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Featured Application: Brain health monitoring.

Abstract: Near-infrared spectroscopy (NIRS) is widely used as a non-invasive method to monitor
the hemodynamics of biological tissue. A common approach of NIRS relies on continuous wave
(CW) methodology, i.e., utilizing intensity-only measurements, and, in general, assumes homogeneity
in the optical properties of the biological tissue. However, in monitoring cerebral hemodynamics
within humans, this assumption is not valid due to complex layered structure of the head. The NIRS
signal that contains information about cerebral blood hemoglobin levels is also contaminated with
extra-cerebral tissue hemodynamics, and any recovery method based on such a priori homogenous
approximation would lead to erroneous results. In this work, utilization of hyper-spectral intensity
only measurements (i.e., CW) at multiple distances are presented and are shown to recover two-layered
tissue properties along with the thickness of top layer, using an analytical solution for a two-layered
semi-infinite geometry. It is demonstrated that the recovery of tissue oxygenation index (TOI) of both
layers can be achieved with an error of 4.4%, with the recovered tissue thickness of 4% error. When the
data is measured on a complex tissue such as the human head, it is shown that the semi-infinite
recovery model can lead to uncertain results, whereas, when using an appropriate model accounting
for the tissue-boundary structure, the tissue oxygenation levels are recovered with an error of 4.2%,
and the extra-cerebral tissue thickness with an error of 11.8%. The algorithm is finally used together
with human subject data, demonstrating robustness in application and repeatability in the recovered
parameters that adhere well to expected published parameters.

Keywords: Near-infrared spectroscopy; tissue optics; superficial layer contamination; Hyperspectral
spectroscopy

1. Introduction

The application of near-infrared spectroscopy (NIRS) is well known in brain health monitoring,
and has been used in many clinical settings to monitor cerebral oxygenation during cardiac surgery [1,2].
The most commonly used NIRS instrumentation is a continuous wave (CW) system that is based on
the light intensity measurements, i.e., near-infrared light is sent into the tissue and the intensity of
the diffusely reflected light is measured. These are of low cost, robust, and have high signal-to-noise
ratio, but due to the limited available information of the light propagation, these systems rely on
approximations of scattering properties and using simpler homogenous models for parameter recovery.
There are other sophisticated systems such as frequency domain (FD) and time domain (TD) NIRS
systems, which, additionally to the intensity measurements, can also measure the average time of
flight and the distribution of time of flight of photons through the tissue. However, due to the low
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SNR of TD and FD systems at a relatively high cost, CW systems are widely preferred for cerebral
health monitoring.

The parameters of interest are mainly hemoglobin concentration and tissue oxygenation index.
Most of the parameter recovery algorithms of CW systems assume a homogenous tissue for the
investigated region [3], which is not true for understanding cerebral hemodynamics as the head
consists of extra-cerebral tissue between the source-detectors and the cerebral tissue and this can lead
to quantification errors. Multi-distance algorithms have been proposed using gradient of intensity
attenuation measurements [4–6] based on a flat semi-infinite homogenous model. Since the gradient
is more sensitive to deeper regions than raw intensity, this makes the recovered parameters less
sensitive to changes in extra-cerebral tissue. However, the accuracy of the recovered cerebral tissue
parameters still remains low due to the homogenous approximation of the head and due to the
curvature and complex internal structure of the head. The assumption of scattering properties of
the tissue is another source of error in these gradient-based algorithms. This uncertainty due to
scatter approximation has been investigated and an alternative method was proposed [7] to recover
scattering parameters and scaled hemoglobin concentrations for a more accurate estimate of tissue
oxygenation. Other works that are aimed at the removal of signal contamination due to extra-cerebral
layer include: signal regression-based methods [8,9] for recovering changes rather than absolute values.
Frequency domain-based methods [10,11] have been proposed that can recover both absorption and
scattering properties of extra-cerebral and cerebral tissues along with the thickness of the top layer.
In CW-based methods however, phantom studies on a two layered model have been studied with a
known superficial layer thickness. [12] The work reported to date has relied on spectral and spatial
derivative measurements, where a theoretical non-uniqueness is unavoidable (as detailed in later
sections). The unknown superficial layer thickness, and the performance of a two layered model in
a realistic scenario with oxy and deoxyhemoglobin as the primary absorption constituents remains
unexplored. This is a crucial point to address since the spectral characteristics play a major role in
distinguishing the tissue parameters in any recovery algorithm.

With no constraint on the spatial distribution of the optical properties, it has been shown that there
can be more than one solutions to CW diffusion equation [13] and with optimal choice of wavelengths
this non-uniqueness can be avoided by spectrally constraining the parameter recovery process [14].
In this work, the uniqueness/non-uniqueness problem of a CW system [13] in the context of a layered
medium is addressed, by assuming regional homogeneity; it is shown that the solution set is unique if
the measured boundary data is intensity-based only. Based on this a two-layered parameter recovery
approach is defined for a multi-distance continuous wave hyper-spectral system, to recover the tissue
parameters of two layers corresponding to cerebral and extra-cerebral regions as well as the superficial
tissue thickness. The study is divided into three parts, the first part deals with data simulated and
parameter recovery using the two-layered semi-infinite model, second part deals with data simulated
on two-layered head model but the parameter recovery is implemented using two-layered semi-infinite
model, third part deals with data simulated on two-layered head model and parameter recovery is also
based on a head model. The proposed method is then implemented and used to recover the cerebral
and extra-cerebral tissue parameters of a human subject by measuring NIRS data on the forehead to
demonstrate the practical viability of the approach.

2. Continuous Wave Data and Uniqueness in Parameter Recovery

Uniqueness/non-uniqueness problem in the parameter recovery methods of CW-based systems
has been a long-discussed topic [13,14] and has been shown that for a single wavelength multi-distance
boundary intensity measurements there can be more than one solutions of absorption and reduced
scattering coefficient distributions which will lead to the same boundary data. This non-uniqueness
can be addressed by using multi-wavelength data and constraining the problem spectrally [14].
The reported findings to date discuss a very general scenario of image reconstruction where the
recovered parameters are the three-dimensional distribution of absorption and reduced scattering
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coefficients. However, in the context of finding the absolute parameters of different regions in a layered
medium such as the human head, this presented work brings an additional spatial constraint to the
distribution of parameters. Here, by extending the arguments made in previous works [13,14] it is
shown that given such a regional constraint on parameters, each solution set is unique to a measured
boundary intensity data, and also investigates the scenario when the measured data is either a spatial
or 1st spectral derivative of intensity (in log scale).

Consider the following schematic of a two-layered medium as shown in Figure 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 16 

scattering coefficients. However, in the context of finding the absolute parameters of different 

regions in a layered medium such as the human head, this presented work brings an additional 

spatial constraint to the distribution of parameters. Here, by extending the arguments made in 

previous works [13, 14] it is shown that given such a regional constraint on parameters, each 

solution set is unique to a measured boundary intensity data, and also investigates the scenario 

when the measured data is either a spatial or 1st spectral derivative of intensity (in log scale). 

Consider the following schematic of a two-layered medium as shown in Figure 1. 

 

Figure 1. Schematic showing a two-layered medium 

Here, 𝜇𝑎 is the absorption coefficient, 𝜇𝑠
′  is the reduced scattering coefficient, and the diffusion 

coefficient (𝐷) is defined as, 𝐷 = 1/3(𝜇𝑎 + 𝜇𝑠
′ ) ≈ 1/3𝜇𝑠

′ . Re-writing the CW diffusion equation by 

change of variables to get the Helmholtz-type equation given as [13], 

−∇2Ψ + 𝜂Ψ =
𝑞0

𝛾
. (1) 

where 𝛾2 = 𝐷 , 𝑞0  is the source distribution, Ψ = 𝛾Φ, where Φ is the photon density, and the 

variable 𝜂 is given by, 

𝜂 =
∇2𝛾

𝛾
+

𝜇𝑎

𝛾2. (2) 

Considering the light-source to be a point source at a location 𝐫0 on the external medium boundary, 

and defining Ψ0 such that: 

−∇2Ψ0 + 𝜂Ψ0 = q0. (3) 

This implies that Ψ = Ψ0/𝛾(𝐫0) = Ψ0/𝛾1 , as 𝛾(𝐫0) = 𝛾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝛾1  in the given scenario and 

therefore Φboundary = Ψ0𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
/𝛾1

2. 

For any measured boundary intensity data Φboundary, two non-unique solution sets {𝜇𝑎, 𝜇𝑠
′ , 𝐿} and 

{�̃�𝑎, �̃�𝑠
′ , �̃�}  (with their equivalent canonical parameters 𝜂  and �̃� ), can exist if they satisfy the 

following two conditions: 

Condition-1: 𝜂 = �̃�  everywhere inside the medium, this ensures Ψ0  to be the same for both 

solutions. 

Condition-2: 𝛾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = �̃�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, together with condition 1 this ensures Φboundary to be the same 

for both solutions. 

Figure 1. Schematic showing a two-layered medium.

Here, µa is the absorption coefficient, µ′s is the reduced scattering coefficient, and the diffusion
coefficient (D) is defined as, D = 1/3(µa + µ′s) ≈ 1/3µ′s. Re-writing the CW diffusion equation by
change of variables to get the Helmholtz-type equation given as [13],

−∇
2Ψ + ηΨ =

q0

γ
. (1)

where γ2 = D, q0 is the source distribution, Ψ = γΦ, where Φ is the photon density, and the variable η
is given by,

η =
∇

2γ

γ
+
µa

γ2 . (2)

Considering the light-source to be a point source at a location r0 on the external medium boundary,
and defining Ψ0 such that:

−∇
2Ψ0 + ηΨ0 = q0. (3)

This implies that Ψ = Ψ0/γ(r0) = Ψ0/γ1, as γ(r0) = γboundary = γ1 in the given scenario and
therefore Φboundary = Ψ0boundary/γ2

1.
For any measured boundary intensity data Φboundary, two non-unique solution sets

{
µa, µ′s, L

}
and{

µ̃a, µ̃′s, L̃
}

(with their equivalent canonical parameters η and η̃), can exist if they satisfy the following
two conditions:

Condition-1: η = η̃ everywhere inside the medium, this ensures Ψ0 to be the same for
both solutions.

Condition-2: γboundary = γ̃boundary, together with condition 1 this ensures Φboundary to be the same
for both solutions.
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Applying condition 1, to this scenario, η = η̃ for region-1, region-2 and at the boundary between
them. This requires the superficial layer thickness to be equal i.e., L = L̃, as without this the two
solutions would have a different location of the interface between region-1 and region-2, and η can never
be equal to η̃ at the regional interface. Solving condition-1 inside region-1 and region-2 (i.e., η1 = η̃1

and η2 = η̃2 with ∇2γ = 0), we have:

µa1 · µ
′

s1
= µ̃a1 · µ̃

′

s1
, (4)

µa2 · µ
′

s2
= µ̃a2 · µ̃

′

s2
. (5)

At the boundary between region-1 and 2, knowing that ∇2γ ∝ (γ2 − γ1), and from Equations (4)
and (5):

γ1

γ2
=
γ̃1

γ̃2
⇒

µ′s1

µ′s2

=
µ̃′s1

µ̃′s2

(6)

Similar analysis can be extended for more than two regions if needed and therefore the solution
set

{
µ̃a, µ̃′s

}
should be of the form

{
αµa, α−1 µ′s

}
everywhere in the medium, for an arbitrary constant α.

An equivalent representation of this non-uniqueness expression in terms of spectral parameters
chromophore concentrations (Ci), scattering amplitude (Sa) and scattering power (Sp) can be shown
as

{
C̃i, S̃a, S̃p

}
=

{
αCi,α−1Sa, Sp

}
, where these spectral parameters are related to the optical properties

as follows:

µa(λ) =
N∑

i=1

εi(λ) ·Ci (7)

µ′s(λ) = Sa · λ−Sp (8)

Here, Ci denotes the concentration of the major chromophores contributing to light absorption,
εi denotes the extinction coefficient of the corresponding chromophore.

Applying condition 2, γ̃boundary = γboundary ⇒ γ̃1 = γ1 ⇒ µ̃′s1
= µ′s1

, this gives the value of the
arbitrary constant to be α = 1. This shows that for measured boundary intensity, the solution set is
unique with the assumed regional homogeneity.

However, if the measured data is either a spatial or spectral derivative of the form
log

(
Φboundary(r1,λ1)/Φboundary(r2,λ2)

)
= log(Ψ0(r1,λ1) · γ1(λ2)/Ψ0(r2,λ2) · γ1(λ1)), any arbitrary

value of the constant α leads to the same measured data, thus allowing for a non-unique solution set.
In such a scenario, this non-uniqueness leads to uncertain parameter recovery, and this is seen in terms
of the cross-talk between chromophore concentrations and scattering amplitude. However, biomarkers
such as tissue oxygenation index (TOI), which are based on the ratio of chromophore concentrations,
will still be accurate, as all the chromophore concentrations in any of the non-unique solution sets
differ only by a common constant factor from true values.

To demonstrate the non-uniqueness in terms of the widely used spectral derivative of intensity data,
let us consider an example of a two-layered medium with two major light-absorbing chromophores
i.e., oxy-hemoglobin (its concentration denoted by HbO) and deoxy-hemoglobin (its concentration
denoted by Hb) with their layer-specific values given as HbO1 = 0.047 mM, HbO2 = 0.054 mM,
Hb1 = 0.011 mM, Hb2 = 0.022 mM, Sa1 = 0.64 mm−1, Sa2 = 0.98 mm−1, Sp1 = 1.06, Sp2 = 0.611,
corresponding to layer-1 and layer-2 respectively, and L=10mm. For the source-detector distances
of ρ = 10, 20, 30, 40, 50 mm, and wavelengths λ = 650 to 850 nm, in steps of 10 nm, the boundary
intensity is simulated using NIRFAST [15], which is an open-source finite-element-based model for
simulation of light propagation in biological tissue. Figure 2 shows the spectral derivative of intensity
data for two distinct parameter sets corresponding to α = 1 and 0.5, which are clearly coinciding with
each other and their corresponding intensity data is shown in Figure 3.
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Figure 3. Intensity data at α = 1 and 0.5.

As evident in Figures 2 and 3, while the intensity data remains distinct for two different
ground-truth parameters, the derivative data shows very little variation and therefore demonstrates
the non-uniqueness of derivative of intensity data. Hence, in this work, only the intensity data is
considered as the measurement for the recovery of absolute tissue parameters. Although uniqueness
in terms of intensity data is established from above, one should remember that in a practical scenario,
finite independent measurements, noise in the measured data, any mismatch in the assumed model,
or the stopping criterion of an iterative fitting method algorithm, can lead to potential recovery errors.
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3. Methodology

Initially, the complex structure of the head is simplified into two layers to better understand and
distinguish the hemodynamics of cerebral and extra-cerebral (skin and skull) tissues. For a two-layered
semi-infinite medium (as shown in Figure 1), the measured boundary intensity at a detector at a
distance ρ from a point-source can be written as [16,17]:

I(ρ) =
1

2π

∫
∞

0
φ(s) s J0(sρ)ds, (9)

where, s is the radial spatial frequency coordinate corresponding to the radial distance ρ, J0 is the
zeroth order Bessel function of first kind, and φ is given by:

φ(s) =
sinh(α1(zb + z0))

D1α1
×

D1α1 cosh(α1L) + D2α2sinh(α1L)
D1α1 cosh(α1(L + zb)) + D2α2sinh(α1(L + zb))

−
sinh(α1z0)

D1α1
(10)

Here, L is the thickness of layer-1, the subscripts 1 and 2 indicate the properties for layer-1 and

layer-2, αi =
√

s2 +
µai
Di

, diffusion coefficient Di =
1

3
(
µai+µ

′
si

) , z0 = 1
µa1+µ

′
s1

, zb =
1+Reff
1−Reff

2D1. Reff is the

fraction of photons internally and diffusively reflected at the boundary.
As shown in Section 2, for the measured CW intensity data on the boundary of a two-layered

medium a unique solution exists for a parameter set
{
µa1 ,µ′s1

,µa2 ,µ′s2
, L

}
. To increase the number of

independent measurements and therefore improve the recovery accuracy the problem is spectrally
constrained by measuring the intensity data over a broad range of wavelengths. For biological tissues,
since hemoglobin is the major absorbing chromophore in the near-infrared range, the wavelength range
650 to 850 nm at either side of the isosbestic region are considered (which is typically conventional in
most systems, well away from 950 nm beyond which other molecules, such as Methemoglobin and
water are the dominant absorbing chromophores). Although other chromophores have significant
extinction coefficients in this wavelength range, their concentration in the tissue is relatively low,
therefore oxy and deoxyhemoglobin can be considered as the main absorbers. The parameter set
now becomes p ≡

{
HbO1, HbO2, Hb1, Hb2, Sa1, Sa2, Sp1, Sp2, L

}
, and measurement data is the light

intensity at source-detector distances ρ = 10, 20, 30, 40, 50 mm, and wavelengths λ = 650 to 850 nm,
in steps of 10 nm. Instead of a conventional approach of recovering all parameters together using a
least-square minimization method which generally exhibits a very high condition number, the recovery
of parameters is achieved in two steps: (1) recovering layer-1 parameters from spectral intensity data
at ρ = 10 mm i.e., a short source-detector distance, assuming a homogenous model as implemented
by considering same parameters of layer-1 and layer-2 properties in Equation (10), the dependency
on L is assumed to be minimal in such a case, and (2) utilizing the recovered layer-1 parameters in
step-1, the layer-2 parameters and tissue thickness L, are recovered using spectral intensity data from
ρ = 10 to 50 mm. This splitting of the parameter recovery is observed to greatly improve the inverse
problem with decreasing the condition number by at least an order of magnitude (i.e., by a factor of 10).

Consider the column vectors p1 ≡
{
HbO1, Hb1, Sa1, Sp1

}
, and p2 ≡

{
HbO2, Hb2, Sa2, Sp2, L

}
,

denoting the parameter sets for the two step parameter recovery with the corresponding measurement
data given by the column vectors y1 ≡ I(ρ, λ) at ρ = 10 mm and λ = 650 to 850 nm in steps of 10 nm,
and y2 ≡ I(ρ, λ) at ρ = 10 to 50 mm in steps of 10 mm, and λ = 650 to 850 nm in steps of 10 nm.
Let vm be the m-th entry in the column vector v, then the element j1mn (of m-th row and n-th column) of
the Jacobian (or sensitivity) matrix J1 corresponding to recovery step-1 is given by,

j1mn =
∂y1m

∂p1n
. (11)
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Similarly, the element j2mn of the Jacobian matrix J2 corresponding to recovery step-2 is given by,

j2mn =
∂y2m

∂p2n
. (12)

The inverse problem at each step is then implemented by an iterative regularized least-square
minimization, where the data is modelled corresponding to the estimated parameter set at each
iteration (beginning with assumed initial values). Based on the mismatch between modelled and
measured data the following parameter update equation is calculated at the end of each iteration, [18]

∆pi =
(
Ji

TJi + βI
)−1

Ji
T ∆yi. (13)

Here, ‘i’ denotes the recovery step-1 or 2, ∆pi represents the update for the parameter set pi, ∆yi is
the data-model misfit at the end of iteration, and Ji is the corresponding Jacobian matrix. To further
aid the stability, the inverse problem is guided with a regularization parameter given by β, which is
considered as 0.01 times the maximum value of the Hessian Ji

TJi. A relative change of less than 2%
in the error corresponding to data-model misfit over two successive iterations is considered as the
stopping criteria for the inverse problem.

The simulation study is split into three parts. Part-(1) deals with data generated on a two-layered
semi-infinite model and recovered using a two-layered semi-infinite model as well. To consider a
more practical scenario, in part-(2) the data is generated on a two-layered head model but parameter
recovery is implemented using two-layered semi-infinite model. Part-(3) deals with data generated
on head model and recovered using a head model as well. Part-(2) and (3) are compared to see if the
semi-infinite model-based recovery is close enough to head-model-based recovery.

4. Results

4.1. Two-layered Semi-infinite Model

The two-layered semi-infinite model as described in Equations (9) and (10), is employed to simulate
the measurement data. The modelled measurement system consists of source-detector distances of 10
to 50 mm in steps of 10 mm, Figure 4, and wavelengths from 650 to 850 nm in steps of 10 nm, and a
Gaussian random noise of 1% is added to the data. From previous studies, a noise level from 0.12 to
1.42% is generally added for source-detector separations varying from 13 to 48mm [19], to represent a
physical model. In this work, apart from multi-distance measurements varying from 10 to 50 mm,
we have broadband wavelength data ranging from 650 to 850 nm, and therefore the distribution of
noise levels is more complex than that. Therefore, an average of 1% random noise is applied for all
source-detector separations and wavelengths. The tissue properties of the two layers are as shown in
Table 1 [19,20], and 10 different cases of randomly varying scattering properties (i.e., both Sa and Sp) of
both layers are considered with a standard deviation of 10% around the reference values, to include the
inter-subject variability in scattering properties. To understand the response of the recovery method to
different cerebral oxygenation levels, the TOI of layer-2 was also varied from 50% to 80% which are
considered the practical extreme values [21,22]. The sensitivity matrices corresponding to step-1 and
step-2 of the recovery process as given in Equations (11) and (12), are calculated using perturbation
method on the analytic expression of Equations (9) and (10). The whole simulation study is repeated
for different layer-1 thickness values of L = 8, 10, 12 mm which are in the range of practical values for
the extra-cerebral thickness of human head.
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Figure 4. Schematic showing semi-infinite model with source-detector locations on the boundary.

Table 1. Tissue parameters.

HbT (mM) TOI (%) Sa (mm-1) Sp

Layer-1 0.059 80 0.64 ± 10% 1.0685 ± 10%

Layer-2 0.076 50-80 0.98 ± 10% 0.611 ± 10%

The recovered TOI values of the two-layers for different thicknesses of layer-1 (8, 10, 12 mm)
are as shown in Figure 5 in comparison to the homogenous parameter recovery. The homogenous
parameter recovery is similar to step-1 in the proposed two-layered recovery process, but all the
measured source-detector distances are considered. The retrieved values of layer-1 thickness is as
shown in Figure 6.
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Figure 5. Estimated tissue oxygenation index (TOI) values from the homogenous and two-layered
parameter recovery methods corresponding to a two-layered semi-infinite medium of Layer-1 thickness
as (a) 8 mm, (b) 10 mm, and (c) 12 mm, using multi-distance hyper-spectral continuous wave (CW)
data. The ground-truth values of layer-1 and layer-2 is shown by dashed lines. The shaded region
shows the standard deviation of recovery for different scattering parameters.
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for different scattering parameters of both layers and different TOI values of layer-2.

The above results (Table 2) show that the proposed two-layered hyper-spectral parameter recovery
method retrieves the tissue oxygenation index and tissue thickness within 4.4% and 4% error respectively.
Recovery of other tissue parameters (hemoglobin concentrations and scattering amplitude of two
layers) can be obtained within 16.6% error with this two-layered approach, as compared to 31.5% error
with the homogenous parameter recovery. However, the scattering power parameter exhibits relatively
higher recovery errors due to its low sensitivity to light-intensity.

Table 2. Average percentage error (%) in homogenous and two-layered parameter recovery for different
ground-truth scattering parameters and different TOI values of layer-2.

Layer-1 Thickness→ 8 mm 10 mm 12 mm

%∆ HbO
Homogenous −31.5 ± 17.3 −23.8 ± 18.4 −17.8 ± 19.1

Layer-1 10.0 ± 4.5 8.2 ± 2.6 7.1 ± 1.4

Layer-2 −16.6 ± 7.2 −15.0 ± 6.1 −15.9 ± 4.9

%∆ Hb
Homogenous 6.1 ± 23.2 16.3 ± 23.3 23.6 ± 22.7

Layer-1 −15.9 ± 2.6 −13.8 ± 1.9 −13.0 ± 1.2

Layer-2 −0.3 ± 9.7 0.8 ± 5.2 2.4 ± 3.4

∆ TOI
Homogenous 8.3 ± 8.3 9.5 ± 9.3 10.4 ± 9.9

Layer-1 −4.4 ± 0.5 −3.6 ± 0.2 −3.3 ± 0.1

Layer-2 3.2 ± 1.4 3.1 ± 0.9 3.4 ± 0.5

%∆ Sa
Homogenous 39.4 ± 0.6 38.8 ± 0.3 37.8 ± 0.2

Layer-1 −8.2 ± 2.9 −8.2 ± 1.8 −8.1 ± 0.9

Layer-2 7.9 ± 4.8 7.6 ± 1.6 6.4 ± 1.1

%∆ Sp
Homogenous −13.7 ± 0.3 −15.7 ± 0.4 −17.5 ± 0.5

Layer-1 25.8 ± 0.4 26.1 ± 0.2 26.3 ± 0.1

Layer-2 −44.9 ± 9.8 −48.8 ± 9.9 −52.4 ± 8.7

%∆ L Layer-1 3.4 ± 4.4 3.4 ± 4.1 4.0 ± 3.1



Appl. Sci. 2019, 9, 2836 10 of 16

4.2. Two-layered Head Model

In a realistic scenario, the structure of the head is more complex than a two-layered semi-infinite
geometry. Therefore, data were simulated using the same tissue properties as shown in Table 1
on two-layered (cerebral and extra-cerebral tissues) head models using NIRFAST corresponding 10
different subject head models, Figure 7, with their scattering parameters (both Sa and Sp) randomly
varying with 10% standard deviation from the reference values shown in Table 1 and the cerebral TOI
varying from 50% to 80%, and subsequently the two-step parameter recovery algorithm was utilized,
initially, using a two-layered semi-infinite model for the recovery. This was to consider the case where
data is from a human subject, but the model utilized for parameter recovery is based on a simple
two-layered model. The parameter recovery results are shown in Figure 8a, Figure 9, and Table 3.
As some measurement data did not converge to a stable solution, from these results it can be observed
that the parameter recovery is accompanied by high standard deviation which can be attributed to the
mismatch between the assumed semi-infinite model and the true head-model.
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Figure 9. Estimated values of layer-1 thickness with semi-infinite recovery model corresponding
to extra-cerebral tissue for 10 subject head models, along with the ground-truth probability density
function of extra-cerebral tissue thickness in the region of interest. Subjects 2, 8 are not shown as the
algorithm did not converge to a stable solution.

Table 3. Average percentage error (%) in the homogenous and two-layered recovery of parameters
corresponding to a semi-infinite recovery model and a head-based recovery model.

Recovery Model→ Semi-infinite Recovery
Model

Head-based Recovery
Model

%∆ HbO
Homogenous 22.0 ± 13..3 −27.2 ± 18.4

Layer-1 21.9 ± 2.9 5.2 ± 4.4

Layer-2 19.0 ± 7.5 −23.3 ± 7.6

%∆ Hb
Homogenous 48.3 ± 9.3 15.3 ± 22.5

Layer-1 −5.5 ± 1.2 −20.0 ± 3.7

Layer-2 45.4 ± 6.1 −1.36 ± 7.6

∆ TOI
Homogenous 9.3 ± 8.0 9.8 ± 9.0

Layer-1 −5.1 ± 0.6 −4.1 ± 0.3

Layer-2 8.4 ± 2.6 4.2 ± 1.9

%∆ Sa
Homogenous 12.3 ± 2.2 37.8 ± 0.4

Layer-1 −34.0 ± 2.2 −6.2 ± 2.7

Layer-2 4.4 ± 14.4 16.2 ± 2.7

%∆ Sp
Homogenous −41.2 ± 4.0 −22.1 ± 0.4

Layer-1 17.8 ± 0.8 26.8 ± 1.1

Layer-2 −87.8 ± 58.3 −44.2 ± 7.6

To overcome this instability for parameter recovery using a semi-infinite or slab-model
approximation, a second head-model that is different to that as used for the data simulation is
introduced and incorporated in the inverse problem to improve the accuracy and consistency of
the parameter recovery. The geometrical information for the external boundary of this head model
(obtained from the original subject-specific head model) is used for the inverse problem, therefore
instead of the semi-infinite model, a medium with similar boundary as the true head model is
considered and by building a model corresponding to this geometry, NIRFAST was used to generate
the model-data for the inverse problem, and also for calculating the sensitivities of layer-1 and 2.
A dense mesh is built for the recovery model (with an average element size around 0.1 mm3 which
10 times smaller than the average element size of 1.7 mm3 considered for head models that are used
to simulate data) to compute the sensitivity values corresponding to tissue thickness as shown in
Equation (12). Individual layers are assigned to this model structure based on the distance from the
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boundary surface, therefore unlike the original head model which has a heterogeneous and spatially
varying thickness of layer-1, the recovery model consists of uniform layer-1 thickness. So, although this
model is better than the semi-infinite model by considering the external boundary structure, its internal
structure is not exactly the same as the true head model. The corresponding parameter recovery is
shown in Figure 8b, Figure 10, and Table 3.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 16 

 
(a) 

 
(b) 

Figure 8. Homogenous and two-layered recovery of TOI for two-layered head model based on: (a) 

semi-infinite recovery model, (b) head-based recovery model. The shaded region shows the standard 

deviation over different head models with different scattering parameters. 

 

Figure 9. Estimated values of layer-1 thickness with semi-infinite recovery model corresponding to 

extra-cerebral tissue for 10 subject head models, along with the ground-truth probability density 

function of extra-cerebral tissue thickness in the region of interest. Subjects 2, 8 are not shown as the 

algorithm did not converge to a stable solution. 

 

Figure 10. Estimated values of extra-cerebral tissue thickness with head-based recovery model for 10 

subject head models, along with the ground-truth probability density function of extra-cerebral 

tissue thickness in the region of interest. 
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These results demonstrate that for the data corresponding to a head model, the proposed algorithm
with a semi-infinite recovery-model estimates the TOI with an average recovery error of 8.4% with
the two-layered recovery approach as compared to the error of 9.3% with the homogenous approach.
Recovery of other tissue parameters (except for scattering power) can be achieved within 45.4% error
with the two-layered approach as compared to the error of 48.3% with the homogenous recovery
approach. However, using an appropriate recovery model (head-based model) the parameter recovery
can be greatly improved by reducing the average recovery error of TOI to 4.2% with the two-layered
approach as compared to the error of 9.8% with the homogenous approach, and the recovery of
other tissue parameters (except for scattering power) can be achieved within 23.3% error with the
two-layered approach as compared to the error of 37.8% with the homogenous recovery approach.
However, the scattering power parameter exhibits relatively higher recovery errors due to its low
sensitivity to light-intensity. In regard of the extra-cerebral tissue thickness, as the ground-truth is
not a single value but rather varies spatially, we can quantify this variation in terms of a probability
density functions as shown in Figure 9 & Figure 10, and by considering the tissue thickness at the
peak probability as the ground-truth, the semi-infinite recovery model estimates the tissue thickness
with an average error of 30.1%, whereas using an appropriate head based recovery model the error in
estimating the tissue thickness is reduced to 11.8%.

4.3. NIRS on Forehead: Experimental Results

A broadband white-light tungsten-halogen light source is used along with a spectrometer to
demonstrate the applicability of the described method using real NIRS data measured on a healthy
subject at rest. A single subject was recruited from the University of Birmingham community,
and written informed consent was obtained. A Tungsten-Halogen light source (Ocean optics
HL-2000-FHSA, with approximately 5 minutes of stabilization time) is connected to an optical
fiber and used as the source placed on the forehead of the subject. Another fiber as connected to a
spectrometer (Ocean optics Flame-S) is used as the detector placed on the forehead of the subject at a
distance 10, 20, 30, 40 mm away from the source. The 50 mm measurement was not used due to its
low SNR. The two fibers (Ocean Optics: QP1000-2-VIS-BX) utilized in this experiment have a 1000 µm
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core diameter, with the efficient wavelength range from 300-1100 nm. The spectrometer consists of an
entrance slit of 200 µm, and a grating with groove density of 600 grooves per mm. The signal is collected
over different acquisition times of 30 ms, 1.5 s, 15 s, and 30 s, for the source-detector distances of 10, 20,
30 and 40 mm respectively, to obtain a good SNR. The collected signal is time-averaged by normalizing
each measurement by its corresponding acquisition time. The spectrometer measures the intensities
from 340 nm to 1015 nm at a spectral resolution of 0.3 nm, which is later down-sampled to a resolution
of 10 nm by averaging every 33 (10/0.3) spectral data points, and is then cropped to the wavelength
range 650 nm to 850 nm to match with measurement model considered in simulations. The intensity
measurements at different source-detector distances were measured sequentially (starting from 10 mm
to 40 mm) due to instrumental limitations. The subject is at rest during the measurements for all
experiments. Each experiment was performed once a day with no stimuli and the subject position
and data acquisition protocol was kept constant for all measurements, and therefore it was assumed
that the hemodynamic changes over the entire duration of measurements (approx. 3 to 5 mins)
were insignificant as often seen during the base-line measurements [23] while the subject is at rest.
The proposed head-based recovery method as described in Section 4.2 was implemented using the
boundary information of the forehead obtained from the MRI of the subject, and later the layer-1
thickness and tissue parameters of two layers were obtained. It should be noted that, while the MRI
of the subject was obtained in a supine position, and the subject was measured while sitting on a
chair at rest during the experiment and the position was kept constant for all measurements. As the
anatomical boundary information of the subject comes from the thin skin/scalp tissue situated on the
rigid structure of skull which is unaffected by the subject posture, the boundary information remains
the same between the measurements and the acquired MRI. The NIRS experiment is repeated on three
different days and the recovery of the parameters are as shown in Table 4. Although the physiological
parameters of the tissue may have changed over different days, consistent values of tissue thickness
over three days were recovered to ascertain the repeatability of the proposed method.

Table 4. Homogenous and two-layered parameters recovered using the head-based recovery method
described in Section 4.2.

Day-1 Day-2 Day-3

Head-based
recovery model

Head-based
recovery model

Head-based
recovery model

HbO (mM)
Homogenous 0.0697 0.0520 0.0694

Layer-1 0.0358 0.0439 0.0563

Layer-2 0.1116 0.1333 0.1567

Hb (mM)
Homogenous 0.0201 0.0145 0.0199

Layer-1 0.0075 0.0098 0.0138

Layer-2 0.0699 0.1017 0.1130

TOI (%)
Homogenous 77.6 78.2 77.7

Layer-1 82.6 81.7 80.3

Layer-2 61.4 56.7 58.1

Sa (mm-1)
Homogenous 0.44 0.56 0.44

Layer-1 0.58 0.51 0.43

Layer-2 0.34 0.24 0.12

Sp
Homogenous 0.64 0.69 0.65

Layer-1 0.69 0.68 0.65

Layer-2 1.07 1.26 3.0

L (mm) Layer-1 9.9 10.7 10.8
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5. Discussion

A hyperspectral continuous wave NIRS parameter recovery method is presented to distinguish
extra-cerebral and cerebral tissue hemodynamics, by separating the tissue absorption and scattering
parameters and also by simultaneously fitting for the superficial layer thickness. Major challenges
of continuous wave NIRS system have been the recovery of scatter (i.e., separating absorption and
scattering information from the measured NIRS signal), and removing/separating the extra-cerebral
tissue contamination from the NIRS signal to estimate the cerebral hemodynamics. It is shown
theoretically in Section 2 that, while for a given spectral derivative of intensity measurements
(any derivative measurements) have non-unique solution sets of layered tissue parameters, the absolute
intensity measurements have a unique solution set of layered tissue parameters. A two-step approach is
presented to recover the two-layered properties along with tissue thickness. In the case of data generated
on a two-layered semi-infinite model, the proposed two step approach using a semi-infinite model in
the inverse problem is shown to recover the tissue parameters within 16.6% errors. The recovery error
of layer-1 properties are reduced with increasing thickness, this is because of the assumption in step-1
that the short distance measurement is only influenced by layer-1. This increase in accuracy of the
estimation of layer-1 properties in step-1 which increase with thickness, should improve the recovery
of layer-2 properties in step-2 but with increased thickness there is a drop in the sensitivity of layer-2
and therefore a similar trend of improvement in accuracy is not seen for layer-2. The opposite sign of
mean-relative errors for absorption (i.e., HbO and Hb) and scattering parameters (scattering amplitude)
shows that the cross-talk between these parameters is negatively related, any over-estimation of
absorption is accompanied by an under-estimation of scattering amplitude and vice versa.

In the case of data generated on head models, a semi-infinite recovery model is shown to recover
results with mixed accuracy. This is due to the complex structure i.e., the spatially varying curvature
of external medium boundary and internal regional boundary. This is evident from the recovery
accuracy of tissue thickness in Figure 9 for some head models where a correct two-layered semi-infinite
model approximation wasn’t found. Therefore, to tackle this problem, using an appropriate boundary
structure with the similar two-step parameter recovery approach, it has been demonstrated that the
accuracy is greatly improved and similar to the initial case where the data is generated and recovered
on semi-infinite model.

The practical implementation of this method has been shown in Section 4.3. The results presented
in Table 4 show that the variation in tissue oxygenation levels recovered over three different days is
less than 5%, and the variation in the recovery of extra-cerebral tissue thickness was not more than
~1mm, which clearly demonstrates the repeatability of the recovery algorithm.

It is important to highlight that the human head consists of multiple layers, such as skin, skull,
CSF and brain tissue. Therefore, although the proposed methodology only assumes a two-layer model,
to account for superficial signal contamination, the results indicate that this is much more suitable and
robust as compared to the conventional homogenous assumptions. Future work should be directed
towards extending this methodology to account for multiple layers, which may require the utilization
of more boundary measurements and data-types to better extract information about pathlength [10].

6. Conclusions

A two-layered parameter recovery method using multi-distance hyper-spectral CW intensity
measurements is proposed and demonstrated to recover the absolute hemoglobin concentrations,
scattering parameters, and the superficial tissue thickness of a human head through simulations across
different head models corresponding to different subjects. A practical implementation of this approach
with real human subject data measured on the forehead is presented and has shown good repeatability
in the recovered tissue parameters over three days. However, validation of these results is challenging
as the absolute tissue parameters are unknown. It is the subject of future studies and needs further
investigation. Finally, this work suggests the ability of multi-distance CW hyper-spectral data to



Appl. Sci. 2019, 9, 2836 15 of 16

retrieve or separate the extra-cerebral tissue parameters and the cerebral tissue parameters and that
such an approach is more accurate than recovering bulk tissue parameters.
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