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- The serum metabolome does not reflect steroids activated in an intracrine manner 
- The urinary steroid metabolome reflects steroid biosynthesis and metabolism
- Defined pathways link the circulating and urinary steroid metabolomes
- Modern mass spectrometry techniques allow for comprehensive steroid profiling
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22 Abstract

23 Advances in technology have allowed for the sensitive, specific, and simultaneous 

24 quantitative profiling of steroid precursors, bioactive steroids and inactive metabolites, 

25 facilitating comprehensive characterization of the serum and urine steroid metabolomes. 

26 The quantification of steroid panels are therefore gaining favor over quantification of 

27 single marker metabolites in the clinical and research laboratories. However, although the 

28 biochemical pathways for the biosynthesis and metabolism of steroid hormones are now 

29 well defined, a gulf still exists between this knowledge and its application to the measured 

30 steroid profiles. In this review, we present an overview of steroid hormone biosynthesis 

31 and metabolism by the liver and peripheral tissues, specifically highlighting the pathways 

32 linking and differentiating the serum and urine steroid metabolomes. A brief overview of 

33 the methodology used in steroid profiling is also provided. 

34

35 Keywords: steroid metabolome; steroid biosynthesis; steroid metabolism; urine 
36 metabolome; serum metabolome

37
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38 1.0  Introduction

39 Steroid hormones play an essential role in regulating water and salt balance, metabolism 

40 and stress response, and in initiating and maintaining sexual differentiation and 

41 reproduction. Researchers investigating steroid-related endocrine conditions have 

42 measured alterations in the steroid metabolome for several decades. While clinical 

43 laboratories have traditionally measured changes in individual diagnostic marker steroids, 

44 the quantification of steroid panels are now gaining widespread traction due to advances 

45 in technology, further driven by the emerging diagnostic power of steroid metabolomics, 

46 i.e. the combination of mass spectrometry-based steroid profiling with unbiased data 

47 analysis by machine learning approaches. 

48 In most cases, alterations in steroid profiles associated with endocrine disorders were 

49 identified long before the responsible enzymes were identified or characterized following 

50 the advent of modern molecular techniques. While the biochemical pathways for the 

51 biosynthesis and metabolism of steroid hormones are now mostly well defined, a gulf still 

52 exists with regard to the application of this knowledge to the interpretation of the 

53 measured multi-steroid profiles in serum and urine. Researchers and clinicians are 

54 increasingly dependent on results obtained by steroid metabolome analysis, but are often 

55 unfamiliar with the metabolic pathways resulting in the observed steroid profile and the 

56 distinct metabolic pathways explaining the differences between serum and urine steroid 

57 metabolomes. 
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58 Therefore, it is the aim of this review to provide a comprehensive and up-to-date 

59 examination of our current knowledge of metabolic pathways underlying the serum and 

60 urine steroid metabolomes. We briefly review the origins of steroid hormones, and present 

61 the resulting serum metabolome of each of the main classes of steroids. Downstream 

62 metabolism of each of these steroid classes are subsequently presented and linked to 

63 the resulting urine steroid excretion patterns. Taken together this review provides a 

64 biochemical overview of the biosynthesis, metabolism and excretion of steroid hormones.   
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65 2.0 Origins of steroid hormones 

66 2.1 Overview of de novo steroidogenesis

67 Steroid hormones are produced through de novo steroidogenesis in the adrenal cortex, 

68 the gonads and the placenta. In addition, a range of neurosteroids are produced in the 

69 brain [1], however these are beyond the scope of this review. Steroidogenic tissues are 

70 unique in their ability to utilize cholesterol as starting material for the mitochondrial 

71 biosynthesis of pregnenolone, the precursor steroid in the biosynthesis of all steroid 

72 hormones. Cholesterol can be obtained from multiple sources including de novo 

73 biosynthesis from acetate in the endoplasmic reticulum (ER) [2–4], the hydrolysis of 

74 cholesteryl esters stored in lipid droplets by cholesteryl ester hydrolases, exogenous 

75 lipoprotein-derived cholesterol esters from LDL receptor-mediated endocytic and/or SR-

76 BI-mediated uptake pathways, and free cholesterol residing in the plasma membrane [5–

77 8]. All three primary steroidogenic organs, namely the adrenal cortex, gonads and 

78 placenta, can biosynthesize cholesterol de novo under the regulation of tropic hormones 

79 and plasma lipoproteins are widely accepted as the principal source of cholesterol used 

80 for steroid biosynthesis [5–8].

81 2.2 Overview of steroidogenic enzymes

82 Two major functional classes of enzymes are involved in the biosynthesis of all steroid 

83 hormones, namely the cytochrome P450 (CYP) and hydroxysteroid dehydrogenase 

84 (HSD) enzymes. The heme-containing CYP enzymes activate molecular oxygen utilizing 

85 NADPH as an electron donor. During catalysis, they incorporate one oxygen atom into 

86 the substrate while the other oxygen atom is reduced to water. This catalytic potential 

87 allows CYPs to catalyze a wide range of reactions, with hydroxylation and C-C bond 
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88 cleavage being relevant reactions in steroidogenesis [9,10]. CYP enzymes involved in 

89 steroidogenesis can be divided into two groups based on their intracellular location and 

90 mode of electron transfer. CYP type I enzymes are located within the inner mitochondrial 

91 membrane (IMM) and are dependent on ferredoxin and ferredoxin reductase for the 

92 delivery of their electrons from NADPH. Ferredoxin reductase is a flavoprotein that 

93 oxidizes NADPH and transfers electrons to ferredoxin, a small iron-sulfur protein, which 

94 acts as a mobile electron carrier, delivering the electrons to the CYP. The adrenally 

95 located ferredoxin reductase and ferredoxin are often also referred to as adrenodoxin 

96 reductase (AdxR) and adrenodoxin (Adx), respectively. CYP type II enzymes are found 

97 in the ER and are dependent on the electron donor enzyme cytochrome P450 

98 oxidoreductase (POR) for electron delivery. POR contains a flavin adenine dinucleotide 

99 (FAD) and a flavin mononucleotide (FMN) allowing the enzyme to oxidize NADPH and 

100 reduce the CYP enzyme in a stepwise manner. The availability of NADPH is a vital aspect 

101 of CYP-catalyzed reactions, with redox partner ratios differentially influencing CYP 

102 activities [11–13]. 

103 The other main functional class of enzymes involved in steroidogenesis are the HSD 

104 enzymes which are dependent on NAD(P)H and NAD(P)+ co-factors. HSDs are 

105 subdivided into two distinct enzyme superfamilies based on their structural fold. These 

106 are the short chain dehydrogenases and aldo-keto reductases (AKR). The function of the 

107 HSD enzymes from both families is to catalyze the conversion of a given hydroxysteroid 

108 to its corresponding ketosteroid counterpart and vice versa, and in doing so, regulate the 

109 activity of the steroid at specific steroid receptors [14]. Most HSD-catalyzed reactions are 

110 mechanistically reversible and can function bi-directionally, although a prominent 
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111 directionality is observed in vivo as a result of co-factor affinity and cellular redox status. 

112 An exception to this rule are the two HSD3B isoforms, HSD3B1 and HSD3B2, which 

113 catalyze an irreversible reaction, directly linked to the isomerization of the ∆5 double bond. 

114 These enzymes have dual catalytic activity and not only transform the hydroxy group on 

115 carbon 3 to a keto group but additionally isomerize the double bond from ∆5 to ∆4 [15–18].

116 2.3 Overview of adrenal steroidogenesis

117 The cortex of the adrenal gland is responsible for the biosynthesis of mineralocorticoids 

118 and glucocorticoids, as well as the production of adrenal androgen precursors and 

119 androgens, a function unique to higher primates [19,20]. The cortex is subdivided into 

120 three functional zones, each responsible for the production of a distinct steroid class due 

121 to the zone-specific expression of steroidogenic enzymes. The outer zone of the adrenal 

122 is termed the zona glomerulosa and expresses enzymes that catalyze the production of 

123 the major mineralocorticoid aldosterone under the control of the renin-angiotensin-

124 aldosterone system. The middle zone, the zona fasciculata, is responsible for the 

125 production of the primary glucocorticoid, cortisol. Finally, the innermost zone, the zona 

126 reticularis, contributes to the formation of C19 androgen precursors including 

127 dehydroepiandrosterone (DHEA) and its sulfate (DHEAS), androstenedione (A4) and 

128 11β-hydroxyandrostenedione (11OHA4) (Fig. 1). The hypothalamic-pituitary-adrenal 

129 (HPA) axis regulates the production of glucocorticoids and adrenal androgen precursors 

130 by the adrenal. In short, the hypothalamus produces corticotropin-releasing hormone 

131 (CRH) that stimulates corticotrope cells in the anterior pituitary to biosynthesize and 

132 release adrenocorticotropic hormone (ACTH) that in turn stimulates the adrenal gland to 

133 produce steroid hormones, specifically DHEA and cortisol [21,22]. Glucocorticoids 
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134 complete the system by having a negative feedback effect on the pituitary, hypothalamus 

135 and the hippocampus, inhibiting further stimulation of the adrenal gland, while there is no 

136 feedback inhibition of the HPA axis by adrenal androgen precursors.

137

138 2.4Overview of gonadal steroidogenesis

139 Steroidogenesis in the gonads is tailored to the production of androgens and estrogens, 

140 with the corpus luteum additionally playing an important role in the production of the major 

141 physiologic progestogen, progesterone. Similar to the zonation of the adrenal, it is the 

142 cell-specific expression pattern of steroidogenic enzymes within each cell type that 

143 dictates steroid output (Fig. 2). Gonadal steroidogenesis is initiated by the development 

144 of the hypothalamic-pituitary-gonadal axis at puberty. The hypothalamus produces and 

145 secretes gonadotropin-releasing hormone (GnRH) in a pulsatile fashion, which in turn 

146 stimulates the production and secretion of luteinizing hormone (LH) from the pituitary. 

147 Androgens and estrogens provide negative feedback at the hypothalamus and pituitary 

148 level to suppress LH in men and women, respectively [23]. Gonadal steroidogenesis is 

149 also active during ‘minipuberty’, a short period of hypothalamic-pituitary-gonadal axis 

150 activation during the neonatal period [24].

151 2.5Biosynthesis of specific steroid classes

152 2.5.1 Mineralocorticoid production in the adrenal zona glomerulosa

153 Enzyme expression in the zona glomerulosa is tailored to produce the C21 

154 mineralocorticoid, aldosterone. CYP11A1 converts cholesterol to pregnenolone, followed 

155 by the HSD3B2-catalyzed conversion of pregnenolone to the ∆4 steroid, progesterone. 

156 HSD3B2 is present in both the mitochondria and ER of zona glomerulosa cells [25,26]. 
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157 Progesterone is subsequently converted to 11-deoxycorticosterone (DOC) by CYP21A2, 

158 which is abundantly expressed in the ER of the zona glomerulosa [26,27]. The lack of 

159 CYP17A1 expression in the zona glomerulosa [25] together with the abundant expression 

160 of HSD3B2 ensures that all steroid intermediates are directed towards aldosterone 

161 biosynthesis. Two isoforms of CYP11B are expressed in the zona glomerulosa, both with 

162 the ability to catalyze the 11β-hydroxylation of DOC yielding corticosterone. CYP11B2, 

163 which is also known as aldosterone synthase, additionally exhibits 18-hydroxylase and 

164 18-methyl oxidase activity, which are required to convert corticosterone to aldosterone 

165 via the 18-hydroxycorticosterone intermediate [26,28,29]. 

166 2.5.2 Glucocorticoid production in the adrenal zona fasciculata

167 The adrenal zona fasciculata is the site of glucocorticoid production. Pregnenolone, 

168 produced from the CYP11A1 catalyzed side-chain cleavage of cholesterol, is converted 

169 to 17α-hydroxyprogesterone (17OHP), the universal precursor of cortisol production, by 

170 HSD3B2 and CYP17A1 17-hydroxylase activity. CYP21A2 subsequently catalyzes the 

171 conversion of 17OHP to 11-deoxycortisol, an obligatory step in the production of 

172 glucocorticoids. Finally, CYP11B1, located in the mitochondria of the zona fasciculata 

173 cells, facilitates the final step in glucocorticoid biosynthesis by catalyzing the conversion 

174 of 11-deoxycortisol to cortisol.

175 2.5.3 Androgen biosynthesis

176 2.5.3.1 The classic androgen biosynthesis pathway in the adrenal zona reticularis 

177 and the gonads
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178 Androgen precursors and active androgens are produced by both the adult adrenal and 

179 gonads by the Δ5 pathway from pregnenolone to DHEA (Fig. 3). This pathway is also 

180 referred to as the ‘classic androgen biosynthesis pathway’. The CYP17A1-catalyzed 17α-

181 hydroxylation of pregnenolone yields 17α-hydroxypregnenolone, which serves as the 

182 preferred substrate for the 17,20-lyase activity of CYP17A1, producing C19 steroids from 

183 C21 precursors [30–32]. It should be noted that the 17,20-lyase activity of CYP17A1 is 

184 dependent on augmentation by cytochrome b5 (CYB5A) in addition to electron transfer 

185 from POR [33]. 

186 The Δ5 pathway is active in the zona reticularis of the adrenal cortex, which only develops 

187 during adrenarche between the ages of 6-10, a process unique to humans and higher 

188 primates. During that time, the development of a distinct zona reticularis is accompanied 

189 by an extreme increase in the adrenal androgen precursor production due to the 

190 decreased expression of HSD3B2 in conjunction with increased CYB5A expression [34–

191 38]. Some of the resulting DHEA is converted to androstenediol by AKR1C3, which 

192 exhibits minor expression in the zona reticularis [39]. However, the majority of DHEA is 

193 efficiently sulfated by the major DHEA sulfotransferase (SULT2A1), which is abundantly 

194 expressed in the zona reticularis [40]. This results in significant DHEAS output and 

195 accounts for DHEAS being the most abundant steroid in circulation (Table 2) [39,41]. 

196 Other Δ5 steroids, e.g. pregnenolone, 17α-hydroxypregnenolone and androstenediol, can 

197 also be released in their respective sulfated form [42–44]. Moreover, DHEA and 

198 androstenediol can all be converted to their corresponding Δ4 products by the low levels 

199 of HSD3B2, yielding A4 and testosterone, respectively. A4 can serve as an additional 

200 substrate for AKR1C3, yielding testosterone [45]. An age-related gradual decrease in 
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201 adrenal androgen secretion and excretion, known as adrenopause, occurs starting in the 

202 fourth decade of life and is associated with a decrease in the zona reticularis cell layer 

203 and cell function. This reaches a minimum by the age of 70, with only about 5-10% of the 

204 peak levels observed in young adulthood [46].

205 Like in the zona reticularis, the Leydig cells of the testes follow the ∆5-pathway due to the 

206 co-expression of CYP17A1 and CYB5A (Fig. 2). However, in the Leydig cells subsequent 

207 metabolism is directed at testosterone biosynthesis due to the absence of SULT2A1 and 

208 the expression of HSD3B2 and HSD17B3. DHEA is then converted to testosterone via 

209 A4 or androstenediol through the action of HSD3B2 and HSD17B3, respectively, with 

210 HSD17B3 playing a key role in testicular androgen biosynthesis [47,48]. AKR1C3 

211 expression has been reported in Leydig cells and may also contribute to testosterone 

212 production [49,50]. Testicular steroid output is predominantly testosterone, with lower 

213 levels of A4 and DHEA also being released into circulation [51–53]. Androgen and 

214 androgen precursor production by the ovary follows a similar route to that of the testes 

215 (Fig. 2).

216 2.5.3.2 Peripheral tissue activation of androgen precursors

217 It should be highlighted that with the exception of testosterone produced by the testes, 

218 the vast majority of C19 steroids produced by the adrenal and ovaries are inactive 

219 androgen precursors. These can, however, subsequently be converted to active 

220 androgens in target cells of androgen action that express the required enzymatic 

221 machinery (Fig. 3) [45]. More specifically, DHEA can be converted to A4 by peripheral 

222 HSD3B1, with A4 serving as the substrate for the production of testosterone by AKR1C3 

223 [54]. Subsequent 5α-reduction of testosterone yields the more potent androgen 5α-
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224 dihydrotestosterone (DHT), with this step therefore serving as a target-specific 

225 amplification of the androgen signal, a pre-receptor activation of testosterone to DHT [45]. 

226 A4 can also be 5α-reduced to 5α-androstanedione prior to conversion to DHT by 

227 AKR1C3, thereby bypassing testosterone (Fig. 3) [45,55]. Indeed, the enzyme steroid 5α-

228 reductase 1 (SRD5A1) catalyzes the 5α-reduction of A4 more efficiently than that of 

229 testosterone [56,57]. This so called “alternate 5α-androstanedione” pathway is favored in 

230 tissues with predominant SRD5A1 expression and in conditions such as castration-

231 resistant prostate cancer in which the expression of SRD5A1 is upregulated and that of 

232 SRD5A2 is downregulated [55,58]. As SRD5A2 does not demonstrate the same substrate 

233 preference, tissues expressing this isoform are thought to follow the more conventional 

234 pathway of conversion to testosterone, prior to 5α-reduction [56]. Moreover, although the 

235 liver undoubtedly makes the major contribution to steroid metabolism, most peripheral 

236 tissues also possess enzymatic machinery for inactivation of androgens (both those 

237 obtained from circulation and those produced from inactive precursors) by phase 1 and 2 

238 metabolism (section 3). This process of peripheral cell specific activation and inactivation 

239 is termed pre- and post-receptor steroid metabolism or steroid ”intracrinology” [45,59–

240 61]. 

241

242 2.5.3.3 The alternative DHT biosynthesis pathway 

243 In selected circumstances, such as CYP21A2 deficiency and during fetal development 

244 (section 2.6), accumulation of progesterone and 17OHP in circulation can lead to the 

245 activation of an alternative pathway of DHT biosynthesis (Fig. 3). This is sometimes 

246 referred to as the “backdoor pathway” to DHT [62]. To enter this pathway, progesterone 
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247 and 17OHP are 5α-reduced by SRD5A1 to yield 5α-dihydroprogesterone and 17α-

248 hydroxydihydroprogesterone, respectively. These are then subsequently converted to 

249 allopregnanolone and 17α-hydroxyallopregnanolone by the 3α-reductase activity of 

250 AKR1C enzymes. Allopregnanolone can then be converted to 17α-

251 hydroxyallopregnanolone, which serves as an excellent substrate for the 17,20-lyase 

252 activity of CYP17A1 [30], yielding androsterone. Androsterone, considered an inactive 

253 metabolite of DHT under normal circumstances, can then be reactivated by the sequential 

254 17β-reduction and 3α-oxidase reactions [63–65]. Androsterone has been shown to be the 

255 principle circulating androgen precursor for the alternative DHT biosynthesis pathway in 

256 the male fetus during the second trimester. Interestingly, placental progesterone has been 

257 suggested to serve as substrate for androsterone biosynthesis in the male fetus via the 

258 alternative pathway which occurs across several non-gonadal fetal tissues [66]. 

259 2.5.3.4 The 11-oxygenated androgen biosynthesis pathway

260 Within the adrenal, A4 can serve as a substrate for CYP11B1, yielding the 11-oxygenated 

261 androgen precursor, 11OHA4 [67], with conversion of testosterone to 11β-

262 hydroxytestosterone (11OHT), also occurring (Fig. 3). However, 11OHA4 is by far the 

263 predominant product due to the significantly higher levels of A4 produced in the zona 

264 reticularis [39]. Notably, the addition of exogenous testosterone does not lead to 

265 increased 11-oxygenated androgen output, thereby confirming that only locally produced 

266 substrates (primarily A4) can be 11β-hydroxylated [68]. Low levels of 11-

267 ketoandrostenedione (11KA4) and 11-ketotestosterone (11KT) have also been reported 

268 in adrenal vein samples and are suggested to result from some HSD11B2 activity in the 

269 adrenal [39]. However, differences in the concentration of 11KA4 measured in the adrenal 
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270 vein and inferior vena cava suggest that 11KA4 is predominantly produced from 

271 conversion of 11OHA4 in peripheral tissue expressing HSD11B2 such as the kidney 

272 [39,69]. 11KA4 in turn serves as a substrate for AKR1C3 expressed in peripheral tissues 

273 such as adipose tissue, yielding 11KT, which binds and activates the human androgen 

274 receptor with an affinity and potency similar to that of testosterone [45,70–72]. Indeed, a 

275 recent study has shown that AKR1C3 catalyzes the conversion of 11KA4 to 11KT with an 

276 8-fold higher efficiency than that of A4 to testosterone, which may account for higher 

277 levels of peripheral activation [73]. Peripheral or intracrine activation of 11-oxygenated 

278 androgens may therefore play a vital role in regulating their physiological activity. 

279 Interestingly, activation/inactivation of glucocorticoids and 11-oxygenated androgens 

280 work in an antiparallel manner, with the 11β-hydroxy derivative being the active 

281 glucocorticoid [74,75] while the 11-keto androgens are more potent than their 11β-

282 hydroxy counterparts [76]. 

283 2.5.4 Progestogen and estrogen biosynthesis by the ovary

284 Steroidogenesis within the ovary is compartmentalized in a cell-specific manner, with the 

285 theca cells mainly producing A4 and the granulosa cells completing the biosynthesis of 

286 17β-estradiol (Fig. 2). Ovarian steroidogenesis originates in the granulosa cells with the 

287 production of pregnenolone and progesterone under the regulation of both LH and FSH. 

288 The resulting pregnenolone and progesterone enter the adjacent theca cells where the 

289 expression of HSD3B2, CYP17A1 and CYB5A results in the production of A4 via DHEA 

290 produced by the Δ5 pathway. Ovarian steroid output varies considerably during the course 

291 of the menstrual cycle – 17β-estradiol is the primary steroid produced during the follicular 

292 phase, while progesterone is the principal steroid during the luteal phase [77–79]. 
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293 In addition to de novo steroidogenesis, it is important to note that the ovary also utilizes 

294 circulating DHEA and A4 of adrenal origin for the biosynthesis of androgens and 

295 estrogens [80]. Suppression of adrenal androgen output by dexamethasone in healthy, 

296 young women with a regular menstrual cycle leads to a 90% decrease in DHEA(S) output, 

297 but also reduces circulating testosterone and DHT concentrations to one third of their 

298 respective baseline concentrations [81]. While A4 can be metabolized to testosterone by 

299 AKR1C3 in the theca cells, the majority diffuses to the granulosa cells where the high 

300 expression levels of CYP19A1 (aromatase) results in the production of estrone. HSD17B1 

301 subsequently catalyzes the conversion of estrone to 17β-estradiol, under the regulation 

302 of FSH. Testosterone diffusing from the theca cells also serves as the substrate for 

303 CYP19A1, directly contributing to 17β-estradiol production. Theca cells also express high 

304 levels of the estrogen sulfotransferase enzyme SULT1E1, which preferentially sulfates 

305 estrone yielding the relatively abundant estrone sulfate measured in circulation [82–84]. 

306 However, quantitatively estrogens circulate at significantly lower levels than androgens. 

307 Indeed, androgen secretion by the theca cells surpasses the secretion of estrogens, while 

308 progesterone is the primary progestogen produced by the granulosa cells [85]. It should 

309 also be noted that the peripheral aromatization of C19 steroids plays an important role in 

310 peripheral estrogen production, particularly following menopause as outlined in section 

311 4.4 below.

312  

313 3.0 Principles of steroid metabolism and excretion

314 Steroids are inherently lipophilic molecules. Metabolic conversions are therefore required 

315 to increase their water-solubility and enable efficient excretion in urine and bile (Table 1). 
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316 This metabolism is traditionally divided into two sequential stages, namely phase 1 and 

317 phase 2 reactions [86]. Phase 1 reactions alter the biological activity and at the same time 

318 add or reveal functional groups that function as targets for subsequent phase 2 reactions. 

319 Phase 2 reactions are conjugation reactions that ultimately inactivate the compound and 

320 increase polarity and water solubility, thereby facilitating urinary and biliary excretion. 

321 Additionally, conjugation with a charged group limits transport over membranes to active 

322 transport, thereby allowing for the concentration of the metabolite on one side [87,88]. 

323 The major phase 1 reactions for steroids are the reduction of the 3-keto-4 motif, the 

324 interconversion of hydroxy- and keto-groups by HSDs/oxoreductases and additional 

325 hydroxylations by CYPs. 

326 Although the liver undoubtedly makes the major contribution to steroid metabolism, most 

327 peripheral tissues also possess enzymatic machinery for aspects of both steroid 

328 activation and subsequent inactivation by phase 1 and 2 metabolism. This localized 

329 enzyme expression controls the local steroid milieu by precursor activation and 

330 inactivation according to tissue-specific needs, a mechanism termed intracellular pre-and 

331 post-receptor metabolism or “intracrinology” [59].

332 While phase 1 and phase 2 reactions are classically believed to be sequential, more 

333 recent studies have shown the metabolism of conjugated steroids by phase 1 enzymes 

334 [89]. Additionally, some steroids can directly undergo phase 2 metabolism without being 

335 subjected to a phase 1 reaction, e.g. testosterone can be directly conjugated at its 17β-

336 hydroxy group and corticosteroids through 21-sulfation [90]. Despite these and other 

337 shortcomings [91], the traditional classification in phase 1 and 2 reactions remains helpful 
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338 to structure the wide range of reactions and this classification is used below to guide the 

339 reader through the metabolism of endogenous steroids. 

340 3.1 Phase 1 metabolism of steroids

341 3.1.1 Steroid A-ring reduction

342 Reduction of the steroid A-ring 3-keto-Δ4 motif is an essential step for the inactivation of 

343 gluco- and mineralocorticoids and controls the peripheral activation and inactivation of 

344 androgens. A-ring reduction consists of two sequential reductions, namely the reduction 

345 of the Δ4-double bond followed by the reduction of the 3-keto group to a hydroxy group 

346 [92] (Fig. 4(a)). This leads to the production of a 3/-hydroxy-5/H motif common to 

347 the biologically inactive, excreted metabolites. Among these, the 5β/3α-metabolites are 

348 referred to as “tetrahydro”, while 5α/3α-metabolites are referred to as “5α-tetrahydro”. 

349 Importantly, 5/-reduction is irreversible, with the stereochemistry of this reduction 

350 playing an important role in regulating the biological activity of androgens (section 4.3.2) 

351 [93].

352 5-Reduction is catalyzed by steroid 5α-reductase (SRD5A) enzymes of which there are 

353 three main isozymes. However, only two of these, SRD5A1 and SRD5A2, function as 

354 genuine steroid 5α-reductases. SRD5A1 is mainly expressed in the liver and peripheral 

355 tissues [94], while SRD5A2 is expressed mainly in male reproductive and genital tissues, 

356 with its disruption leading to disordered sex development in 46,XY individuals [95]. 

357 SRD5A3 appears to have only minor steroid 5-reductase activity, but has been shown 

358 to play an important role in N-linked protein glycosylation [96–98]. In addition, two partially 

359 homologous SRD5A genes have been identified (SRD5A2L2 and GPSN2), but have been 
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360 shown to be involved in the elongation of very long chain fatty acids [99]. Steroid 5-

361 reduction is catalyzed by the aldo-keto-reductase (AKR) family member AKR1D1, which 

362 is primarily expressed in the liver. It is the only human enzyme catalyzing the 5β-reduction 

363 of 3-keto-Δ4 steroids and bile acids [100]. AKR1D1 deficiency leads to severely reduced 

364 or abolished urinary 5β-reduced steroid excretion and hepatic failure [101]. 

365 Due to differential tissue expression patterns, with SRD5A isoforms being widely 

366 expressed in peripheral tissues including the liver and AKR1D1 expression being limited 

367 to the liver, 5-reduced metabolites inform about global metabolism while 5-reduced 

368 metabolites predominantly reflect hepatic reduction only. Moreover, SRD5As and 

369 AKR1D1 exhibit different catalytic efficiencies towards structurally different steroids 

370 [57,100], with the result that 5- and 5-reduced metabolites are produced with different 

371 ratios for different structural classes of steroids. 

372 The second step of the A-ring reduction is the reduction of the 3-keto group to a hydroxy 

373 group. These reactions are catalyzed by members of the aldo-keto reductase family, 

374 namely AKR1C1, AKR1C2, AKR1C3 and AKR1C4. Of these, AKR1C4 is thought to be a 

375 liver-specific enzyme which works in concert with AKR1D1, yielding 5β,3α-metabolites. 

376 The other isozymes are expressed in different peripheral tissue in an tissue-specific 

377 manner [54]. 

378 While 5-reduced steroids can be converted to both their 3- or 3-hydroxy epimers (with 

379 the 3-reduction generally being more efficient), 5-reduced steroids are predominantly 

380 converted to the 3-hydroxy epimer as the 5-reduced bent confirmation of the A/B-ring 

381 sterically does not allow binding in the AKR1C active site for 3-reduction [102,103]. 

382 AKR1C2 is the major isoform for 3-reduction to the 3-hydroxyepimer in peripheral tissue, 
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383 while AKR1C1 is the most important isoform for the formation of the 3-hydroxyepimer 

384 [102]. Moreover, AKR1C enzymes are multifunctional and also function as 20- and 17-

385 HSDs, with different efficiencies, stereoselectivities and tissue specific expression [104]. 

386 For a comprehensive review of these enzymes see [54].

387 3.1.2 Hydroxysteroid dehydrogenation and reduction

388 The interconversion of hydroxy- and keto-groups (Fig. 4(b-d)) at positions 11, 17 and 20, 

389 greatly contribute to the regulation of steroid activity via their receptors. These reactions 

390 are catalyzed by members of the short-chain dehydrogenase/reductase (SDR) 

391 superfamily and the AKR superfamily using NAD(P)+/H and are typically reversible. While 

392 most of these enzymes are bidirectional in vitro, in vivo directionality is dictated by co-

393 factor affinity, cellular redox status and pH [54,105–107]. 

394 3.1.2.1 11-hydroxysteroid dehydrogenases 

395 Two isoforms of HSD11B play a key role in regulating glucocorticoid inactivation and 

396 reactivation by catalyzing the interconversion of 11-hydroxy- and 11-ketosteroids (Fig. 

397 4(b)). Thereby, they modulate systemic and tissue-specific glucocorticoid action [74,108]. 

398 Additionally, they are involved in the regulation of mineralocorticoid and 11-oxygenated 

399 androgen activity.

400 HSD11B1 is a bidirectional enzyme, but primarily catalyzes the reduction of 11-

401 ketosteroids in vivo as colocalized hexose-6-phosphate dehydrogenase (H6PDH) 

402 regenerates NADPH required for its cortisone reductase activity, mainly activating 

403 cortisone to cortisol [109]. Conversely, HSD11B2 functions exclusively as an oxidative 

404 enzyme, inactivating cortisol to cortisone [108]. Both isoforms are involved in the 
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405 metabolism of glucocorticoids and 11-oxygenated androgens as described in sections 

406 4.2.1 and 4.3.2. Moreover, both HSD11B isoforms also act on 7-oxygenated C19 steroids 

407 whereby HSD11B1 functions as an epimerase interconverting the 7- and 7-hydroxy-

408 stereoisomers via a 7-keto-intermediate, while HSD11B2 only oxidizes the 7-hydroxy-

409 stereoisomer [110,111].

410 3.1.2.2 17-hydroxysteroid dehydrogenases

411 Enzymes from the SDR and AKR superfamilies regulate the activity of androgens and 

412 estrogens by catalyzing the interconversion of bioactive 17-hydroxy- and inactive keto- 

413 containing forms (Fig. 4(c)). Excreted metabolites are therefore predominantly in the keto-

414 form [112]. To date, 14 human enzymes with 17-HSD/oxoreductase activities have been 

415 identified [105,106,113]. Generally, these enzymes are multi-functional and often have 

416 overlapping substrate specificities and expression patterns, allowing for redundant 

417 enzymes to cover in case of deficiency of another enzyme [107,114]. However, certain 

418 enzymes have been identified as major catalysts for specific reactions in androgen and 

419 estrogen metabolism as described in sections 4.3.2 and 4.4.1. 

420 3.1.2.3. 20-reduction

421 Glucocorticoids and progesterone can be modified by 20-reduction with α- or β-

422 stereochemistry prior to excretion (Fig. 4(d)). Of note, the direct 20α-reduction of 

423 progesterone terminates its progestogenic activity and is predominantly catalyzed by 

424 AKR1C1 [104,115]. 20-reduction of glucocorticoids is primarily observed for downstream 

425 tetrahydrometabolites as described in section 4.2.2.

426 3.1.3 Cytochrome P450-catalyzed steroid oxidations 
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427 In addition to the steroidogenic CYP enzymes described in section 2.2, hepatic 

428 xenobiotic-metabolizing members of the CYP superfamily are able to modify steroid 

429 hormones and generate a plethora of minor steroid metabolites [116]. The reaction 

430 repertoire of these enzymes for steroids includes hydroxylation reactions, further 

431 oxidations, and C-C bond cleavages [9,10]. Hepatic CYPs are promiscuous enzymes 

432 accepting a wide range of substrates with low stereo- and regioselectivity compared to 

433 their steroidogenic counterparts. Therefore, several CYPs can contribute to the same 

434 reaction and the high variation of their expression levels can make it difficult to assess 

435 the enzyme(s) making the dominant contribution to a specific reaction, with at least 17 

436 hepatic CYPs potentially participating in the metabolism of steroids [116–118].

437 A high inter- and intra-individual variability of hepatic CYP activity results from the strong 

438 potential for induction by pharmacological and natural compounds, the high frequency 

439 and number of polymorphisms, and promoter and copy number variants [119,120]. In 

440 addition, differential expression profiles of functionally different isoforms of the CYP3A 

441 subfamily during prenatal and early postnatal life complicate the assessment of hepatic 

442 steroid metabolism. CYP3A4 is the most abundant CYP expressed in the adult liver 

443 [121,122] and makes the major contribution to steroid metabolism. CYP3A5 catalyzes a 

444 comparable range of reactions as CYP3A4 but its role in drug and steroid metabolism is 

445 limited due to its generally low activity and expression in a relatively small percentage of 

446 individuals [123–125]. CYP3A7 is the major CYP3A isoform in prenatal and early 

447 postnatal life and differs from CYP3A4 in terms of expression and function. CYPs also 

448 contribute to steroid metabolism in several extra-hepatic tissues, including the brain, 

449 breast and prostate [126–129].
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450 3.1.3.1 Steroid hydroxylations

451 The hydroxylation by hepatic CYPs inactivates the steroids and increases their polarity 

452 and water solubility. In some cases, the additional hydroxy groups also serve as sites for 

453 conjugation by phase 2 metabolism. CYP3A4-catalyzed 6-hydroxylation is the most 

454 common hydroxylation for 4 steroids, e.g. cortisol (Fig. 4(e)), while 6-hydroxylated 

455 pregnanolones are quantitatively important urine steroid metabolites during pregnancy. 

456 Tetrahydro and hexahydro  C21 steroids (e.g. THE and the cortolones) hydroxylated at 

457 1- and 6α- are quantitatively important during the perinatal period [130]. The enzymes 

458 responsible for these hydroxylations is uncertain. The differential substrate specificity, 

459 regioselectivity and catalytic activity of CYP3A4 and CYP3A7 and the dynamic expression 

460 pattern of the two isoforms throughout fetal development and the first year of life lead to 

461 substantial changes in the hepatic steroid metabolome during this period of life. CYP3A7 

462 is highly expressed in fetal liver and up to 6 months postnatal but expression levels 

463 gradually decrease over this time. CYP3A4 levels are low in the fetus and newborn 

464 compared to the adult. Thus, there is a switch from CYP3A7 to CYP3A4 during the first 

465 months after birth. Additionally, the total liver CYP3A content is significantly higher 

466 prenatally followed by a reduction after birth reaching plateau at 6 months [131,132].

467 In terms of 5 steroids, e.g. DHEA, 16α-hydroxylation is the most frequent hydroxylation 

468 detected in adults followed by 7α-hydroxylation (Fig. 4(f)), while 16-, 21-, 18- and 15-

469 hydroxylation are also observed in neonates [133–136].

470 Interestingly, hepatic CYPs can also perform some reactions that are classically catalyzed 

471 by steroidogenic CYPs (11β- 17- and 21-hydroxylation) [137–139]. In fact, CYP2C19 

472 and CYP3A4 can 21-hydroxylate progesterone and pregnenolone, possibly partially 
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473 compensating mineralocorticoid deficiency in CAH due to 21-hydroxylase deficiency; 

474 however, the two enzymes are not capable of catalyzing the 21-hydroxylation of 17OHP 

475 to 11-deoxycortisol [140]. 

476 Estrogens can be hydroxylated in various different positions by a number of CYPs [141]. 

477 The formation of catecholestrogens by 2- or 4-hydroxyation are the dominant reactions 

478 (Fig. 4(g)). However, during pregnancy, estriol, which has a 16-hydroxygroup, is the 

479 main metabolite of fetal DHEA. Estriol predominately originates from the aromatization of 

480 16-hydroxy C19 steroids by the placenta (section 2.6.2). 

481 3.1.3.2 Additional steroid oxidations

482 CYPs can further oxidize hydroxy groups to their respective keto, aldehyde and carboxylic 

483 acids. For example, 6-keto metabolites can be produced from their hydroxy precursors 

484 [141]. 21-carboxylic acid formation from 21-hydroxysteroids is also possible (Fig. 4(h)) 

485 [142–146].

486 3.1.3.3 C-C bond cleavages

487 CYPs can also catalyze oxidative C-C bond cleavages in multi-step reactions [10]. 

488 Examples for such reactions from steroid biosynthesis are the side-chain cleavage of 

489 cholesterol catalyzed by CYP11A1 and the 17,20-lyase activity of CYP17A1 producing 

490 C19 steroids from C21 substrates (section 2.5.3) [113]. Hepatic CYPs may employ similar 

491 mechanisms to catalyze the 17-20 cleavage of 17α,21-dihydroxypregnanes (Fig. 4(i)). 

492 3.1.3.4 Contributions of the gut microbiome

493 Metabolism by the gut microbiome is relevant for C17-deoxy corticosteroids, e.g. 

494 mineralocorticoids and their precursors, which have a high biliary excretion [147]. The 
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495 resulting metabolites can be reabsorbed into the portal system and undergo further 

496 metabolism in the liver and kidney before being excreted with the urine. Reactions 

497 catalyzed by different strains of gut bacteria include (1) A-ring reduction, (2) reduction of 

498 the Δ5-double bond, (3) reduction of 17-keto estrogens and 17-keto androstenes, (4) 

499 17,20-cleavage of 17α-hydroxysteroids, and (5) 16- and 21-dehydroxylation (Fig. 4(j)) 

500 [148–156]. Additionally, reductive 20/-HSDs are active in gut bacteria [151]. 

501 Unsurprisingly, steroid metabolism by gut bacteria has been shown to be influenced by 

502 the administration of antibiotics [157]. 

503 3.2Phase 2 metabolism of steroids

504 The classic phase 2 conjugation reactions – sulfation and glucuronidation – increase the 

505 polarity and water solubility of the steroids and thereby facilitate their excretion and 

506 concentration in the urine. Mechanistically, these conjugation reactions proceed via two 

507 subsequent, enzymatically catalyzed reactions: (1) the activation of the moiety to be 

508 attached and (2) the transfer of the moiety from the activated donor onto a hydroxy group 

509 of the steroid. While the conjugated product is generally considered to be biologically 

510 inactive, rare exceptions have been identified [91]. Importantly, steroid sulfation is 

511 reversible and sulfated steroids can be hydrolyzed to free steroids by STS, while 

512 glucuronidation is irreversible in humans, with the exception of the activity of some gut 

513 bacteria (section 3.1.3.4). Notably, bis-conjugation with the same (e.g. bis-sulfation) [158–

514 162] or two different groups (e.g. sulfate and glucuronic acid) are possible [163]. Other 

515 conjugation reactions include the methylation of catechol estrogens, conjugation with 

516 cysteine or glutathione, and esterification with fatty acids as outlined below.

517 3.2.1 Steroid sulfation and desulfation
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518 Sulfation and desulfation play an essential role in mediating the activity of selected 

519 steroids, specifically Δ5 steroids and estrogens, as has been comprehensively reviewed 

520 recently [40]. Sulfation is the result of two consecutive enzymatic reactions. Firstly, the 

521 inert sulfate anion is activated by conversion to the universal sulfate donor 3’-phospho-

522 adenosine-5’-phosphosulfate (PAPS), which is catalyzed by two human PAPS synthase 

523 isoforms, PAPSS1 and PAPSS2 [164]. Secondly, the sulfate moiety is transferred onto 

524 hydroxy or amino groups by sulfotransferases (SULTs) whereby stereochemistry is 

525 retained (Fig. 5(a)). Sulfation is of particular relevance for 5 steroids which are almost 

526 exclusively excreted as their sulfates. Five cytoplasmic SULTs are involved in the 

527 sulfation of steroids in humans: SULT1A1, SULT2E1, SULT2A1 and two isoforms of 

528 SULT2B1 (SULT2B1a and SULT2B1b) [40,165]. These SULTs have overlapping 

529 substrate spectra, but the major enzymes responsible for the sulfation of selected steroids 

530 have been identified and are presented in section 4 below.  

531 Notably, although the contribution of bis-sulfates to the steroid metabolomes of urine, 

532 blood and bile was first established in the 1960s [159,160,166–168], interest in these 

533 species has only recently re-emerged with the development of new methodological 

534 approaches [161,169]. 

535 Importantly, sulfation is reversible and unconjugated bioactive steroids can be 

536 regenerated from their sulfates by STS, which is ubiquitously expressed in all tissues [40]. 

537 STS activity is upregulated in several steroid-dependent cancers [40] and has been 

538 evaluated as drug target [170,171]. The 17- and 20-sulfates of steroid bis-sulfates are 

539 not substrates for STS [172].

540 3.2.2 Steroid glucuronidation
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541 Glucuronidation makes a substantial contribution to the phase 2 metabolism of Δ4 

542 steroids. UDP-glucuronic acid is the activated donor molecule for glucuronidation. 

543 Subsequently, the glucuronic acid is coupled with a steroid hydroxy group leading to the 

544 formation of the steroid β-D-glucuronide, whereby the stereochemistry of the steroid in 

545 the respective position is preserved (Fig. 5(b)) [173,174]. These reactions are catalyzed 

546 by enzymes of the UGT-glucuronosyltransferase superfamily (UGTs), with the UGT1A 

547 and UGT2B subfamily catalyzing the glucuronidation of steroids [175]. These UGTs are 

548 expressed in the liver, as well as in a range of extrahepatic tissues [176,177]. A-ring 

549 reduced steroid metabolites are predominantly excreted as 3-glucuronides. Notably, the 

550 formation of linked di-glucuronides and bis-glucuronides is also possible [178].

551 3.2.3 Methylation of catecholestrogens

552 The O-methylation of catechols plays an important role in the phase 2 metabolism of 

553 estrogens (section 4.4.1) and is catalyzed by the enzyme catechol-O-methyltransferase 

554 (COMT) [179]: COMT methylates 2- and 4-hydroxyestrogens, thereby producing the so-

555 called methoxyestrogens [180]. The donor molecule for the methyltransfer is S-

556 adenosylmethionine, which is synthesized from methionine and ATP. COMT primarily 

557 methylates the 2 or 4 position of the catechol substrate [181,182]. The highest levels of 

558 COMT are found in the liver, brain, kidney, adrenal and lungs [183]. While methylation 

559 plays an important role in inactivating catecholestrogens, this phase 2 conjugation 

560 reduces water solubility as opposed to the classic phase 2 reactions described above 

561 [91].

562 3.2.4 Steroid thioether formation
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563 Cysteine conjugates of androgens, cortisol and progesterone have recently been 

564 detected in human urine and plasma [184–186]. The authors proposed a metabolic 

565 pathway starting with a dehydrogenation of the steroid in the liver [187], followed by 

566 glutathione S-conjugation of the steroid and subsequent extracellular degradation of the 

567 glutathione moiety leading to a cysteine conjugate which is excreted.  

568 3.2.5 Fatty acid esterification of steroids

569 Although the physiological relevance has yet to be determined, fatty acid esterification of 

570 pregnenolone, DHEA and 5-androstene-3,17-diol has been described [188,189]. 

571 Plasma lecithin:cholesterol acyltransferase located on high-density lipoproteins can 

572 acylate steroids using acyl-CoA as donor [190]. The steroid fatty acid ester can then be 

573 transferred to other lipoproteins and be taken up by peripheral cells via lipoprotein 

574 receptors [191,192]. Additionally, steroids can be esterified with fatty acids in peripheral 

575 tissues [193].

576 3.3 Steroid excretion

577 Steroids are excreted predominantly as their conjugates in the urine and bile, with urine 

578 excretion accounting for approximately 80% of excretion following exogenous 

579 administration [194]. The clearance of steroid glucuronides generally proceeds faster than 

580 the clearance of steroid sulfates [195], presumably due to the irreversible nature of 

581 glucuronidation in humans.

582 3.3.1 Urinary steroid excretion

583 In the kidney, steroid conjugates are transported from the blood filtrate over the epithelium 

584 into the lumen of the nephron. Cellular uptake is mediated by organic anion symport or 
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585 exchange. The efflux from the cell into the lumen is carrier-mediated and makes use of 

586 an electrochemical gradient [196]. The active nature of transport across the epithelial cells 

587 allows for the concentration of steroid conjugates in the lumen. Urinary excretion of 

588 unconjugated steroids is low, accounting for only 5-10% of the total urine steroid pool. 

589 The urine metabolomes of all classes of steroids will be discussed in detail in section 4. 

590 Interestingly, enzymes with 20β-HSD and 17,20-lyase activity have been recently 

591 identified in a microbial inhabitant of the urinary tract [197]. 

592 3.3.2 Biliary excretion of steroids

593 Steroids passing the canalicular membrane of the hepatocyte are excreted in the bile. 

594 The rate of biliary excretion determines the quantitative contribution of the gut microbiome 

595 to the metabolism of the respective steroid. Excretion with the feces is low as steroids are 

596 reabsorbed in the gut [198]. 17-deoxysteroids (mineralocorticoids and precursors) have 

597 high biliary excretion as opposed to 17-hydroxy C21 steroids like cortisol [147]. Steroid 

598 conjugates represent the major fraction of biliary excreted steroids [147,199–202] and the 

599 dominance of bis-sulfates [168] led to the hypothesis that bis-sulfates originating from the 

600 liver are preferably excreted with the bile, while glucuronides preferably undergo renal 

601 excretion [200]. Biliary excretion is increased during pregnancy [201,203,204] and an 

602 equal quantitative contribution of urinary and fecal excretion has been suggested during 

603 the newborn period [204]. The steroid metabolome in the feces comprises unconjugated, 

604 mono- and bis-sulfated steroids [203] and up to 90% of steroids in feces during pregnancy 

605 are unconjugated [205]. Notably, estrogens seem to undergo higher biliary excretion than 

606 other steroids, but also higher reabsorption leading to low fecal excretion [194,206]. Gut 

607 microbiota have hydrolase activity for steroid conjugates and glucuronides in particular 



29

608 [148], leading to the high proportion of unconjugated steroids compared to bile, and 

609 conjugate hydrolysis might be a prerequisite for reabsorption [207].

610

611 3.3.3. Salivary steroids 

612 Steroids are also excreted in saliva. Indeed, the measurement of salivary steroids is 

613 becoming an emerging tool for the diagnosis and treatment monitoring of steroidogenic 

614 disorders due to the ease of saliva collection [208]. Unconjugated steroids passively 

615 diffuse over the membranes of the acinar cells in the salivary glands independent of 

616 salivary flow rate [209]. Their levels in saliva therefore provide a measure of their free  

617 concentrations in serum [210]. However, steroids can be subject to metabolism while 

618 crossing the acinar cells, which affects their levels in saliva. For example, the presence 

619 of HSD11B2 in the parotid gland makes salivary cortisone a useful marker for serum free 

620 cortisol and adrenal stimulation [211–213]. Conjugated steroids enter saliva by 

621 ultrafiltration through the extracellular space between the acinar cells and their salivary 

622 levels are highly flow rate dependent as has been shown for DHEAS [209].

623

624 4 Serum and urine steroid metabolomes

625 4.1The mineralocorticoid metabolome

626 The primary mineralocorticoid in circulation is aldosterone. It is estimated that 

627 approximately one third of aldosterone circulates in the free form, with the remainder 

628 bound to corticosteroid binding globulin (CBG) and serum albumin [214]. Serum 

629 mineralocorticoid assays primarily focus on the measurement of aldosterone only, 
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630 although the precursors DOC, corticosterone and 18-hydroxycorticosterone are also 

631 detectable in serum (Table 2) [215].

632 Aldosterone, as well as its immediate precursors, contain a Δ4 moiety. Metabolism of 

633 these steroids is therefore primarily by sequential 5α/β- and 3α-reductions in the liver (Fig. 

634 6). DOC and aldosterone are both preferentially 5β-reduced by AKR1D1 followed by 3α-

635 reduction yielding the tetrahydro metabolites, tetrahydrodeoxycorticosterone (THDOC) 

636 and tetrahydroaldosterone (THAldo), respectively. Similarly, 18-hydroxycorticosterone is 

637 converted to the tetrahydro metabolite, 18-hydroxy-tetrahydro-11-dehydrocorticosterone 

638 (18OHTHA), but this requires the additional conversion of the 11-hydroxy group to an 11-

639 keto group, a reaction catalyzed by HSD11B2 [216–218]. Corticosterone can be 

640 converted to 11-dehydrocorticosterone by the action of HSD11B2 in the kidney, which 

641 prevents the activation of the mineralocorticoid receptor (MR) by corticosterone though 

642 corticosterone’s MR-activating potency is considerably lower than that of aldosterone 

643 [219]. Unlike the other mineralocorticoid precursors, both corticosterone and 11-

644 dehydrocorticosterone can either be 5α- or 5β-reduced, prior to 3α-reduction leading to a 

645 tetrahydro and a 5α-tetrahydro metabolite for each. These are tetrahydro-11-

646 dehydrocorticosterone (THA) and 5α-tetrahydro-11-dehydrocorticosterone (5α-THA) for 

647 11-dehydrocorticosterone, and tetrahydrocorticosterone (THB) and 5α-

648 tetrahydrocorticosterone (5α-THB) for corticosterone, the latter being dominant (Fig. 6). 

649 Importantly, during neonatal life, THA, 5α-THA and the polar metabolite 6-hydroxy-THA 

650 are the more relevant corticosterone metabolites [130]. As with most steroid metabolites, 

651 the majority of these are subsequently glucuronidated in the liver and excreted in urine 

652 [220–222]. Aldosterone is preferentially 18-glucuronidated in the liver by UGT2B7 and 
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653 UGT1A10 [223]. UGT2B7 also efficiently conjugates 5α-dihydroaldosterone and THAldo, 

654 while UGT2B4 glucuronidates only THAldo [224]. It should, however, be noted that 

655 aldosterone is also glucuronidated directly to aldosterone-18β-glucuronide within the 

656 kidney, which has been proposed to be catalyzed by UGT2B7 [225]. Indeed, it has been 

657 estimated that aldosterone-18β-glucuronide and THAldo-glucuronides contribute 5–15% 

658 and 15–40% towards the daily urinary excretion of aldosterone [221,226]. It has also been 

659 found that THAldo-glucuronides are consistently five-fold more prevalent than 

660 aldosterone-18β-glucuronide irrespective of sodium intake [221]. Finally, it should be 

661 noted that enzymes expressed by anaerobic bacteria in the human gut have been shown 

662 to be able to convert aldosterone to THAldo, 3β,5α-THAldo, 3α,5α-THAldo as well as 20β-

663 dihydroaldosterone in a species-specific manner [150]. Biliary excretion and metabolism 

664 by the gut microbiome is also relevant for the 17-deoxy mineralocorticoid precursors and 

665 their metabolites as described in section 3.1.3.4 [227].

666

667 4.1 The glucocorticoid metabolome

668 4.2.1 Cortisol and cortisone interconversion

669 The primary active glucocorticoid in circulation is cortisol, which is produced by the 

670 adrenal cortex (section 2.5.2). Inactivation of cortisol to cortisone, which cannot activate 

671 the glucocorticoid or the mineralocorticoid receptor (MR), subsequently occurs in 

672 peripheral mineralocorticoid target tissue, such as the kidney, the colon and the salivary 

673 glands all of which express HSD11B2 [74]. HSD11B2 converts cortisol to cortisone to 

674 protect the MR from activation by cortisol, thus allowing the dedicated MR agonist 
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675 aldosterone to bind [228–231]. The placenta is another important tissue expressing 

676 HSD11B2 as to inactivate maternal cortisol, thereby limiting fetal exposure [74].

677 Cortisone is in-turn reactivated to cortisol by the action of HSD11B1 expressed 

678 predominantly in the liver, as well as some peripheral tissues such as adipose tissue, 

679 muscle, skin and bone [74,232–235]. Although the ratio of cortisol to cortisone remains 

680 relatively constant in circulation, studies with radiolabeled tracers have shown that there 

681 is constant interconversion of cortisol and cortisone [236]. Tissue-specific expression of 

682 HSD11B1 allows for local intracellular cortisol reactivation independently of circulating 

683 cortisol levels [74]. Interestingly, HSD11B1 expression is low/undetectable at birth, but 

684 thereafter increases rapidly, with adult levels reached after 6-12 months [237]. As a result, 

685 cortisone and the resulting 11-keto-metabolites (e.g. tetrahydrocortisone) are 

686 substantially increased during the neonatal period [74].

687 While HSD11B1 can function bi-directionally in vitro, it acts predominantly as a reductase 

688 in vivo due to localized co-expression on the ER membrane with H6PDH, which produces 

689 NADPH that drives the reductase activity of HSD11B1. A deficiency of H6PDH therefore 

690 leads to an impairment of HSD11B1 reductive function and apparent cortisone reductase 

691 deficiency [238]. 

692 A vital aspect to consider when measuring cortisol and cortisone is their diurnal secretion 

693 rhythm [239]. This follows a distinct pattern with nadir concentrations around midnight 

694 and the highest levels observed between 3 and 5 am, although the exact timings can 

695 show inter-individual variability [240–242]. Any healthy individual’s serum cortisol 

696 concentration will be significantly higher in the morning than at midnight. This rhythm can 

697 be lost in times of severe illness or stress, with significant increases in circulating cortisol 
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698 throughout the entire 24-h period observed in patients with sepsis and during surgical 

699 procedures [243,244]. To account for the diurnal rhythm of glucocorticoids, when 

700 assessing serum glucocorticoid concentrations, comparator samples should be drawn at 

701 the same time of day. With urine collections, the time of collection is similarly important – 

702 a one-off spot urine collected in the morning will differ greatly from a spot urine collected 

703 in the afternoon, a problem that can be overcome by 24-h urine collections, which provide 

704 output data for the entire 24-h period independent of diurnal variation.

705 The majority of cortisol circulates bound to proteins, with 80-90% bound to CBG. CBG 

706 also binds other steroids such as cortisone, 17OHP, progesterone, DOC, corticosterone, 

707 and, to a lesser degree, to aldosterone, testosterone and 17β-estradiol. The remaining 

708 cortisol is either bound to albumin (5-10%) or circulates in its free (active) form (<10%) 

709 [245–247]. 

710 The serum levels of the glucocorticoid precursors, progesterone, 17OHP and 11-

711 deoxycortisol are all ≤10nM in the healthy population and therefore significantly lower 

712 than that of cortisol (ranging from 100-600nM) and cortisone (ranging from 30-100nM) 

713 (Table 2). The concentrations of cortisol, cortisone and 11-deoxycortisol are similar in 

714 men and women, though women who have an increased estrogen pool due to oral or 

715 transdermal contraceptives or pregnancy, have increased total serum cortisol due to an 

716 increase in CBG (and in pregnancy, also an increase in total cortisol production from the 

717 22nd week of gestation onwards) [248–250].

718 4.2.2 Downstream glucocorticoid metabolism

719 As with all steroids containing the Δ4 steroid moiety, the dominant first steps in the 

720 metabolism of glucocorticoids is the 5α/5β-reduction in the liver (section 3.1.1). 
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721 Interestingly, while 17OHP and cortisol can be either 5α- or 5β-reduced, 11-deoxycortisol 

722 and cortisone are predominantly 5β-reduced [108]. All products are subsequently 3α-

723 reduced yielding the respective tetrahydro or 5α-tetrahydro metabolites (Fig. 7), which 

724 are detectable in urine. A number of the tetrahydro metabolites can also be further 

725 metabolized by 20α- or 20β-HSDs [251,252]. Of quantitative importance is the 20α/β-

726 reduction of tetrahydrocortisol (THF), yielding the so called cortols (α- and β-cortol), and 

727 that of tetrahydrocortisone (THE), which yields the equivalent cortolones (α- and β-

728 cortolone) [253]. While all four members of the human AKR1C enzyme subfamily can 

729 catalyze the reduction to the 20-hydroxy group, AKR1C1 is the predominant 20-

730 ketosteroid reductase in human [104]. Although a 20-HSD reducing cortisone in 

731 zebrafish has been characterized as a member of the SDR family [254] and carbonyl 

732 reductase 1 has been described a relevant 20-HSD for cortisol in humans [255], the 

733 human enzyme(s) responsible for the formation of the 20-hydroxy isomers of the cortols 

734 and cortolones has not yet been identified. Cortisone and cortisol reduced at 20- and 

735 20- while retaining the 4 moiety are also excreted in significant amounts, i.e. 20(and)-

736 dihydrocortisone and 20-(and)-dihydrocortisol [256].

737 THF and THE can also be subject to an elusive side-chain cleavage reaction not 

738 catalyzed by CYP17A1, producing C19 metabolites of glucocorticoid origin. Thereby, 

739 glucocorticoids contribute predominantly to urinary excretion of 11β-

740 hydroxyetiocholanolone and 11-ketoetiocholanolone. While 5α-THF is also a substrate 

741 for this side-chain cleavage reaction, this reaction is catalyzed less efficiently [257]. As a 

742 result, the glucocorticoid contribution to urine 11β-OHAn is very low in healthy individuals, 
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743 with the majority originating from the metabolism of the androgen 11OHA4 (Section 4.3.2) 

744 [258]. 

745 Cortisol can also be 6β-hydroxylated by CYP3A4 expressed in the liver, resulting in 6β-

746 hydroxycortisol (6β-OHF) [259,260]. Orally administered hydrocortisone results in 

747 relatively increased circulating 6β-OHF, in comparison to the other GC metabolites, due 

748 to the hepatic first pass effect after the oral ingestion. 18-Hydroxycortisol is also a product 

749 formed in zona fasciculata of the adrenal, with the minor downstream product 18-

750 oxocortisol also being produced. These metabolites are often referred to as “hybrid 

751 steroids” as they require enzymatic machinery from both the glucocorticoid and 

752 mineralocorticoid pathways [261–263]. They are particularly important in patients in 

753 glucocorticoid remediable aldosteronism or with aldosterone-producing adenomas 

754 associated with KCNJ5 mutations [261,264–272]. Hydroxylation of the tetra- and 

755 hexahydro-metabolites of cortisol (e.g., THE and the cortolones) at 1- and 6α-carbon 

756 position is quantitatively important in the neonatal period. [130]. The glucocorticoid 

757 precursor 17OHP can be converted to 17α-hydroxypregnanolone (17HP) via 5β-

758 reductase and 3αHSD activities. The subsequent 20α-reduction of 17HP yields the 

759 metabolite pregnanetriol (PT, 5β-pregnane-3α,17α,20α-triol).

760 The majority (>90%) of the glucocorticoid metabolites described above are 

761 glucuronidated in the liver prior to urinary excretion as mono-glucuronides with glycosidic 

762 bonds added at positions 3 or 21. UGT2B7 has been shown to efficiently catalyze the 

763 conjugation of glucocorticoids [224]. Metabolites retaining the 4 moiety are excreted to 

764 a greater degree unconjugated. Two studies report unconjugated excretion of the 

765 following individual steroids: cortisol (30%), cortisone, 20DHE, 20DHE, 20DHF (40-
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766 60%); 20DHF, 6-OH-cortisol, 6-OH-E and 18-OH-cortisol (80-100%) [273,274]. Urine 

767 free cortisol, i.e. the free fraction of total, non-metabolized urine cortisol, is commonly 

768 measured in clinical chemistry laboratories for the diagnosis of Cushing’s syndrome [275] 

769 whereas GC-MS measures total urine cortisol following deconjugation.

770 4.3 The androgen metabolome

771 4.3.1 Androgens in circulation

772 Androgens and their precursors are derived from both the adrenal cortex and the gonads 

773 as described in section 2.5.3 above. It is important to note the that circulating androgen 

774 metabolome consist of both active androgens and androgen precursors, with both of 

775 these contributing to androgen action in target tissues [45]. Downstream metabolites can 

776 also be measured in circulation [60]. The best-known circulating androgen in both men 

777 and women of reproductive age is testosterone (Table 2). Circulating testosterone 

778 concentrations in men are approximately 10-fold higher than those of women, due to the 

779 dedicated biosynthesis in the testes, together with a very minor contribution from the 

780 adrenals (section 2.5.3.1). Conversely, female androgens are equally derived from the 

781 adrenal glands and the ovaries (section 2.5.3.1), which are each estimated to contribute 

782 25% towards the circulating levels of testosterone in both pre- and postmenopausal 

783 women. The remaining 50% originates from the peripheral conversion of androgen 

784 precursors such as A4 to testosterone [276–278]. Androgen precursors in circulation 

785 include DHEA, its sulfate ester DHEAS, A4, 11OHA4, androstenediol and androstenediol 

786 sulfate. In fact, the circulating levels of DHEAS dwarf those of any other steroid in 

787 circulation (Table 2) and DHEAS is the only human steroid that circulates in micromolar 

788 concentrations. However, it is primarily thought to serve as an inactive waste product of 
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789 adrenal steroidogenesis, produced to prevent an excessive androgen load [39,40,279]. 

790 The production of adrenal androgen precursors increases at adrenarche at 6-9 years of 

791 age, peak between 20 to 30 years of age, and subsequently decline gradually with age 

792 (section 2.5.3.1). Gonadal androgen production is initiated for a short period of time during 

793 minipuberty in infancy, but then remains dormant until puberty. Following full initiation at 

794 puberty gonadal androgen production decreases significantly after menopause in women, 

795 while in men the testicular output of testosterone gradually decreases with age, resulting 

796 in significantly lower combined androgen levels in men aged 60 and over [24,280–282]. 

797 In women, testosterone and A4 demonstrate cyclic changes in concentration during the 

798 course of the menstrual cycle due to the ovarian contribution, with levels peaking mid-

799 cycle [283,284].  

800 Within circulation, most active sex steroids are bound to the plasma proteins sex hormone 

801 binding globulin (SHBG) or albumin and only a small fraction (1-2%) circulates unbound, 

802 which is the only form in which testosterone is accessible to the target tissues. Sex 

803 steroid-binding plasma proteins, therefore, play a key role in the regulation of androgen 

804 action. SHBG binds sex steroids (including active androgens and estrogens) with high 

805 affinity (nanomolar ranges) and specificity [285–287]. Although albumin binds all 

806 unconjugated steroids with low affinities (micromolar ranges), it makes a significant 

807 contribution to steroid binding due to its high abundance [45,287]. While SHBG binds the 

808 active androgens DHT and testosterone with high affinity, the affinity of SHBG for 

809 androgen precursors such as DHEA is substantially lower. Moreover, the conjugated 

810 precursor, DHEAS, circulates only in its free form.
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811 While the levels of 11-oxygenated androgens and their precursors have been shown to 

812 be significantly elevated in patients with polycystic ovary syndrome (PCOS) and 21-

813 hydroxylase deficiency [41,69], one study reported that the circulating levels of 11KT were 

814 also higher than that of testosterone in a healthy female control group (BMI 21.2–26.1 

815 kg/m2) [41]. This and other recent findings have led some to suggest that 11KT may in 

816 fact be the most physiologically relevant androgen in women, though more work is 

817 needed to investigate this [288]. However, although multiple studies have measured the 

818 circulating concentrations of 11-oxygenated androgens in healthy control groups, there 

819 are significant variations in the levels reported and as such, no reference ranges have 

820 been established to date [39,41,68,69,289]. Nonetheless, it is clear that 11OHA4, the 

821 major 11-oxygenated androgen precursor produced by the adrenal, circulates at higher 

822 levels than A4. 11KA4 is the next most abundant 11-oxygenated androgen precursor in 

823 circulation (Table 2) [39,41,68,69,289]. Significantly, a recent study has revealed that 

824 unlike the classical androgens, the circulating levels of 11-oxygenated androgens do not 

825 decrease with age in women, suggested to be due to the involution of the zona reticularis 

826 with age and the appearance of areas co-expressing HSD3B2 and CYB5A [289]. 

827 4.3.2 Downstream androgen metabolism

828 The contributions of androgen precursors of adrenal and gonadal origin are often 

829 overlooked when considering the total androgen pool. The primary reason for this is that, 

830 while androgen precursors are activated in peripheral target tissues, this is often, but not 

831 always, followed by subsequent inactivation within the same tissue, thus with the result 

832 that much of the active androgen is never accounted for in circulation (section 2.5.3.2). It 

833 is therefore important to consider both androgen precursors and metabolites when 
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834 accessing androgen action. While androgen precursors and active androgens can be 

835 measured in serum, it is often more convenient to measure their metabolites in urine 

836 (Table 3).

837 Undoubtedly, the most important step in androgen activation and inactivation is the 5α-

838 /5β-reduction of the Δ4 steroid moiety common to all androgen precursors as well as the 

839 potent androgen testosterone (Fig. 8). This moiety is selectively 5α-reduced by the action 

840 of steroid 5α-reductase enzymes within target tissues. Those androgens and precursors 

841 that escape the tissue specific activation via 5α-reduction are metabolized within the liver, 

842 which expresses both 5α- and 5β-reductases [54,94,100]. Unlike 5α-reduction, which is 

843 required to produce the potent androgen DHT, AKR1D1-catalyzed 5β-reduction acts only 

844 as an inactivation step. Even 5β-DHT, the product of the 5β-reduction of testosterone, is 

845 an inactive androgen metabolite [54]. Following 5α/5β-reduction, androgen metabolites 

846 are subject to reduction of the 3-keto group with predominant 3α-stereoselectivity [54]. 

847 Importantly, 3α,5α-reduced metabolites can potentially be converted back to the 3-keto 

848 metabolite by oxidative 3α-HSDs such as in the alternative DHT biosynthesis pathway 

849 (section 2.5.3.3).

850 The majority of 5α/β-3α-metabolites of testosterone and DHT, which contain a 17β-

851 hydroxy, are converted to 17-keto steroids by the action of the oxidative 17β-HSDs, 

852 HSD17B2 and HSD17B4 [106]. As a result, androgen metabolites are excreted with a 17-

853 keto/17β-hydroxy ratio of approximately 10:1 [112]. 

854 Therefore, the primary urine androgen metabolites are androsterone (An; 5α-androstan-

855 3α-ol-17-one) and etiocholanolone (Et; 3α-hydroxy-5β-androstan-17-one) (Table 3). 
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856 While, A4 and testosterone can be metabolized to either androsterone or etiocholanolone, 

857 DHT is 5α-reduced and thus only reflected in the androsterone fraction. 

858 Both An and Et are subject to glucuronidation at the 3 position. This phase 2 metabolism 

859 can occur in the liver or within peripheral target tissues. The glucuronidation of C19 

860 steroids is catalyzed by three members of the UGT2B subfamily, namely: UGT2B7, 

861 UGT2B15 and UGT2B17 [175]. The three enzymes have differential regioselectivity and 

862 substrate specificity for the 5/-stereoisomers [290]. UGT2B7 glucuronidates only the 

863 hydroxy group at position 3, but not in position 17 and preferentially conjugates 5- over 

864 5-androstanes. UGT2B7 is the most efficient UGT for androstanediol conjugation [176]. 

865 UGT2B15 does not target the 3-hydroxy group, but conjugates the 17-hydroxy group in 

866 the androstane-3,17-diols, such as testosterone or DHT, and prefers the 5-

867 stereoisomers. Similarly, UGT2B17 has a preference for the 17β-hydroxy group in the 

868 androstane-3,17-diols, but conjugates the 3α-hydroxy group of An and Et with Et being 

869 the preferred substrate [290]. UGT2B17 has highest activity of all UGTs towards An, 

870 testosterone and DHT. UGT2A1 may also contribute to the glucuronidation of 

871 testosterone [291]. Interestingly, UGT2B15 which is expressed in adipose tissue has 

872 been shown to demonstrate a higher activity in obese individuals, which may contribute 

873 to the increased levels of 3-androstanediol glucuronide observed in obesity [292,293]. 

874 While Δ5 steroids like DHEA and pregnenolone are excreted almost exclusively as 

875 sulfates, sulfation of other C19 steroid metabolites are considered minor phase 2 

876 reactions. SULT2A2 can target 3- and 17-hydroxyl groups and has been shown to 

877 sulfate An, testosterone and DHT [294,295]. Hydroxy groups in positions 16, 17/ and 

878 18 are also important targets for sulfation of C19 steroids [159,296–298]. 
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879 Major urine androgen precursor metabolites include DHEA and 16α-hydroxy-DHEA. 

880 Circulating DHEA is readily 16α-hydroxylated by CYP3A4/7 within the liver [136,299]. The 

881 abundant conjugated androgen precursor, DHEAS, is water-soluble and is largely 

882 excreted in an unmodified form as represented by the urinary DHEA fraction following 

883 deconjugation.  

884 Urinary metabolite excretion deriving from the 11-oxygenated androgen precursor 

885 11OHA4 is well understood. 11OHA4 undergoes sequential 5α- and 3α- reduction 

886 yielding 11β-OHAn, which is readily quantifiable in urine (Table 3). It should be noted that 

887 although 11β-OHAn can also derive from cortisol metabolism (section 4.2.2), this only 

888 contributes to approximately 5-10% of the measured levels, with at least 90% originating 

889 from 11OHA4 [258]. The metabolism of the active 11-oxygenated androgen, 11KT, has 

890 yet to be fully elucidated. Similarly, only a few studies have investigated the potential 

891 conjugation of 11-oxygenated steroids. While these steroids do appear to be 

892 glucuronidated, the limited data at hand suggests that glucuronidation of these steroids 

893 is less efficient than what is observed for the classic androgens [300].                        

894 4.4 The estrogen and progestogen metabolomes

895 4.4.1 The estrogen metabolome

896 The primary estrogens in circulation are estrone, estrone sulfate and 17β-estradiol, with 

897 17β-estradiol considered the biologically active form [82,301–303]. In premenopausal 

898 women, these estrogens are predominantly produced by the ovaries (section 2.5.4), but 

899 estrogens are also synthesized in peripheral tissues expressing aromatase, such as 

900 adipose tissue, using adrenal-derived androgen precursors. This peripheral production of 

901 estrogens is especially important in postmenopausal women and men [61]. It should be 
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902 noted that this peripheral estrogen production often functions in a paracrine and intracrine 

903 manner and as such circulating concentrations are not reflective of the concentrations 

904 achieved locally [304,305]. Circulating levels of estrogens vary greatly during the course 

905 of the menstrual cycle and decrease significantly in postmenopausal women (Table 3) 

906 [306–308]. Notably, estrone sulfate is the predominant estrogen in circulation for both 

907 men and premenopausal women and serves as a biologically inactive reservoir for the 

908 generation of active estrogens in target tissues [40,309,310]. Like with androgens, the 

909 majority of unconjugated estrogen circulates bound to SHBG with high affinity and 

910 albumin with low affinity [285–287]. Another similarity to androgens is the regulation of 

911 estrogen potency by HSD17B enzymes, with HSD17B1 and HSD17B2 being the two 

912 most prominent isoforms involved in estrogen metabolism. HSD17B1 reduces estrone to 

913 the most active estrogen, 17β-estradiol. HSD17B2 catalyzes the reverse oxidative 

914 reaction of 17β-estradiol to estrone in addition to its high activity towards androgens. 

915 Further metabolism of both estrone and 17β-estradiol can yield estriol. Estrone undergoes 

916 16α-hydroxylation and HSD17B1 catalyzed reduction, while 17β-estradiol only requires 

917 16α-hydroxylation [311–314]. CYP3A4 is the major enzyme responsible for the 16-

918 hydroxylation of estrone in adults, though CYP1A1, CYP2C19 and CYP3A5 can also 

919 catalyze the reaction [315,316]. Conversely, CYP1A2 is the dominant enzyme catalyzing 

920 the 16-hydroxylation of 17β-estradiol, with CYP3A4, CYP1A1 and CYP1B1 also 

921 demonstrating this activity [317]. Estriol is rapidly excreted in urine and, as a result, serum 

922 levels are low to undetectable [318].  

923 Both estrone and 17β-estradiol can also undergo hydroxylation at position 2 and 4 

924 [141,317,319–321]. These reactions are catalyzed by a variety of CYPs, including 
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925 CYP3A4 and CYP1A2 in the liver, or CYP1A1 and CYP3A4 in peripheral tissues. In the 

926 liver approximately 80% of 17β-estradiol is hydroxylated to the 2 position and 20% at the 

927 4 position [322]. 2- and 4-hydroxy groups on the A-ring can be methylated as introduced 

928 in section 3.2.3. Other reported hydroxylations include those at 6, 6, 7, 12, 15, 15β, 

929 16 and 16 positions as well as further oxidation to a 6-ketone or 9-11-dehydrogenation 

930 [141,322–324]. 

931 Estrogens and catecholestrogens are efficiently sulfated at several positions [325–327]. 

932 SULT1E1 is the major SULT for estrogen sulfation [328,329], while SULT1A1 and 

933 SULT1A3 also sulfate estrogens, but with a lower affinity [327]. 

934 Glucuronidation of estrogens is catalyzed by members of the UGT1A and UGT2B7 

935 subfamilies with the UGT1A isoforms making the largest contribution to the 

936 glucuronidation of estrone and 17β-estradiol. Estriol and 16α-hydroxyestrone are 

937 conjugated at the 3-hydroxygroup by UGT1A10 and at the 16α-hydroxy group by UGT2B7 

938 [330,331]. Catcholestrogens can additionally be glucuronidated in positions 2 and 4 [332].

939 4.5.1 The progestogen metabolome

940 Progestogens are compounds with progestational activity, referring to their induction of a 

941 secretory endometrium to support gestation [333]. The only true natural progestogen is 

942 progesterone. Levels change substantially during the course of the menstrual cycle, 

943 peaking during the luteal phase (Table 3). Low levels of circulating progesterone are also 

944 detectable in men [334]. Progesterone primarily circulates bound to CBG. During the 

945 second and third trimesters of pregnancy placental trophoblasts produce large amounts 

946 of progesterone, which displaces glucocorticoids from CBG [287,335]. 
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947 Progestogens are primarily metabolized by the liver largely to form pregnanediols and 

948 pregnanolones [336,337]. Progesterone is metabolized to pregnanediol (PD, 5β-

949 pregnane-3α,20α-diol) in three steps. AKR1D1 catalyzes the 5β-reduction followed by 

950 members of the AKR1C enzyme family catalyzing subsequent 3α- and 20α-reductions. 

951 Alternatively, progesterone can first be reduced to 20α-hydroxyprogesterone, which can 

952 then be further 5β-reduced by AKR1D1 and 3α-reduced by AKR1C1–4 [103]. PD is 

953 efficiently glucuronidated at position 3, resulting in pregnanediol-3-glucuronide being the 

954 major progesterone metabolite identified in urine. Progesterone metabolites reduced at 

955 5 position are subject to extrahepatic 6-hydroxylation, which is distinct from the hepatic 

956 6-hydroxylation active on 4 steroids [338]. 

957 5. Steroid metabolome profiling by mass spectrometry

958 5.1 Current state-of-the-art techniques in steroid analysis 

959 Mass spectrometry is a powerful technique with which multiple steroids can be measured 

960 within a single analytical run. Despite the wealth of information that can be achieved by 

961 these methods, uptake in the clinical setting is still limited, primarily due to the cost of the 

962 technology and the limited availability of the required expertise. 

963 Currently, gas-chromatography mass spectrometry (GC-MS) is the preferred method for 

964 the analysis of urine steroids in research laboratories due to the unparalleled resolution 

965 offered by this technique [339,340]. However, of late, there are increasing efforts to 

966 develop both ultra-high performance liquid chromatography-tandem mass spectrometry 

967 (UHPLC-MS/MS) and ultra-high performance supercritical fluid chromatography-tandem 

968 mass spectrometry (UPHSFC-MS/MS) methods for the screening of multiple urine 

969 steroids [341,342]. An advantage of these techniques is that deconjugation is not 
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970 mandatory, unlike with GC-MS. The idea of quantifying conjugated urine steroid 

971 metabolites is therefore gaining momentum in the field. This may be advantageous as 

972 some steroids with secondary sulfate groups (bis-sulfates), or glucuronides can be 

973 resistant to common hydrolysis procedures.

974 The introduction of high throughput UHPLC-MS/MS has led to a substantial increase in 

975 the use of mass spectrometry-based assays for steroid profiling, especially in serum, as 

976 UHPLC-MS/MS is a more accurate and reliable technique without the cross-reactivity 

977 issues that plague immuno-based assays. Indeed, there is a drive within the endocrine 

978 community to phase out immunoassays where possible [343]. Moreover, the use of high-

979 resolution accurate mass (HRAM) mass spectrometry coupled to liquid chromatography 

980 systems is being explored as an alternative to traditional MS/MS systems as accurate 

981 mass quantification offers the potential to resolve all steroid metabolites with the 

982 exception of steroid isomers, unless they are separated chromatographically [344].

983 It should, however, be noted that despite the advantages of mass spectrometry 

984 techniques, these are not without their challenges. Perhaps the biggest challenge to the 

985 endocrine community is the cross validation of methodologies employed in different 

986 laboratories. Currently differences in sample work-up methodologies and/or 

987 instrumentation and settings can result in reference ranges that vary between 

988 laboratories. Moving forward methods therefore ideally need to be validated both 

989 internally according to set standards and subsequently compared using standardized 

990 reference material and quality controls [345–347]. 

991

992 5.2Steroid metabolomics
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993 Steroid metabolomics is defined as the combination of steroid metabolome profiling by 

994 mass spectrometry with computational machine learning-based analysis of the mass 

995 spectrometry data. Such sophisticated and unbiased computational analysis techniques 

996 have shown potential for assisting and even automating analysis of large or highly 

997 heterogeneous datasets, making it an ideal resource for use in metabolomics. Machine 

998 learning involves training a computer program to recognize patterns within large-scale 

999 data - the more data it is exposed to, the greater the learning capability. This generates 

1000 a tailor-made diagnostic algorithm that can be prospectively applied to newly recorded 

1001 steroid data. Interpretable models can help to understand underlying mechanisms, 

1002 categorize and classify, or even make predictions based on observed patterns in the data. 

1003 As an example, this approach has been used for automating differentiation of 

1004 adrenocortical carcinoma (ACC) from benign adrenocortical tumors based on the 

1005 detection of a “malignant steroid fingerprint”, a distinct set of urine steroid metabolites 

1006 characteristically increased in ACC [348]. The principle established in this example has 

1007 opened the door for the application of this approach to other steroidogenic disorders that 

1008 create a unique steroid “fingerprint”.

1009 6. Conclusion 

1010 The biosynthesis and metabolism of steroid hormones is complex. Although the 

1011 measurement of individual steroids has routinely been employed for the diagnosis of 

1012 endocrine conditions for many years, advances in technology now allow for the high 

1013 throughput profiling of comprehensive steroid panels, thereby offering significantly more 

1014 information and diagnostic power. Furthermore, the use of unbiased computational 



47

1015 approaches such as machine learning allows for the development and implementation of 

1016 steroid metabolomics analysis, which has the potential to not only improve, accelerate 

1017 and automate diagnostics, but also to lead to improvements in treatment monitoring and 

1018 prognostic prediction. Nonetheless, a detailed understanding of steroid biosynthesis and 

1019 the principles that govern steroid metabolism and excretion remains fundamental to the 

1020 accurate interpretation of metabolomics data as well as the improvement of our 

1021 understanding of associated disorders.
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2205 Figure legends

2206 Figure 1. Schematic overview of adrenal steroidogenesis and peripheral 

2207 modulation of steroid bioactivity. Arrows are labelled with the catalyzing enzyme and 

2208 isoform where appropriate. Essential accessory proteins are also indicated: cytochrome 

2209 b5 (b5); cytochrome P450 oxidoreductase (POR); ferredoxin (FDX); ferredoxin reductase 

2210 (FDXR); hexose-6-phosphate dehydrogenase (H6PDH); PAPS synthase 2 (PAPSS2); 

2211 steroidogenic acute regulatory protein (StAR). 

2212 Figure 2. Schematic overview of steroidogenesis in the gonads. Steroidogenic 

2213 pathways in the testicular Leydig cells are shown in the black box, while those in the 

2214 ovaries are shown in the grey box and are further subdivided into the theca and granulosa 

2215 cells. Arrows are labelled with the catalyzing enzyme and isoform where appropriate. 

2216 Essential accessory proteins are also indicated: cytochrome b5 (b5); cytochrome P450 

2217 oxidoreductase (POR); ferredoxin (FDX); ferredoxin reductase (FDXR); PAPS synthase 

2218 (PAPSS); steroidogenic acute regulatory protein (StAR).

2219 Figure 3. Schematic overview of androgen biosynthesis. Bioactive androgens 

2220 (testosterone (T), 5-dihydrotestosterone (DHT), 11-ketotestosterone (11KT) and 11β-

2221 hydroxytestosterone (11OHT) can be generated by three partially independent pathways 

2222 which operate across multiple tissues: (1) the classic ∆5 pathway, (2) the alternative 

2223 DHT biosynthesis pathway, and (3) the 11-oxygenated androgen pathway. Arrows 

2224 are labelled with the catalyzing enzyme and isoform where appropriate. Essential 

2225 accessory proteins are indicated: cytochrome b5 (b5); cytochrome P450 oxidoreductase 

2226 (POR); ferredoxin (FDX); ferredoxin reductase (FDXR); hexose-6-phosphate 
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2227 dehydrogenase (H6PDH); PAPS synthase 2 (PAPSS2); steroidogenic acute regulatory 

2228 protein (StAR).

2229 Figure 4. Schematic overview of the major phase 1 reactions contributing to steroid 

2230 metabolism. (a) A-ring reduction to (5α)tetrahydro metabolites. The formation of 3β,5β-

2231 tetrahydro metabolites is sterically unfavorable (not shown). (b) 11β-oxidation/reduction 

2232 by HSD11B1 modulates the bioactivity of glucocorticoids, mineralocorticoids and 11-

2233 oxygenated androgens. (c) 17β-oxidation/reduction regulates the bioactivity of 

2234 androgens and estrogens. (d) 20-reduction to a hydroxy group with α- or β-

2235 stereochemistry. (e-h) Hydroxylations: major positions are indicated for different 

2236 structural steroid classes. (i) 21-oxidation leading to the formation of the so-called 

2237 cortolic acids from cortisol. (j) 17,20-cleavage: cortisol, cortisone and their metabolites 

2238 can undergo metabolism by 17,20-lyase activity. (k) Microbial 21-dehydroxylation: 

2239 steroids excreted with bile can undergo metabolism by the gut microbiome prior to 

2240 reabsorption. 

2241 Figure 5. Schematic overview of the major phase 2 reactions contributing to steroid 

2242 metabolism – sulfation (a) and glucuronidation (b). Important target positions of 

2243 steroid conjugation are indicated, with stereochemistry for the different structural classes 

2244 of steroids. 

2245 Figure 6. Schematic overview of the pathways linking mineralocorticoids and their 

2246 precursors to their urine metabolites. The pathway of mineralocorticoid biosynthesis 

2247 is indicated on the left. The metabolism of each steroid is shown from left to right and the 
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2248 structures of the major urine products are shown. Phase 2 conjugation reactions are not 

2249 indicated in the figure.

2250 Figure 7. Schematic overview of the pathways linking glucocorticoids and their 

2251 precursors to their urine metabolites. The glucocorticoid biosynthetic pathway is 

2252 shown on the left. The metabolism of each steroid is shown from left to right and the 

2253 structures of the major urine products are shown. Phase 2 conjugation reactions are not 

2254 indicated in the figure.

2255 Figure 8. Schematic overview of the pathways linking androgens and their 

2256 precursors to their urine metabolites. Major serum androgen precursors and 

2257 androgens are shown on the left. The metabolism of each steroid is shown from left to 

2258 right and the structures of the major urine products are shown. 5α-dihydrotestosterone 

2259 (DHT), the most potent androgen, is derived from testosterone by 5α-reduction and, thus, 

2260 its formation is only reflected by urine androsterone. Phase 2 conjugation reactions are 

2261 not indicated in the figure. 
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2262 Table 1: List of common circulating steroids and their major urine metabolites. Common 
2263 abbreviations are shown in brackets.

2264
2265

Serum steroid and abbreviation Major urine metabolite and abbreviation 
(unconjugated form)
 

General precursors

pregnenolone, 5-pregnen-3β-ol-20-one (PREG; 
P5)

5-pregnenediol, 5-pregnen-3β,20α-diol (5PD)

progesterone, 4-pregnen-3,20-dione (PROG; P4) pregnanediol, 5β-pregnan-3α,20α-diol (PD)
17α-hydroxypregnenolone, 5-pregnen-3β,17α-
diol-20-one (17Preg; 17OHPreg; 17P5)

5-pregnenetriol, 5-pregnen-3β,17α,20α-triol (5PT)

17α-hydroxyprogesterone, 4-pregnen-17α-ol-
3,20-dione (17OHP; 17OHProg; 17P4)

pregnanetriol, 5β-pregnan-3α,17α,20α-triol (PT)

17α-hydroxypregnanolone, 5β-pregnan-3α,17α-
diol-20-one (17HP)

Mineralocorticoids and their precursors

11-deoxycorticosterone, 4-pregnen-21-ol-3,20-
dione (DOC)

tetrahydro-11-deoxycorticosterone, 5β-pregnan-
3α,21-diol-20-one (THDOC)

corticosterone, 4-pregnene-11β,21-diol-3,20-
dione (CORT; B)

tetrahydro-11-dehydrocorticosterone, 5β-
pregnan-3α,21-diol-11,20-dione (THA)
5α-tetrahydro-11-dehydrocorticosterone, 5α-
pregnan-3α,21-diol-11,20-dione (5α-THA)
5β-tetrahydrocorticosterone, 5β-pregnan-
3α,11β,21-triol-20-one (THB)
5α-tetrahydrocorticosterone, 5α-pregnan-
3α,11β,21-triol-20-one (5α-THB) 

18-hydroxycorticosterone, 4-pregnene-11β,18,21-
triol-3,20-dione (18OHCORT; 18OHB; 18B)

18-hydroxytetrahydro-11-dehydrocorticosterone, 
5β-pregnan-3α,18,21-triol-11, 20-dione 
(18OHTHA)

aldosterone, 4-pregnene-11β,21-diol-3,20-dione-
18-al (ALDO)

tetrahydroaldosterone, 5β-pregnan-3α,11β,21-
triol-20-one-18-al (THAldo)

Glucocorticoids and their precursors

11-deoxycortisol, 4-pregnen-17α,21-diol-3,20-
dione (S)

tetrahydro-11-deoxycortisol, 5β-pregnan-
3α,17α,21-triol-20-one (THS)

21-deoxycortisol, 4-pregnene-11β,17α-diol-3,20-
dione

pregnanetriolone, 5β-pregnan-3α,17α,20α-triol-
11-one (PTONE)

cortisol, 4-pregnene-11β,17α,21-triol-3,20-dione 
(F)

6β-hydroxycortisol, 4-pregnen-6β,11β,17α,21-
tetrol-3,20-dione (6β-OHF)
cortisol, 4-pregnene-11β,17α,21-triol-3,20-dione 
(F)
tetrahydrocortisol, 5β-pregnan-3α,11β,17α,21-
tetrol-20-one (THF)
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5α-tetrahydrocortisol, 5α-pregnan-3α,11β,17α,21-
tetrol-20-one (5α-THF)
α-cortol, 5β-pregnan-3α,11β,17α,20α,21-pentol
β-cortol, 5β-pregnan-3α,11β,17α,20β,21-pentol
11β-hydroxyeticholanolone, 5β-androstan-
3α,11β-ol-17-one (11β-OHEt)

cortisone, 4-pregnene-17α,21-diol-3,11,20-trione 
(E)

cortisone (E)

tetrahydrocortisone (THE)
α-cortolone, 5β-pregnan-3α,17α,20α,21-tetrol-
11-one
β-cortolone, 5β-pregnan-3α,17α,20β,21-tetrol-
11-one
11-ketoetiocholanolone, 5β-androstan-3α-ol-
17,11-dione (11ketoEt)

“Hybrid steroids”

18-hydroxycortisol, 4-pregnene-11β,17α,18,21-
tetrol-3,20-dione (18OHF)

18-hydroxycortisol, 4-pregnene-11β,17α,18,21-
tetrol-3,20-dione (18OHF)

18-oxo-cortisol, 4-pregnene-11β,17α,21-triol-
3,20-dione-18-al (18oxoF)

18-oxo-tetrahydrocortisol, 4-pregnene-
11β,17α,21-triol-3,20-dione-18-al (18oxoTHF)

Androgen precursor metabolites

dehydroepiandrosterone sulfate, 5-androsten-3β-
sulfate-17-one (DHEAS)

dehydroepiandrosterone, 5-androsten-3β-ol-17-
one (DHEA)

dehydroepiandrosterone, 5-androsten-3β-ol-17-
one (DHEA)

dehydroepiandrosterone, 5-androsten-3β-ol-17-
one (DHEA)
16α-hydroxydehydroepiandrosterone (16α-
DHEA)

androstenedione, 4-androsten-3,17-dione (A4) androsterone, 5α-androstan-3α-ol-17-one (An; 
AST)
etiocholanolone, 5β-androstan-3α-ol-17-one (Et)

11β-hydroxyandrostenedione, 4-androsten-11β-
ol-3,17-dione (11OHA4; 11β-OHA4)

11β-hydroxyandrosterone, 5α-androstan-3α,11β-
diol-17-one (11β-OHAn; 11βOHAST))

17-hydroxyallopregnanolone, 5α-pregnane-
3α,17α-diol-20-one (5α-17HP)

17-hydroxyallopregnanolone, 5α-pregnan-3α,17α-
diol-20-one (5α-17HP)

Androgen metabolites
testosterone, 4-androsten-17β-ol-3-one (T) androsterone, 5α-androstan-3α-ol-17-one (An; 

AST)
etiocholanolone, 5β-androstan-3α-ol-17-one (Et)

5α-dihydrotestosterone, 5α-androstan-17β-ol-3-
one (DHT; 5α-DHT)

androsterone, 5α-androstan-3α-ol-17-one (An; 
AST)
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2267 Table 2: Graphical representation of the circulating serum steroid metabolome. Major circulating steroids are shown 
2268 divided into six concentration ranges illustrating their relative contribution to the total circulating steroid pool.  

2269
2270

1-10 µmol/L 100-1000 nmol/L 10-100 nmol/L 1-10 nmol/L 100-1000 pmol/L <100 pmol/L

DHEAS cortisol corticosterone
cortisone
DHEA
testosterone
(male)
progesterone
(female, luteal phase)

17OHP
(male)
17OHP
(female, luteal phase) 
pregnenolone
17OH-pregnenolone 
11-deoxycortisol
18-hydroxycortisol 
A4
11OHA4
11KA4
testosterone 
(female)
11KT
progesterone
(female, follicular phase)

17OHP
(female, follicular phase) 
DOC
18OH-corticosterone 
aldosterone
18-oxocortisol
11OHT
progesterone
(male)
progesterone
(female, postmenopausal) 
17β-estradiol 
(female, premenopausal)
estrone
(female, premenopausal)

17β-estradiol
(male)
17β-estradiol
(female, postmenopausal) 
estrone
(male)
estrone
(female, postmenopausal)



78

2271 Table 3: Graphical representation of the targeted urine steroid metabolome. Major urine steroids are shown divided into six 
2272 concentration ranges illustrating their relative contribution to total 24h urine steroid metabolite excretion. Divisions are based 
2273 on respective median values as urine metabolites demonstrate substantial variation between individuals and the 25-75th 
2274 percentiles may overlap groups.

         
1000-3000 µg/24h 700-1000 µg/24h 400-700 µg/24h 150-400 µg/24h 20-150 µg/24h     <20 µg/24h

      5α-THF (male)
      THF
      α-cortolone 
      (male)
      THE
      An (male)
      Et (male)

      5α-THF (female)
      α-cortolone (female)
      Et (female)
      An (female)

      β-cortol (male)
      PT (male)
      11β-OHAn (male)

      17HP (male)
      PD
      5PT (male)
      PT (female)
      5α-THB
      α-cortol
      11β-OHEt
      β-cortol (female)
      11ketoEt
      β-cortolone
      DHEA
      16α-DHEA
      11β-OHAn (female)

      17HP (female)
      5PT (female)
      THS
      THAldo
      18OHTHA
      THA
      5α-THA
      THB
      cortisol
      cortisone
      6β-OHF

      PTONE
      THDOC
      5α-17HP
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Alternative DHT biosynthesis pathway

11-oxygenated androgen pathway

HSD11B1

HSD11B2

5α-androstanedione
(5α-dione)

C
la

s
s
ic

 a
n

d
ro

g
e
n

 b
io

s
y
n

th
e
s
is

5
 p

a
th

w
a
y
 (
Δ

)

H
S

D
3
B

SRD5A

A
K

R
1
C

3

A
K

R
1
C

3

A
K

R
1
C

3

STS

C
Y

P
11

B
1

F
D

X

H
S

D
1
7
B

2
/4

H
S

D
1
7
B

2
/4

H
S

D
1
7
B

2
/4

AKR1C2

3α-oxidase 

3α-oxidase 

FDXR

F
D

X
R












