
REMOTE SENSING DATA ANALYTICS WITH THE UDOCKER CONTAINER TOOL
USING MULTI-GPU DEEP LEARNING SYSTEMS

Gabriele Cavallaro1, Valentin Kozlov2, Markus Götz2, Morris Riedel1

1Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
2Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany

ABSTRACT

Multi-GPU systems are in continuous development to
deal with the challenges of intensive computational big data
problems. On the one hand, parallel architectures provide a
tremendous computation capacity and outstanding scalability.
On the other hand, the production path in multi-user environ-
ments faces several roadblocks since they do not grant root
privileges to the users. Containers provide flexible strate-
gies for packing, deploying and running isolated application
processes within multi-user systems and enable scientific re-
producibility. This paper describes the usage and advantages
that the uDocker container tool offers for the development
of deep learning models in the described context. The ex-
perimental results show that uDocker is more transparent to
deploy for less tech-savvy researchers and allows the appli-
cation to achieve processing time with negligible overhead
compared to an uncontainerized environment.

Index Terms— Containers, uDocker, multi-GPU, deep
learning, classification, remote sensing.

1. INTRODUCTION

In this era of a growing number of earth observation satellite
and aerial platforms the volume, variety and acquisition rate
of remote sensed images have been dramatically increased.
This introduced remarkable challenges that lie within the en-
tire acquisition and processing data pipeline—i.e., the Vs of
big data [1, 2]. The interpretation of remote sensing images
is not straightforward and requires complex algorithms since
their content depends upon various factors, e.g., the sensor
resolution, the equipment unreliability, the type and amount
of noise, etc. Furthermore, the increased data volume and
demands of real-time applications require the use of high
scalable and parallel processing approaches. While modern
desktop computers and laptops having unprecedented perfor-
mance, e.g., multi-core architectures and built-in accelerators,
they are still limited in terms of computable problems due to
their memory constraints and raw floating-point operations
per second.

Having massive numbers of processors and memory avail-
able, multi-GPU systems can overcome these limitations and

provide processing capacity that well exceed traditional lap-
tops and work stations. Moreover, the utilized dedicated high-
speed networks, such as InfiniBand, enable strong vertical
and horizontal scaling of applications. Despite the impact of
these new architecture on traditional simulation sciences, par-
allel computing is currently experiencing focus and advance-
ments due to the current deep learning trend. Both of the lat-
ter domains influence each other in numerous ways [3] such
as, among others, refreshed attention to hardware and perfor-
mance engineering around tensor operations, the explorations
of scalability boundaries as well as the envisioning simplified,
parallel programming models. At the same time, deep learn-
ing has made revolutionary achievements for the analysis of
remote sensing images [4] possible.

Nevertheless, there are major factors that prevent multi-
GPU and -user systems from being the platform of choice for
researchers developing new deep learning models. It starts
with getting access and computing time on these machines,
but goes well beyond that. Users who develop deep learning
workflows want to focus first and foremost on the purpose and
the realization of their analysis pipeline. This is in turn re-
quires them to be in full control of their programming library
stack and underlying system. However, in multi-user systems
administrators are usually in charge of the maintenance and
supervision of the systems; users do not have privileges to
install or modify software and can therefore not easily catch
up with up-to-date libraries. Instead, a user is usually faced
with either a long-pending installation request or a user-land
compilation of their custom software, which needs to be re-
peated for every actively working scientist of the research col-
laboration. At the same time, users seek reproducible science
through computational mobility [5], i.e., the possibility to re-
store a software environment as closely as possible to verify
and continue past research. Containers have drawn a lot of at-
tention in recent years in the parallel computing domain since
they allow the simplification and acceleration of the appli-
cation build and deployment process. Furthermore, for users
working in the parallel computing and deep learning domains,
containerization offers the benefits of scalability without per-
formance penalties compared to traditional virtual machines.
Gomes et al. [9] have proposed uDocker , a novel container
tool that allows the execution of Docker containers without

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/225631881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table 1. Comparison of state-of-the art container technologies suitable for execution on multi-user systems. The displayed
table is a heavily modified variant of the previous work from Priedhorsky et al. [6] and Kurtzer et al. [5].

Docker [7] Singularity [5] Shifter [8] Charlie Cloud [6] uDocker [9]
Privilege model Root daemon SUID/UserNS SUID UserNS chroot-like
Current production Linux distros support 7 3 3 7 3

No privileged or trusted daemon 7 3 3 3 3

Access to the host filesystem 3 3 3 3 3

Support for GPU 7 a) 3 b) 7 7 3 b)

Support for MPI 3 3 3 3 3 c)

Pulling from Docker Hub 3 3 3 3 3

No system admin intervention required 7 7 7 7 3

No escalation of permissions 7 3 d) 3 3 3

Works with all HPC schedulers 7 3 7 3 3
a) Can be realized by installing nvidia-docker runtime c) Container MPI version has to match the HPC one
b) Experimental feature d) There was a number of high severity security issues in Singularity

the necessity for administrative privileges, i.e., no need to
install additional system software. This paper describes the
usage of uDocker [9] container tool for the development of
an exemplary deep learning model for remote sensing images
pixel-wise classification. The experimental results show that
uDocker is comparable to a bare-metal installation, only en-
tailing around a 1% computation time overhead, while sim-
plifying the setup drastically.

2. BACKGROUND

The development of applications on shared multi-GPU sys-
tems is a difficult operation which requires that the system
administrators build ad-hoc environments, i.e., software mod-
ules. For instance, a simple application upgrade can demand
updating several environment modules. Furthermore, multi-
GPU applications usually require running across multiple
platforms and environments and utilize site-specific resources
while resolving complicated software-stack dependencies.
These are time-consuming tasks which add more work to the
administrators, who have to maintain the multi-user systems
and assure that the users have the tools and support to make
the most efficient use of the computing resources.

Inspired by the shipping containers in inter-modal global
transport, i.e., standardized containers that can be directly
transferred with different shipping methods without any addi-
tional preparation, software containers utilize the same strat-
egy. They are in many ways the next logical progression
from virtual machines [10]. However, containers are a type
of lightweight virtualization technology, which encapsulates
system environments into standard units of software that are:
portable, easy to build and deploy, have a small footprint,
and low runtime overhead. As researchers started embracing
containers for science, their usage within parallel computing
environments grew as well. Despite all the issues of using

containers in multi-user systems, they have been developed
to meet their needs including security, MPI compatibility and
GPU access. Since the introduction of Docker [7], the de-
velopment of technologies associated with containers raised.
Table 1 shows the most leading container technologies with
their main features.

3. UDOCKER CONTAINER

uDocker is a software technology that allows the reuse and ex-
ecution of Docker containers in user mode [9]. A container in
turn is an isolated environment mimicking an operating sys-
tem and its installed software. It is created by making use of
layering file system, where every change made to the image,
e.g., the installation of a software, adds a new layer to the im-
age. These layers can then be shared and reused or further ex-
tended to a customized versions. In contrast to traditional vir-
tualization technology, like virtual machines, containers are
often referred to as light-weight, as they do not “pull-in” the
entire operating system, but reuse the host operating system
kernel when executed. This does not only reduce the memory
footprint of such a container, but also reduces the computa-
tional performance impact.

While there is a plethora of containerization technologies
currently being developed and researched on, first and fore-
most Docker, they often have a particular usage scenario in
mind, requiring intervention of a priviliged user, e.g., admin-
istrator, for at least one step of the creation or execution of an
isolated environment. In multi-user systems, especially with
multiple GPUs used for deep-learning, the assumption about
privileges does not hold in hindsight of security issues and
direct use of containerization technology is not viable. At
the same time, the operations requiring containers to have ad-
ministrator privileges, are in most cases not needed for (scien-
tific) deep learning application like in remote sensing. There-



fore, uDocker attempts to offer a compromise between both
worlds.

Through a second layer of virtualization technologies,
like PTRACE, UserNamespaces or libfakechroot [9],
it emulates as many container technology functions as pos-
sible in an unpriviliged userland environment. While actual
privileged operation, like access to high-ports or password
management, will obviously fail, enabling security by de-
sign, access to deep-learning essentials like GPUs is possible.
uDocker offers multiple execution modes, where each is re-
ferring to a particular realization of the secondary virtualiza-
tion technology—P uses PTRACE, F libfakechroot, R
UserNamespaces and S Singularity as engine. This alongside
numeric levels for the execution modes, e.g., P1 or P3, allow
the fine tuning of the uDocker for the particular execution
scenario.

uDocker syntax is designed to be very similar to Docker’s
interface in order to allow users to reuse documentation mate-
rial and container technology manager to transfer their knowl-
edge. At the same time, uDocker is able to reuse openly
published Docker containers, e.g., on DockerHub, enabling
a rapid development cycle, custom extension and exchange
with large community. A remote sensing scientist, who devel-
oped a new classification algorithm for example, may want to
establish it either as a generally usable service or open-source
it alongside a publication. In this scenario, the respective con-
tainer can be created directly using uDocker on his experi-
mentation device and then later shared with other scientists to
verify or build on the results.

4. EVALUATION

4.1. Experimental Setup

The experiments have been performed on the LSDF setup,
which is a single computer with all hardware available lo-
cally. Its configuration parameters are listed in Table 2. The
operating system is a RedHat Enterprise Linux 7.5, CUDA
Toolkit 9.0.176 and cudnn 7.0.5 library are installed system-
wide. We first created virtual environment and run baremetal
tests by means of Keras 2.2.2, TensorFlow 1.8.0 (GPU), and
the neural network code1 described in the next section. Ver-
sions of all relevant Python packages were fixed with pip

freeze, so that exactly same versions are used in all the
tests, including created docker image2. Note, that the utilized
Python versions are slightly different in case of baremetal and
the docker image: 2.7.5 and 2.7.12 respectively. uDocker is
executed in ’F3’ mode (Fakechroot) with ’--nvidia’ flag
specified, devel branch of uDocker from GitHub is used.

1Source code: https://github.com/vykozlov/semseg-bids19
2https://hub.docker.com/r/vykozlov/semseg/, tag ’bids19-gpu’

Table 2. LSDF setup used in the experiments.

CPU RAM Nvidia GPU
(driver version)

2× Intel Xeon 128 GB 4×K80,
E5-2630 v3 12 GB (396.26)

4.2. Dataset and Deep Learning Model

The Vaihingen dataset [11] includes 33 orthorectified image
tiles acquired by an aerial camera (i.e., infrared, green and
red bands) over the town of Vaihingen (Germany) 3. Since
this dataset was released as a benchmark for a 2D semantic
labeling contest, only 16 out of the 33 tiles are annotated (i.e.,
at pixel level with a spatial resolution of 9 cm). For the ex-
periments, the annotated tiles that are used for the training
and validation have ID= 1,3,5,7,11,13,17,21,26,28,34,37 and
ID= 30,32, respectively. The semantic segmentation task in-
volves the discrimination of 6 land-cover classes: impervious
surfaces (i.e., roads, concrete surfaces), buildings, low vege-
tation, trees, cars and a class of clutter representing uncate-
gorizable land covers (i.e., excluded in the prediction). The
training data consisted was randomly augmented using 90 de-
gree rotations and horizontal and vertical flips.

The deep learning model is a 50-layer Residual Network
(ResNet) [12] that was adapted into a Fully Convolutional
Network (FCN) with connections from the last 3232, 1616,
and 88 layers of the ResNet: ResNet50 FCN 4.

The model was trained using a random initialization for
20 epochs with 4166 samples per epoch (2083 original im-
ages and 2083 augmented) with a batch size of 16 using the
Adam optimizer with Keras default settings (e.g., a learning
rate of 0.001). The network takes 256×256 windows of data
as input. To generate predictions for larger images, we made
predictions over a sliding window (with 50% overlapping of
windows) and stitched the resulting predictions together.

4.3. Results

The code allows to use more than one GPU for training by
means of Keras’ multi gpu model function, we therefore
perform training on one, two, and four GPUs for every case.
Each experiment is run three times under the same conditions
in baremetal installation and via uDocker . In order to com-
pare our results we used mean value and estimated standard
error for the sample calculated based on the three runs. Ev-
ery run consists of 20 epochs of training. Results for the to-
tal training time are shown in Table 3. As one can see, in

3http://www2.isprs.org/commissions/comm3/wg4/semantic-
labeling.html

4https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-
imagery/



either case we see no statistically significant difference be-
tween baremetal and uDocker modes of running. There is
also a clear performance improve in processing time when
using four over one GPU. The scaling with number of GPUs
is however imperfect. This can be attributed to the communi-
cation overhead of the way Keras synchronizes weight gradi-
ents between multiple GPUs in the training’s backpropagation
step.

Table 3. Total training time of the neural network. Each result
is an average of three runs with its standard error. Every run
takes 20 epochs of training on either one, two, or four GPUs.

Number of Training time, s
GPUs baremetal uDocker

1 3710 ± 10 3730 ± 10
2 2390 ± 30 2360 ± 16
4 1860 ± 40 1880 ± 10

We note here, that uDocker also allows to pass envi-
ronment settings at container instantiation phase, therefore
one can e.g., specify which GPU card to use by setting
CUDA VISIBLE DEVICES environment.

5. CONCLUSIONS

This paper describes the usage of the uDocker container tool
within a multi-GPU system for the development of a deep
learning classification task. uDocker allow to run the classi-
fier in a Docker container without using Docker, root privi-
leges and additional system software. It is run as a normal
user without the intervention of the system administrators.
The paper shows that researchers can adopt uDocker to facil-
itate the deployment of new analytical models and workflows
on multi-user systems and enable scientific reproducibility.
Furthermore, the experimental results demonstrated that the
overhead introduced by the container is negligible when com-
pared to an uncontainerized environment.

6. ACKNOWLEDGMENTS

uDocker is being developed within DEEP HybridDataCloud
project, which receives funding from the European Union’s
Horizon 2020 research and innovation programme under
agreement RIA 777435.
This project has received funding from the European Union’s
Horizon 2020 research and innovation program under the
Grant Agreement No. 754304 DEEP-EST.
The Vaihingen data set was provided by the German Society
for Photogrammetry, Remote Sensing and Geoinformation
(DGPF) [11] http://www.ifp.uni-stuttgart.de/dgpf/DKEP-
Allg.html.

REFERENCES

[1] M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen,
Y. Zhu, SunZhongyi, J. Shen, and Y. Zhu, “Big Data for
Remote Sensing: Challenges and Opportunities,” Proc.
IEEE, 2015.

[2] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan,
A. Zomaya, and W. Jie, “Remote Sensing Big Data
Computing: Challenges and Opportunities,” Future
Generation Computer Systems, vol. 51, pp. 47–60,
2015.

[3] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and
Distributed Deep Learning: An In-Depth Concurrency
Analysis,” 2018.

[4] X. X. Zhu, D. Tuia, L. Mou, G. S. Xia, L. Zhang, F. Xu,
and F. Fraundorfer, “Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources,” 2017.

[5] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singu-
larity: Scientific Containers for Mobility of Compute,”
PLoS ONE, 2017.

[6] R. Priedhorsky, T. C. Randles, and T. Randles, “Char-
liecloud: Unprivileged Containers for User-Defined
Software Stacks in HPC,” SC17: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, 2017.

[7] D. Merkel, “Docker: Lightweight Linux Containers for
Consistent Development and Deployment,” 2014.

[8] D. M. Jacobsen and R. S. Canon, “Contain This, Un-
leashing Docker for HPC,” Cray User Group 2015,
2015.

[9] J. Gomes, E. Bagnaschi, I. Campos, M. David, L. Alves,
J. Martins, J. Pina, A. López-Garcı́a, and P. Orviz, “En-
abling Rootless Linux Containers in Multi-User Envi-
ronments: The Udocker Tool,” 2018.

[10] J. Smith and R. Nair, Virtual Machines: Versatile Plat-
forms for Systems and Processes. 2005.

[11] M. Cramer, “The DGPF-Test on Digital Airborne
Camera Evaluation Overview and Test Design,” PFG
Photogrammetrie, Fernerkundung, Geoinformation,
vol. 2010, no. 2, pp. 73–82, 2010.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016.


	 Introduction
	 Background
	 uDocker Container
	 Evaluation
	 Experimental Setup
	 Dataset and Deep Learning Model
	 Results

	 Conclusions
	 Acknowledgments

