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Software verification is a tedious process that involves the analysis of multiple failed verification
attempts, and adjustments of the program or specification. This is especially the case for complex
requirements, e.g., regarding security or fairness, when one needs to compare multiple related runs
of the same software. Verification tools often provide counterexamples consisting of program inputs
when a proof attempt fails, however it is often not clear why the reported counterexample leads to
a violation of the checked property. In this paper, we enhance this aspect of the software verifica-
tion process by providing DIbugger, a tool for analyzing counterexamples of relational properties,
allowing the user to debug multiple related programs simultaneously.

1 Introduction

Software verification is a tedious process that involves the analysis of multiple failed verification at-
tempts, and adjustments of the program or specification. Oftentimes, this is an incremental process,
where at first neither the formal specification captures the informally-given requirements, nor the pro-
gram adheres to the specification. The task becomes even trickier when the requirements are complex, as
is often the case for security (e.g., noninterference for information flow [13]) or fairness (e.g., for resource
allocation [12] or voting [2]) requirements, which can only be captured using relational properties.

Relational properties refer to at least two program runs. A classical example of such a property is
program equivalence—the property that two programs provided with identical inputs generate identical
outputs. Relational properties are highly relevant in the field of evolving safety-critical systems, e.g.,
when modifying the software, or when one software component is replaced with another one. When
applying such a change to the software, we wish to make sure that this change does not introduce new
bugs. Relational verification tools such as LLRêve [10] can prove that a new—but similar—software
program is equivalent (modulo some allowed changes) to the preceding existing software.

In case the verification of these properties fails, existing verification tools can provide counterex-
amples. Such counterexamples contain concrete inputs which are identical between the two programs,
but for which the execution of the two programs leads to two different outputs. Understanding why the
provided inputs are a counterexample is—however—usually not a trivial task. Whereas this task is al-
ready difficult for functional properties, it becomes even more challenging for relational properties, as
the user needs to concomitantly check the values of program variables across multiple (i.e., more than
one) program runs. Nonetheless, this is a very important step which the user needs to perform in order
to improve the analyzed specification and/or code. The process of verifying software is an iterative one,
as described in [3] as follows: “Until the verification succeeds, (a) failed attempts have to be inspected
in order to understand the cause of failure and (b) the next step in the proof process has to be chosen.”
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Contribution. The contribution of this paper is DIbugger, a novel tool that supports the user in un-
derstanding the reason why some input leads to a violation of a k-relational property. This input may
be provided by a verification tool as counterexample for such a property. Thereby, we enhance step (a)
in the iterative software verification process mentioned above. DIbugger extends familiar concepts from
software debugging in order to support the user in finding the points of execution of the analyzed pro-
grams which introduce a violation of the relational property. DIbugger allows for conditional expressions
and watch expressions which use conditions and expressions which refer to any or all of the analyzed
programs. Moreover, additional user assistance is provided by backwards debugging and adaptable step
sizes for each analyzed program. To the best of our knowledge, DIbugger is the first tool that addresses
the problem of debugging relational properties.

Structure of the paper. In Section 2, we present DIbugger and its main functionalities. Furthermore,
Section 3 shows how DIbugger can be used which is illustrated by applying it on an example. We explain
the range of supported properties and present related work in Section 4 and finally conclude in Section 5.

2 DIbugger

DIbugger1 is a relational debugger for the WLANG programming language. WLANG is a subset of the C
programming language and supports sequential, interprocedural programs. Dynamic memory allocation
and object-oriented programming features are not yet supported.

Figure 1: The architecture of DIbugger

As shown in Figure 1, DIbugger consists of four components which are responsible for the user
interface, control, file handling and debugging respectively. The debugging functionality is built on
top of an interpreter for WLANG. The interpreter generates the trace (i.e., the sequence of values of
a program’s variables at each point of its execution) of each analyzed program from the given inputs.
The debugger works on those traces and executes the debugging operations as selected by the user. The
graphical user interface (GUI) of DIbugger is shown in Figure 2, and the available features are explained
in the following.

1DIbugger is available at https://git.scc.kit.edu/py8074/dibugger

https://git.scc.kit.edu/py8074/dibugger
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Figure 2: The user interface of DIbugger

2.1 Debugging Operations

The buttons for the debugging operations are situated in the top right part of the GUI (see Figure 2, in
the highlighted area 2). The Play and Stop buttons allow for switching between the debug and the edit
mode, respectively. In the edit mode, the analyzed programs can be modified, and once the user switches
into debug mode, the traces are generated and the programs can be debugged. Moreover, as seen below
the Play and the Stop button, the following buttons provide the specific debugging functionalities:

• Step: The execution of each analyzed program advances by the step size, i.e., the amount of execu-
tion points, specified by the user in the program panel (highlighted area 1 described in Section 2.2).
Thereupon, the variable values computed by the instructions in these traversed execution points
can be inspected for each program in the variable inspector in the program panel. The user can
use different step sizes for the analyzed programs in order to both keep the program executions
synchronized and examine loops where the numbers of instructions vary between the programs.
Depending on the analyzed property or programs, mutable step sizes allow the user to keep the
programs in lockstep even when some programs progress faster than others.

• StepBack: The execution of each analyzed program moves one step back.

• StepOut: The execution of each analyzed program either jumps out of the respective current
method or—if already in the outermost method—moves to the end of the main method.

• StepOver: The execution of each analyzed program performs a normal step, but does not step into
any traversed method call.

• Continue: The execution of each analyzed program advances to the next—whichever comes first—
breakpoint, conditional breakpoint evaluating to true (see Section 2.3), or end of the main method.
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2.2 Program Panels

The central part of the GUI contains one program panel for each analyzed program, as illustrated in the
highlighted area 1 of Figure 2. The two buttons at the top of the program panel allow the user to add a new
program panel or to remove the existing panel. Below these buttons, the user can modify the step size
for debugging, or, by using the singlestep button, perform a single debugging step only in the selected
program. Further down, the user must provide the debugging inputs for the respective program. In the
center of the program panel, the user can inspect the analyzed program and set breakpoints anywhere
within the code. These breakpoints correspond to synchronization points. When pressing the Continue
button, all analyzed programs advance to their next breakpoint or—when activated before—conditional
breakpoint. Below the analyzed program, the variable inspector shows the current values for all program
variables in the scope of the current execution point, as well as the return value of the main method.
Note that each program panel has a unique identifier (e.g., the highlighted program panel in Figure 2 has
identifier A) which the user must use when writing watch expressions and conditional breakpoints (see
Section 2.3) referring to the program’s variables.

2.3 Watch Expressions and Conditional Breakpoints

When debugging relational properties, the user needs to constantly compare the values of the variables
in all analyzed programs. In the context of relational verification, she would need to check whether
certain relational invariants hold at some points of interest. However, repeating this in every step of
the debugging process would be a tiresome task. In order to reduce her effort, she can insert watch
expressions and conditional breakpoints within the highlighted areas 3 and 4 in Figure 2, respectively.

Watch expressions are WLANG expressions which may contain variable identifiers from any of the
analyzed programs. They help the user to compare values between the execution points of the analyzed
programs. At each point of the debugging process, the value of the expression is computed and the result
is displayed. This feature allows the user to check at any time whether certain relational invariants hold.

Conditional breakpoints are boolean expressions which are evaluated at every execution point reached
with the step sizes specified by the user. They help the user to find the execution points of her interest.
If the expression evaluates to true, then the execution of the analyzed programs halts at that execution
point. Conditional breakpoints allow the user to search for execution points in which relational invari-
ants are violated. Using the Opt button for both watch expressions and conditional breakpoints allows
for setting a program scope. A program scope consists of two line numbers for specifying start and end
of the program segment in which the variables in the WLANG expressions are to be evaluated. Thus, if
the program execution is outside of the specified scope, the value of the watch expression is unknown
and, for conditional breakpoints, the execution does not halt outside of the scope.

3 Using DIBugger on an Example

In the following, we illustrate how DIbugger can be used by applying it on an example for debugging
program equivalence in the scope of software evolution. We use two programs, an implementation of
Euclid’s algorithm for computing the greatest common divisor as shown in Listing 1, and a modified im-
plementation of Euclid’s algorithm as shown in Listing 2. The user modifies the original implementation
based on the assumption that gcd(a,b) = gcd(b,a) holds. She reversed the condition in the if-statement
in line 5 such that in line 10 the method returns the value of the variable b instead of the value of the
variable a.
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1 int main(int a, int b) {
2 int i = 0;
3 while (a != b && i < 500) {
4 i = i + 1;
5 if (a > b)
6 a = a - b;
7 else
8 b = b - a;
9 }

10 return a;
11 }

Listing 1: Correct Euclid’s Algorithm

1 int main(int b, int a) {
2 int i = 0;
3 while (a != b && i < 500) {
4 i = i + 1;
5 if (b > a)
6 a = a - b;
7 else
8 b = b - a;
9 }

10 return b;
11 }

Listing 2: Incorrect Euclid’s Algorithm

In order to check whether the implementation behaves identically to the original one, a relational
verification tool may be used. In our example, the relational verification tool returns a counterexample
that consists of an identical input for both programs, e.g., (a = 2,b = 4). With this input, the user
can execute the two programs and observe that the original implementation returns 2 and the modified
implementation returns −1998. While this shows that the two implementations behave differently with
respect to the result value, it does not help the user in understanding why this is the case. Therefore, the
user needs to debug the two programs in parallel.

When the user starts the debugging process, the return value of each of the two programs is shown
below the respective program. This is possible as the interpreter of DIbugger first executes the analyzed
programs and then generates their traces. Note that within our application scenario, these computations
may not cause any relevant performance problems. Beyond DIbugger’s application for understanding
counterexamples, the real bottleneck regarding the programs’ sizes and complexities lies within the pre-
ceding verification task performed by the verification tool.

Generating the trace for each program allows debugging features such as stepping backwards, which
is very useful when debugging multiple programs side by side. In case the user performs too many
debugging steps and advances beyond the execution point of her interest, she can simply step back in
the programs until she reaches her point of interest. With two conventional debuggers—however—she
would be required to restart the debugging process. Furthermore, the precomputed traces enable the
support of conditional breakpoints, where the user can find pairs of execution points which violate a
relational invariant.

In our example, the user can specify that the relational invariant A.a == B.b needs to hold after every
debugging step. With this invariant as a conditional breakpoint, pressing the Continue button stops the
execution in both programs at line 8 with the values 2 and −2 for A.a and B.b respectively. The user
then examines these values and understands that she forgot to switch the then- and else-case in the if -
statement. Afterwards, she enters the editing mode, edits the second program by applying the necessary
changes, and then enters the debugging mode again. Finally, both programs return the (same) value 2.

We see already in this simple example that the analysis using conventional debuggers, which only
allows to inspect a single program execution simultaneously, would be more difficult. As in conventional
debuggers the user must guide the debugging process for all programs separately, she cannot use watch
expressions and conditional breakpoints for finding tuples of execution points which violate the relational
property.
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4 Supported Properties and Related Work

In the following, we elaborate on two relevant aspects closely related to DIbugger. First, we illustrate the
range of (relational) properties which DIbugger supports additionally to the (functional) properties which
are also supported by conventional debugging tools. Second, we cover approaches related to DIbugger
in the sense that debugging is performed in the scope of or combined with the task of formal verification.

Supported properties. DIbugger supports the inspection of counterexamples for any k-safety property,
i.e., properties that can be refuted by at most k traces [5]. A prominent target for verification of k-safety
properties is program equivalence. Verification approaches for program equivalence exist, e.g., for C pro-
grams [10] or PLC software [4], and allow both verification and counterexample generation. Another
example of relational properties are information flow properties which target the problem whether certain
outputs can be influenced by certain inputs of the program. The KeY theorem prover [1] supports such
properties [13] and can also generate counterexamples. A great variety of relational properties exists,
e.g., when specifying fairness properties in the context of social choice theory. Therein, a prominent
example are voting algorithms which take the individual votes and compute the elected candidates, with
relational properties such as monotonicity, anonymity, neutrality or reinforcement. Relational properties
for voting algorithms can also being verified using formal methods [2] and the generated counterexam-
ples to such properties can greatly enhance the understanding and selection of such algorithms [11].

Related work. Debugging itself is a well-known and established technique from software engineering
and implemented in a multitude of software development environments. However, we did not find any
work on the process of simultaneously debugging multiple programs in a synchronized or relational
fashion. One related idea is the concept of delta debugging, which searches for failure causes, i.e., how
and when the infection causing the software defect has been propagated [6]. Cleve and Zeller attempt to
obtain the smallest possible subset of relevant variables by performing a search over both the chain of
applied changes and the original variables which might have caused the infection. Thereby, infectious
state differences are automatically narrowed down both in time and in space while requiring logarithmic
to quadratic runtime.

Another approach more oriented towards understanding counterexamples is the explain tool, which
works interactively [7]. Groce et al. perform a causal slicing algorithm based on bounded model checking
by first producing a counterexample and then computing a successful execution most similar to the failing
run using distance metrics. Guided by this distance metrics, the user searches the cause which seems most
convincing to her, and finally uses the bounded model checker to verify that the suspected cause is indeed
a valid explanation for the failing run. Comparing multiple programs is also interesting for inspecting
concurrent programs. Jalbert and Sen apply a greedy slicing technique to simplify complex buggy traces
from concurrent program executions to gain a better understanding for the cause of the failure [9].

Moreover, ideas from debugging have also been applied to deductive program verification in order
to inspect proofs for program correctness based on logical calculi. Exploiting the technique of symbolic
execution, Hentschel et al. devised a symbolic execution debugger which symbolically analyses all possi-
ble program states based on the program’s formal precondition [8]. This technique allows the inspection
of failed proof attempts which help understanding possibly undesired program behaviour. Finally, the
debugging mindset can also directly integrated in full program verification on the basis of a compact
proof language. Beckert et al. have instrumented theKeY theorem prover for Java programs in order to
perform interactive what-if-analyses in a user-friendly fashion directly on the proof object [3]. The user
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can directly manipulate on the proof using a kind-of proof meta language also allowing to experiment
by coming up with and trying out her own assumptions for gaining a detailed understanding on why the
proof did not succeed (yet).

5 Conclusion and Future Work

We presented DIbugger, a tool that helps the user understand why the verification of a relational property
failed. The tool can be used as a counterexample analyzer for many verification approaches in various
scenarios and use cases ranging from regression verification of safety critical system to the verification
of information flow properties or the verification of social choice properties.

Moreover, we plan to extend the supported language features to heap-based data structures, and
support the automatic suggestion of useful conditional breakpoints or watch expressions, depending on
the analyzed relational property. Further ideas to go from here are to enrich DIbugger by property-
specific breakpoints in order to better-support specific use cases, or to extend the current breakpoints
and watch expressions to quantitative program comparisons. Such ideas could also be integrated in a
larger framework guided by counterexamples for abstracting the program. Finally, we would like to
apply DIbugger to larger use cases to gain more experiences on its scalability and usability for specific
use cases.
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