing	τO	635	

for	 each	 grid	 cell	 with	 the	 τcrit	 for	 the	 forest	 type	 to	 which	 that	 grid	 cell	 was	636	

assigned.	Uncertainty	in	the	areas	of	the	regimes	(Main	text)	was	calculated	based	637	

on	the	95%	confidence	intervals	of	τO	.	For	forest	grid	cells	not	classified	by	one	of	638	

the	 seven	 forest	 types,	not	enough	data	points	existed	 to	make	a	 reliable	 fit	 to	639	

calculate	τcrit.	Therefore	the	global	mean	τcrit	was	used	to	determine	the	sensitivity	640	

regime.	Fig.	3d,e	shows	the	difference	in	biomass	and	soil	carbon	density	between	641	

model	sensitivity	simulations	with	different	multiplicative	factors	of	τ	(see	above)	642	

averaged	across	the	area	of	forest	allocated	to	each	sensitivity	class.	Variation	in	643	
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response	 across	 the	 vulnerability	 classes	 is	much	 less	 than	 that	 between	 them	644	

(Suppl.	Fig.	9).	645	

	646	

Empirical	cross-checks.	For	cross-checking	of	biomass	carbon	turnover	flux	due	647	

to	disturbance	(Fd)	we	used	the	GEOCARBON	global	biomass	dataset27–29,	in	which	648	

biomass	values	are	based	on	linking	satellite-based	LIDAR	and	radar	observations	649	

with	ground-based	forest	plot	data.	We	replaced	values	for	northern	forests	with	650	

those	of	Thurner	et	al.30	due	to	the	latter’s	more	sophisticated	approach	to	linking	651	

satellite-based	 radar	 observations	 with	 above-	 and	 below-ground	 biomass	 in	652	

these	regions.	Below-ground	biomass	for	the	GEOCARBON	dataset	was	estimated	653	

following	Saatchi	 et	 al.50	 and	a	biomass	 to	 carbon	conversion	 factor	of	0.5	was	654	

assumed.	 	We	 then	multiplied	 the	 carbon	content	of	 this	observationally-based	655	

total	biomass	dataset	by	1/τO	to	calculate	Fd.	Cross-checking	the	fraction	of	total	656	

turnover	due	to	disturbance	(Tfrac)	involved	making	the	assumption	that	NPP	and	657	

turnover	fluxes	are	not	drastically	out	of	equilibrium,	and	therefore	NPP	must	be	658	

broadly	equal	to	the	turnover	flux	of	biomass	carbon	in	the	multi-annual	mean.	659	

Annual	 mean	 NPP	 over	 the	 period	 2001-2010	 was	 calculated	 from	 Zhao	 and	660	

Running57.		Tfrac	was	then		approximated	as	Fd/NPP.	Fire	emissions	from	the	GFED	661	

dataset32	were	calculated	by	summing	the	boreal,	temperate	and	tropical	forest	662	

wildfire	 emissions,	 excluding	 the	 savannah	 category,	 which	 does	 not	 fit	 our	663	

definition	of	closed-canopy	forest.	The	mask	of	at	least	5%	forest	cover	per	grid	664	

cell	was	applied	to	all	these	cross-check	calculations	as	above.	665	

	666	

Data	availability	667	

	668	
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Calculations of τO, data from the model simulations and the forest mask used are 669	

available from https://dataguru.lu.se/app#PughDisturbance2019 (dois: 670	

10.18161/disturbance_tauo.201905, 10.18161/disturbance_lpj-guess.201905, 671	

10.18161/disturbance_forestmask.201905). GFAD v1.1 was obtained from 672	

PANGAEA22, and the Global Forest Change 2000-2014 v1.2 forest loss product from 673	

https://earthenginepartners.appspot.com/science-2013-global-674	

forest/download_v1.2.html. The ESA CCI Landcover v2.0.7 was obtained from 675	

http://maps.elie.ucl.ac.be/CCI/viewer/. 676	

	677	

Code	availability	678	

	679	

Matlab	 code	 for	 the	 data	 analysis	 herein	 is	 available	 from	 GitHub,	680	

https://github.com/pughtam/GlobalDist.	Source	code	for	LPJ-GUESS	v4.0	can	be	681	

obtained	on	request	through	Lund	University,	see	web.nateko.lu.se/lpj-guess.		682	

	683	
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